Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis(pyridin-2-yl)-4-{[(3a\$,5\$,5aR,8aR,8b\$)-2,2,7,7-tetramethyltetrahydro-5H-bis[1,3]dioxolo[4,5-b:4',5'-d]pyran-5-yl)methoxy]methyl}pyridazine monohydrate

Mouad Filali,^a* Hicham Elmsellem,^b Tuncer Hökelek,^c Abdelkrim El-Ghayoury,^d Oleh Stetsiuk,^d El Mestafa El Hadrami^a and Abdessalam Ben-Tama^a

^aLaboratoire de Chimie Organique Appliquée, Université Sidi Mohamed Ben Abdallah, Faculté des Sciences et Techniques, Route d'Immouzzer, BP 2202, Fez, Morocco, ^bLaboratoire de Chimie Analytique Appliquée, Matériaux et Environnement (LC2AME), Faculté des Sciences, BP 717, 60000 Oujda, Morocco, ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, and ^dLaboratoire MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers 2 bd Lavoisier, 49045 Angers Cedex, France. *Correspondence e-mail: mmouadfilali10@gmail.com

In the title compound, $C_{27}H_{30}N_4O_6 H_2O$, the two dioxolo rings are in envelope conformations, while the pyran ring is in a twisted-boat conformation. The pyradizine ring is oriented at dihedral angles of 9.23 (6) and 12.98 (9)° with respect to the pyridine rings, while the dihedral angle between the two pyridine rings is 13.45 (10)°. In the crystal, $O-H_{water} \cdot \cdot \cdot O_{pyran}$, $O-H_{water} \cdot \cdot \cdot O_{methoxymethyl}$ and $O-H_{water} \cdots N_{pyridazine}$ hydrogen bonds link the molecules into chains along [010]. In addition, weak $C-H_{dioxolo} \cdots O_{dioxolo}$ hydrogen bonds and a weak C- $H_{methoxymethyl}$ $\cdot \cdot \pi$ interaction complete the three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H···H (55.7%), H···C/ $C \cdots H$ (14.6%), $H \cdots O/O \cdots H$ (14.5%) and $H \cdots N/N \cdots H$ (9.6%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Electrochemical measurements are also reported.

1. Chemical context

Given their importance in the pharmaceutical, chemical and industrial fields, the synthesis of 3,6-di(pyridin-2-yl)pyridazine and its derivatives has been a goal of chemists in recent years. 5-[3,6-Di(pyridin-2-yl)pyridazine-4-yl]-2'-deoxyuridine-5'-Otriphosphate can be used as a potential substrate for fluorescence detection and imaging of DNA (Kore et al., 2015). Systems containing this moiety have also shown remarkable corrosion inhibitory (Khadiri et al., 2016). Heterocyclic molecules such as 3,6-bis (2'-pyridyl)-1,2,4,5-tetrazine have been used in transition-metal chemistry (Kaim & Kohlmann, 1987). This bidentate chelate ligand is popular in coordination chemistry and complexes of a wide range of metals, including iridium and palladium (Tsukada et al., 2001). We report herein the synthesis and the molecular and crystal structures of the title compound, (I), along with the Hirshfeld surface analysis and its corrosion inhibition properties.

2. Structural commentary

The title molecule contains two dioxolo, two pyridine, one pyridazine and one pyran rings (Fig. 1). The pyridazine ring is linked to the pyran ring through the methoxymethyl moiety.

OPEN O ACCESS

Received 4 June 2019 Accepted 9 July 2019

Edited by A. J. Lough, University of Toronto, Canada

Keywords: crystal structure; pyridazine; dioxolo; Hirshfeld surface; electrochemical measurements

CCDC reference: 1939591

Supporting information: this article has supporting information at journals.iucr.org/e

research communications

The two dioxolo rings, *B* (O2/O3/C2–C4) and *C* (O4/O5/C5–C7), are in envelope conformations. Atoms O3 and O4 are at the flap positions and are displaced by 0.442 (2) and -0.397 (2) Å, respectively, from the least-squares planes of the four atoms. A puckering analysis of the pyran ring *A* (O1/C1/C2/C4–C6), gave the parameters $Q_T = 0.6508$ (25) Å, $q_2 = 0.6451$ (25) Å, $q_3 = -0.0865$ (26) Å, $\varphi = 214.6$ (2)° and $\theta = 97.64$ (23)°, indicating a twisted-boat conformation. The pyradizine ring *D* (N1/N2/C14–C17) is oriented at dihedral angles of 9.23 (6) and 12.98 (9)°, respectively, to the pyridine rings *E* (N3/C18–C22) and *F* (N4/C23–C27), while the dihedral angle between the two pyridine rings is 13.45 (10)°. The methoxymethyl moiety is nearly co-planar with the pyradizine ring, as indicated by the O6–C13–C14–C15 torsion angle of -172.8 (2)°.

3. Supramolecular features

In the crystal, $O-H_{water} \cdots O_{pyran}$, $O-H_{water} \cdots O_{methoxymethyl}$ and $O-H_{water} \cdots N_{pyridazine}$ hydrogen bonds (Table 1 and Fig. 2) link the molecules, forming chains along [010]. The

Figure 1

The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms bonded to C atoms are not shown.

Table 1			
Hydrogen-bond	geometry	(Å,	°).

Cg is the centroid of the N3/C18-C22 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O7-H7A\cdots N2^{i}$	0.84 (2)	2.18 (3)	3.019 (4)	172 (6)
$O7 - H7B \cdot \cdot \cdot O1$	0.86 (2)	2.30 (3)	3.112 (4)	157 (6)
$O7 - H7B \cdots O6$	0.86 (2)	2.57 (5)	3.176 (5)	129 (5)
$C2-H2\cdots O3^{ii}$	0.98	2.51	3.444 (4)	160
C12-H12 A ··· Cg^{iv}	0.97	3.07	3.761 (3)	130
Symmetry codes: ($-x + 1, y - \frac{1}{2}, -z + \frac{1}{2}$.	i) $-x, y - \frac{1}{2},$	$-z + \frac{1}{2};$ (ii)	$x - \frac{1}{2}, -y + \frac{1}{2},$	-z + 1; (iv)

hydrogen bond involving H7*B* is bifurcated. In addition, weak $C-H_{dioxolo} \cdots O_{dioxolo}$ hydrogen bonds and a weak $C-H_{methoxymethyl} \cdots \pi$ interaction complete the three-dimensional structure.

4. Hirshfeld surface analysis

In order to visualize the intermolecular interactions in the crystal of the title compound, a Hirshfeld surface (HS) analysis (Hirshfeld, 1977; Spackman & Jayatilaka, 2009) was carried out by using CrystalExplorer17.5 (Turner et al., 2017). In the HS plotted over d_{norm} (Fig. 3), white indicates contacts with distances equal to the sum of van der Waals radii, while red and blue indicate distances shorter (in close contact) or longer (distinct contact) than the van der Waals radii, respectively (Venkatesan et al., 2016). The bright-red spots appearing near O1, O6, N2 and hydrogen atoms H2, H7A, H7B indicate their roles as the respective donors and/or acceptors. The shape-index of the HS is a tool to visualize the π - π stacking by the presence of adjacent red and blue triangles: if these are absent, then there are no $\pi - \pi$ interactions. Fig. 4 clearly suggest that there are no π - π interactions in (I). The overall two-dimensional fingerprint plot, Fig. 5a, and those delineated into $H \cdots H$, $H \cdots C/C \cdots H$, $H \cdots O/O \cdots H$, $H \cdots N/N \cdots H$, $C \cdots C$ and $C \cdots N/N \cdots C$ contacts (McKinnon et al., 2007) are illustrated in Fig. 5b-g, respectively, together with their relative contributions to the Hirshfeld surface. Selected contacts are listed in Table 2.

Figure 2

A partial packing diagram showing the $O-H_{water}\!\cdots\!O_{pyran}, O-H_{water}\!\cdots\!O_{methoxymethyl}$ and $O-H_{water}\!\cdots\!N_{pyridazine}$ hydrogen bonds (Table 1) as dashed lines.

Figure 3

View of the three-dimensional Hirshfeld surface of the title compound plotted over $d_{\rm norm}$ in the range -0.4555 to 1.4860 a.u.

The most important interaction is $H \cdots H$, contributing 55.7% to the overall crystal packing, which is reflected in Fig. 5*b* as widely scattered points of high density due to the large hydrogen content of the molecule with the tip at $d_e = d_i \sim 1.00$ Å. In the presence of a weak $C-H\cdots\pi$ interaction, the wings in the fingerprint plot delineated into $H\cdots C/C\cdots H$ contacts (14.6% contribution to the HS) have a symmetrical distribution of points, Fig. 5*c*, with the thin and thick edges at $d_e + d_i = 2.85$ and 2.78 Å. The pair of characteristic wings in the fingerprint plot delineated into $H\cdots O/O\cdots H$ contacts (14.5%, Fig. 5*d*) arises from the $O-H\cdots O$ and $C-H\cdots O$ hydrogen bonds (Table 1) as well as from the $H\cdots O/O\cdots H$ contacts

Figure 4 Hirshfeld surface of the title compound plotted over shape-index.

Selected interat	omic distances (A)	•	
O1···O3	3.153 (2)	$C2 \cdot \cdot \cdot C4^{ii}$	3.538 (4)
O1···O4	3.115 (3)	$C2 \cdot \cdot \cdot H4^{ii}$	2.96
0105	2.999 (3)	$C3 \cdot \cdot \cdot H1$	2.88
O1···O6	2.920 (3)	$C4 \cdot \cdot \cdot H11A$	2.84
O3···O1	3.153 (2)	$C4 \cdot \cdot \cdot H2^{iii}$	2.83
O3···C1	3.002 (3)	$C4 \cdot \cdot \cdot H1$	2.76
O7···O1	3.112 (3)	$C5 \cdot \cdot \cdot H9A$	2.85
O7···O6	3.176 (3)	$C10 \cdot \cdot \cdot H1$	2.93
$O7 \cdot \cdot \cdot N2^i$	3.020 (3)	$H1 \cdot \cdot \cdot H10C$	2.24
$O2 \cdot \cdot \cdot H1$	2.70	$H2 \cdot \cdot \cdot H4^{ii}$	2.44
$O2 \cdot \cdot \cdot H4^{ii}$	2.90	$H4 \cdot \cdot \cdot H11A$	2.47
O3···H1	2.54	$H5 \cdot \cdot \cdot H9A$	2.56
$O3 \cdot \cdot \cdot H2^{iii}$	2.51	$H7A \cdot \cdot \cdot H19^{i}$	2.20
O5···H12 <i>B</i>	2.70	$H7A \cdot \cdot \cdot N1^{i}$	2.84 (3)
$O5 \cdot \cdot \cdot H12A$	2.77	$H7A \cdot \cdot \cdot N2^{i}$	2.19 (4)
$O6 \cdot \cdot \cdot H17$	2.23	$H7B \cdot \cdot \cdot O1$	2.30 (2)
$O7 \cdot \cdot \cdot H19^{i}$	2.64	H7 <i>B</i> ···O6	2.56 (4)
$N4 \cdot \cdot \cdot C13$	2.776 (3)	$H8A \cdot \cdot \cdot H9C$	2.55
$N1 \cdot \cdot \cdot H24$	2.44	$H8B \cdot \cdot \cdot H9B$	2.50
$N2 \cdot \cdot \cdot H19$	2.56	$H8C \cdot \cdot \cdot H11C^{ii}$	2.48
$N3 \cdot \cdot \cdot H17$	2.46	$H10A \cdot \cdot \cdot H11C$	2.53
$N4 \cdot \cdot \cdot H13A$	2.56	H10 <i>B</i> ···H11 <i>B</i>	2.57
N4· · ·H13 <i>B</i>	2.54	H12A···H13B	2.26
C1···C3	3.485 (3)		

Symmetry codes: (i) $-x, y - \frac{1}{2}, -z + \frac{1}{2};$ (ii) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (iii)

(Table 2) and has a pair of spikes with the tips at $d_e + d_i = 2.18$ Å. The pair of characteristic wings in the fingerprint plot delineated into $H \cdots N/N \cdots H$ contacts (Fig. 5e, 9.6%) arises from the $O-H \cdots N$ hydrogen bonds (Table 1) as well as from the $H \cdots N/N \cdots H$ contacts has a pair of spikes with the tips at

Figure 5

Table 2

The full two-dimensional fingerprint plots for the title compound, showing (a) all interactions, and delineated into (b) $H \cdots H$, (c) $H \cdots C/C \cdots H$, (d) $H \cdots O/O \cdots H$, (e) $H \cdots N/N \cdots H$, (f) $C \cdots C$ and (g) $C \cdots N/N \cdots C$ interactions. The d_i and d_e values are the closest internal and external distances (in Å) from given points on the Hirshfeld surface.

research communications

Figure 6

Hirshfeld surface representations with the function d_{norm} plotted onto the surface for $(a) \text{ H} \cdots \text{H}, (b) \text{ H} \cdots \text{C/C} \cdots \text{H}, (c) \text{ H} \cdots \text{O/O} \cdots \text{H}$ and $(d) \text{ H} \cdots \text{N/N} \cdots \text{N/N} \cdots \text{H}$ interactions.

 $d_e + d_i = 2.04$ Å. Finally, the C···C contacts (Fig. 5g, 2.4%) have a wide spike with the tip at $d_e = d_i = 1.75$ Å.

The Hirshfeld surface representations with the function d_{norm} plotted onto the surface are shown for the H···H, H···C/C···H, H···O/O···H and H···N/N···H interactions in Fig. 6a-d, respectively.

The Hirshfeld surface analysis confirms the importance of H-atom contacts in establishing the packing. The large number of $H \cdot \cdot \cdot H$, $H \cdot \cdot \cdot C/C \cdot \cdot \cdot H$, $H \cdot \cdot \cdot O/O \cdot \cdot \cdot H$ and $H \cdot \cdot \cdot N/N \cdot \cdot \cdot H$ interactions suggest that van der Waals interactions and hydrogen bonding play the major roles in the crystal packing (Hathwar *et al.*, 2015).

5. Electrochemical measurements

The effect of the title compound as an inhibitor of the corrosion of mild steel (MS) were studied using electrochemical impedance spectroscopy in the concentration range of 10^{-6} to 10^{-3} M at 308 K. The electrochemical experiment consisted of a 3 electrode electrolytic cell consisting of platinum foil as counter-electrode, saturated calomel as reference electrode and MS as working electrode with an exposed area of 1 cm^2 . The MS specimen was immersed in a test solution for 0.5 h until a steady-state potential was achieved using a PGZ100 potentiostat (Bouavad et al., 2018). Electrochemical impedance spectroscopy (EIS) measurements were performed over a frequency range of 0.1×10^{-3} KHz to 10 mHz and an amplitude of 10 mV with 10 points per decade. The percentage inhibition efficiency is calculated from $R_{\rm t}$ values as (Sikine *et al.*, 2016) $E(\%) = [1 - R_{\rm t(HC)}/R_{\rm t(inh)}] \times$ 100, where $R_{t(inh)}$ and $R_{t(HCl)}$ are the charge-transfer resistances for MS immersed in HCl, with the title compound and

Nyquist plots of mild steel in 1M HCl in presence of different concentrations of 3,6-bis(pyridin-2-yl)-4-{[(3a,55,5aR,8aR,8bS)-2,2,7,7-tetramethyltetrahydro-5*H*-bis[1,3]dioxolo[4,5-*b*:4',5'-*d*]pyran-5-yl)methoxy]methyl}pyridazine monohydrate.

without inhibitor. Nyquist representations of mild steel in 1 M HCl in the absence and presence of the inhibitor system are shown in Fig. 7.

The impedance method provides information about the kinetics of the electrode processes and the surface properties of the investigated systems. The technique is based on the measurement of the impedance of the double layer at the MS/ solution interface, and represents the Nyquist plots of mild steel (MS) specimens in 1 M HCl without and with various concentrations of the inhibitor. The impedance diagrams obtained have an almost semicircular appearance. This indicates that the corrosion of mild steel in aqueous solution is mainly controlled by a charge-transfer process. The impedance parameters are given in Fig. 8. It is observed from the

EIS parameters for the corrosion of mild steel in 1*M* HCl with and without inhibitor 3,6-bis(pyridin-2-yl)-4-[[(3a,5*S*,5*a*,8*a*,8*bS*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis[1,3]dioxolo[4,5-*b*:4',5'-*d*]pyran-5-yl)methoxy]methyl}pyridazine monohydrate at 308 K.

Table 3	
Experimental	details.

Crystal data	
Chemical formula	$C_{27}H_{30}N_4O_6\cdot H_2O$
M _r	524.56
Crystal system, space group	Orthorhombic, $P2_12_12_1$
Temperature (K)	150
<i>a</i> , <i>b</i> , <i>c</i> (Å)	8.8417 (3), 11.3252 (3), 25.7003 (8)
$V(Å^3)$	2573.47 (14)
Z	4
Radiation type	Cu Kα
$\mu \text{ (mm}^{-1})$	0.82
Crystal size (mm)	$0.47 \times 0.15 \times 0.10$
Data collection	
Diffractometer	Rigaku Oxford Diffraction Super- Nova, single source at offset, AtlasS2
Absorption correction	Multi-scan (<i>CrysAlis PRO</i> (Rigaku OD, 2015)
T_{\min}, T_{\max}	0.656, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	6128, 4277, 3853
R _{int}	0.037
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.618
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.121, 1.10
No. of reflections	4277
No. of parameters	353
No. of restraints	2
H-atom treatment	H atoms treated by a mixture of independent and constrained
	refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	0.27, -0.36
Absolute structure	Flack x determined using 1226 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$
	(Parsons et al., 2013)
Absolute structure parameter	-0.01 (16)

Computer programs: CrysAlis PRO (Rigaku OD, 2015), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2015).

plots that the impedance response of mild steel was significantly changed after addition of the inhibitor. R_{ct} is increased to a maximum value of 185 Ω cm² for the inhibitor, showing a maximum inhibition efficiency of 91% at 10^{-3} M. The decrease in C_{dl} from the HCl acid value of 200 µF cm⁻², may be due to the increase in the thickness of the electrical double layer or to a decrease in the local dielectric constant (Elmsellem et al., 2014). This is caused by the gradual displacement of water molecules by the adsorption of organic molecules on the mild steel surface (Hjouji et al., 2016). Apart from the experimental impedance (EIS) results, the following conclusion is drawn: the alternating impedance spectrum reveals that the double-layer capacitances decrease with respect to the blank solution when the title compound is added. This fact confirms the adsorption of inhibitor molecules on the surface of the MS.

6. Database survey

Silver(I) complexes coordinated by 3,6-di(pyridin-2-yl)pyridazine ligands have been reported (Constable *et al.*, 2008). Three other metal complexes including 3,6-di(pyridin-2yl)pyridazine have also been reported, *viz.* aquabis[3,6-bis-(pyridin-2-yl)pyridazine- $\kappa_2 N^1, N^6$]copper(II) bis(trifluoromethanesulfonate) (Showrilu *et al.*, 2017), tetrakis[μ -3,6-di(pyridin-2-yl)pyridazine]bis(μ -hydroxo)bis(μ -aqua)tetranickel(II) hexakis(nitrate) tetradecahydrate (Marino *et al.*, 2019) and *catena*-[[μ^2 -3,6-di(pyridin-2-yl)pyridazine]bis(μ^2 azido)diazaidodicopper monohydrate] (Mastropietro *et al.*, 2013).

7. Synthesis and crystallization

6-*O*-Propargyl-1,2:3,4-di-*O*-isopropylidene- α -D-galactopyranoside (4 mmol) was added to a solution of 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine (4 mmol) in toluene (20 ml). Stirring was continued at room temperature for 4 h. The solvent was removed under reduced pressure. The residue was separated by chromatography on a column of silica gel with ethyl acetate/hexane (1:2) as eluent. Colourless crystals were isolated on evaporation of the solvent (yield: 82%).

8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. Water hydrogen atoms were located in a difference-Fourier map and refined with the distance constraint O-H = 0.80 (2) Å. Other H atoms were positioned geometrically with C-H = 0.93, 0.98, 0.97 and 0.96 Å, for aromatic, methine, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.5U_{eq}(C-methyl)$ or $1.2U_{eq}(C)$ for all other H atoms.

Funding information

TH is grateful to Hacettepe University Scientific Research Project Unit (grant No. 013 D04 602 004).

References

- Bouayad, K., Kandri Rodi, Y., Elmsellem, H., El Ghadraoui, E. H., Ouzidan, Y., Abdel-Rahman, I., Kusuma, H. S., Warad, I., Mague, J. T., Essassi, E. M., Hammouti, B. & Chetouani, A. (2018). *Mor. J. Chem.* 6, 22–34.
- Constable, E. C., Housecroft, C. E., Neuburger, M., Reymann, S. & Schaffner, S. (2008). *Aust. J. Chem.* **61**, 847–853.
- Elmsellem, H., Nacer, H., Halaimia, F., Aouniti, A., Lakehal, I., Chetouani, A., Al-Deyab, S. S., Warad, I., Touzani, R. & Hammouti, B. (2014). *Int. J. Electrochem. Sci.* **9**, 5328–5351.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). *IUCrJ*, 2, 563–574.
- Hirshfeld, H. L. (1977). Theor. Chim. Acta, 44, 129-138.
- Hjouji, M. Y., Djedid, M., Elmsellem, H., Kandri Rodi, Y., Ouzidan, Y., Ouazzani Chahdi, F., Sebbar, N. K., Essassi, E. M., Abdel-Rahman, I. & Hammouti, B. (2016). *J. Mater. Environ. Sci.* 7, 1425– 1435.
- Kaim, W. & Kohlmann, S. (1987). Inorg. Chem. 26, 68-77.
- Khadiri, A., Saddik, R., Bekkouche, K., Aouniti, A., Hammouti, B., Benchat, N., Bouachrine, M. & Solmaz, R. (2016). J. Taiwan Inst. Chem. Eng. 58, 552–564.

- Kore, A. R., Yang, B. & Srinivasan, B. (2015). *Tetrahedron Lett.* 56, 808–811.
- Marino, N., Bruno, R., Bentama, A., Pascual-Álvarez, A., Lloret, F., Julve, M. & De Munno, G. (2019). *CrystEngComm*, 21, 917–924.
- Mastropietro, T. F., Marino, N., Armentano, D., De Munno, G., Yuste, C., Lloret, F. & Julve, M. (2013). Cryst. Growth Des. 13, 270–281.
- McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. 3814–3816.
- Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.
- Rigaku OD (2015). CrysAlis PRO. Rigaku Oxford Diffraction, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

- Showrilu, K., Rajarajan, K., Martin Britto Dhas, S. A. & Athimoolam, S. (2017). *IUCrData*, **2**, x171142.
- Sikine, M., Elmsellem, H., Kandri Rodi, Y., Steli, H., Aouniti, A., Hammouti, B., Ouzidan, Y., Ouazzani Chahdi, F., Bourass, M. & Essassi, E. M. (2016). J. Mater. Environ. Sci. 7, 4620–4632.
- Spackman, M. A. & Jayatilaka, D. (2009). *CrystEngComm*, **11**, 19–32. Spek, A. L. (2015). *Acta Cryst.* C**71**, 9–18.
- Tsukada, N., Sato, T., Mori, H., Sugawara, S., Kabuto, C., Miyano, S. & Inoue, Y. (2001). J. Organomet. Chem. 627, 121–126.
- Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). *CrystalExplorer17*. The University of Western Australia.
- Venkatesan, P., Thamotharan, S., Ilangovan, A., Liang, H. & Sundius, T. (2016). Spectrochim. Acta Part A, 153, 625–636.

supporting information

Acta Cryst. (2019). E75, 1169-1174 [https://doi.org/10.1107/S2056989019009848]

Crystal structure, Hirshfeld surface analysis and corrosion inhibition study of 3,6-bis(pyridin-2-yl)-4-{[(3a*S*,5*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis[1,3]dioxolo[4,5-*b*:4',5'-*d*]pyran-5-yl)methoxy]methyl}pyridazine monohydrate

Mouad Filali, Hicham Elmsellem, Tuncer Hökelek, Abdelkrim El-Ghayoury, Oleh Stetsiuk, El Mestafa El Hadrami and Abdessalam Ben-Tama

Computing details

Data collection: *CrysAlis PRO* (Rigaku OD, 2015); cell refinement: *CrysAlis PRO* (Rigaku OD, 2015); data reduction: *CrysAlis PRO* (Rigaku OD, 2015); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL2018* (Sheldrick, 2015); molecular graphics: *ORTEP-3* for Windows (Farrugia, 2012) and *PLATON* (Spek, 2015); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2015).

3,6-Bis(pyridin-2-yl)-4-{[(3a*S*,5*S*,5a*R*,8a*R*,8b*S*)-2,2,7,7-tetramethyltetrahydro-5*H*-bis[1,3]dioxolo[4,5-b:4',5'*d*]pyran-5-yl)methoxy]methyl}pyridazine monohydrate

Crystal data

-	
$C_{27}H_{30}N_4O_6 \cdot H_2O$ $M_r = 524.56$ Orthorhombic, $P2_12_12_1$ $a = 8.8417$ (3) Å b = 11.3252 (3) Å c = 25.7003 (8) Å V = 2573.47 (14) Å ³ Z = 4 F(000) = 1112	$D_x = 1.354 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 2843 reflections $\theta = 3.3-72.3^{\circ}$ $\mu = 0.82 \text{ mm}^{-1}$ T = 150 K Plate, colourless $0.47 \times 0.15 \times 0.10 \text{ mm}$
Data collection	
Rigaku Oxford Diffraction SuperNova, single source at offset, AtlasS2 diffractometer Radiation source: SuperNova(Cu) micro-focus sealed X-ray Source Detector resolution: 5, 1990 pixels mm ⁻¹	$T_{min} = 0.656, T_{max} = 1.000$ 6128 measured reflections 4277 independent reflections 3853 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 72.4^{\circ}, \theta_{max} = 3.4^{\circ}$
execution resolution. 5.1990 pixels min	$U_{\text{max}} = /2.4$, $U_{\text{min}} = 3.4$
	$n = -9 \rightarrow 10$
Absorption correction: multi-scan	$k = -13 \rightarrow 5$
(CrysAlis PRO (Rigaku OD, 2015)	$l = -31 \rightarrow 29$

Refinement

Refinement on F^2 Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.048$	$w = 1/[\sigma^2(F_o^2) + (0.0538P)^2 + 0.4885P]$
$wR(F^2) = 0.121$	where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.10	$(\Delta/\sigma)_{\rm max} < 0.001$
4277 reflections	$\Delta ho_{ m max} = 0.27 \ { m e} \ { m \AA}^{-3}$
353 parameters	$\Delta \rho_{\rm min} = -0.36 \text{ e } \text{\AA}^{-3}$
2 restraints	Absolute structure: Flack x determined using
Hydrogen site location: mixed	1226 quotients $[(I^+)-(I^-)]/[(I^+)+(I^-)]$ (Parsons et
	al., 2013)
	Absolute structure parameter: -0.01 (16)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3541 (3)	0.1622 (2)	0.41689 (9)	0.0282 (5)	
O2	0.3948 (3)	0.34989 (19)	0.45130 (10)	0.0314 (5)	
O3	0.6462 (3)	0.30998 (18)	0.44345 (9)	0.0275 (5)	
O4	0.5889 (3)	0.00085 (19)	0.47272 (8)	0.0298 (5)	
05	0.5504 (4)	-0.04337 (19)	0.38768 (10)	0.0397 (7)	
O6	0.2874 (3)	0.20336 (19)	0.30710 (9)	0.0341 (6)	
N1	0.0414 (3)	0.4001 (2)	0.16743 (11)	0.0279 (6)	
N2	0.0957 (3)	0.5016 (2)	0.18697 (10)	0.0280 (6)	
N3	0.3589 (4)	0.6013 (3)	0.28330 (11)	0.0324 (6)	
N4	0.0746 (4)	0.0864 (2)	0.17094 (12)	0.0358 (7)	
C1	0.4587 (4)	0.1547 (3)	0.37413 (12)	0.0258 (7)	
H1	0.495093	0.234348	0.366098	0.031*	
C2	0.4106 (4)	0.2260 (3)	0.45945 (13)	0.0277 (7)	
H2	0.355033	0.203400	0.490891	0.033*	
C3	0.5408 (4)	0.4049 (3)	0.44788 (14)	0.0310 (7)	
C4	0.5790 (4)	0.2100 (3)	0.46886 (12)	0.0246 (6)	
H4	0.600843	0.212023	0.506234	0.030*	
C5	0.6463 (4)	0.0999 (3)	0.44448 (12)	0.0254 (6)	
H5	0.756973	0.102135	0.446060	0.031*	
C6	0.5926 (4)	0.0790 (3)	0.38885 (12)	0.0272 (7)	
H6	0.676097	0.092996	0.364527	0.033*	
C7	0.5754 (4)	-0.0947 (3)	0.43729 (13)	0.0310 (7)	
C8	0.4413 (5)	-0.1669 (4)	0.4525 (2)	0.0550 (12)	
H8A	0.453499	-0.194150	0.487614	0.082*	
H8B	0.432577	-0.233440	0.429569	0.082*	
H8C	0.351559	-0.119463	0.450095	0.082*	
C9	0.7193 (5)	-0.1667 (3)	0.43584 (15)	0.0394 (9)	
H9A	0.802843	-0.116353	0.427016	0.059*	

LIOD	0 700979	_0.227991	0.410208	0.050*
HOC	0.736583	-0.22/881	0.410208	0.059*
C10	0.5503 (5)	0.201407 0.4786(3)	0.30010 (15)	0.037 (0)
	0.5505 (5)	0.4780 (5)	0.39910 (13)	0.0427 (9)
	0.030203	0.541722	0.393892	0.004*
	0.478045	0.341722	0.400907	0.004
	0.520055	0.430007	0.309393	0.004°
	0.5098 (5)	0.4739 (3)	0.49080 (10)	0.0442 (9)
HIIA	0.569/29	0.424125	0.526380	0.066*
HIIB	0.491803	0.534147	0.500856	0.066*
HIIC	0.666221	0.514400	0.494189	0.066*
C12	0.3729 (4)	0.1086 (3)	0.32779 (13)	0.0286 (7)
H12A	0.442659	0.078782	0.301797	0.034*
H12B	0.306342	0.044768	0.338237	0.034*
C13	0.2122 (4)	0.1736 (3)	0.26014 (13)	0.0275 (7)
H13A	0.122273	0.127514	0.267550	0.033*
H13B	0.278292	0.127130	0.238042	0.033*
C14	0.1697 (4)	0.2873 (3)	0.23325 (12)	0.0253 (6)
C15	0.0791 (4)	0.2958 (3)	0.18820 (12)	0.0247 (6)
C16	0.1872 (4)	0.4980 (3)	0.22846 (12)	0.0247 (6)
C17	0.2238 (4)	0.3919 (3)	0.25319 (12)	0.0263 (6)
H17	0.284224	0.391984	0.282822	0.032*
C18	0.2537 (4)	0.6114 (3)	0.24658 (12)	0.0265 (7)
C19	0.2107 (4)	0.7197 (3)	0.22546 (14)	0.0315 (7)
H19	0.135761	0.723846	0.200145	0.038*
C20	0.2823 (5)	0.8210 (3)	0.24304 (15)	0.0380 (8)
H20	0.256630	0.894499	0.229490	0.046*
C21	0.3920 (4)	0.8114 (3)	0.28088 (15)	0.0376 (9)
H21	0.441630	0.877961	0.293426	0.045*
C22	0.4265 (5)	0.7001 (3)	0.29975 (14)	0.0349 (8)
H22	0.500690	0.693707	0.325247	0.042*
C23	0.0175 (4)	0.1927 (3)	0.15887 (12)	0.0253 (7)
C24	-0.0897(4)	0 2085 (3)	0 12003 (13)	0.0325(7)
H24	-0.126828	0.283313	0 112401	0.039*
C25	-0.1402(5)	0.1107 (3)	0.09294(14)	0.0378 (8)
H25	-0.211674	0.1107 (5)	0.05254 (14)	0.045*
C26	-0.0836(5)	0.0004(3)	0.00000000000000000000000000000000000	0.0375 (8)
U20	-0.116014	-0.066836	0.10320 (14)	0.0375 (8)
C27	0.110014	-0.0065(3)	0.087030 0.14423(15)	0.043°
U27	0.0224 (3)	-0.0003(3)	0.14423 (13)	0.0414(9)
07	0.000342	0.000074	0.132040	0.050
	0.011 (7)	0.1893(3)	0.38/23(14)	0.0042 (8)
H/A	-0.011 (/)	0.141 (5)	0.3642 (19)	U.U81*
H/B	0.111 (3)	0.189 (6)	0.386 (2)	0.081*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U ³³	U^{12}	U ¹³	U ²³
01	0.0250 (11)	0.0272 (10)	0.0325 (11)	-0.0023 (10)	-0.0016 (10)	-0.0023 (9)
O2	0.0294 (12)	0.0210 (10)	0.0438 (13)	0.0057 (9)	-0.0026 (11)	-0.0024 (9)

supporting information

O3	0.0280 (11)	0.0181 (10)	0.0364 (12)	0.0007 (9)	0.0010 (10)	0.0006 (9)
O4	0.0419 (14)	0.0190 (9)	0.0286 (11)	-0.0011 (10)	-0.0005 (11)	0.0020 (8)
O5	0.0627 (18)	0.0179 (10)	0.0385 (13)	0.0041 (11)	-0.0184 (14)	-0.0038 (9)
06	0.0499 (15)	0.0190 (9)	0.0333 (12)	0.0033 (11)	-0.0182 (12)	-0.0023 (9)
N1	0.0324 (15)	0.0203 (12)	0.0310 (13)	-0.0004 (11)	-0.0037 (13)	-0.0002 (10)
N2	0.0339 (16)	0.0192 (11)	0.0310 (13)	0.0005 (11)	0.0006 (13)	-0.0010 (10)
N3	0.0367 (16)	0.0252 (13)	0.0352 (14)	-0.0026 (12)	-0.0011 (13)	-0.0045 (11)
N4	0.0485 (18)	0.0212 (12)	0.0377 (15)	0.0021 (13)	-0.0154 (15)	-0.0018 (11)
C1	0.0331 (17)	0.0180 (12)	0.0265 (15)	-0.0010 (13)	-0.0025 (14)	0.0020 (11)
C2	0.0333 (17)	0.0201 (13)	0.0298 (15)	0.0016 (13)	0.0036 (15)	-0.0006 (12)
C3	0.0324 (18)	0.0192 (13)	0.0415 (18)	0.0039 (14)	-0.0005 (16)	-0.0011 (13)
C4	0.0299 (16)	0.0179 (12)	0.0260 (14)	-0.0003 (13)	-0.0018 (14)	-0.0005 (11)
C5	0.0295 (16)	0.0188 (13)	0.0280 (15)	0.0026 (13)	0.0008 (14)	0.0019 (12)
C6	0.0333 (18)	0.0209 (13)	0.0274 (15)	0.0010 (13)	-0.0001 (14)	-0.0005 (12)
C7	0.0382 (19)	0.0194 (13)	0.0354 (17)	0.0006 (14)	-0.0015 (16)	-0.0004 (12)
C8	0.047 (2)	0.0365 (19)	0.081 (3)	-0.012 (2)	0.017 (2)	-0.020 (2)
C9	0.044 (2)	0.0321 (17)	0.042 (2)	0.0111 (17)	-0.0034 (18)	0.0023 (15)
C10	0.051 (2)	0.0257 (16)	0.051 (2)	0.0042 (16)	0.002 (2)	0.0079 (15)
C11	0.051 (2)	0.0317 (17)	0.050 (2)	0.0028 (18)	-0.007 (2)	-0.0124 (16)
C12	0.0360 (18)	0.0191 (12)	0.0307 (15)	0.0030 (13)	-0.0085 (15)	0.0024 (12)
C13	0.0331 (17)	0.0174 (13)	0.0319 (16)	-0.0019 (13)	-0.0062 (14)	0.0005 (12)
C14	0.0270 (16)	0.0224 (14)	0.0265 (15)	0.0009 (13)	-0.0004 (13)	0.0014 (12)
C15	0.0269 (16)	0.0194 (13)	0.0277 (14)	0.0000 (13)	-0.0005 (14)	-0.0013 (12)
C16	0.0265 (16)	0.0212 (13)	0.0265 (14)	-0.0003 (12)	0.0026 (13)	-0.0020 (11)
C17	0.0297 (16)	0.0220 (13)	0.0272 (15)	0.0006 (13)	-0.0020 (14)	-0.0011 (12)
C18	0.0285 (16)	0.0217 (14)	0.0293 (15)	-0.0001 (12)	0.0037 (14)	-0.0029 (12)
C19	0.0348 (18)	0.0208 (14)	0.0389 (17)	-0.0005 (15)	-0.0010 (16)	-0.0021 (13)
C20	0.043 (2)	0.0209 (15)	0.050 (2)	-0.0014 (15)	0.0039 (18)	-0.0021 (14)
C21	0.039 (2)	0.0247 (15)	0.049 (2)	-0.0039 (14)	0.0037 (18)	-0.0108 (14)
C22	0.0395 (19)	0.0276 (15)	0.0375 (17)	-0.0033 (16)	-0.0026 (16)	-0.0073 (14)
C23	0.0262 (16)	0.0238 (14)	0.0259 (14)	-0.0037 (12)	0.0008 (13)	0.0003 (12)
C24	0.0327 (18)	0.0295 (15)	0.0353 (16)	0.0029 (15)	-0.0075 (15)	-0.0002 (14)
C25	0.0383 (19)	0.0395 (18)	0.0358 (18)	-0.0010 (17)	-0.0148 (17)	-0.0026 (15)
C26	0.049 (2)	0.0271 (15)	0.0366 (17)	-0.0079 (17)	-0.0059 (18)	-0.0080 (14)
C27	0.058 (3)	0.0234 (15)	0.0428 (19)	0.0013 (16)	-0.015 (2)	-0.0027 (15)
07	0.0524 (18)	0.0479 (16)	0.0623 (19)	0.0030 (15)	-0.0015 (16)	-0.0140 (14)

Geometric parameters (Å, °)

01—C2	1.403 (4)	С9—Н9В	0.9600	
01—C1	1.439 (4)	С9—Н9С	0.9600	
O2—C2	1.425 (4)	C10—H10A	0.9600	
O2—C3	1.437 (4)	C10—H10B	0.9600	
O3—C3	1.428 (4)	C10—H10C	0.9600	
O3—C4	1.436 (4)	C11—H11A	0.9600	
O4—C7	1.419 (4)	C11—H11B	0.9600	
O4—C5	1.430 (4)	C11—H11C	0.9600	
O5—C7	1.418 (4)	C12—H12A	0.9700	

supporting information

O5—C6	1.436 (4)	C12—H12B	0.9700
O6—C12	1.416 (4)	C13—C14	1.509 (4)
O6—C13	1.418 (4)	C13—H13A	0.9700
N1—C15	1.339 (4)	C13—H13B	0.9700
N1—N2	1.343 (4)	C14—C17	1.377 (4)
N2—C16	1.339 (4)	C14—C15	1.411 (4)
N3—C18	1.330 (5)	C15—C23	1.493 (4)
N3—C22	1.337 (5)	C16—C17	1.397 (4)
N4—C27	1.339 (5)	C16—C18	1.488 (4)
N4—C23	1.341 (4)	C17—H17	0.9300
C1—C12	1.506 (5)	C18—C19	1.394 (5)
C1—C6	1.510 (5)	C19—C20	1.386 (5)
C1—H1	0.9800	C19—H19	0.9300
C2—C4	1.519 (5)	C20—C21	1.378 (6)
C2—H2	0.9800	C20—H20	0.9300
C3—C10	1.508 (5)	C21—C22	1.385 (5)
C3—C11	1.514 (5)	C21—H21	0.9300
C4—C5	1.517 (4)	C22—H22	0.9300
C4—H4	0.9800	C23—C24	1.388 (5)
C5—C6	1.525 (4)	C24—C25	1.382 (5)
С5—Н5	0.9800	C24—H24	0.9300
С6—Н6	0.9800	C25—C26	1.383 (5)
С7—С8	1.492 (6)	C25—H25	0.9300
С7—С9	1.512 (5)	C26—C27	1.375 (6)
C8—H8A	0.9600	C26—H26	0.9300
C8—H8B	0.9600	С27—Н27	0.9300
C8—H8C	0.9600	O7—H7A	0.84 (2)
С9—Н9А	0.9600	O7—H7B	0.86 (2)
01…03	3.153 (2)	C2····C4 ⁱⁱ	3.538 (4)
O1…O4	3.115 (3)	C2…H4 ⁱⁱ	2.96
01…05	2.999 (3)	С3…Н1	2.88
01…06	2.920 (3)	C4…H11A	2.84
O3…O1	3.153 (2)	C4…H2 ⁱⁱⁱ	2.83
O3…C1	3.002 (3)	C4…H1	2.76
O7…O1	3.112 (3)	С5…Н9А	2.85
O7…O6	3.176 (3)	C10…H1	2.93
O7…N2 ⁱ	3.020 (3)	H1…H10C	2.24
O2…H1	2.70	H2…H4 ⁱⁱ	2.44
O2…H4 ⁱⁱ	2.90	H4…H11A	2.47
O3…H1	2.54	Н5…Н9А	2.56
O3…H2 ⁱⁱⁱ	2.51	H7A···H19 ⁱ	2.20
O5…H12B	2.70	H7A…N1 ⁱ	2.84 (3)
O5…H12A	2.77	H7A…N2 ⁱ	2.19 (4)
O6…H17	2.23	H7B…O1	2.30(2)
07…H19 ⁱ	2.64	H7B…O6	2.56 (4)
N4…C13	2.776 (3)	Н8А…Н9С	2.55
N1…H24	2.44	H8B…H9B	2.50

N2…H19	2.56	H8C…H11C ⁱⁱ	2.48
N3…H17	2.46	H10A…H11C	2.53
N4…H13A	2.56	H10B…H11B	2.57
N4…H13B	2.54	H12A…H13B	2.26
C1…C3	3.485 (3)		
C2-01-C1	113.4 (2)	H10A—C10—H10B	109.5
C2—O2—C3	110.4 (2)	C3—C10—H10C	109.5
C3—O3—C4	106.7 (2)	H10A—C10—H10C	109.5
C7—O4—C5	107.6 (2)	H10B—C10—H10C	109.5
C7—O5—C6	109.6 (2)	C3—C11—H11A	109.5
C12—O6—C13	112.9 (2)	C3—C11—H11B	109.5
C15—N1—N2	121.1 (3)	H11A—C11—H11B	109.5
C16—N2—N1	119.2 (3)	C3—C11—H11C	109.5
C18—N3—C22	117.7 (3)	H11A—C11—H11C	109.5
C27—N4—C23	117.2 (3)	H11B—C11—H11C	109.5
O1—C1—C12	107.5 (3)	O6—C12—C1	107.7 (2)
O1—C1—C6	110.3 (2)	O6—C12—H12A	110.2
C12—C1—C6	113.4 (3)	C1—C12—H12A	110.2
O1—C1—H1	108.5	O6—C12—H12B	110.2
C12—C1—H1	108.5	C1—C12—H12B	110.2
C6—C1—H1	108.5	H12A—C12—H12B	108.5
O1—C2—O2	111.0 (3)	O6—C13—C14	107.7 (2)
O1—C2—C4	114.3 (3)	O6—C13—H13A	110.2
O2—C2—C4	103.7 (3)	C14—C13—H13A	110.2
O1—C2—H2	109.2	O6—C13—H13B	110.2
O2—C2—H2	109.2	C14—C13—H13B	110.2
C4—C2—H2	109.2	H13A—C13—H13B	108.5
O3—C3—O2	105.4 (2)	C17—C14—C15	116.4 (3)
O3—C3—C10	108.3 (3)	C17—C14—C13	118.5 (3)
O2—C3—C10	109.9 (3)	C15—C14—C13	125.1 (3)
O3—C3—C11	110.8 (3)	N1—C15—C14	121.9 (3)
O2—C3—C11	109.4 (3)	N1—C15—C23	113.5 (3)
C10—C3—C11	112.8 (3)	C14—C15—C23	124.6 (3)
O3—C4—C5	107.3 (2)	N2—C16—C17	121.9 (3)
O3—C4—C2	103.9 (2)	N2-C16-C18	117.5 (3)
C5—C4—C2	114.6 (3)	C17—C16—C18	120.5 (3)
O3—C4—H4	110.3	C14—C17—C16	119.3 (3)
C5—C4—H4	110.3	C14—C17—H17	120.3
C2—C4—H4	110.3	C16—C17—H17	120.3
O4—C5—C4	107.2 (2)	N3—C18—C19	122.9 (3)
O4—C5—C6	104.1 (2)	N3—C18—C16	115.1 (3)
C4—C5—C6	113.2 (3)	C19—C18—C16	122.0 (3)
O4—C5—H5	110.7	C20—C19—C18	118.5 (3)
С4—С5—Н5	110.7	С20—С19—Н19	120.8
С6—С5—Н5	110.7	C18—C19—H19	120.8
O5—C6—C1	109.8 (3)	C21—C20—C19	119.1 (3)
O5—C6—C5	104.5 (2)	C21—C20—H20	120.5

C1 C6 C5	113.0(3)	C10 C20 H20	120.5
C1-C0-C5	115.0 (5)	$C_{19} = C_{20} = C_{120}$	120.3
	109.0	C_{20} C_{21} C_{22}	110.5 (5)
	109.8	C_{20} C_{21} H_{21}	120.8
C5—C6—H6	109.8	C22—C21—H21	120.8
05-07-04	106.1 (2)	N3	123.5 (3)
05-07-08	109.6 (4)	N3—C22—H22	118.2
O4—C7—C8	108.4 (3)	C21—C22—H22	118.2
O5—C7—C9	109.3 (3)	N4—C23—C24	122.6 (3)
O4—C7—C9	110.9 (3)	N4—C23—C15	116.6 (3)
C8—C7—C9	112.3 (3)	C24—C23—C15	120.8 (3)
С7—С8—Н8А	109.5	C25—C24—C23	118.7 (3)
С7—С8—Н8В	109.5	С25—С24—Н24	120.7
H8A—C8—H8B	109.5	C23—C24—H24	120.7
С7—С8—Н8С	109.5	C24—C25—C26	119.5 (3)
H8A—C8—H8C	109.5	С24—С25—Н25	120.3
H8B—C8—H8C	109.5	С26—С25—Н25	120.3
C7—C9—H9A	109.5	C_{27} C_{26} C_{25}	1177(3)
C7—C9—H9B	109.5	C_{27} C_{26} H_{26}	121.2
$H_{0}A = C_{0} = H_{0}B$	109.5	C_{25} C_{26} H_{26}	121.2
C7 C0 H0C	100.5	N4 C27 C26	121.2 124.4(3)
	109.5	N4 = C27 = C20	124.4 (3)
HOP CO LIOC	109.5	N4 - C27 - H27	117.0
H9B - C9 - H9C	109.5	$C_{20} = C_{2} / = H_{2} / H_{2}$	117.8
C3—C10—H10A	109.5	H/A—O/—H/B	104 (6)
C3—C10—H10B	109.5		
C15—N1—N2—C16	-1.1 (5)	O1—C1—C12—O6	77.8 (3)
C2-01-C1-C12	-167.7 (2)	C6—C1—C12—O6	-160.1(3)
C2	68.2 (3)	C12—O6—C13—C14	-161.7 (3)
C1	81.1 (3)	O6—C13—C14—C17	8.0 (4)
C1—O1—C2—C4	-35.8 (3)	O6—C13—C14—C15	-172.8 (3)
C3—O2—C2—O1	-115.1 (3)	N2—N1—C15—C14	3.9 (5)
C3—O2—C2—C4	8.1 (3)	N2—N1—C15—C23	-175.6 (3)
C4—O3—C3—O2	-27.7 (3)	C17—C14—C15—N1	-3.3 (5)
C4—O3—C3—C10	145.2(2)		
C4—O3—C3—C11	-145.2(3)	C13—C14—C15—N1	177.6 (3)
(2) (2) (2) (2)	-145.2 (5) 90.5 (3)	C13—C14—C15—N1 C17—C14—C15—C23	177.6 (3) 176.1 (3)
$U_2 - U_2 - U_3 - U_3$	-145.2 (3) 90.5 (3) 11.5 (4)	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23	177.6 (3) 176.1 (3) -3.0 (5)
$C_2 = 0_2 = C_3 = 0_3$	-145.2 (3) 90.5 (3) 11.5 (4) 128.0 (3)	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23 N1—N2—C16—C17	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5)
$C_{2} = 0_{2} = C_{3} = 0_{3}$ $C_{2} = 0_{2} = C_{3} = C_{10}$ $C_{2} = 0_{2} = C_{3} = C_{11}$	-145.2 (3) 90.5 (3) 11.5 (4) 128.0 (3) -107.7 (3)	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23 N1—N2—C16—C17 N1—N2—C16—C18	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3)
$\begin{array}{c} C_{2} = 0_{2} = C_{3} = 0_{3} \\ C_{2} = 0_{2} = -C_{3} = -C_{10} \\ C_{2} = 0_{2} = -C_{3} = -C_{11} \\ C_{3} = 0_{3} = -C_{4} = -C_{5} \end{array}$	-145.2 (3) 90.5 (3) 11.5 (4) 128.0 (3) -107.7 (3) 154.1 (3)	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23 N1—N2—C16—C17 N1—N2—C16—C18 C15—C14—C17—C16	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-145.2 (3) 90.5 (3) 11.5 (4) 128.0 (3) -107.7 (3) 154.1 (3) 32.4 (3)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-145.2 (3) 90.5 (3) 11.5 (4) 128.0 (3) -107.7 (3) 154.1 (3) 32.4 (3) 96.5 (2)	C13-C14-C15-N1 C17-C14-C15-C23 C13-C14-C15-C23 N1-N2-C16-C17 N1-N2-C16-C18 C15-C14-C17-C16 C13-C14-C17-C16 N2-C16-C17-C14	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3) 2.7 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \end{array}$	C13 - C14 - C15 - N1 $C17 - C14 - C15 - C23$ $C13 - C14 - C15 - C23$ $N1 - N2 - C16 - C17$ $N1 - N2 - C16 - C18$ $C15 - C14 - C17 - C16$ $C13 - C14 - C17 - C16$ $N2 - C16 - C17 - C14$ $C18 - C16 - C17 - C14$	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3) 2.7 (5) -175.2 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \\ 20.2 (4) \end{array}$	C13 - C14 - C15 - N1 $C17 - C14 - C15 - C23$ $C13 - C14 - C15 - C23$ $N1 - N2 - C16 - C17$ $N1 - N2 - C16 - C18$ $C15 - C14 - C17 - C16$ $C13 - C14 - C17 - C16$ $N2 - C16 - C17 - C14$ $C18 - C16 - C17 - C14$ $C18 - C16 - C17 - C14$	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3) 2.7 (5) -175.2 (3) 0.8 (5) 0.9 (5) (5) (5) (5) (5) (5) (5) (5) (5) (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \\ -20.2 (4) \\ 141.2 (2) \end{array}$	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23 N1—N2—C16—C17 N1—N2—C16—C18 C15—C14—C17—C16 C13—C14—C17—C16 N2—C16—C17—C14 C18—C16—C17—C14 C22—N3—C18—C19 C22—N2—C16—C17	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3) 2.7 (5) -175.2 (3) -0.8 (5) 177.7 (2) (3) -0.8 (5) (4) (5) (
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \\ -20.2 (4) \\ -141.2 (3) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3) 2.7 (5) -175.2 (3) -0.8 (5) 177.7 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -143.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \\ -20.2 (4) \\ -141.2 (3) \\ 147.7 (3) \end{array}$	C13-C14-C15-N1 C17-C14-C15-C23 C13-C14-C15-C23 N1-N2-C16-C17 N1-N2-C16-C18 C15-C14-C17-C16 C13-C14-C17-C16 N2-C16-C17-C14 C18-C16-C17-C14 C22-N3-C18-C19 C22-N3-C18-C16 N2-C16-C18-N3	177.6 (3) 176.1 (3) -3.0 (5) -2.2 (5) 175.7 (3) 0.0 (5) 179.2 (3) 2.7 (5) -175.2 (3) -0.8 (5) 177.7 (3) -171.4 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \\ -20.2 (4) \\ -141.2 (3) \\ 147.7 (3) \\ 27.5 (3) \end{array}$	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23 N1—N2—C16—C17 N1—N2—C16—C18 C15—C14—C17—C16 C13—C14—C17—C16 N2—C16—C17—C14 C18—C16—C17—C14 C22—N3—C18—C19 C22—N3—C18—C16 N2—C16—C18—N3 C17—C16—C18—N3	177.6 (3) $176.1 (3)$ $-3.0 (5)$ $-2.2 (5)$ $175.7 (3)$ $0.0 (5)$ $179.2 (3)$ $2.7 (5)$ $-175.2 (3)$ $-0.8 (5)$ $177.7 (3)$ $-171.4 (3)$ $6.5 (4)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -145.2 (3) \\ 90.5 (3) \\ 11.5 (4) \\ 128.0 (3) \\ -107.7 (3) \\ 154.1 (3) \\ 32.4 (3) \\ 96.5 (3) \\ -24.4 (3) \\ -20.2 (4) \\ -141.2 (3) \\ 147.7 (3) \\ 27.5 (3) \\ 175.2 (2) \end{array}$	C13—C14—C15—N1 C17—C14—C15—C23 C13—C14—C15—C23 N1—N2—C16—C17 N1—N2—C16—C18 C15—C14—C17—C16 C13—C14—C17—C16 N2—C16—C17—C14 C18—C16—C17—C14 C22—N3—C18—C19 C22—N3—C18—C16 N2—C16—C18—N3 C17—C16—C18—N3 N2—C16—C18—C19	$\begin{array}{c} 177.6 (3) \\ 176.1 (3) \\ -3.0 (5) \\ -2.2 (5) \\ 175.7 (3) \\ 0.0 (5) \\ 179.2 (3) \\ 2.7 (5) \\ -175.2 (3) \\ -0.8 (5) \\ 177.7 (3) \\ -171.4 (3) \\ 6.5 (4) \\ 7.1 (5) \end{array}$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-70.5 (3) 44.2 (4) -121.7 (3) -0.3 (4) 76.1 (3) -44.5 (4) -40.1 (3)	N3—C18—C19—C20 C16—C18—C19—C20 C18—C19—C20—C21 C19—C20—C21—C22 C18—N3—C22—C21 C20—C21—C22—N3 C27—N4—C23—C24	$\begin{array}{c} 0.9 (5) \\ -177.5 (3) \\ -0.5 (5) \\ 0.1 (5) \\ 0.4 (5) \\ -0.1 (6) \\ -0.9 (5) \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -160.7 (3) \\ -16.4 (3) \\ -132.5 (3) \\ 102.9 (3) \\ -13.2 (4) \\ 17.2 (4) \\ 134.1 (3) \\ -102.4 (3) \\ -28.3 (4) \\ -146.0 (3) \\ 90.3 (3) \\ 174.4 (3) \end{array}$	C27—N4—C23—C15 N1—C15—C23—N4 C14—C15—C23—N4 N1—C15—C23—C24 C14—C15—C23—C24 N4—C23—C24—C25 C15—C23—C24—C25 C23—C24—C25—C26 C24—C25—C26—C27 C23—N4—C27—C26 C25—C26—C27—N4	-178.8 (3) 167.1 (3) -12.4 (5) -10.8 (4) 169.7 (3) 0.4 (5) 178.2 (3) 0.2 (6) -0.3 (6) 0.8 (6) -0.3 (7)

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x-1/2, -y+1/2, -z+1; (iii) x+1/2, -y+1/2, -z+1.

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the N3/C18–C22 ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O7—H7A···N2 ⁱ	0.84 (2)	2.18 (3)	3.019 (4)	172 (6)
O7—H7 <i>B</i> …O1	0.86 (2)	2.30 (3)	3.112 (4)	157 (6)
O7—H7 <i>B</i> ···O6	0.86 (2)	2.57 (5)	3.176 (5)	129 (5)
C2—H2···O3 ⁱⁱ	0.98	2.51	3.444 (4)	160
C12—H12 A ···C g^{iv}	0.97	3.07	3.761 (3)	130

Symmetry codes: (i) -x, y-1/2, -z+1/2; (ii) x-1/2, -y+1/2, -z+1; (iv) -x+1, y-1/2, -z+1/2.