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Abstract
Backround Stem cells provide an opportunity to analyse the effects of xenobiotic on cell viability, differentiation and cell
functions. Evaluation of the possible cytotoxic and DNA damaging effects on bone marrow CD34+ stem cells is important for
their ability to differentiate into blood cells, and also for bonemarrow diseases therapy. Boron nitride nanotubes and curcumin are
potential nanoformulation agents that can be used together in the treatment of cancer or bone marrow diseases. Therefore, it is
important to evaluate their possible effects on different cell lines.
Objectives In this study, it was aimed to evaluate the cytotoxic and DNA damaging effects of boron nitride nanotubes which are
commonly used in pyroelectric, piezoelectric and optical applications, but there is not enough information about its biocompat-
ibility. Also, it was intended to research the effects of curcumin being used frequently in treatment processes for antioxidant
properties.
Methods The possible cytotoxic and DNA damaging effects of boron nitride nanotubes and curcumin on CD34+ cells, HeLa and
V79 cells were evaluated by MTT assay and Comet assay, respectively.
Results and conclusion Boron nitride nanotubes and curcumin had cytotoxic effects and cause DNA damage on CD34+ cells,
HeLa and V79 cells at several concentrations, probably because of increased ROS level. However, there were not concentration -
dependent effect and there were controversial toxicity results of the studied cell lines. Its mechanism needs to be enlightened by
further analysis for potential targeted drug development.

Keywords BonemarrowCD34+ stem cell . Boron nitride . Curcumin . Comet assay . V79 cell . HeLa cell

Introduction

Stem cells have important role in biomedical applications, in
regenerative therapy and toxicity testing by virtue of their
characteristics such as long-term cleavage, self-renewal, and
differentiation into cells like neurons, cardiomyocytes, hepa-
tocytes [1, 2]. Stem cell-based toxicity analyzes allow the
investigation of the effects of xenobiotics on cell viability,
differentiation process, and cell functions. Difficulties in
adapting the knowledge obtained from in vivo and in vitro
toxicity testing methods to humans have led researchers to
use stem cells and 3D culture systems [3].

Studies on bone marrow stem cells have gained speed in
the twentieth century due to their usage in medicine. The
microenvironment and stem cell diversity in the bone marrow
are being investigated by defining cell surface antigens using
microanalyses and transgenic mouse models [4].
Hematopoietic stem cells that are progenitors of blood cells
and mesenchymal stem cells which have the ability to differ-
entiate into osteocytes, chondrocytes and adipocytes are wide-
ly used in the study mentioned above. The use of hematopoi-
etic and mesenchymal stem cells in toxicity studies are impor-
tant for determining the effects of test material on the differ-
entiation process. The examination of the genotoxic effects is
necessary for the treatment and prevention of diseases such as
anemia and cancer. In particular, genotoxic effects which may
be permanent through bone marrow long term hematopoietic
stem cells [5].

Nanomaterials are used in many fields such as medicine,
textile, electronics, agriculture due to their reactive, electronic
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and catalytic properties that depend on their small size (1–
100 nm) and their large surface-to-volume ratio [6, 7].
Boron nitride nanotubes (BNNs), one of the many
nanomaterials that differ according to their physical, chemical
and biological properties, also have a wide range of use due to
their advantages such as high Young’s modulus, oxidation
resistance and thermal conductivity [8, 9]. The nanotubes
can be used as nanovector in clinical and biomedical applica-
tions because of their biological inertness. However, solubility
problem of BNNs in biological fluids requires nanotubes to be
subjected to processes such as polymer coating and chemical
modification [10].

Nanoparticle formulations containing curcumin are used to
increase the bioavailability of the phenolic compound
curcumin, which is used in Indian and Chinese traditional
medicine applications because of the anti-inflammatory - an-
tioxidant -antimicrobial -anticancer effects [11, 12]. BNNs are
potentially suitable formulation agent for benefiting from the
biological effects of curcumin.

It is necessary to understand the mechanisms of cytotoxic-
ity and genotoxicity of stem cells, which may be an appropri-
ate alternative to animal experiments as an indispensable part
of toxicity tests. Additionally, it is important to develop an
appropriate formulation to increase the solubility of BNNs
and curcumin in biological fluids.

In the scope of this study, it is aimed to evaluate the
cytotoxic effects and the effects of BNNs and curcumin
on DNA damage on HeLa and V79 cells by MTT and
comet assays. Also, it is aimed to evaluate the effects of
BNNs and curcumin on DNA damage on bone marrow
CD34+ cells.

Methods

Boron nitride nanotubes and curcumin dispersion
preparation

BNNs were purchased from Sigma-Aldrich (802824) and dis-
persions were prepared in sterile distilled water. The BNNs
had typical diameters of 5 nm on the average and surface area
were more than 100 m2/g. The nanotubes were composed of
H-BN and BNH (0–25%), BNN (50%) and elemental B
(<25%). BNNs dispersions were prepared as 1 mg/ml and
2 mg/ml samples. The ultrasonic probe and the ultrasonic bath
were used to provide a homogeneous distribution of BNNs
stock solutions.

Curcumin was purchased from Sigma-Aldrich (C1386).
Curcumin was prepared in 1 and 1,5 mg/ml stock solutions
in dimethyl sulfoxide (DMSO, Sigma) and diluted with sterile
distilled water (final DMSO concentration was 1% (v/v)) for
experiments.

Boron nitride nanotubes characterization

The morphological characteristics of BNNs dispersion in ster-
ile distilled water which prepared in the same way described
before were analyzed using Transmission Electron
Microscope (TEM) technique. The analyses were performed
at the National Nanotechnology Research Center (UNAM) at
Bilkent University using Tecnai G2 F30-FEI model transmis-
sion electron microscope with an acceleration potential of
300 kV.

The zeta potential of BNNs dispersion in sterile distilled
water was determined by Laser Doppler Anemometry in
Zetasizer equipment (Zetasizer-Nanoseries ZS, Malvern
Instruments) at UNAM.

Cell culture

HeLa cells (American Type Culture Collection (ATCC) CCL-
2, human cervix carcinoma) and V79 cells (ATCC CCL-93,
Chinese hamster lung fibroblasts) were purchased from
ATCC. The human bone marrow CD34+ cells were purchased
from Lonza.

HeLa cells were cultured in RPMI (Biological Industries)
and DMEM (Sigma) containing 1% penicillin-streptomycin
(Biological Industries) and 10% fetal bovine serum (Sigma).
V79 cells were cultured in DMEM (Sigma) containing 1%
penicillin-streptomycin and 10% fetal bovine serum.

The bone marrow CD34+ cells were thawed using IMDM
containing 10% FBS and 20 U/ml Deoxyribonuclease I
(Sigma) and grown in Iscove’s Modified Dulbecco’s
Medium (IMDM, Lonza) supplemented with 15% fetal bo-
vine serum, 1% penicillin-streptomycin, 10 μg (25 ng/ml)
stem cell factor (Sigma), 4 μg (10 ng/ml) In-6 and In-3
(Sigma). The cells were cultured in a 5% carbon dioxide-
humidified atmosphere at 37 °C.

MTT assay

The methyl thiazol tetrazolium bromide (MTT, Sigma) assay
was used for assessing cell viability, as described by
Mosmann et al. [13] and Ferrari et al. previously [14].
Briefly, HeLa cells with V79 cells were cultured and 10.000
cells were seeded in per chambers of 96 well-plate and
allowed to attach for 24 h. After incubation, the cells were
exposed to different concentrations of BNNs (10–
300 μg/ml) [15], curcumin (10–300 μg/ml) [16] and combi-
nation of equal concentrations of BNNs and curcumin (10–
300 μg/ml) in medium for 24 h at 37 °C in a humidified
atmosphere of 5% CO2.When the exposure time ended, cells
medium was aspirated and 10 μl of MTTsolution (5 mg/ml in
PBS) was added to each well to evaluate cell survival. After
4 h incubation, the cell media was replaced with 100 μl
DMSO and the plates were shaken for 5 min. The absorbance
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was determined at 570 nm by microplate reader and IC50

values were calculated using concentration-response curves
to express the effects of test materials on cell viability.

Comet assay

The basic alkaline comet assay was performed essentially as
described by Singh et al. [17] with modifications of Hartmann
et al. [18]. Briefly, regular cell slides were coated with 1.25%
normal melting point agarose (NMPA) and allowed to dry. For
the cell exposure to test compounds, 2500 human bone mar-
row CD34+ hematopoietic progenitor cells were seeded in 96
well plates and allowed to attach for 24 h. After this period, the
cells were exposed to different concentrations of BNNs,
curcumin and, the combination of BNNs and curcumin (0.5–
100 μg/ml) for 30 min and 24 h. 1% DMSO was used as a
negative control and 50 μM H2O2 was used as positive con-
trol. At the end of exposure time, the cells were centrifuged at
200 g for 15 min and the supernatant was discarded to leave
50 μl cell suspension at the bottom of the plate well. The cells
were resuspended in 1.25% low melting point agarose
(LMPA) and this suspension was spread on a pre-coated
slides. After removing the coverslip, the slides were sub-
merged into lysing solution (2.5 M NaCl, 100 mM EDTA,
100 mM Tris, 1% sodium sarcosinate, 1% Triton-X 100,
10% DMSO, pH 10; 4 °C) for 24 h. After lysis, the slides
were left in electrophoresis solution (300 mM NaOH and
1 mM sodium EDTA, pH 13) for 20 min at 4 °C and electro-
phoresis were performed for 20 min at 4 °C by applying elec-
tric current of 300 mA and 24 V. Following, the slides were
washed in neutralisation solution (0,4M Tris-HCl, pH 7.5) for
15 min and then they were incubated in 50%, 75%, 98% of
ethyl alcohol for 5 min each. The dried slides were stained
with EtBr (20 μg/ml in distilled water, 60 μg/slide) and ex-
amined by Leica® fluorescence microscope. Computer-based
analysis system (Comet Analysis Software, version 3.0,
Kinetic Imaging Ltd., Liverpool, UK) was used to measure
the DNA damage. In order to visualize DNA damage, 100
nuclei per slide were examined at 40× magnification.
Results were expressed as the fraction of total DNA in the tail
(Btail moment^) and percent of DNA in tail (Btail intensity^).

Also, 30.000 HeLa and V79 cells were seeded in 24 well-
plate and were allowed to attach for 24 h. Following this
period, the cells were treated with different concentrations of
BNNs, curcumin and combination of BNNs and curcumin
(0.5–100 μg/ml) in the medium for 30 min and 24 h at
37 °C and 5% CO2. At the end of the treatment, the cells were
washed with PBS and trypsinized with trypsin/EDTA and
resuspensions of the cells were centrifuged in Eppendorf tubes
at 1200 rpm for 5 min. The supernatant was discarded to leave
50μl cell suspension at the bottom of the tubes. The cells were
suspended in 0.5% LMPA to spread on slides which pre-

coated with 1% NMPA, the comet assay protocol was follow-
ed as described before.

Statistical analysis

The MTT and comet experiments were repeated 3 times and
the results were given in mean ± standard deviation format.
For MTT and comet assays, the statistical analysis was per-
formed by SPSS for Windows 10.5 computer program.
Differences between the means of data were compared by
the one-way analysis of variance (ANOVA) test and post
hoc analysis of group differences by least significant differ-
ence (LSD) test. Also, the p value of less than 0.05 was con-
sidered as statistically significant.

Results

BNNs characterization with TEM and zeta potential
analysis

According to the TEM images of BNNs dispersion (Fig. 1), it
seems BNNs have a straight and multi-walled tubular struc-
ture with a diameter of approximately 8 nm and a length of up
to several micrometers. Also, it is possible to see particles with
diameter of about 7 nm that are probably composed of BNH,
H-BN and elemental B.

Zeta potential analysis is important to determine the
surface charge of nanoparticles and to predict in vivo
fate of nanoparticles because of their cellular interaction
related to activation, agglutination, adhesion and for col-
loidal nanoparticle stability which is described as highly
unstable (±0–10 mV), relatively stable (±10–20 mV),
moderately stable (±20–30 mV) and highly stable
(±30 mV), respectively [19–21]. The zeta potential of
BNNTs dispersion was detected as −50,9 mV (Fig. 2).
It demonstrates the presence of negative charge on
BNNTs and may indicate that BNNTs samples can form
stable suspensions on these conditions.

Cytotoxicity of boron nitride nanotubes and curcumin
in HeLa and V79 cells

The cytotoxic effects of boron nitride nanotubes and curcumin
were examined byMTTassay on HeLa cells and V79 cells for
24 h incubation period (Fig. 3a-c). Boron nitride nanotubes
and curcumin were treated alone and in the combination of
two at a dose range of 10–300 μg/ml.

In HeLa cells, it was observed that the cell viability was not
concentration-dependent in boron nitride nanotubes treated
cells. The viability of HeLa cells increased at concentrations
of 10 μg/ml, 20 μg/ml, 100 μg/ml and 200 μg/ml when com-
pared to the negative controls. BNNs showed the highest
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cytotoxic effect on HeLa cells at a concentration of 50 μg/ml
and the cell viability decreased to 66%. The IC50 value of the
boron nitride nanotubes could not be determined in the studied
concentration range. Furthermore, the cell viabilities of all
studied concentrations were significantly more than positive
control (Fig. 3a). In the boron nitride nanotubes and curcumin

co-treated cells, the cell viability decreased at a concentration
range of 10–100 μg/ml, whereas the cell viability increased at
a concentration range of 100–300 μg/ml. Also, there was de-
creased cell viability at the concentration of 100 μg/ml when
compared to positive control (Fig. 3b). In the curcumin-treated
cells, there were decreases in cell viability, except for the

Fig. 1 TEM images of BNNs
dispersion at (a) 100 nm, (b)
50 nm, (c) 10 nm, (d) 10 nm, (e)
10 nm and (f) 20 nm
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300 μg/ml concentration, when compared to the negative con-
trol (1% DMSO). The changes in cell viability were not in a
concentration-dependent manner and there was a general

reduction in the range of 10–100 μg/ml. However, the in-
crease of cell viability was concentration-dependent in the
range of 100–300 μg/ml, which is the same as in the BNNs

Fig. 3 a MTT assay results of
HeLa and V79 cells incubated
with boron nitride nanotubes
(BN) for 24 h. b MTT assay
results of HeLa and V79 cells
incubated with boron nitride
nanotubes (BN) – curcumin (cur)
for 24 h. c MTT assay results of
HeLa and V79 cells incubated
with curcumin (cur) for 24 h. d
The image of MTT result for
HeLa cells

Fig. 2 Zeta Potential of BNNs
dispersion in water
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and curcumin co-treated cells. Curcumin showed a significant
cytotoxic effect at the concentration of 100 μg/ml, which re-
ducing cell viability to 26%. IC50 value was not obtained
because of cell viability. Additionally, the cell viabilities de-
creased at the concentrations of 100 μg/ml and 150 μg/ml
when compared to positive control (Fig. 3c).

In V79 cells, there was a general decrease in boron
nitride nanotubes treated cells at the concentration of
10–300 μg/ml. There were concentration-dependent de-
creases at above 100 μg/ml compared to positive control.
Additionally, the IC50 value of boron nitride nanotubes in
the studied concentration range was determined to be
291.74 μg/ml (Fig. 3a). In the boron nitride nanotubes
and curcumin co-treated cells, the cell viability decreased

between 10 and 50 μg/ml and increased between 50 and
250 μg/ml. The IC50 value was not detected in the studied
dose range and a significant cell viability increase was
seen at 250 μg/ml when compared to negative control
(1% DMSO). Also, there was a decrease of cell viability
at above 10 μg/ml concentration except for 250 μg/ml
(Fig. 3b). Furthermore, in the curcumin-treated cells, there
was a general decrease at all concentrations compared to
negative control and positive control. The cell viability
showed significant decrease in the concentration range
of 10–50 μg/ml when compared to negative control,
whereas there was an increase above these concentrations.
For this reason, the IC50 value was not determined for
curcumin-treated cells (Fig. 3c).

Fig. 3 continued.
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Fig. 4 a Tail intensity from the comet assay of bone marrow CD34+

hematopoietic progenitor cells treated with boron nitride (BN), boron
nitride + curcumin (BN + Cur) and curcumin (Cur) for 30 min
(*p < 0.05, **p < 0.01, ***p < 0.001, significantly different from
negative control. +p < 0.05, ++p < 0.01, +++p < 0.001, significantly
different from positive control). The values are expressed in mean
± standard deviation format. b Tail moment from the comet assay of bone
marrow CD34+ hematopoietic progenitor cells treated with boron nitride
(BN), boron nitride + curcumin (BN + Cur) and curcumin (Cur) for
30 min (*p < 0.05, **p < 0.01, ***p < 0.001, significantly different
from negative control. +p < 0.05, ++p < 0.01, +++p < 0.001, significantly
different from positive control). The values are expressed in mean
± standard deviation format. c Tail intensity from the comet assay of
HeLa cells treated with boron nitride (BN), boron nitride + curcumin
(BN + Cur) and curcumin (Cur) for 30 min (*p < 0.05, **p < 0.01,
***p < 0.001, significantly different from negative control. +p < 0.05,
++p < 0.01, +++p < 0.001, significantly different from positive control).

The values are expressed in mean ± standard deviation format. d Tail
moment from the comet assay of HeLa cells treated with boron nitride
(BN), boron nitride + curcumin (BN + Cur) and curcumin (Cur) for
30 min (*p < 0.05, **p < 0.01, ***p < 0.001, significantly different
from negative control. +p < 0.05, ++p < 0.01, +++p < 0.001, significantly
different from positive control). The values are expressed in mean ± stan-
dard deviation format. e Tail intensity from the comet assay of V79
cells treated with boron nitride (BN), boron nitride + curcumin (BN+
Cur) and curcumin (Cur) for 30min (*p < 0.05, **p < 0.01, ***p < 0.001,
significantly different from negative control. +p < 0.05, ++p < 0.01, +++p
< 0.001, significantly different from positive control). The values are
expressed in mean ± standard deviation format. f Tail moment from the
comet assay of V79 cells treated with boron nitride (BN), boron nitride +
curcumin (BN+Cur) and curcumin (Cur) for 30 min (*p < 0.05, **p <
0.01, ***p < 0.001, significantly different from negative control. +p <
0.05, ++p < 0.01, +++p < 0.001, significantly different from positive
control). The values are expressed in mean ± standard deviation format
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The effects of boron nitride nanotubes and curcumin
on DNA damage on human bone marrow CD34+

hematopoietic progenitor cells, HeLa and V79 cells

Short incubation time (30 min)

The DNA damage was expressed as tail intensity and tail
moment in human bone marrow CD34+ hematopoietic pro-
genitor cells, HeLa cells, and V79 cells treated with boron
nitride nanotubes, boron nitride nanotubes + curcumin and
curcumin at a wide range of concentration (0.5–100 μg/ml)
for 30 min (Fig. 4a-f).

According to the data of bone marrow CD34+ cells, boron
nitride nanotubes caused to increase in DNA damage at the
concentrations of 0.5 μg/ml and 1 μg/ml, when compared to
negative control. In BNNs and curcumin co-treated cells, an
increase in DNA damage was observed at 1 μg/ml. There was

a significant increase in DNA damage at 0.5 μg/ml concen-
tration in curcumin-treated cells. Also, there was a decrease in
the DNA damage at all studied concentrations when compared
to positive control (Fig. 4a, b).

In HeLa cells, BNNs increased the DNA damage at all
studied concentrations (0.5–100 μg/ml). Additionally, the
DNA damage of BNNs and curcumin co-treated cells in-
creased at the concentrations of 1 μg/ml and 50 μg/ml when
compared to negative control (1% DMSO). In curcumin-
treated cells, there were increases of the DNA damage at all
studied concentrations except for 50 μg/ml and 100 μg/ml
(Fig. 4c-d).

In BNNs treated V79 cells, there were increases in DNA
damage at the concentrations of 5 μg/ml, 20 μg/ml and
100 μg/ml. There was a significant decrease in the DNA dam-
age of BNNs treated cells at the concentrations of 0.5 μg/ml,
20 μg/ml and 100 μg/ml, when compared to positive control.

Fig. 4 continued.
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Additionally, the DNA damage increase was observed at the
concentration of 1 μg/ml in BNNs and curcumin co-treated
cells. However, there were slight increases at the concentra-
tions of 0.5 μg/ml, 10 μg/ml, 20 μg/ml and 50 μg/ml in
curcumin treated cells, when compared to negative control
(1% DMSO) (Fig. 4e, f).

Long incubation time (24 h)

The DNA damage was expressed as tail intensity and tail
moment in human bone marrow CD34+ hematopoietic pro-
genitor cells, HeLa cells and V79 cells treated with BNNs,
BNNs + curcumin and curcumin at a wide range of concen-
tration (0.5–100 μg/ml) for 24 h (Fig. 5a-f).

In boron nitride nanotubes treated CD34+ cells, the DNA
damage increased at the concentrations of 1 μg/ml, 10 μg/ml

and 100 μg/ml, when compared to negative control. There
were increases of DNA damage at the concentrations of
0.5 μg/ml, 1 μg/ml and 10 μl/ml in BNNs and curcumin co-
treated cells. Additionally, curcumin caused to increase of the
DNA damage at all studied concentrations except for
50 μg/ml (Fig. 5a, b).

When the DNA damage of HeLa cells was evaluated, bo-
ron nitride increased the DNA damage at the concentrations of
1 and 100 μg/ml. However, in BNNs and curcumin co-treated
cells there were more increased DNA damage concentrations
(0.5 μg/ml, 20 μg/ml, 50 μg/ml and 100 μg/ml). Furthermore,
increases in DNA damage were observed at all studied con-
centrations except for 1 μg/ml and 10 μg/ml in curcumin-
treated cells (Fig. 5c, d).

The DNA damage was determined at all studied concen-
trations except for 10 μg/ml and 100 μg/ml in boron nitride

Fig. 4 continued.
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treated V79 cells. Also, there were increases of the DNA dam-
age at concentrations of 5 μg/ml, 20 μg/ml and 100 μg/ml in
boron nitride nanotubes and curcumin co-treated cells. When

curcumin-treated cells were evaluated, there were increases of
the DNA damage at the concentrations of 0.5 μg/ml,
20μg/ml, 50μg/ml, 100 μg/ml (Fig. 5e, f). Furthermore, there

Fig. 5 a Tail intensity from the comet assay of bone marrow CD34+

hematopoietic progenitor cells treated with boron nitride (BN), boron
nitride + curcumin (BN +Cur) and curcumin (Cur) for 24 h (*p < 0.05,
**p < 0.01, ***p < 0.001, significantly different from negative control.
+p < 0.05, ++p < 0.01, +++p < 0.001, significantly different from positive
control). The values are expressed in mean ± standard deviation format. b
Tail moment from the comet assay of bone marrow CD34+ hematopoietic
progenitor cells treated with boron nitride (BN), boron nitride + curcumin
(BN + Cur) and curcumin (Cur) for 24 h (*p < 0.05, **p < 0.01,
***p < 0.001, significantly different from negative control. +p < 0.05,
++p < 0.01, +++p < 0.001, significantly different from positive control).
The values are expressed in mean ± standard deviation format. c Tail
intensity from the comet assay of HeLa cells treated with boron nitride
(BN), boron nitride + curcumin (BN +Cur) and curcumin (Cur) for 24 h
(*p < 0.05, **p < 0.01, ***p < 0.001, significantly different from
negative control. +p < 0.05, ++p < 0.01, +++p < 0.001, significantly
different from positive control). The values are expressed in mean ±

standard deviation format. d Tail moment from the comet assay of
HeLa cells treated with boron nitride (BN), boron nitride + curcumin
(BN + Cur) and curcumin (Cur) for 24 h (*p < 0.05, **p < 0.01,
***p < 0.001, significantly different from negative control. +p < 0.05,
++p < 0.01, +++p < 0.001, significantly different from positive control).
The values are expressed in mean ± standard deviation format. e Tail
intensity from the comet assay of V79 cells treated with boron nitride
(BN), boron nitride + curcumin (BN +Cur) and curcumin (Cur) for 24 h
(*p < 0.05, **p < 0.01, ***p < 0.001, significantly different from
negative control. +p < 0.05, ++p < 0.01, +++p < 0.001, significantly
different from positive control). The values are expressed in mean ± stan-
dard deviation format. f Tail moment from the comet assay of V79
cells treated with boron nitride (BN), boron nitride + curcumin (BN+
Cur) and curcumin (Cur) for 24 h (*p < 0.05, **p < 0.01, ***p < 0.001,
significantly different from negative control. +p < 0.05, ++p < 0.01, +++p
< 0.001, significantly different from positive control). The values are
expressed in mean ± standard deviation format
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were decreases of the DNA damage at all studied concentra-
tions in CD34+ cells, HeLa and V79 cells when compared to
positive control.

The comet images of CD34+, HeLa and V79 cells were
given in Fig. 6.

Discussion

Stem cells are used for a variety of purposes in areas such as
regenerative therapy (chemotherapy, tissue repair, dentistry,
aesthetic surgery), drug development studies, toxicity tests,
stem cell-mediated diseases and regulation of cell functions
due to their self-renewal and differentiation properties [3, 22].

The stem cell studies are potential field for an alternative to
the widely used animal models in assessing possible toxic
effects of xenobiotics, which have an important place in hu-
man life, and for a detailed examination of toxicity mecha-
nisms. Stem cell-based toxicology studies allow to determine
the effects of toxins on the differentiation process and differ-
entiated (mature) cell functions [1, 2]. It also removes toxicity
changes arising from differences between species [23].

Bone marrow hematopoietic stem cells are responsible for
hematopoiesis and are able to differentiate into various cell
lines that are important for the therapeutic use and for the
development of toxicity test models [24, 25]. The effects of
genotoxic agents on bone marrow stem cells can provoke
cancer, anemia and cell senescence. Also, this genotoxic effect
can be sustained through long-lived hematopoietic stem cells.

Fig. 5 continued.
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Thus, hematopoietic stem cells should be evaluated for cyto-
toxicity and genotoxicity [5].

BNNs have potency to be used as nanovector in many field
and clinical applications due to their resistance to undesirable
conditions, their biological inertness, their magnetic and pie-
zoelectric properties [10, 26].

Various formulations (nanoparticle, mucoadhesive, lipo-
some) are used to increase the bioavailability of curcumin, a
phenolic compound that has been used in traditional medical
applications for a long time and has anticancer-antioxidant -
anti-inflammatory effects [27–29]. In this respect, boron ni-
tride nanotubes may be a suitable formulation material as
nanovector for curcumin formulations [30–33]. However,
there are different findings of BNNs and curcumin toxicity.

The aim of this study is to examine the cytotoxic effects
and DNA damaging effects of BNNs and curcumin on bone

marrow CD34+ stem cells, HeLa and V79 cells for possible
anticancer nanoformulation, drug development and risk as-
sessment of potential exposure effects (e.g. boron nitride
nanotubes are potential delivery agent for boron neutron cap-
ture therapy which contains 10B isotopes and magnetic drug
targeting) [34]. Therefore, this study may provide preliminary
results for further in vitro and in vivo studies.

In our study, it was found that the cytotoxic effects of boron
nitride nanotubes in HeLa cells were not concentration-
dependent and showed a significant reduction in cell viability
at 50 μg/ml as compared to the negative control (p < 0.01),
while there were increased cell viabilities at several concen-
trations. It was found that BNNs are not cytotoxic up to
50 μg/ml concentration of HeLa cells for 1 and 3 days in the
literature [35]. Also, our results showed U shaped effects be-
tween 20 and 100 μg/ml concentrations similar to the results

Fig. 5 continued.
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of boron [36]. In NIH/3 T3 and A549 cells, the boron nitride
nanotubes did not adversely affect cell viability up to
62.5 μg/ml (IC50 = 62.5–125 μg/ml) [37]. Also, in another
study, it was shown that BNNs were not cytotoxic for human
osteoblast and mouse macrophage cells also did not affect the
morphological and viability properties of human glioblasto-
ma, human gingival fibroblast cells and human vascular en-
dothelial cells [38–42] and these studies support our results. In
a similar study, BNNs increased osteoblastic differentiation of
mesenchymal stem cells by increasing alkaline phosphatase
levels (2 μg/ml BNNs) at the concentration range of 0–
25 μg/ml and increased the stem cell proliferation up to a
concentration of 5 μg/ml BNNs [43]. The cell viability in-
creased in HeLa cells may be explained with the possible
inductive effect of BNNs. However, concentration-
dependent cytotoxic effects on HeLa cells were found be-
tween 0 and 2 mg/ml for 24 and 48 h similar to V79 cells in

our study [44]. Therefore, low doses of boron nitride nano-
tubes may be used for biological applications.

In another study, nanotubes of hydroxylated (h-BNNs) and
carbohydrate bound (m-BNNs) boron nitride did not affect
human dermal fibroblast (HDF) cell viability at doses of 5–
200 μg/ml. On the other hand, it reduced the viability of A549
cells by 40–60% at doses of 100–200 μg/ml [45]. The
transferrin-bound BNNs decreased cell viability of human um-
bilical vein endothelial cells and NIH/3 T3 fibroblast cells by
15% and 16% at the dose level of 100 μg/ml, respectively.
[46]. When studies of BNNs are evaluated, it has been found
that processes such as coating or modification, the nanotube
size that affects the cellular internalization facilitated by hydro-
phobic property of boron nitride nanotubes and the studied cell
line lead to significant differences in the cytotoxic properties of
boron nitride nanotubes [47]. Additionally, different cell mem-
brane pore sizes may cause different cytotoxic effects [44].

Fig. 6 The comet images of
CD34+ stem cells (a, b), HeLa
cells (c, d) and V79 cells (e, f)
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When the cytotoxicity results of BNNs - curcumin co-
treated and curcumin-treated cells were evaluated, a similar
concentration-cell viability profile was obtained in HeLa cells
and V79 cells. The cell viability - concentration graphics of
BNNs – curcumin and curcumin-treated cells were U shaped
graphics similar with other study results that were used phe-
nolic compounds [48, 49]. The cell viability of HeLa and V79
cells were decreased at concentrations of 100 and 50 μg/ml,
respectively, when compared to negative control (1% DMSO)
(p < 0.001). According to the results of a similar study, the
effects of curcumin on the viability of HeLa cells were eval-
uated by the MTT method, the IC50 value was determined to
be 16.52μM, and in another study it was determined to be 25–
50 μM, and the cytotoxic effect of curcumin had dose-
dependent profile [5, 50, 51]. However, there was general
increase of the cell viability at above these concentrations
and it may be because of the mitochondrial function enhance-
ment effect of curcumin [30]. Also, the similarity between the
cell viability profile of curcumin-treated and boron nitride-
curcumin co-treated cells may be evaluated as the marker of
BNNs inertness [52].

According to the results of comet analysis for 30 m and
24 h incubation, boron nitride nanotubes caused a statistically
significant increase of DNA damage in bone marrow CD34+

cells, in HeLa and V79 cells at several concentrations com-
pared to negative control. In a similar study, it has been deter-
mined that BNNs did not cause chromosomal damage in lung
fibroblast cells up to 50 μg/ml, but it caused cell damage due
to increased ROS (reactive oxygen species) at above of this
concentration [53]. Studies on human dermal fibroblast cells
and alveolar basal epithelial cells showed that BNNs at the
concentration range of 100–200 μg/ml caused DNA damage
[54]. The increased DNA damage caused by BNNs may be
the result of increased reactive oxygen species [54].

Furthermore, curcumin increased DNA damage at several
concentrations in our study and in another studies showing
that the genotoxic activity of curcumin, is caused by increased
lipid peroxidation and oxidative stress [55–57]. Also,
curcumin has been shown to be genotoxic at high doses and
antigenotoxic at low doses by Cao et al. [58]. The results of
this study are consistent with our findings on DNA damage in
V79 and HeLa cells for 24 h incubation.

Additionally, when the comet results of 30 min and 24 h
incubation time were compared, it was observed that the DNA
damage was decreased depending on incubation time.
According to our results, DNA damages in all cell lines were
repaired at 0.5–10 μg/ml concentration range for boron nitride
nanotubes and BNNs – curcumin co-treated cells.

Finally, when the comet assay results for 24 h and MTT
results of HeLa and V79 cell lines were compared, it was
observed that cell viability decrease of curcumin and boron
nitride nanotubes-curcumin co-treated cells (20–50 μg/ml)
was compatible with the DNA damage increase. Hence, the

DNA damage (strand breaks) may be the reason for cell death
via ROS activity [59].

Conclusion

There are studies showing that boron nitride nanotubes may
be a suitable material as nanovector and curcumin is a poten-
tial agent for targeted anticancer drug development in nano-
formulation. They can be functionalized with bioactive con-
jugates and can be used for targeted therapy. For all that,
in vitro assessment of their compatibility is important before
any realistic bio-applications.

In this study, the cytotoxic effects and the effects on DNA
damage of boron nitride nanotubes and curcumin were eval-
uated to contribute to the risk assessment of boron nitride
nanotubes and curcumin exposure. According to our results,
boron nitride nanotubes and curcumin had cytotoxic effects
and caused DNA damage on CD34+, HeLa and V79 cells at
several concentrations. These concentration – effect graphics
of cytotoxicity and DNA damage had U shape. These effects
were probably caused by ROS increase and oxidative stress.
Also, the results of curcumin and BNNs - curcumin concen-
tration groups were similar that may be the sign of BNNs
inertness. However, there are controversial results about their
toxicity in the literature. Our findings also demonstrated the
necessity of performing many tests at different concentrations
and on different cell lines to contribute to nanovector devel-
opment for DNA, drugs and radioisotopes.
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