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ÖZET

DİZGİ EŞLEME ALGORİTMALARININ GPGPU
HIZLANDIRICILARI KULLANILARAK ETKİLİ VE VERİMLİ

HIZLANDIRILMASI

Mengü NAZLI

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Dr. Öğretim Üyesi Adnan ÖZSOY

Haziran 2020, 117 sayfa

Dizgi eşleme, bilgisayar bilimlerinin en eski ve üzerinde en çok çalışılan konularından
biridir. Bilgisayar güvenliği, biyoinformatik, sosyal medya işleme, veri madenciliği, veri
sıkıştırma, kodlama teorisi ve benzeri pek çok alanda dizgi işleme uygulamalarına rastlan-
maktadır. 1970’lerden bu yana dizgi eşleme problemi üzerine pek çok farklı performans
karakteristiğine ve çalışma şekline sahip algoritma önerilmiştir. Bu alandaki çalışmaların
çeşitliliği, kapsamlı bir karşılaştırmanın hazırlanmasını zor kılsa da, Thierry Lecroq ve
Simone Faro tarafından geliştirilen SMART kütüphanesi gibi bu hedefe ulaşmış birkaç
çalışmaya rastlanmaktadır. Bu kütüphane, dizgi işleme alanında çalışmak, literatürdeki
algoritmaları karşılaştırmak ve yeni algoritmalar geliştirip mevcut algoritmalarla kıyasla-
mak isteyen araştırmacılar için değerli bir kaynaktır. Ancak kütüphanedeki kodların seri
olarak çalışacak şekilde geliştirilmiş olması, içinde bulunduğumuz yüksek performanslı
paralel hesaplama çağında bu kütüphanenin uygulamadaki pratikliğini azaltmaktadır. Bu
çalışmada, benzer bir kütüphaneyi Nvidia tarafından geliştirilen CUDA platformundan
yararlanarak paralel bir şekilde hazırladık ve dizgi eşleme algoritmalarının paralel çalışma
performanslarını incelemeyi amaçladık. CUSMART adı verdiğimiz kütüphanede CUDA
C++ programlama arayüzünü kullanarak 85’den fazla dizgi eşleme algoritmasının paralel
ortama aktardık ve bu algoritmaları farklı senaryolarda test ederek algoritmaların güçlü ve
zayıf yanlarını adil bir şekilde karşılaştırabilmeyi hedefledik. Hazırladığımız algoritma-
ları hem Nvidia tarafından geliştirilen mobil platform Jetson’da, hem de genel kullanım
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için piyasaya sürülmüş olan GeForce serisi kartlarda test ettik. Elde ettiğimiz sonuçlar,
aynı algoritmaların seri CPU versiyonlarına göre ortalama 40 kat daha hızlı çalıştığını
göstermekte ve GPGPU platformunun dizli işleme uygulamalarındaki potansiyeline işaret
etmektedir.

Anahtar Kelimeler: dizgi eşleme, paralel programlama, GPU programlama, GPGPU,
NVIDIA, CUDA, CUSMART
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ABSTRACT

EFFECTIVE AND EFFICIENT PARALLELIZATION OF STRING
MATCHING ALGORITHMS USING GPGPU ACCELERATORS

Mengü NAZLI

Master of Science, Department of Computer Engineering
Supervisor: Assist. Prof. Dr. Adnan ÖZSOY

June 2020, 117 pages

String matching is one of the oldest and actively studied problems in computer science.
It has applications in computer security, bio-informatics, social media processing, data
mining, data compression, coding theory, and many other areas. Since the ’70s, there have
been dozens of proposed algorithms to this problem with different approaches and perfor-
mance characteristics. While the sheer amount of proposed algorithms makes it hard to
put together a comprehensive performance comparison study, there are a few projects like
the String Matching Algorithms Research Tool (SMART) library from Thierry Lecroq
and Simone Faro achieving this goal. Their library holds the code implementations for
the majority of string matching algorithms in the literature. It is an invaluable tool for
studying different string matching algorithms, but it lacks practicality because of its serial
implementation in the age of parallel computation. Our aim is to present a parallel version
of the library realized on the CUDA platform by Nvidia, employing GPGPU program-
ming concepts for improved performance and gain insight on the parallel versions of these
algorithms. We have developed CUSMART library, which contains parallelized versions
of around 85 string matching algorithms using CUDA API. The performances of these
algorithms are tested with different scenarios to get a fair comparison and determine their
strong/weak application scenarios. Also, we have investigated some well-known opti-
mization practices to observe how they impact the performance of these algorithms. Our
results show an average of 40x speedup compared to the serial CPU version of algorithms
indicating the potential of GPGPU computing on string matching applications.
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Keywords: stringmatching, parallel programming, GPUprogramming, GPGPU,NVIDIA,
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“People think that computer science is the art of geniuses but the actual reality is the
opposite, just many people doing things that build on each other, like a wall of mini
stones.”

Donald Knuth
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1. INTRODUCTION

String matching is an important subject in the text processing field. It is an essential com-
ponent used by the functioning software on many operating systems. The programming
methods emphasized by string matching serve as paradigms in other fields of computer
science. Although data are shared and stored in many forms, the text remains as the dom-
inant form of information handling. This is especially apparent in literature where data
are composed of large corpora. Similarly, computer science is also a case where massive
amounts of data are stored in linear data files. Molecular biology is another example
where biological molecules are approximated as the sequence of more fundamental build-
ing blocks like amino acids or nucleotides handled as strings. String matching solutions
are applied in many other areas such as computer security [1], bio-informatics [2], [3],
social media content processing [4], data mining [5], data compression [6], coding theory
[7], [8] and forms the basis of these areas.

Data usage and collected data are increasing day by day in these computer-centric areas.
The processing and calculation requirements of this incremental data are also on the same
scale. It requires new solutions and hardware support to meet the increase. This problem,
which is of interest to high-performance computations and Big data, has gained more
importance in recent years. The increase in the calculation time due to the increase in data
corresponds to very prolonged response times in many applications, which results in slow
and unacceptable runtimes. Therefore, it is important to reduce the calculation times for
the availability of the systems.

Parallel processing to reduce calculation times is the primary solution approach for high-
performance calculations. The Central ProcessingUnit (CPU)was the leading architecture
for many years on which parallel calculations are based on [9]. With the increasing number
of processors used in the systems, calculations in the applications are distributed to the
multi-system supercomputers and the multi-core processors in each system. The physical
boundaries of multi-core processors such as heat and power usage limit the increase in
the number of cores in today’s CPUs [10], [11]. In order to overcome these limitations,
researches using hardware other than the CPU for high-performance computations have
an important place in the literature [12], [13]. One of these types of equipment is the
Graphics Processing Unit (GPU).

In recent years, GPUs dominated the high-performance computation field because of their
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core counts reaching to thousands that lead to a very high processing throughput [10],
[11]. The use of GPUs for general-purpose other than image processing is called General
Purpose Computing on Graphical Processing Unit (GPGPU). The usage of GPGPUs for
high performance has resulted in high speed gains in many applications. Computing
on the graphics processor can provide significant performance improvements in parallel
algorithms. The GPU and CPU together form a heterogeneous computing model. In this
model, the programs take advantage of the powerful features of each unit.

Since the string matching is one of the classical computer science problems, it has also
been studied on parallel systems for fast processing of string matching algorithms [14].
However, these studies tackle single algorithms and only aim to achieve higher performance
against CPU for that specific algorithm. There is no comprehensive tool or code base for
parallel string matching algorithms. For the serial implementation, the String Matching
Algorithms Research Tool (SMART) provides an efficient and flexible tool designed for
developing, testing, comparing, and evaluating 85 different string matching algorithms
[15]. However, since the tool only provides a serial implementation of algorithms, not
parallel, it is insufficient to meet the requirements of new systems, especially that requires
high computation demands.

The direct transfer of serial methods is restrictive in achieving the actual performance of
GPUs, and the solutions offered are application-specific. In this respect, string matching
algorithms on GPGPU need to be redesigned and explored considering GPU architecture.
Although the development of algorithms requires a certain amount of effort, we believe
that the algorithms to be developed considering the limitations and possibilities of GPUs
are much more efficient and promising than traditional methods and the best algorithms
designed in serial architectures. In this thesis, we introduce CUSMART, which is a
parallelization study onGPGPUs through the implementation of classical serial algorithms
on GPUs with several optimization techniques applied.

The main contributions of this thesis can be listed as below:

• The parallelization of 85 string matching algorithms from the literature using the
CUDA platform.

• Gathering these algorithms under one library called CUSMART in order to provide
an easy to use testing environment.

• Optimization of these string matching algorithms to achieve good performance on
parallel systems.
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• Testing these parallel string matching algorithms on different scenarios to acquire a
broad understanding of their behavior in several use cases.

• Determining the best and the worst performing algorithms in different scenarios to
provide a guideline for different types of applications.

• Comparing desktop and mobile device performances for string matching operation.

This thesis is structured into chapters in the following order:

In chapter 2, background information required to explain the features of the CUSMART
library is presented. This chapter includes brief explanations of the string matching
algorithms present in our library and introductory knowledge about theCUDAarchitecture.

In chapter 3, related works from the literature are listed along with comparisons about
their similarities and differences to our project.

In chapter 4, the implementation details of theCUSMARTalgorithm is presented. Features
of the library and the considerations behind some design choices are also discussed in this
chapter.

In chapter 5, we have discussed our experiment methodology, prepared test scenarios, and
the results acquired by conducting these tests. The discussion about the test results is
given in this chapter.

In chapter 6, we have presented our conclusion on the results of this work and shared our
final thoughts for possible future works.
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2. BACKGROUND

2.1. String Matching

String matching is the process of finding one or many occurrences of a string (which is
generally called a pattern) in another string (generally called text)[16]. The pattern is
defined as a finite array G = G [0 . . (< − 1)] with < > 0 where < is the length of pattern
and the text is defined as a finite array H = H [0 . . (= − 1)] with = > 0 where = is the length
of text. Both text and pattern are formed from a set of characters, which is called alphabet
and represented as Σ with a length of f.

Some additional definitions have to be introduced in order to continue the discussion on
string matching [16]:

• A word D is called prefix of a word F if there is a word E (might be empty) that
satisfies the condition F = DE.

• A word E is called suffix of a word F if there is a word D (might be empty) that
satisfies the condition F = DE.

• A word I is called substring or factor or subword of word F if there are two words
D and E that satisfies the condition F = DIE

String matching applications are divided into two types depending on the pattern and
the text accessibility before the operation. Algorithms based on the access to pattern
beforehand are called online string matching algorithms[16]. These algorithms aim to use
the combinatorial properties of strings and automatons to preprocess the pattern and gain
insight before the search. The other type of algorithms that have access to text before the
searching operation aims to solve a problem called offline string matching problem. These
algorithms use various techniques to index the text and try to gain knowledge to improve
search performance before the operation. In this thesis, our focus will be on the online
string matching algorithms.

There have been more than 120 online string matching algorithms proposed since 1970.
These online string matching algorithms (we are going to refer them as string matching
algorithms from now on) can be classified further under four different categories based
on the primary strategy employed. These categories are comparison based algorithms,
automata-based algorithms, bit-parallel algorithms, and packed algorithms. Some of the
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algorithms listed under these categories follow a hybrid approach and use two or more of
the methods listed above. For the sake of brevity, these algorithms are categorized under
their most prominent category.

In the following sections, the algorithms included in our study will be listed in chrono-
logical order. Each algorithm entry will be given with a short description of their main
features, and an acronym used to refer to this algorithm in the literature.

2.1.1. Comparison Based Algorithms

Algorithms using character comparison based strategies are the earliest examples of pro-
posed string matching algorithms to the field. These algorithms process the pattern before
the search operation to gain insight into its composition. This gained knowledge is often
stored in auxiliary arrays called shift tables. When a mismatch occurs during the search
operation, these tables are utilized to do improved shifts and prevent redundant character
comparison operations.

When an algorithm is limited to sequential singular character reads of the text, the optimal
complexity of this algorithm can be denoted as O(=). This was first demonstrated by
the renowned Morris-Pratt algorithm [17]. However, often it is possible to complete
the search operation without reading every character of the text, resulting in sublinear
execution complexity on average. The optimal average time complexity for matching in
a random string is given as O(= logf </<) [18], and this is achieved by many algorithms.
However, even the algorithms with a sub-linear average-case operation may need to read
every character of the text in the worst-case scenario. Many of these algorithms have even
worse O(=<) performance in the worst-case scenario [19], [20].

Although character comparison based strategy is not as dominant as it used to be in recent
years, it still accounts for the majority of string matching algorithms proposed to this day.
The character comparison algorithms related to our study are presented in the following
section in chronological order.

2.1.1.1. Brute Force (BF) - N/A

Also known as the naive algorithm [21], the brute force algorithm is the most straight-
forward implementation of string matching. It checks every text character between 0 and
=−< whether starts of a pattern is detected at the position or not. After each successful or
failed attempt, a shift happens in the comparison window precisely by one step. The brute
force algorithm does no preprocessing and requires constant extra space in memory. The
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comparison requires no specific order of operation and can be done in any order. The time
complexity of the operation is O(=<) on the worst-case and O(=) at best. The algorithm
makes 2= comparisons on average.

2.1.1.2. Morris-Pratt (MP) - 1970

Morris-Pratt [17] is the first linear algorithm that emerged after an analysis of the brute-
force algorithm (2.1.1.1). The authors demonstrated that it is beneficial to remember the
last matched part of the string after a mismatch and use this information to improve the
length of the shifts. This improvement reduces comparisons needed and results in better
performance. Morris-Pratt algorithm accomplishes this task by preprocessing the pattern
and calculating the best shift length for every position in the pattern if a mismatch occurred
at that position.

The preprocessing strategy is based on the fact that if a mismatch occurs at 8th character
of the pattern with 0 < 8 < <, there is no need to reprocess the text characters H[ 9 .. 9 + 8]
where 9 is the search window’s position because we already acquired the information
about these characters and know this substring is identical to our pattern, aside from the
last, mismatched character. The time and space complexity of the preprocessing phase is
O(<), and the time complexity of the searching phase is O(= + <). The searching phase
time complexity is independent of f.

2.1.1.3. Knuth-Morris-Pratt (KMP) - 1977

The Knuth-Morris-Pratt [22] algorithm is an improved version of Morris-Pratt algorithm
(2.1.1.2). The preprocessing phase of this algorithm is improved to avoid another imme-
diate mismatch after a shift, which resulted from a mismatch.

Aside from this improvement, space and time complexities of the algorithm are similar to
MP, with O(<) preprocessing phase and O(= +<) search phase. The Knuth-Morris-Pratt
algorithm performs 2= − 1 comparisons on the worst-case scenario.

2.1.1.4. Boyer-Moore (BM) - 1977

The Boyer-Moore [23] algorithm is another derivation of the brute-force algorithm
(2.1.1.1), and it is considered as one of the most efficient string matching algorithms
for practical applications. The simplified versions of this algorithm are often used as the
search function in text processors [24].
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The algorithm applies the left-to-right comparison idea alongwith a sliding searchwindow
approach to achieve the sub-linear time complexity of O(=/<) for the best-case searching
scenario. This value remains as the best lower bound achieved for string matching to date.
Aside from the left-to-right comparison scan order, the Boyer-Moore algorithm also uses
multiple rules such as "bad character rule" and "good suffix rule" to generate shift tables
and evaluate these tables when a mismatch occurs in order to determine the longest shift
possible. The time and space complexity of the preprocessing phase is O(< + f). In the
worst-case scenario, the algorithm does 3= comparisons when searching for a non-periodic
pattern.

2.1.1.5. Horspool (HOR) - 1980

The Horspool algorithm [25] is a simplification of the Boyer-Moore algorithm 2.1.1.4.
This algorithmonly uses the "bad character rule" table of theBoyer-Moore for the rightmost
character of the search window, which improves the average search performance on large
alphabets like ASCII. The preprocessing phase is in O(< + f) time and has O(f) space
complexity.

2.1.1.6. Galil-Seiferas (GS) - 1981

The Galil-Seiferas algorithm [26] is a linear algorithm using constant extra space for its
auxiliary data structure. The preprocessing step employs a decomposition strategy called
perfect factorization. The algorithm has O(<) preprocessing phase time complexity and
makes 5= comparisons in the worst-case scenario.

2.1.1.7. Apostolico-Giancarlo (AG) - 1986

TheApostolico-Giancarlo algorithm [27] is another variant of The Boyer-Moore algorithm
(2.1.1.4). This algorithm stores some of the information that is extracted from the text by
the Boyer-Moore algorithm but then forgotten after the comparison is made. Using this
stored information, theApostolico-Giancarlo algorithm reduces theworst-case comparison
amount to half, which is 3/2=.

2.1.1.8. Karp-Rabin (KR) - 1987

The Karp-Rabin [28] is the first string matching algorithm that used a hashing function
in the comparison step. The algorithm compares the hash of search window and pattern
hash first to test the pattern on a given window quickly. If a similarity is detected, the
algorithm compares the remaining characters regularly. Unloading the first check to hash
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control avoids a quadratic number of character comparisons in most practical situations.
The algorithms preprocessing phase time complexity is O(<) with constant space, and
the expected running complexity is O(= + <).

2.1.1.9. Zhu-Takaoka (ZT) - 1987

The Zhu-Takaoka algorithm [29] is a variant of the Boyer-Moore algorithm (2.1.1.4),
which performs the bad character shift based on the last two characters of the search
window instead of one. This change caused an improved average-case performance at the
cost of O(< + f2) preprocessing phase time complexity.

2.1.1.10. Quick Search (QS) - 1990

The Quick Search algorithm [30] is a simplified version of the Boyer-Moore algorithm
(2.1.1.4), which uses only the bad character shift table like the Horspool algorithm
(2.1.1.5). Their version is shorter, easy to implement, and pretty fast in practice for
short patterns on large alphabets.

2.1.1.11. Optimal Mismatch (OM) - 1990

The Optimal Mismatch algorithm [30] is a variation of the Quick Search algorithm
(2.1.1.10), and uses the character frequencies in a given alphabet. The algorithm com-
pares the characters of the pattern in a custom order from less frequent to more frequent
to "optimize mismatch". Like in the Boyer-Moore algorithm, early mismatches provide
long shifts that allow the algorithm to scan the text quicker.

2.1.1.12. Maximal Shift (MS) - 1990

The Maximal Shift algorithm [30] is a variation of the Quick Search algorithm (2.1.1.10),
that uses a custom scan order prioritizing the comparisons that result in long shifts. The
preprocessing phase has O(<2 + f) time and O(< + f) space complexity.

2.1.1.13. Apostolico-Crochemore (AC) - 1991

The Apostolico-Crochemore algorithm [31] is an improved version of the Knuth-Morris-
Pratt algorithm (2.1.1.3). This algorithm reduces the worst-case comparison amount to
3/2= from 2= − 1 of the Knuth-Morris-Pratt.
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2.1.1.14. Two Way (TW) - 1991

The TwoWay algorithm [32] factorizes the pattern into two parts and does the comparison
steps from center to borders. The left part is scanned from right to left while the right
part is scanned from left to right. The algorithm has a linear running time of O(2= − <)
on worst-case and runs in O(=) on average. The algorithms preprocessing phase time
complexity is O(<) with constant space.

2.1.1.15. Tuned Boyer-Moore (TUNBM) - 1991

The Tuned Boyer-Moore algorithm [33] is an improved version of the Boyer-Moore al-
gorithm (2.1.1.4). This algorithm adds a fast path that unrolls a certain number of early
comparisons and makes a few blind shifts without comparing the pattern characters other
than the last one. This approach speeds up the algorithm in practice with the introduction
of the fast path.

2.1.1.16. Colussi (COL) - 1991

The Colussi algorithm [34] is a refinement of the Knuth-Morris-Pratt algorithm, which
uses a factorized pattern similar to the Two Way algorithm (2.1.1.14) and improves the
worst-case performance to 3/2= maximum comparisons. The time and space complexity
of the preprocessing phase is O(<).

2.1.1.17. Smith (SMITH) - 1990

The Smith algorithm [35] combines the approaches of the Horspool algorithm (2.1.1.5)
with The Quick Search algorithm (2.1.1.10). The algorithm compares the bad character
shift function results of these two algorithms and selects the more significant value for a
longer shift.

2.1.1.18. Galil-Giancarlo (GG) - 1992

The Galil-Giancarlo algorithm [36] is an improved version of the Colussi algorithm
(2.1.1.16) which reduces the worst-case comparison amount to 4/3=.

2.1.1.19. Raita (RAITA) - 1992

TheRaita algorithm [37] is amodified version of theHorspool algorithm (2.1.1.5) that uses
a different scan order. The algorithm compares the last character then the first character;
if both comparisons are matches, then it proceeds to compare the rest of the pattern.
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2.1.1.20. String Matching on Ordered Alphabet (SMOA) - 1992

The String Matching on Ordered Alphabet algorithm [38] uses constant extra space and
has no preprocessing phase. The algorithm makes 6= + 5 comparisons at worst.

2.1.1.21. Turbo Boyer-Moore (TBM) - 1992

The Turbo Boyer-Moore algorithm [39] is an improved version of the Boyer-Moore algo-
rithm (2.1.1.4). The algorithm lowers the maximum required comparison amount to 2= by
remembering the last matched suffix and altering the decision mechanism slightly. This
version requires no extra preprocessing and only constant extra space.

2.1.1.22. Not So Naive (NSN) - 1993

The Not So Naive algorithm [40] is a simple algorithm that is similar to the Brute Force
algorithm (2.1.1.1). This algorithm’s comparison order starts from the second character
and goes until the end; then, it compares the first character as the last step. This approach
allows two-character shifts instead of one when the first comparison results in a mismatch
and improves the average-case complexity to slightly sub-linear.

2.1.1.23. Reverse Colussi (RCOL) - 1994

The Reverse Colussi algorithm [41] is a combination of the Colussi algorithm (2.1.1.16)
and the Boyer-Moore algorithm (2.1.1.4). By employing the Colussi algorithm’s factor-
ization scheme on the Boyer-Moore style search, this algorithm lowers the worst-case
maximum comparison amount to 2=. The preprocessing phase has O(<2) time and
O(<f) space complexity.

2.1.1.24. Skip Search (SKIP) - 1998

The Skip Search algorithm [42] processes each character in the pattern and builds a data
structure called "buckets of positions". This structure holds the shift amounts for every
character in the pattern and has the width of alphabet size f. After a right-to-left ordered
comparison, the algorithm determines a proper shift via these buckets of positions, then
proceeds to compare the rest of the string in a left-to-right fashion.
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2.1.1.25. Alpha Skip Search (ASKIP) - 1998

The Alpha Skip Search algorithm [42] is an improved version of the Skip Search algorithm
(2.1.1.24). This version uses a bucket of positions for each factor of the pattern instead of
character.

2.1.1.26. Knuth-Morris-Pratt Skip Search (KMPS) - 1998

The Knuth-Morris-Pratt Skip Search algorithm [42] is another variant of the Skip Search
algorithm (2.1.1.24). This variant uses the shift tables of the Knuth-Morris-Pratt algorithm
(2.1.1.3).

2.1.1.27. Berry-Ravindran (BR) - 1999

The Berry-Ravindran algorithm [43] is a hybrid between Zhu-Thakaoka (2.1.1.9) and
Quick Search (2.1.1.10) algorithms. The algorithm is designed to do two consecutive
shifts based on the bad-character shift table. It has O(< +f2) space and time complexity.

2.1.1.28. Ahmed-Kaykobad-Chowdhury (AKC) - 2003

TheAhmed-Kaykobad-Chowdhury algorithm [44] is a variant of theApostolico-Giancarlo
algorithm (2.1.1.7). This algorithm remembers the pattern suffixes found in the text and
alters the shifts accordingly.

2.1.1.29. Fast Search (FS) - 2003

The Fast Search algorithm [45] presents another improvement to the Boyer-Moore algo-
rithm (2.1.1.4) by employing some occurrence heuristics for the first mismatch case.

2.1.1.30. Forward Fast Search (FFS) - 2004

The Forward Fast Search algorithm [45] combines the Fast Search algorithm (2.1.1.29)
with theQuick Search algorithm and implements good-suffix heuristics using the following
character’s information on the current search window of text.

2.1.1.31. Backwards Fast Search (BFS) - 2004

The Backwards Fast Search algorithm [45] is a combination of the Boyer-Moore algorithm
(2.1.1.4) and the Horspool algorithm (2.1.1.5). It implements good-suffix heuristics using
the mismatching character information.
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2.1.1.32. Tailed Substring (TS) - 2004

The Tailed Substring algorithm [46] employs a variation of occurrence heuristics used in
the Horspool algorithm (2.1.1.5) to improve the naive approach.

2.1.1.33. Sheik-Sumit-Anindya-Balakrishnan-Sekar (SSABS) - 2004

The Sheik-Sumit-Anindya-Balakrishnan-Sekar algorithm [47] uses the concepts found in
the Raita algorithm (2.1.1.19) and the Quick Search algorithm (2.1.1.10).

2.1.1.34. Thathoo-Virmani-Sai-Balakrishan-Sekar (TVSBS) - 2006

The Thathoo-Virmani-Sai-Balakrishan-Sekar algorithm [47] combines the SSABS algo-
rithm (2.1.1.33) and the Berry-Ravindran algorithm (2.1.1.27).

2.1.1.35. Boyer-Moore-Horspool using Probabilities (PBMH) - 2006

The Boyer-Moore-Horspool using Probabilities algorithm [47] applies the statistical char-
acter analysis approach of the Optimal Mismatch algorithm (2.1.1.11) to the Horspool
algorithm (2.1.1.5).

2.1.1.36. Franek-Jennings-Smyth (FJS) - 2007

The Franek-Jennings-Smyth algorithm [48] applies the concepts found in the Quick Search
algorithm (2.1.1.10) to the Knuth-Morris-Pratt algorithm (2.1.1.3).

2.1.1.37. Wu-Manber for Single Pattern Matching (HASHQ) - 2007

The Wu-Manber for Single Pattern Matching algorithm [49] is an improvement over the
Horspool algorithm (2.1.1.5). This algorithm demonstrates a use case of super alphabets
and computes the q-gram fingerprints of the pattern using a hashing function.

2.1.1.38. Boyer-Moore-Horspool with q-grams (BMHQ) - 2008

The Boyer-Moore-Horspool with q-grams algorithm [50] offers a new approach to the
well-known Horspool algorithm (2.1.1.5). The algorithm introduces the use of q-grams
to compute the occurrence heuristics.
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2.1.1.39. Two Sliding Windows (TSW) - 2008

TheTwoSlidingWindows algorithm [50] is an improvement of theQuick Search algorithm
(2.1.1.10) that adds another search window to the process. The first window processes
from left to right while the second window processes from right to left.

2.1.2. Automata based algorithms

The automata based algorithms are indispensable tools in the field of string matching
as they are able to handle the string matching tasks very efficiently. The first algorithm
applying the technique to string matching, Deterministic Finite Automata was one of the
first algorithms that achieved linear time complexity on the search task [21]. Then there
is the Backward DAWG Matching algorithm, which reached the optimal lower bound
O(= logf (<)/<) time complexity for the average case. Both these algorithms capitalize on
the advantages of using a finite automaton for the job. The efficiency of a given algorithm is
varied based on the automaton used for pattern representation and the simulation technique
of automata if it is present.

Most of the algorithms in this section stem from theDeterministic FiniteAutomata (2.1.2.1)
and apply the concepts found in comparison based algorithms (2.1.1) to automata-based
string matching.

The following list contains the automata-based stringmatching algorithms that are relevant
to our study in chronological order.

2.1.2.1. Deterministic Finite Automata (DFA) - N/A

The Deterministic Finite Automata [21] is a string matching algorithm that works in
linear time. In order to perform the search, the algorithm first builds a Deterministic
String Automaton �(G) from the pattern G. The preprocessing phase which consist of
the construction of automaton has O(< + f) time and O(<f) space complexity. After
the Deterministic Finite Automaton is constructed, searching of the pattern for a given
text H can be accomplished by parsing the text character by character using the automaton
�(G) and advancing the state each time a termination occurs. If the automaton structure
is stored in a direct access table, the search step can be completed in O(=) time. Else, it
takes O(= logf) time to complete the search.
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2.1.2.2. Reverse Factor (RF) - 1992

The Reverse Factor algorithm [51] applies the Boyer-Moore algorithm (2.1.1.4) strategies
to the Deterministic Finite Automata (2.1.2.1). The algorithm builds a suffix automaton
from the reversed version of the pattern. The time complexity of the worst-case search
operation is O(<=).

2.1.2.3. Simon (SIM) - 1994

The Simon algorithm [52] is a modification of the Deterministic Finite Automata (2.1.2.1).
The algorithm builds a minimal automaton by processing the pattern.

2.1.2.4. Turbo Reverse Factor (TRF) - 1994

The Turbo Reverse Factor algorithm [53] improves over the Reverse Factor algorithm
(2.1.2.2). The algorithm remembers the last matched prefix of the pattern to avoid
redundant comparison operations. By utilizing this strategy, it is possible to achieve
O(2=) worst-case time complexity.

2.1.2.5. Forward DAWGMatching (FDM) - 1994

The Forward DAWG Matching algorithm [53] uses a smallest suffix automaton (also
called Directed Acyclic Word Graph) to achieve linear time search operation. This was
a notable algorithm among string matching algorithms of its era because of its constant
search operation time, which is not affected by the length of the pattern. The algorithm
has O(=) time complexity and performs exactly = comparisons even on the worst-case.

2.1.2.6. Backward DAWGMatching (BDM) - 1994

TheBackwardDAWGMatching algorithm [53] is a variant of the Reverse Factor algorithm
(2.1.2.2) and uses Directed Acyclic Word Graph of the pattern. The algorithm works
similarly to the Forward DAWG Matching algorithm (2.1.2.5), but the scan direction is
reversed to right-to-left.

2.1.2.7. Backward Oracle Matching (BOM) - 1999

The Backward Oracle Matching algorithm [54] is a variation of the Reverse Factor algo-
rithm (2.1.2.2) that uses the suffix oracle of the pattern instead of the suffix automaton.
The suffix oracle data structure is a very compact automaton with the capability of recog-
nizing at least all suffixes of a word. Although the suffix oracle also recognizes the factors
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not present in the pattern, it still can be used for string search because the only factor
recognized by the oracle that has a length of < or longer is the pattern itself in its reversed
form. The time and space required for the preprocessing phase are O(<). The algorithm
achieves optimal time in average-case and has O(<=) worst-case complexity.

2.1.2.8. Double Forward DAWGMatching (DFDM) - 2000

The Double Forward DAWG Matching algorithm [55] is a modification of the Forward
DAWG Matching algorithm (2.1.2.5). The algorithm achieves linear worst-case time by
using another DAWG that is constructed from the reverse of the pattern.

2.1.2.9. Wide Window (WW) - 2005

The Wide Window algorithm [56] is a combination of the Reverse Factor algorithm
(2.1.2.2) and the Forward DAWG Matching algorithm (2.1.2.5). By employing two
automata built from the suffixes of pattern and the prefixes of the reverse of the pattern,
this algorithm achieves linear time in the worst-case scenario.

2.1.2.10. Linear DAWGMatching (LDM) - 2005

The Linear DAWG Matching algorithm [56] combines the automata from the Determin-
istic Finite Automata (2.1.2.1) and the Backward DAWG Matching algorithm (2.1.2.6).
Deterministic finite automaton of the pattern is utilized along with the suffix automaton
of the pattern.

2.1.2.11. Improved Linear DAWGMatching (ILDM) - 2006

The Improved Linear DAWGMatching algorithm [57] applies some tweaks over the Linear
DAWGMatching algorithm (2.1.2.10). There are two versions of this algorithm referenced
as ILDM1 and ILDM2, which are published in the same study.

2.1.2.12. Extended Backward Oracle Matching (EBOM) - 2008

The Extended Backward Oracle Matching algorithm [58] is an improved version of the
Backward Oracle Matching algorithm (2.1.2.7). The algorithm performs transitions based
on the checks of two characters instead of one.
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2.1.2.13. Forward Backward Oracle Matching (FBOM) - 2008

The Forward Backward Oracle Matching algorithm [58] applies the Quick Search algo-
rithm (2.1.1.10) strategies to theExtendedBackwardOracleMatching algorithm (2.1.2.12).
The transitions are performed based on the characters trailing the current search window.

2.1.2.14. Simplified Extended Backward Oracle Matching (SEBOM) - 2009

The Simplified Extended Backward OracleMatching algorithm [59] is a simplified version
of the Extended Backward Oracle Matching algorithm (2.1.2.12).

2.1.2.15. Simplified Forward Backward Oracle Matching (SFBOM) - 2009

The Simplified Forward Backward Oracle Matching algorithm [59] is a simplified version
of the Forward Backward Oracle Matching algorithm (2.1.2.13).

2.1.2.16. Backward SNR DAWGMatching (BSDM) - 2012

TheBackward SNRDAWGMatching algorithm [60] is amodified version of the Backward
DAWGMatching algorithm (2.1.2.6). The DAWG structure used on this algorithm is built
from the longest substring of the pattern that contains no repeated characters.

2.1.3. Bit-Parallel Based Algorithms

Bit-parallelism is a technique based on the efficient simulation of nondeterministic au-
tomata [20]. It takes advantage of the computing unit’s inherent properties, in which
bit-wise operations can be performed word by word in parallel. This parallelism can
be used to cut down the number of instructions required for comparisons in the search
step. The number of operations required can be cut down by a factor of F, where F is
the number of bits contained in the word that the processor can handle. This property
makes bit-parallel algorithms considerably fast when the pattern length < ≤ F so that the
pattern can fit into a computer word, and only a single operation is sufficient for parallel
comparison. The performance of bit-parallel algorithms starts to degrade considerably
once the < > F, as the </F grows.

The following list contains the bit-parallelism based string matching algorithms that are
relevant to our study in chronological order.
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2.1.3.1. Shift-Or (SO) - 1989

The Shift-Or algorithm [61] is the first bit-parallelism technique applied to the string
matching problem. The algorithm uses bitwise OR operation followed by shift operations
to scan the text for the occurrence of a given pattern. The efficiency of the algorithm is
high when the pattern fits into a single computer word. The complexity of this algorithm
is O(=) for all scenarios, and running time is not affected by the pattern length or the
alphabet size. The preprocessing phase takes O(< + f) time and requires O(< + f)
space. This algorithm is suitable for approximate string matching operations with minor
tweaks.

2.1.3.2. Shift-And (SA) - 1989

The Shift-And algorithm [61] is similar to the Shift-Or algorithm (2.1.3.1) and simulates a
nondeterministic version of the Deterministic Finite Automata algorithm (2.1.2.1). Unlike
the Shift-Or algorithm, this algorithm uses bitwise AND operation as the comparison
method.

2.1.3.3. Backward Nondeterministic DAWGMatching (BNDM) - 1998

The Backward Nondeterministic DAWG Matching algorithm [62] is a nondeterministic
simulation of the Backward DAWG Matching algorithm (2.1.2.6).

2.1.3.4. Backward Nondeterministic DAWG Matching for Long Patterns (LBNDM)
- 2000

The Backward Nondeterministic DAWG Matching for Long Patterns algorithm [63] im-
proves the behavior of the BNDM algorithm (2.1.3.3) over long patterns.

2.1.3.5. Simplified Backward Nondeterministic DAWGMatching (SBNDM) - 2003

The Simplified Backward Nondeterministic DAWG Matching algorithm [64] is an im-
proved version of the Backward Nondeterministic DAWG Matching algorithm (2.1.3.3).

2.1.3.6. Two-Way Nondeterministic DAWGMatching (TNDM) - 2003

The Two-WayNondeterministic DAWGMatching algorithm [64] is a variation of the Back-
ward Nondeterministic DAWG Matching algorithm (2.1.3.3). The algorithm performs a
forward scan of the pattern suffix before the backward scan.
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2.1.3.7. Shift Vector Matching (SVM) - 2003

The Shift Vector Matching algorithm [64] implements a variation of the Boyer-Moore
algorithm (2.1.1.4) using bit-parallelism. The information gathered during the last com-
parison attempt is stored to improve the performance.

2.1.3.8. BNDM with loop unrolling (BNDM2) - 2005

The BNDMwith loop unrolling algorithm [65] improves the performance of the Backward
Nondeterministic DAWGMatching algorithm (2.1.3.3) via unrolled loops and blind shifts.

2.1.3.9. Simplified BNDM with loop unrolling (SBNDM2) - 2005

The Simplified BNDM with loop unrolling algorithm [65] improves the performance of
the Simplified Backward Nondeterministic DAWG Matching via loop unrolling method.

2.1.3.10. BNDM with Boyer-Moore-Horspool Shift (BNDMBMH) - 2005

The BNDM with Boyer-Moore-Horspool Shift algorithm [65] combines the Backward
Nondeterministic DAWG Matching algorithm (2.1.3.3) with the shift tables from the
Horspool algorithm (2.1.1.5).

2.1.3.11. Horspool with BNDM test (BMHBNDM) - 2005

The Horspool with BNDM test algorithm [65] is another approach at combining the
Horspool algorithm (2.1.1.5) with the BNDM algorithm (2.1.3.3).

2.1.3.12. Forward Nondeterministic DAWGMatching (FNDM) - 2005

The Forward Nondeterministic DAWG Matching algorithm [65] is a simulated nondeter-
ministic version of the Forward DAWG Matching (2.1.2.5).

2.1.3.13. Bit Parallel Wide Window (BWW) - 2005

The Bit Parallel Wide Window algorithm [56] is a simulated nondeterministic version of
the Wide Window algorithm (2.1.2.9).
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2.1.3.14. Average Optimal Shift-Or (AOSO) - 2005

The Average Optimal Shift-Or algorithm [66] borrows the optimal shift concept from the
Optimal Shift algorithm (2.1.1.11) and applies to the Shift-Or algorithm (2.1.3.1). This
modification allows longer shifts and improves performance.

2.1.3.15. Fast Average Optimal Shift-Or (FAOSO) - 2005

The Fast Average Optimal Shift-Or algorithm [66] is an improved version of the Average
Optimal Shift-Or algorithm (2.1.3.14).

2.1.3.16. Forward BNDM (FBNDM) - 2008

The ForwardBNDMalgorithm [58] is a simulated nondeterministic version of the Forward
Backward Oracle Matching algorithm (2.1.2.13).

2.1.3.17. Forward Simplified BNDM (FSBNDM) - 2008

The Forward Simplified BNDM algorithm [58] is a combination of the Simplified BNDM
algorithm (2.1.3.5) and the Forward BNDM algorithm (2.1.3.16).

2.1.3.18. Bit-Parallel Length Invariant Matcher (BLIM) - 2008

The Bit-Parallel Length Invariant Matcher algorithm [67] tries to overcome the pattern
length limitation of the bit-parallel algorithms like the Backward Nondeterministic DAWG
Matching (2.1.3.3) with a length invariant approach. The algorithm shows improved
performance over small alphabet searches like DNA matching.

2.1.3.19. Backwards Nondeterministic DAWG Matching with q-grams (BNDMQ) -
2009

TheBackwardsNondeterministic DAWGMatchingwith q-grams algorithm [68] is another
BNDM algorithm (2.1.3.3) variant that uses super alphabets approach implemented via
q-grams.

2.1.3.20. Simplified BNDM with q-grams (SBNDMQ) - 2009

The Simplified BNDMwith q-grams algorithm [68] is a variant of the SBNDM algorithm
(2.1.3.5) employing q-gram based super alphabets.
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2.1.3.21. ForwardNondeterministic DAWGMatchingwith q-grams (FNDMQ) - 2009

The Forward Nondeterministic DAWGMatching with q-grams algorithm [68] is an imple-
mentation of the Forward Nondeterministic DAWG Matching algorithm (2.1.3.12) using
q-grams.

2.1.3.22. Small Alphabet Bit-Parallel (SABP) - 2009

The Small Alphabet Bit-Parallel algorithm [69] is designed to work on small alphabets
like binary and DNA. It uses a match table built based on the character positions.

2.1.3.23. Backwards Nondeterministic DAWGMatching with Extended shifts (BXS)
- 2010

The Backwards Nondeterministic DAWG Matching with Extended shifts algorithm [70]
is an optimized version of the Backwards Nondeterministic DAWG Matching algorithm
(2.1.3.3) for long patterns. The algorithm uses a higher level pattern layered over the
pattern to construct the automata of long patterns.

2.1.3.24. Factorized BNDM (KBNDM) - 2010

The Factorized BNDM algorithm [71] is a simulated nondeterministic version of the
Backward Nondeterministic DAWG Matching algorithm (2.1.3.3). The algorithm builds
a brief version of the automaton based on the pattern factorization.
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2.2. General-purpose Computing on Graphics Processing Unit with CUDA

The High-Performance Computing (HPC) environment is continually evolving as new
technology and methods become widespread, and HPC concept shifts accordingly. Gen-
erally, it involves the use of multiple processors or computers to perform a complex task in
parallel in order to achieve high throughput in an efficient manner [72]. High-performance
computing has developed dramatically over the last decade, mainly thanks to the emer-
gence of heterogeneous architectures using GPU-CPU pair, which has led to a fundamental
shift in parallel programming.

Parallel computing can be defined in several ways from different standpoints. From a
computational standpoint, it can be defined as performing many operations in parallel, on
the premise that large tasks can be divided into smaller tasks to be solved simultaneously.
Another definition is a logical problem from the programmer’s perspective about how to
map the simultaneous calculations onto computers. Suppose there are several devices for
the computing job. Parallel computing can then be described as using multiple computing
resources (cores or computers) simultaneously to perform parallel calculations. These two
aspects of parallel computing can be examined under the computer architecture and the
parallel programming.

Figure 2.1: Serial execution of work partitions in order.

Computer architecture focuses on promoting architectural parallelism, while parallel pro-
gramming focuses on efficiently solving the problem by utilizing the computing power of
the computer architecture. To achieve parallel execution in software, the hardware needs
to have a mechanism that allows multiple processes or multiple threads to be executed at
the same time.

It is typical to divide a problem into a discrete series of calculations when solving a
problem with a computer program; each calculation is performed on a specified part of
the problem, as shown in figure 2.1. These parts can have relationships between each
other, specifically depending on the result of the prior operation. If there is a constraint of
precedence between calculation parts, these calculations have to be performed sequentially
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Figure 2.2: Execution of work partitions in serial and parallel order.

in order to progress. Otherwise, if there is no constraint of precedence, the calculations
can be performed simultaneously on different processing units (figure 2.2).

This property is also called data dependency, and it plays an important role in how well a
computation can be handled concurrently. Data dependency is usually one of the biggest
barriers to parallel programming. It has to be examined thoroughly and eliminated as
much as possible in order to achieve some amount of parallelization.

Mainly, the parallelism can be classified under two categories for applications:

• Task level parallelism

• Data level parallelism

In task-level parallelism, the tasks thatmake up the job are distributed among the processing
units and handled concurrently. This approach requires that the individual tasks without
dependencies are already present for the selected operation.

In contrast, data-level parallelism divides the main task into sub-tasks, each handling
a small part of the whole data. Data level parallelism aims to distribute the data into
processing units and apply the same calculation in parallel.

The situations where task-level parallelism can be realized are much rarer compared to
the latter. Also, many task-level parallelism scenarios can be translated into data-parallel
versions, while the opposite is not true. CUDA programming is particularly suitable
for addressing the problems with data-level parallelism. Many applications working on
the large datasets employ data-level parallelism to speed up the computation. In order to
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Figure 2.3: Different types of partitioning.Top row shows the entire data, second row is block
partitioned configuration and the third row is cyclic partitioned configuration.

Figure 2.4: Different types of instruction and data level parallelism configurations. (Source: [72])

achieve data level parallelism, the data has to be partitioned and distributed across multiple
cores. There are two strategies that can be used when partitioning the data for data-parallel
applications: The block partitioning and the cyclic partitioning. In block partitioning, data
pieces are combined, so every thread processes only one part of it, meaning there are as
many data partitions as the thread count. In cyclic partitioning, the threads process more
than one part of the data. After processing one partition, the thread gets another one,
usually leaping in memory for the number of threads ahead. This way, threads take turns,
or "cycle" while requesting data part to process as seen on figure 2.3.

Flynn Taxonomy is awidely accepted classification scheme for computer architecture types
[73]. It has four categories for different data and instruction parallelism configurations, as
depicted in figure 2.4.

Single Instruction Single Data (SISD) is the most simple design. It includes a single
processing unit that performs computation serially. This architecture was very common
for CPU designs before the parallel computing gained traction. It is still widely used in
many systems.

Single Instruction Multiple Data (SIMD) is a type of parallel computer architecture. In
this architecture, there are many cores in the system, and these cores execute the same
instructions on different data sources during operation. On most modern computers today,
this vectorized computing scheme is implemented for the performance gains. It provides a
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good balance between simplicity and performance: Developing applications for the SIMD
architecture is relatively simple since the instructions are shared between threads so that
the programmer can design the code serially, and the computer handles the organization
of multi-threaded operation.

Multiple Instruction Single Data (MISD) is an unusual architecture that is rarely used.
In this architecture, many cores operate on the same data source and execute different
instructions.

Multiple Instruction Multiple Data (MIMD) is a large scale computer architecture where
multiple processors work on multiple data sources. These types of computers usually
include sub-systems of SIMD architectures too.

The Central Processing Units with many core units are referred as multi-core processors.
The multi-core processors are some of the most prominent parallel computing devices.
Aside from these processors, another type of processor gained popularity for parallel
computation in recent years. The term many-core is used to describe these new kinds of
processors. Many-core is used to describe multi-core architectures with a large number of
cores, typically containing thousands of cores.

GPUs can be given as an example of many-core systems. There are several different
forms of parallelism, such as SIMD, MIMD, or multithreading, that can be realized on a
GPU. Because of these traits, NVIDIA coined the term SIMT (Single Instruction Multiple
Threads) for their architectures.

GPU architectures are not merely improved versions of the CPU. They do not branch off
froma shared predecessor; both are based on different design principles. Both architectures
contain processing units referred as cores, but even though they share the name, they have
different designs. While the CPU cores are designed for fairly complex logic operations
and optimized for serial workflow, GPU cores are more lightweight with simpler logic
capabilities and focused on high throughput operations. The difference can be tracked
down to the origins of GPU devices. GPU devices originally started their service life as
accelerators for graphical computing jobs. Graphical operations usually require simple,
repeating transformations on the whole data with low-latency, so the high throughput is
important. Later, they are started to be utilized in a broader scope of applications hence
the general-purpose computing on graphics processing unit (GPGPU) name.

Fundamental differences between two computing systems allowed them to co-exist as a
compound computing unit instead of direct competitors in a high-performance computing
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environment. This situation was advantageous for GPU based computing and made it
possible to improve along with CPUs without many hindrances.

2.2.1. Heterogeneous Architecture

In the early days of computing, the computers used to contain only CPUs for computational
tasks. However, since the last decade, more and more high-performance computers
are transitioning into hybrid approaches, utilizing different accelerators and processors.
Among these peripherals, the most popular accelerator of choice is the graphics processing
units as they gain more focus on general computing tasks.

The impact of the GPU devices on general-purpose computing can be understood when the
top lists of supercomputers throughout the years are examined. The latest study shows that
40 percent of the total computing power of the TOP 500 supercomputers list comes from
GPU accelerated systems [74]. To put the rapid spread of the technology in perspective,
there were no systems with GPU accelerators just over a decade ago on this list. On a
similar list named Green500 [75], which ranks the supercomputers based on their floating-
point operations per watt performance, 90 percent of the systems on the list include GPU
accelerators, indicating the power efficiency of the heterogeneous systems thanks to the
GPU devices.

Heterogeneous systems include CPU and GPU devices, which are discrete components
and communicate over the PCI-Express bus in a system (figure 2.5). This operation
scheme adds a layer of complexity and increases the difficulty of application design for an
optimally utilized hardware.

Heterogeneous systems contain at least one central processing unit and some number of
graphics processing units. The GPU devices we use today cannot operate standalone and
requires a CPU to coordinate the computing task. Because of their ancillary operation on
the primary system, they are often named as the device, while the CPU is referred as the
host in GPU computing terms to distinguish where the operation takes place.

Using this naming scheme, the application code can be split into two parts; host code and
device code. The host code is the part of the program where the instructions are executed
on the CPU. The CPU side of the code is usually responsible for administering the whole
operation, sending the data to the GPU device, and retrieving it back, initiating the GPU
operation. The device code is the part to be executed on the GPU. This code section
includes logic to carry parallel operation on the device, written using a high-level API like
CUDA in Nvidia’s case.
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Figure 2.5: Communication between CPU and GPU. (Source: [72])

Nvidia has several product families with GPU computing enabled. These families are:

• Tegra

• GeForce

• Quadro

• Tesla

GeForce devices are marketed as consumer graphics units, Tesla for parallel computing in
data centers, Quadro is for professional visualization, and the Tegra is targeted for mobile
and embedded platforms. Jetson is also a product family that uses Tegra SoC (System-on-
Chip) microprocessors and is targeted for autonomous mobile and AI applications.

Underlying these product families, there are different generations of microarchitectures
developed by Nvidia (table 2.1). These generations have a code name and compute
capability number assigned by Nvidia to indicate the version of each iteration. With every
iteration, Nvidia introduces more features and new opportunities to improve parallelism
further.

There are twomain features for every Nvidia GPU, indicating the capabilities of the device:

• Number of CUDA cores

• Memory Size

Additionally, two main performance metrics are also defined to describe the performance
of a given device further:

• Peak computational performance
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Year Microarchitecture Compute capability versions

2006 Tesla 1.0 - 1.3
2010 Fermi 2.0 - 2.1
2012 Kepler 3.0 - 3.7
2014 Maxwell 5.0 - 5.3
2016 Pascal 6.0 - 6.2
2017 Volta 7.0 - 7.2
2019 Turing 7.5

Table 2.1: Microarchitectures introduced by Nvidia over years.

• Memory bandwidth

Peak computational performancemetric indicates themaximum number of floating single-
point or double-point operations that can be executed per second. The value is usually
expressed in billions or trillions of floating-point operations per second, named gflops
or tflops.

2.2.2. Paradigm of Heterogeneous Computing

Using GPU as a computing platform is never considered as a total replacement for CPU
computing. Both have their advantages and disadvantages and cannot be ruled as the
best overall. CPU computing is suitable for the operations where the workload requires
complex calculations, has an unpredictable logic workflow, or the data is too small and
unfit for parallel operation. On the other hand, GPU computing is intended to work on
the data that is large but requires simple operations like fewer logic decisions and smooth
workflow. GPU device can be utilized to carry the operation in a parallel fashion when
the data has a profile matching this description.

A combined system of these two units can provide the best of both worlds as the GPU
and CPU systems fill the shortcomings of each other. Using such a heterogeneous system,
the application can be designed in a way that allows each processor to handle the part of
operation most suitable for them. This allows efficient utilization of the computing power,
and it is the intended way to perform GPGPU operations on Nvidia CUDA supported
devices.

2.2.3. CUDA: A Platform for Heterogeneous Computing

CUDA is a general-purpose parallel computing platform and programmingmodel designed
to harness the parallel processing capabilities of the supported Nvidia GPU devices. The
CUDA programming platform is available through many popular programming languages
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Figure 2.6: CUDA application layers (Source: [72])

such as C, C++, Fortran, Java, and Python. In our CUSMART library, we have used the
CUDA C toolkit and implemented our library in C language.

CUDA C toolkit is intended to have a low entry barrier and designed as an extension over
traditional programming language C. This way, the programmers can harness the power
of GPU devices using a language they are familiar with, and achieve high-performance
parallel computing. CUDA offers two APIs to access the features of the GPU device.
These APIs are the Runtime API and the Driver API (figure 2.6).

The driver API provides low-level access to the device functions and allows fine-grained
control of the operation. The runtime API is a high-level API, resulting in an easier
to use interface. Runtime API is adequate for most applications since even though it is
a higher API level, this interface provides enough granularity of control for frequently
used features. The directives included in the runtime API are translated into driver API
equivalents at the compilation time.

Nvidia has released their own compiler to develop CUDA applications. This compiler
is called Nvidia’s CUDA Compiler, usually abbreviated as NVCC, and it is based on a
popular, open-source compiler called LLVM. This compiler is included in the CUDA
toolkit along with other useful tools for compiling and developing CUDA applications and
code examples to get started.
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Figure 2.7: CUDA programming abstraction layers. (Source: [72])

2.2.4. CUDA Programming Model

Programming models provide layers of abstraction and connect the application imple-
mentation with the hardware. The model lies under the application and above compiler,
separated by the communication abstraction from below. Some of these important ab-
straction layers are given on figure 2.7

The CUDA programming model has similarities with many other parallel programming
models. Additionally, the CUDA programming model provides means to organize threads
and access memory on the GPU through an established hierarchical structure.

The CUDA programming structure allows the programmers to develop their applications
for heterogeneous computing by using a small set of decorator commands.

One of the most fundamental blocks of the CUDA programming model is the kernel.
Kernel is a GPU side function and holds the part of the computation that is carried on
the GPU device. It carries the bulk of operation in a heterogeneous application, yet
its implementation is relatively straightforward. The kernel code is prepared in serial
fashion and does not contain any complex structure to setup parallelism. Instead, there are
predefined variables made available in the kernel function scope in order to build parallel
operation logic. When the kernel function is called, CUDA manages the scheduling of
threads and distributes kernel code to be run on a selection of threads. Each thread
communicates its ID programmatically via these predefined variables so the kernel code
can define the corresponding thread’s workload.

Since the kernel function is executed on the device side, the operation is asynchronous
from the host’s perspective. When the kernel function invoke command is given, the

29



Figure 2.8: CUDA application program flow. (Source: [72])

program control is immediately returned to the CPU as the kernel operation is carried in
the device. By using this asynchrony, a different operation can be executed on the host in
a non-blocking fashion.

CUDA programming model is mainly asynchronous, containing many non-blocking di-
rectives that allow overlapping CPU-GPU operations in order to achieve heterogeneous
computing.

Typical CUDA program includes device-side code and host-side code together. The
NVIDIA C Compiler (nvcc) handles the designation of code sections as well as the
coordination between them. The typical program flow of a CUDA application can be seen
in figure 2.8.
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Table 2.2: Memory manipulation functions for host and device.

2.2.5. Managing Memory

The CUDA programmingmodel allows the manipulation of device memory as well as host
memory. The ability to access device memory is essential since the kernel operations are
carried on the device side and only have access to device memory in order to assure low
latency memory transactions. The CUDA API exposes a handful of functions to allocate,
set, and free memory. These functions are pretty similar to their standard C counterparts
and can be seen on table 2.2.

Memory allocation operation can be achieved using cudaMalloc function, which acts
just like C standard function calloc except it allocates memory on the device side. Free-
ing device memory is possible through cudaFree function, just like it’s C counterpart
free. Data transfers between host and device are performed through cudaMemcpy func-
tion. Again, this function acts similarly to its C counterpart memcpy, but it has broader
functionality because of the cross-device operations. The cudaMemcpy function has four
working modes, and these modes can be selected using the following parameters:

• cudaMemcpyHostToHost

• cudaMemcpyHostToDevice

• cudaMemcpyDeviceToHost

• cudaMemcpyDeviceToDevice

By giving these parameters to the cudaMemcpy function, we can perform transfer op-
erations inside or across devices like host-to-host, host-to-device, device-to-host, and
device-to-device.

It should be noted that cudaMemcpy function only grants access to the GPU device’s
global memory. Besides global memory, there are different types of memories present on
the GPU device, which will be discussed later.
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Figure 2.9: CUDA Kernel call and thread hierarchy. (Source: [72])

2.2.6. Organizing Threads

When the host invokes kernel functions, CUDA runtime starts the execution on the device
and assigns a large number of threads to the kernel operation. The CUDA programming
model uses an abstract structure to represent the thread hierarchy, depicted in figure 2.9.
This thread hierarchy is made of two levels above threads; these are the blocks containing
threads and the grids containing blocks.

At the top of the hierarchy, the threads are represented under a collection named grid.
When a kernel operation is queued, CUDA runtime assigns the operation to a grid. Threads
under the grid share the same global memory space. There are two grid specific values
available inside a kernel function. The first one is named gridDim, and contains the
three-dimensional size of the grid collection, representing the number of blocks in the
grid. These coordinates are:

• gridDim.x

• gridDim.y

• gridDim.z

Below one level, the grid contains groups of threads called blocks. Each block has a
group of threads that cooperate on the given task. The block structure offers additional
mechanisms for communication between threads such as shared memory communication
and in-block synchronization. Block groups also have predefined size values similar to
the grid. The blockDim variable holds the three dimensional size value of the block and
structured in similar fashion to gridDim. Another predefined variable that is provided
for the kernel operation is blockIdx, which holds the index of block kernel is operating
on. The blockIdx includes three dimensional index values accessed under following
references:
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• blockIdx.x

• blockIdx.y

• blockIdx.z

These values indicate the position of the block in the parent grid. At the bottom of the
hierarchy, there are threads residing under blocks. The position information of a thread in
block is stored in threadIdx predefined variable and contains three dimensional position
data similar to the blockIdx.

To sum up these positional variables, threadIdx represents the current threads index in
blockDim sized block, and blockIdx represents the current blocks index in gridDim
sized grid.

The grid and block groups also represent a barrier between threads. Threads cannot
communicate between grids, and only through global memory between blocks. One
of the distinctive features of CUDA is that the programming model reveals this two-
level thread hierarchy. Dimensions of these units are significant factors of computation
performance because of the limited resources physically allocated on-chip like registers
and shared memory. The CUDA programming model offers the ability to customize grid
and block dimensions to accommodate the application needs better and optimally use
system resources.

Another structure contains groups of threads and resides under the block. This structure
is called F0A ? and will be discussed later under the execution model.

2.2.7. Kernel Execution

Invoking a CUDA kernel similar to calling a function in C for the most part. The CUDA
runtime additionally uses an extension to standard C function syntax in order to pass kernel
configuration to the device. These configuration values are given in triple-angle-brackets
just after kernel function name and before argument list parenthesis:

kernel_name <<< kernel_configuration >>> ( argument_list );

This syntax has many overloaded versions for different kernel configurations. However,
the version including grid and block dimensions is the most familiar and straightforward
form. With this version, the syntax for kernel call becomes following:
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Figure 2.10: An example kernel configuration with thread indexes. (Source: [72])

kernel_name <<< grid, block >>> ( argument_list );

The grid argument in angle brackets sets the grid dimension, which is the number of blocks
in a grid, and the block argument sets the block dimension or the number of threads in
each block.

For example, if we want to group 32 threads into groups of 8, the kernel call becomes:

kernel_name <<< 4, 8 >>> ( argument_list );

This configuration launches a grid with 4 blocks with each block containing 8 threads.

In a grid configuration like given in figure 2.10, the data linearly stored in global memory
can be accessed collectively using a thread identifier value calculated from threadIdx and
blockIdx values:

int idx = blockIdx.x * blockDim.x + threadIdx.x;

This method assigns each thread in block an identification number ordered incrementally.
It is a commonly used pattern in CUDA programming to divide the workload among
threads with a calculated identifier like this.

2.2.8. CUDA Execution Model

In general, the execution model defines how the instructions are carried under the hood of
a computing architecture. It is helpful to gain an understanding of the abstract execution
model exposed by CUDA to reason about the thread concurrency.

At the core of GPU architecture, there are units named Streaming Multiprocessors (SM)
responsible for the operation. Nvidia GPU devices achieve parallelism via multiple units
of these SMs on the system. Each SMunit contains some key components for the operation
like:
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• CUDA cores

• Warp Scheduler

• Load/Store Units

• Special Function Units (SFU)

• Shared Memory / L1 Cache

• Registers

Streaming Multiprocessors support the parallel execution of lots of threads. Since a GPU
device generally contains multiple SM units, thousands of threads can be possibly executed
concurrently on a GPU. The SM units work on block-level granularity when it comes to
the work distribution. When a kernel function is invoked, thread blocks configured for the
kernel are assigned to SM units. One unit can get several blocks assigned for the operation.
The operations on SM units are carried through batches of threads called warps. Warp
represents a set of 32 threads in a block. Threads of a warp execute the same instruction
at the same time, but each has its own register state and address counter and applies its
instruction on individuals data.

As mentioned earlier, CUDA is built upon their self named Single Instruction Multiple
Thread (SIMT) architecture, which is a similar version to Single Instruction Multiple
Data (SIMD). Apart from their similarities, the SIMT architecture of CUDA offers more
individuality for each thread. In SIMD, each thread of a thread group is executed together
in synchrony, while the SIMT architecture makes it possible for threads of the same warp
to execute separately. It is possible for threads of the same warp to take different branching
paths through control flow even after they start at the same program entry point. The key
differences between SIMT and SIMD architectures are the extended individualities of the
threads like separate instruction address counters, separate register states, and the ability
to have an independent execution path.

While the warps of a block are considered to run in parallel, it is not always the case in
reality. According to the warp activity, the SM unit can queue, suspend, and reactivate the
threads’ operation in a warp, resulting in concurrent operation not guaranteed to be parallel
with each other but progressing at a different pace. This is usually the case when a warp is
waiting for the peripheral units to complete an instruction, such as memory transactions.
While a warp waits for a response from memory, the SM unit starts processing another
warp to utilize cores that would idle otherwise.

To lessen the impact of this uncertainty on warp execution order, CUDA offers directives
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to create synchronization points between threads on several levels. These directives
are implemented at warp level, block-level, and grid level to offer a selection of lock
mechanisms with increasing capabilities and performance impacts. The synchronization
directives should be avoided as much as possible since they degrade the parallelism. In
scenarios where the synchronization is unavoidable, the proper level of synchronization
mechanism should be selected to lessen its impact.

Warp groups are the elementary computation units of the CUDA execution model. Warps
cannot be divided and placed into different block groups; they are always present as a
whole under one thread block. After the threads in a block are divided into warp groups of
32, if there are less than 32 threads left in the last group, these threads are still processed
in a warp where any empty threads are left inactive.

2.2.8.1. Warp Divergence

Control logic and decision mechanisms are essential building blocks of the programs.
Most programming languages support general control flow concepts such as if, while,
and for. Using these directives introduces branching points in machine code to jump
different parts of the program according to the state of the system. These branching points
pose significant impediments to the parallelization efforts of the computation. Since
the next instruction after the branching point cannot be determined before completing this
operation, all units of ALU needs to suspend operation until the next instruction is decided.

Modern processors use a myriad of techniques to counteract this problem. Instead of
stalling the whole computation hardware, they continue the operation with an assumption
at the branching point and flush the carried calculations if the initial guess proves to be
wrong later as the branching check completes. There are "branching predictors" designed
using different strategies in order to reduce the number of wrong guesses while predicting
the branch result before the actual operation resolves. The CPU unit has the luxury of using
these sophisticated branching strategies the GPU lacks in order to improve computation
performance. Since every thread in a warp has to execute the same instruction, the use of
branch predicting is not feasible between threads.

When the threads of a warp have to follow different control flows due to a decision made
at the branching point, a conflicting operation order occurs. This problem is called warp
divergence. If there are divergent threads at a branching point, jumping over a section of
conditional code is not possible since some of the threads need to carry those instructions.
The GPU hardware handles this situation by disabling some of the threads until the others
complete their conditional instructions. For example, if kernel code has an if-else block
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Figure 2.11: Warp divergence caused by an if-else clause and resulting thread stall. (Source: [72])

that branches when the thread id is odd or even, this means half of the warp executes
one block of code while the second half executes the other. In this situation, the device
only allows half of the warp to run while the other half waits, effectively reducing the
granularity of parallelism in half. Figure 2.11 demonstrates stalling threads in a scenario
like this.

In order to obtain the best performance, care must be taken to avoid warp divergence in
code as much as possible. There are strategies to avoid warp divergence in suitable cases,
such as designing branching operations in batches of warps.

2.2.8.2. Resource Partitioning

Each warp being executed on an SM unit uses resources such as program counters,
registers, and shared memory. These resources are reserved by the SM for the duration
of active warps operation. By storing the state context of warps, the SM unit can switch
operation between warps with very little overhead if an active warp idles while waiting for
a memory transaction.

Due to physical constraints, each SM unit holds a finite amount of these resources. The
amount of registers and shared memory available on the SM limits the number of active
threads possible since these resources are shared between threads per SM. If a large number
of registers are required for the operation in hand, the number of active threads has to be
reduced through kernel launch configuration in order to provide enough register memory
for each thread. This limitation is also true for shared memory as it is also a limited
resource shared between the threads of a block.

For example, we used Nvidia GeForce 1080 Ti in our experiments, and this GPU device
has the compute capability 6.1. This compute capability indicates that this device offers
65,536 registers and 48kb of shared memory per block. Since the maximum number of
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possible threads per block is 1024, we can safely allocate 64 registers per thread and 48kb
of shared memory per block to operate on full potential.

2.2.8.3. Occupancy

While a kernel operation is in progress, SM units constantly queue new warps and swap
stalling warps with the active ones to keep the operation going. In an ideal scenario, the
kernel should have enough blocks with proper threads numbers to allow SM units to keep
the cores occupied. The efficiency of this procedure is expressed by the occupancymetric.
The occupancy is the ratio of current versus themaximumpossible active number of warps.
Full occupancy is always desired for optimal operation, but achieving it is not always easy
or possible. There are multiple resource constraints to keep in mind while deciding on
the block and grid sizes for the kernel. A utility called CUDA Occupancy Calculator is
included in the CUDA Toolkit to help on deciding good block and grid configurations for
maximum occupancy. This tool lets the user input their device specifications in the form of
compute capability version along with thread constrains like required register and shared
memory amount and outputs a detailed report of possible different kernel configurations
and their estimated occupancy levels.

To reach maximum occupancy, it is often good practice to:

• keep the block size at a multiple of warp size to fill every warp group.

• avoid large blocks, which leads to SM allocating less resources to each thread in the
block and possibly resulting in more memory transactions.

• avoid small blocks, which leads to under-utilized SM units since the block limit is
reached before the thread limit and less than the maximum number of threads can
be executed.

Although the occupancy is a major factor for the performance of kernel, it is not the only
contributor. Other factors such as warp divergence and coalescence of memory access
have to be studied in order to discover possible problems impacting performance.

2.2.8.4. Synchronization

The parallel computing systems always try to push the boundaries of concurrency. They do
so by isolating work units as much as possible so that they can be executed simultaneously,
independent of each other. Complex control and scheduling models are designed in favor
of computational throughput, processing work units and swapping them with active ones
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when they idle to keep the device utilized to its potential. This program flow is different
compared to the ordered execution of sequential programs as the finishing order of the
work units cannot be determined beforehand. Usually, the parallel programs are developed
around this limitation. However, sometimes more control over the thread execution order
is desired. Parallel programming languages offer barrier synchronization mechanisms for
these situations. In CUDA, there are two levels of synchronization locks available to the
developers. These are system-level and block-level synchronization.

The system-level synchronization offers a waiting point between host and device where
both systems have to finish their operation before continuing. This is achieved by calling
cudaDeviceSynchronize() on the host side code. Since most of the CUDA operations
are asynchronous, this directive allows the host device to wait for the device operation
completion.

The block-level synchronization is a lower scope barrier that allows the synchronization
of threads in a block. This barrier is realized by calling __syncthreads() function in
kernel code. When this function is called, each thread in a block has to wait until all
threads of block reach to that point of code. This function is especially useful when the
kernel has to transfer data to share memory before an operation. Placing a barrier after
shared memory transactions ensure that every thread finishes its memory moving duty,
and data is copied entirely before the operation begins.

2.2.9. Memory Model

In the last decades, advances in technology led to better, more powerful processors. As
the clock frequencies scaled up and hardware-level parallelism became the norm, the time
between executing instructions is drastically reduced. To feed the data to these rapid
computations, high-performance, low-latency memory hardware is required. However,
providing the ideal high-capacity and low-latency memory unit to the system is not easily
attainable or economically feasible.

Instead, the computers in use today employ a memory hierarchy of various speeds and
capacities to achieve optimal performance at a fair cost. The memory hierarchies work
because of the behavior of data access in applications. The data access is rarely random.
The applications usually request the data from a small, localized part of the memory in
consecutive fashion. This is called the principle of locality, and has two types.

The temporal locality represents the locality in time, meaning that a data region is more
likely to be requested if a part of it is recently used. The opposite is also true, meaning
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Figure 2.12: CUDA memory hierarchy. (Source: [72])

that a region is less likely to be relevant if no part of it is accessed recently.

The spatial locality describes a similar relation with space instead of time. If a memory
location is recently accessed, the memory around this point is more likely to be requested
in the near future. The principle of locality is used to construct caches and mitigate
the latency of high-capacity high-latency memories to a degree. Figure 2.12 shows the
memory hierarchy of CUDA.

CUDA memory model follows a similar model compared to CPU, but it allows detailed
control over exposed memory types to pursue fine-tuning avenues. There are 5 types of
programmable memory present in CUDA API:

• Registers

• Global Memory

• Shared Memory

• Constant Memory

• Texture Memory

The topology of device memory can be seen in figure 2.13.

2.2.9.1. Registers

Registers are at the top of the memory hierarchy as the fastest memory type. They are
exclusive to their owner thread and can only be accessed by this thread. The lifetime of
registers is the same as the kernel owning them. They are used to hold frequently used
variables for in thread operations. Also, arguments passed by the kernel invocation can be
stored in registers when the data size is appropriate. If the data used in kernel operation

40



Figure 2.13: CUDA device memory diagram. (Source: [72])
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becomes too large to fit into register space, some of the variables are spilled into another,
non-programmable memory called local memory.

Unlike registers, local memory is situated in the lower levels of the memory hierarchy and
has higher latency transaction performance. It is important to stay on the register space
and avoid local memory as much as possible while doing thread operations. Although
they are the fastest memory space on the memory hierarchy, they are also the most sparse.
The SM unit contains the register memory and rations it between threads. The amount of
available register space per thread varies between different compute capabilities, but it is
set as 64 registers per thread for since the compute capability version 5.0.

2.2.9.2. Global Memory

The global memory is the largest memory space on the GPU. It is called global memory
because it offers global access and can be reached from both CPU and GPU. The lifetime
of global memory spans to the application duration and can persist through multiple
kernel operations. Large capacity of the global memory comes at the cost of high-latency
operations because it resides on the device memory, away from the SM unit. To mitigate
operation delays, access to global memory is provided through batches of aligned memory
transactions. These transactions can be 32-bit, 64-bit, or 128-bit in size and have to be
aligned on the multiples of transaction size.

2.2.9.3. Shared Memory

Shared memory is below registers but above global memory on memory hierarchy. It
offers low latency memory access similar to L1 cache on CPU on top of the customizable
operation. Shared memory resides on-chip, close to SM operation and threads, and is
managed by the SMunit. It offers limitedmemory space, which ismanaged and distributed
by the SM between blocks and can be programmatically sized. The initialization of shared
memory starts with the kernel, but it shares the lifetime of thread blocks. At the end of
each block’s operation, shared memory used by that block is released and allocated to a
new block by SM.

Shared memory provides a communication mechanism between the threads of a block.
Threads of a block can cooperate using this memory, with the aid of synchronization
mechanisms. This memory is also placed on the same memory block with L1 cache, and
the ratio between L1 and shared memory can be adjusted to fulfill the application’s needs.
Along with available register partitions, shared memory is one of the limiting factors of
parallelism in thread blocks. It is possible to allocate more shared memory per block
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Table 2.3: Feature summary of CUDA device memory types.

compared to the default value. However, this configuration reduces the number of active
blocks that can be processed by SM in parallel.

2.2.9.4. Constant Memory

Constant memory is an on-chip, read-only memory that is accessible from kernels residing
in the same compilation unit. It has to be statically declared at the start of the program and
stays active for the lifetime of the application. Constant memory has an exclusive cache
space reserved and provides low-latency access to its contents.

This memory space is optimized for a specific use case and performs best when the
threads of a warp unit need to access the same memory address. Unlike other memory
spaces, constant memory has a special mechanism called broadcasting that allows the
simultaneous delivery of variables to threads when the same value is requested by many
of them. It is particularly suited for serving constant values to be used in operations such
as formula calculation.

2.2.9.5. Texture Memory

Texture memory is a variation of global memory, accessed through a read-only cache that
is present on each SM unit. It offers additional features targeted explicitly for graphics
processing. The read-only cache has a built-in hardware interpolation unit and offers
fast interpolation results on the subject data. This cache is also optimized for two-
dimensional spatial locality and works best when the threads work on 2D data and follow
a suitable access pattern. Texture memory is excellent for applications that can leverage
its advantages. However, the performance can be worse than global memory on other use
cases.

43



Figure 2.14: Allocating pinned memory using CUDA directives. (Source: [72])

2.2.9.6. Pinned Memory

Unlike the other memory types described in this section, pinned memory is not a type
of physical memory offered by the GPU. Instead, it is a memory management technique
applied to CPU memory by CUDA runtime in order to improve transaction performance.
By default, the operating system uses a memory scheme called paging. In this scheme,
memory contents can be paged in / paged out to secondary storage to open up DRAM
memory space that is requested by active applications. Because the GPU has no control
over this host-side mechanism, the device cannot safely access the host memory without
precautions.

When a memory transfer is initiated to the device, CUDA runtime allocates a page-locked
memory on the host memory first, then copies target data from host-side memory to this
host-side page-locked memory. Finally, the runtime transfers the data from page-locked
memory to the device memory (figure 2.14). Every host to device memory transfer
translates into one host-to-host and one host-to-device transaction practically doubling the
operations, which is not appealing from a performance perspective.

CUDA offers the ability to allocate page-locked host memory using cudaMallocHost
function directly. Allocating page-locked memory allows the device to access this host-
side memory directly. After allocating pinned memory, an application can fill the data
into this host-side memory, and the device can write/read it without extra steps with an
improved bandwidth speed.
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Care must be taken when allocating large amounts of pinned memory. When this space
is reserved in the host memory, the amount of memory available to the system is reduced.
The operating system does not control this memory and cannot page it out when the
demand rises, potentially resulting in constrained operation.
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3. RELATEDWORK

The introduction of CUDA in 2007 by Nvidia made the general-purpose computing on
graphic processing units accessible to a broader audience. Since then, many studies have
been published denoting the improved performance results when GPU programming is
applied to many problems old and new. Here, we present some of the recent studies that
have been done on string matching using GPU.

In 2009, Ligowski and Rudnicki presented an improved parallel version of the Smith-
Waterman algorithm implemented using the CUDA platform on GPU. Their modified
version of the algorithm is 3.5 times faster than the previous implementations on GPU,
achieving 70% of maximum theoretical hardware performance on their experiment setup.
This implementation achieved a respectable 8.67GCUPS operational throughput on an
Nvidia 9800 GX2 GPU device.

In 2010, Peng and Chen [76] presented an improved version of the Nrgrep, a well-known
command-line utility used in the UNIX system. Their version is called CUgrep, and it uses
a GPU-based multi-string matching algorithm based on the BNDM algorithm (2.1.3.3).
The underlying algorithm is implemented using the CUDA platform and reported to work
40 times faster than the Nrgrep on an Nvidia Tesla C1060 GPU and Intel Xeon 5110 CPU.

In 2011, Zhou et al. [77] tested their parallel implementation of theBoyer-Moore-Horspool
algorithm (2.1.1.5) on GPU and explored the characteristics of it. They have experimented
with several optimization avenues like shared memory utilization, access regulation to
avoid bank conflict, and the granularity of parallelism at varying degrees. The authors
reported speed-up by a factor of 40 for their GPU parallel algorithm compared to serial
CPU implementation on an Intel Xeon CPU and an Nvidia GTX275 GPU. They have also
reported a relationship between the pattern structure and the algorithm performance.

Hains, Cashero, and Ottenberg [78] proposed an improved parallel version of the Smith-
Waterman algorithm implemented using the CUDA platform. Their implementation is
called CUDASW++. The authors discovered a bottle-neck at the intra-task part of the
algorithm after testing and focused on improving this sub-process. They reported a
performance improvement around 25% compared to the unoptimized GPU version of the
algorithm, based on their tests conducted on Nvidia Tesla C1060 and Nvidia Tesla C2050
cards.
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Tran et al. [79] also presented their implementation of the Aho-Corasick algorithm
using CUDA architecture on GPU and studied its memory efficient parallelization. Their
implementation focuses on optimizing memory accesses and explores several approaches
with different memory utilization strategies. On the experiment system with Nvidia
9500GT GPU and Intel Core2Duo 2.2Ghz CPU, their test results indicate a peak speed-up
factor of 15.72 times on GPU compared to the single-core CPU version.

A study from Rasool and Khare published in 2012 [80] compares the performances of
the Knuth-Morris-Pratt algorithm (2.1.1.3) implemented on GPU with single-core and
multi-core CPU implementations of the same algorithm. The authors of this study used
the OpenCL framework to implement both GPU and multi-core CPU versions of the
algorithm. Their test system had an AMD Radeon HD 6800 series graphics processing
unit instead of a CUDA capable Nvidia brand device and an Intel i3 processor. After
testing the serial, the multi-core OpenCL CPU, and the OpenCL GPU versions of the
algorithm with different text and pattern configurations, they reported a speed-up by a
factor of 9.52 for their unoptimized OpenCL GPU version compared to the serial CPU
algorithm.

Pungila and Negru [81] proposed an approach for implementing highly compressed Aho-
Corasick and Commentz-Walter automata for intrusion detection and virus scanning on
GPU. This approach uses intra-task parallelism to improve concurrency of operation by
running regular expressions matching with Aho-Corasick in one thread while searching
for regular patterns with Commentz-Walter on another thread. Their hybrid algorithm
combined the high-speed advantage of the Aho-Corasick algorithm with low memory de-
mand of the Commentz-Walter algorithm, achieving 38 times higher bandwidth compared
to serial CPU implementation while requiring almost 22 times less memory than related
implementations.

Yong and Karuppiah [82] implemented their own parallel hash search algorithm on GPU
and compared its performance with parallel versions of the Bruteforce (2.1.1.1) and Boyer-
Moore-Horspool (2.1.1.5) algorithms. They used two different Nvidia GPU devices; one
based on the Fermi architecture on C2075 and the other based on the Kepler architecture
K20c. Their novel hash search algorithm runs slower than the Boyer-Moore-Horspool
algorithm kernel-wise. However, it is faster by a factor of 8.34 when comparing the
overall performance on Kepler architecture. This difference is caused by the additional
shifting and lookup tables generated for the Boyer-Moore-Horspool algorithm as these
auxiliary data structures increase the burden of data transfers on GPU. The authors also
report a significant amount of speed-up, a factor of 23x when the shared memory on GPU
is utilized. The overall speed-up is 150x compared to the global memory using version of

47



the Boyer-Moore-Horspool algorithm.

Tran and Lee [83] implemented a multi-stream version of the Aho-Corasick algorithm
(2.1.1.13) on GPU and studied its performance with a large number of patterns. Their
aim was to examine the performance impact of HyperQ technology present one the
Kepler architecture. To test this feature, the authors used two Nvidia GPU devices; one
Nvidia Tesla K20 GPU using Kepler architecture and one Nvidia Geforce GTX 285 for
comparison. After testing with up to 20000 patterns, Nvidia Tesla K20 GPU achieved a
peak throughput of 585Gbps. This value is 1.45 times higher than the throughput value
of the other Nvidia GPU without HyperQ technology.

Adey [84] tested the parallel versions of some partial string matching algorithms running
on GPU in order to search in DNA sequences for cancer detection. The advanced multi-
pattern algorithmsMSMPMA, IKPMPM, EPMSPP, and IAEMA are implemented as both
serial CPU and GPU versions. The workstation used in their tests included an Nvidia Tesla
C2070 GPU accelerator device along with an Intel core i7 CPU. Their parallel algorithm
results indicate a speed-up by a factor of 30 compared to the serial CPU versions of the
corresponding algorithms.

Zha and Sahni [85] developed a GPU variation of the Aho-Corasick (2.1.1.13) and Boyer-
Moore algorithms (2.1.1.4) in 2013. They used an Nvidia Tesla GT200 GPU and Intel
Xeon 2.8GHz quad-core CPU and demonstrated a speed-up between 3.1 and 9.5 times for
these algorithms compared to their single-threaded implementations.

In 2013, Xu et al. [86] implemented the MASM algorithm and a BPR variant for multiple
pattern matching in GPU. They reported a speed-up by a factor of 28 using an Nvidia
GeForce 310MGPU and Intel i3 2.27GHz CPU and comparing their GPU implementation
with a single-threaded CPU implementation.

Again in 2013, Bellekens [87] compared their GPU implementation of the Knuth-Morris-
Pratt algorithm (2.1.1.3) on an Nvidia Tesla K20M GPU against two Intel Xeon E5-2620
CPUs running the CPU version of the algorithm. The authors conducted a comparison
using different string sizes and alphabet sizes with different optimization techniques such
as shared memory and loop unrolling. They reported a 29 times speed gain similar to [86]
when using a parallel GPU version compared to the serial CPU version of the algorithm.

A 2014 study fromNagaveni [88] used string matching to process DNA sequences in order
to detect breast cancer. Their GPU implementation on an Nvidia Tesla C2070 GPU was
30 times more efficient than the serial implementation in an Intel Core i7 CPU.
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In 2015, Kouzinopoulos [89] compared several algorithms using an Nvidia GTX 280
GPU and an Intel Xeon 2.4GHz CPU. They implemented Set Backward Oracle Matching
(2.1.2.7), Wu-Manber, Set Horspool (2.1.1.5), Aho-Corasick (2.1.1.13), and SOGmultiple
pattern matching algorithms and reported a speed gain by a factor between 2.5 and 10.9
when using the GPU version of the algorithms compared to CPU versions.

Another work by Sharma [90] presented an implementation of the Karp-Rabin algorithm
(2.1.1.8) for Deep Packet Inspection. Their implementation demonstrated a 14 times
speed-up compared to the CPU implementation.

Lee, Lin, and Chen [91] proposed a hybrid pattern matching algorithm for deep packet
inspection usingGPUandCPU, distributing theworkload between these two units based on
the task type. The authors implemented two string matching algorithms based on the Aho-
Corasick algorithm and theKnuth-Morris-Pratt algorithm and compared their performance
and power efficiency with CPU andGPU versions of the base algorithms. Their test system
included an Intel Core i7 3770 CPU along with an Nvidia GeForce GTX680 GPU. The
Aho-Corasick variant of hybrid pattern matching algorithm outperformed the CPU version
by 3.4 times and the GPU version by 2.7 times while achieving higher efficiency than other
tested algorithms.

For the Karp-Rabin algorithm, three GPU based parallel approaches have been proposed
by Ashkiani in 2016 [14]. These three approaches are cooperative, divide-and-conquer,
and a hybrid combination of both. This study reported that the cooperative method was
most effective for pattern lengths longer than 8000 characters, and the divide-and-conquer
approach deemed superior for shorter pattern lengths. The speed improvement by a
factor of 4.81 was reported for their implementation on an Nvidia Tesla K40c GPU. They
improved the performance of Karp-Rabin with the divide-and-conquer approach for large
models by using a new parallel two-stage method that scanned text for a smaller subset of
the pattern and then validated all potential matches in parallel. In the hybrid method, they
split the text into substrings, just like the divide-and-conquer approach, then assigned each
substring to a group of processors and processed in a cooperative manner. Karp-Rabin
algorithm is an excellent candidate to test these approaches since the algorithm logic can
be adapted into cooperative parallel processing, which is not possible to implement for the
majority of string matching algorithms.

In recent research, a tribrid parallel method has been proposed for bit-parallel algorithms
such as Shift-Or and Wu-Manber algorithms [92]. The main idea of this method is to
use inclusive-scan, which enables bit-parallel algorithms to work efficiently on the GPU.
Inclusive-scan not only eliminates duplicate searches between threads but also performs
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memory access in a GPU friendly pattern that maximizes memory read/write efficiency.

A review by Ramos-Frias et al. [93] lists several string matching algorithms implemented
on GPU. These algorithms are selected to portray the current state of different string
matching techniques. However, their selection of six algorithms is not an adequate
representation of the whole parallel string matching field.

String matching is not an unexplored problem on the parallel GPU computing field.
There are plenty of studies trying to transfer the existing string matching algorithms
to GPGPU medium through the implementation of efficient parallel versions as well as
proposing novel algorithms. The works mentioned above indicate the capabilities of
GPU devices as the main processing unit for string matching problem and demonstrate
the feasibility of utilizing these devices on a variety of fields such as network intrusion
detection, malicious code scan, deep packet inspection, DNA substring searching for
cancer detection, hash table construction and information retrieval. Most of these studies
focus on a singular algorithm from a small selection of popular stringmatching algorithms,
such as the Boyer-Moore algorithm (2.1.1.4), Boyer-Moore-Horspool algorithm (2.1.1.5),
Knuth-Morris-Pratt algorithm (2.1.1.3), Backwards Nondeterministic DAWG Matching
algorithm (2.1.3.3), and Aho-Corasick algorithm (2.1.1.13). However, string matching
literature contains a plethora of different solutions to the problem, but other than a selected
few, most of the algorithms are challenging to approach due to lack of code samples
demonstrating principal working mechanisms.

For serial computing on the CPU-side, there are the works of Hume and Sunday [33],
and its spiritual predecessor SMART library from Faro and Lecroq [15]. These code
libraries allow the researchers to compare almost every string matching algorithm in the
literature easily and test their own algorithm implementations against the others. Authors
of the SMART library were also able to conduct the most extensive comparison of string
matching algorithms in the literature because of the toolkit they developed. There is
no similar work for parallel GPU algorithms that could be considered as the parallel
equivalent of these tools even though the parallel GPU implementations of the string
matching algorithms are actively studied.

We believe a similar toolkit for the parallel GPU operation would be beneficial for the
researchers willing to study the parallel string matching algorithms, benchmark their ap-
proaches against the established algorithms of the field, or test already available algorithms
on their problem to find out the best performing candidates easily.
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To address the absence of such codebase for parallel GPU operation, we present CUS-
MART, a parallel string matching algorithms research tool developed using the CUDA
platform as our main contribution. Also, we are sharing the results of our comparative
study conducted using the developed CUSMART library. To best of our knowledge, this
is the most extensive comparative study of parallel string matching algorithms on GPU,
compiled by performing tests on 85 string matching algorithms. The closest study we
have found is a survey from Ramos-Frias et al. [93], only covering 6 algorithms.
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4. CUSMART - CUDA ENHANCED STRING MATCHING
RESEARCH TOOL

The string matching problem is one of the most studied problems in the computer science
field. Although the problem is essentially finding a pattern in a string, in practice, there
are many different parameters affecting the operation. Text size, pattern size, alphabet
size, distribution of the characters over text or pattern, character frequency of the given
alphabet, limited system resources like memory, or processing power are some of the
most significant factors that shape the algorithms. The multivariate nature of the problem
makes it very difficult, if not impossible, to find a solution that works effectively in every
possible case.

The topic amassed a large number of novel methods over the decades. Since the 1970s,
over 120 algorithms have been proposed on the exact string matching subcategory of the
string matching alone. The published algorithms often emerge either as a new approach
resulting from an in-depth analysis of the problem under a selection of conditions or as a
result of applied improvements over an existing algorithm after a thorough examination.
As a natural outcome, these algorithms have advantages and disadvantages when evaluated
over different scenarios as they are usually tailored for a specific use case. For example,
some algorithms are designed to perform efficient searches on a small alphabet such as
DNA, while others try to minimize memory usage of the algorithm or try to keep it
constant. There are also algorithms aimed at searching for multiple patterns at the same
time or performing the search operation at a constant time to be as predictable as possible
timing-wise. The comparative studies of these algorithms are present in the literature,
although not many.

Hume and Sunday presented one of these studies in 1991 [33]. They published a framework
developed in C language for string matching algorithms, along with comparative results
of various test cases. This framework contains the implementations of 37 string matching
algorithms, and helper functions to facilitate the construction of new algorithms. Their
framework was one of the first, large-scale string matching tools and used by many
researchers in the string matching field. However, over time, some shortcomings of this
library became apparent and resulted in new projects to emerge.

The String Matching Research Tool (also abbreviated as SMART) is a similar project
released in 2010 and aimed at addressing the limitations of the earlier work. This library
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is the most extensive string matching tool available today. With a collection of over 120
algorithms implemented and documented, it is an invaluable tool when studying string
matching algorithms old and new. Albeit much more extensive, still like its predecessors,
the SMART library is designed to work on single-core CPUs and contains serial versions
of the algorithms designed to be executed on a single thread. This arrangement allows
the algorithm code to be concise and easy to read; however, it makes multi-threaded
performance comparisons not possible since there are no parallel versions of the algorithms
in the library. The parallel implementations of these algorithms are not trivial as there is
no clear-cut way to realize parallelism without altering the core parts of the procedure.

There are various hardware architectures available for parallel computing, graphic pro-
cessing units (GPU) being one of them. The usage of graphic processing units for parallel
computation operations is called the General Purpose computing on Graphics Processing
Units (GPGPU). The GPGPU is a hot topic in the high-performance computing field.
Thanks to the effort put into the GPU hardware and software in the last decades, the
devices are cost-effective for many applications from a performance standpoint, compared
to multi-core CPUs, and the entry barrier for programming is low because of the extensive
documentation and simple high-level APIs. After these advantages taken into account, we
decided to use the GPU as our platform of choice for parallel processing.

There are string matching algorithms implemented using GPUs in the literature, and some
comparative studies with small scopes, examining only a few algorithms. Nevertheless, to
the best of our knowledge, there is no codebase similar to the SMART tool for the parallel
computing on the GPUs and no comparative study implementing and testing dozens of
parallel string matching algorithms.

In thiswork, we present theCUDAenhancedStringMatchingResearchTool (CUSMART),
which is a parallel string matching library developed using Nvidia’s CUDA architecture.
Our motivation was to compile a codebase of parallel string matching algorithms to aid
studying, testing, and developing string matching algorithms using GPUs. Similar to the
SMART library, this project aims to gather string matching algorithms in the literature but
contains parallelized versions of these algorithms implemented on the CUDA platform.

As of today, there are 85 string matching algorithms in our library with parallel imple-
mentations, and we plan to increase this number as we continue to improve it. The short
descriptions of the implemented algorithms, along with the references to their originating
published work, can be found in section 2.1.

The following sections cover the implementation details of our project.
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4.1. Main Structure of the Library

Although the SMART library is a useful resource for our project in terms of the algorithm
codes it provides, it is necessary to make changes in most of the codebase because the
original library was designed with different priorities in mind. In the serial library, the
source code of each algorithm was placed into a separate file, and the shared logic of
the program, which is necessary for the proper start-up and the processing of the initial
arguments, was created in a separate file and then included in each algorithm file with
preprocessor commands. This shared file also contains the main entry point function for
the programs. In this case, after the compilation process, a separate executable file is
created for each algorithm, independent of the other code.

As a result of this design decision, each algorithm executable allocates memory at the
beginning of the program, reads and processes the text data, and releases this memory
space at the end of the program life cycle. This approach causes the text file to be read back
repeatedly during batch algorithm tests. When we examine the article that the test results
of the SMART library were published, we see the authors were working on files of a few
megabytes, which can be considered small compared to our test corpora. In the original
project, it may not have been a problem to read the files over and over again when working
on files of this scale. However, for example, when a test is run with 85 different algorithms
on a 5 GB text file, as we would use in our tests, a repetitive read operation of 400 GB
data occurs, which is not desirable. The CUSMART library is intended to compile into a
single executable file to avoid repetitive read operations and to ensure compatibility with
the rest of the code.

After compiling the algorithms to run under a single executable file, there is a need to
change the allocation method of the memory areas used by the algorithm functions. In
the serial library, the string subject to search and the auxiliary array structures used by the
algorithm are stored in fixed-size static memory blocks. These fixed memory blocks are
intentionally chosen larger than necessary in order to avoid insufficient memory problems
when a large file is tested. In the original scenario where the executable files are compiled
separately, the allocation of static memory larger than necessary might be acceptable.
However, when we compile the files together, each source file will allocate a unique
memory space and hold this space through the program’s lifetime because it is static.
For example, with this approach of the serial library, the memory requirement reaches
approximately 33,000 times the space normally occupied by the string for a 10-character
string search. Since this large memory requirement can create problems for systems with
limited resources, the codebase we use in our project is designed to allocate memory space
dynamically. This approach gives us the ability to manage memory more efficiently, using
as much memory space as we need and releasing this space after the operation is finished.
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One side effect of converting staticmemory space allocation to dynamicwas themandatory
change for the arrays of 2 or higher dimensions. These multidimensional arrays can be
made dynamic and multidimensional, but it adds unnecessary complexity, requiring to
use a large number of memory allocation commands and changing the way these arrays
are handled as the function parameters. At this point, in order to avoid complexity and
loss of performance, multidimensional arrays are reduced to one dimension, and access
logic is appropriately arranged. During these changes, some minor errors were detected
in the reference code, and these errors were corrected. Most of these errors are caused by
incorrect access to boundary regions of arrays with incorrect boundary conditions. These
errors, which are difficult to pinpoint as a result of the static memory allocation of the
original library, occurred when switching to the dynamic memory allocation.

Another change wemade in the SMART library-based code we added to our project was to
modify the outputs of the algorithm functions. The original code keeps track of how many
times a string is matched in a single variable, instead of keeping places where matching
has occurred within the string.

A requirement that string matching functions used in many applications must provide is
the information of the matched positions of pattern in the text string. Therefore, it is
necessary to record this positional data for the algorithms to serve a practical purpose.
Once this data is available, the match count can be calculated from this data, but not
vice versa. The match position data provided by the algorithms are stored in an array,
which occupies space in memory equal to the memory occupied by the text string. If a
match starting from the n-th character of the text string is detected, the n-th value of the
position array is set from 0 to 1. The total match count is then computed by performing
the reduction operation over the positional data array. The timing of this operation was
also kept in our tests, and care was taken to not affect the algorithm timing measurements.

4.1.1. Applied parallelization techniques

Task parallelism can be classified into two categories [94]. The inter-task parallelism
refers to the parallelism between tasks where every task is assigned to a single thread, and
tasks are performed in parallel. The intra-task parallelism is the other type of parallelism
where a single task is assigned to a block of threads. Threads of this block cooperate
and perform parts of the task in parallel. In general, string matching algorithms contain
two main tasks, the preprocessing step, and the searching step. These two tasks are not
suitable to be performed in parallel since the search step is dependent on the preprocessing
step. While the searching phase of some string matching algorithms can be divided into
sub-tasks, most of them cannot. Also, the CUDA uses Single Instruction Multiple Data
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(SIMD) architecture, which is more suitable for performing a single task in parallel on a
large amount of data, favoring the intra-taskmethod. Our parallel implementationmethods
follow intra-task parallelism practices.

4.1.2. Granularity of Parallelism

The algorithms implemented in our library are designed to perform the string matching
operation in parallel over smaller pieces of text. Each thread is assigned to a part of the
text string and tries to match the pattern string using the corresponding string matching
algorithm. The length of the substring assigned to each thread is defined by a variable
named stride length. This variable is also referred as the granularity factor in the literature
[95]. At runtime, each consecutive thread starts its operation a step away from the previous
threads starting point. This step distance is adjusted by the stride length variable.

The stride length is an important factor impacting the concurrency of the operation.
Lower stride lengths allow for higher numbers of threads to work in parallel, but thread
creation overhead starts to become significant as the individual work gets small. Higher
stride lengths distribute bigger workpieces to threads and lower the impact of parallel
work overhead but constraints the number of threads that are deployable and degrade the
concurrency. There is a balance point to be found for the stride length. We have tested the
impact of different stride length values over algorithm performance, and our results can
be found in the chapter 5.3.

4.1.3. Streaming Operation

The efficient utilization of all processors is important in heterogeneous computing. To
achieve increased throughput, the CUDA architecture queues commands to execute in
streams. Streams are objects holding sequences of commands that execute in order. The
CUDA architecture adds another layer of parallelism via streams. When two operations
are put into different streams, CUDA can process these operations in parallel, since the
operations are overlappable, meaning they allow asynchrony and do not block the SM
unit’s operation. The usual use case for the streams is overlapping the kernel execution
with memory transfers.

Before the search operation starts, the text and pattern string has to be transferred to the
GPUmemory. This operation takes a significant amount of the total operation time, longer
than the actual search operation in many cases. When the memory transfer operation is
in progress, the processors stay idle and wait until the transfer operation is carried. This
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unwanted idle time cannot be avoided entirely, but with the clever use of streams, it can
be reduced.

Instead of transferring the full text string before search operation, the transfer can be
divided into smaller parts, and the search operation can be cascaded between these part
transfers. This way, the first part of the text string transfer is queued in a stream, and
the kernel can be called to process the transferred part. When the second part of the text
string is queued to another stream, the processing of the first part is already begun in the
first stream. This type of concurrency is possible because the streaming units handling
kernel executions and memory transactions in CUDA are different and independent of
each other. Using this property of CUDA architecture, asynchronous operations can be
"hidden" behind the others.

In our case, since the string matching kernel executions are usually faster and take less
time than memory transactions, they can be hidden behind memory operations to reduce
idle time and improve operation speed. There are streaming versions of some algorithms
present in our library. Also, it is easy to develop and test streaming versions of other
string matching algorithms using our example implementations. We have conducted tests
on streaming using different configurations and presented the results in the chapter 5.3.9.

4.1.4. Shared and Constant Memory

CUDA architecture has several memory spaces other than global memory, like constant
memory and shared memory.

Constant memory is a small, read-only memory space with caching and broadcasting
capabilities. This memory is optimized for fetching a small set of data, like constant
variables and static model parameters. Since the text string is usually too large to fit into
this memory space, we used constant memory to store the pattern string on preference.
The CUSMART library includes an option to use constant memory for pattern storage
instead of global memory. The switch operation is handled by the helper functions, and
there is no need to modify the algorithm code to enable constant memory use.

Shared memory is another memory space designed to allow fast memory transactions
between the threads of the kernel block. It provides fetch-rates hundreds of times better
than the global memory but is limited to in-block operation and has low memory capacity.
Unlike constant memory, shared memory usage requires additional steps. In order to
utilize shared memory, the threads have to fetch the data from the global memory and
store it in the shared memory before the operation starts. This fetch phase is placed at
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the start of the kernel function. There are many algorithms in our library designed to
use shared memory. These algorithms have "shared" word in their title and contain a few
tweaks for shared memory operation compared to the original algorithm.

More information about memory types can be found in the chapter 2.2, and our test results
regarding different memory types of the CUDA architecture are shared in the chapter 5.3.

4.1.5. Pinned Memory

Pinned memory is another type of memory used by the CUDA programs, and explained
in section 2.2.9.6. Unlike constant, shared, or texture memory, this is more of a memory
access technique for the CPU side rather than a specialized memory unit. The CUSMART
library has the ability to use pinned memory via a command-line option. By enabling the
pinned memory option, the library reserves space on the host RAM exclusively used by the
CUDA application. The usage of pinned memory is always advantageous performance-
wise, and it is recommended to use it if there are no memory constraints. Our test results
regarding pinned memory usage can be found in the chapter 5.3.

4.1.6. Occupancy

Occupancy is a metric used to describe how efficiently the CUDA device is utilized
for the operation. Achieving the best occupancy is a multivariable problem. It cannot be
accomplishedwithout someprior knowledge about the application, meaning an appropriate
run configuration has to be determined for every use case. The CUSMART library comes
with some helper functions to calculate the proper block and grid dimensions for optimum
operation. The algorithms used in our tests include these calculations to achieve the best
occupancy possible.

4.1.7. Algorithm Testing

4.1.7.1. Preprocessing Steps

The majority of string matching algorithms implemented in our library requires some
preparation before the search operation is carried. The preparations include processing
of the pattern to acquire knowledge about the structure of pattern and improve search
operation. This operation prior to the search is called the preprocessing step.

The preprocessing step generally takes a fraction of the time required for the search
operation. Also, most of the algorithms have preprocessing steps with operation-wise
precedence restrictions to construct the support variables. During our initial tests, this

58



part of the operation proved to be not feasible on the GPU side, the transaction takes longer
than the operation, and the concurrency is very low. For these reasons, we have decided
to run the preprocessing code on the CPU side and transfer the output to the GPU device
memory. The preprocessing functions are called in the wrapper function of the selected
algorithm and timed separately using the CPU side timing functions.

4.1.7.2. Timing of the Search Operations

Measuring the duration of different phases of a string matching algorithm running on
CUDA is not as easy as counting the CPU clock cycles. The CUDA capable graphics
processing units run in an asynchronous manner with the CPU of the system, meaning the
CPU clock counting does not translate into GPU runtime.

There are event-based recording functions that run on the GPU side for timing, provided
by the CUDA API, and these functions are used to time the GPU side operations of
our library. Using these capabilities, The library records different steps of the operation
individually. These steps are the memory transaction from host (CPU) to device (GPU),
the main search kernel operation, and the reduction operation.

Aside from these timers, the preprocessing steps of the algorithms are timed by the
appropriate timing functions on the CPU side, because this phase is executed on the CPU.
The total duration, along with the step times described above are reported as the final
result of the application. The memory allocation operations are not included in the time
measurements. We believe these system-specific calls do not represent the examined
algorithm’s capabilities and should not be included in the final benchmark.

4.1.7.3. Fair Comparison

Since the CUSMART library is designed to compile into a single executable, extra care
must be taken so that the algorithm functions do not influence each other’s operation. There
are a few factors that are hard to regulate, like memory caching and GPU warmup time.
In order to reduce the effect of caching on benchmarks, we are running a dummy memory
read before operation without timing it. This approach provides an ideal memory transfer
state for every algorithm by eliminating the cache irregularity for the first algorithm.
The device warmup time is another problematic side-effect that becomes apparent as an
increased runtime on the first kernel timer. To avoid this phenomenon from affecting the
GPU benchmarks, a simple warmup kernel call is added before every kernel execution.
This call is not included in the kernel timing and ensures the following kernels are executed
and timed without delays. As another precaution, there is an average time option included
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in the library to smooth out variances caused by the system occupancy. By enabling this
option and specifying the number of times the search operation has to be repeated, the
library can be made to run the selected search algorithm multiple times and report the
average runtime value of these runs.

4.1.7.4. Computation of the Total Match Count

Our CUSMART library follows a different approach for counting match cases compared to
the SMART library. The SMART library uses preprocessor macros that are tied to a single
variable for storing the match count. This counter variable is increased by the running
algorithm whenever there is a match case during the search operation. A single storage
variable approach does not cause any problems when the memory accesses are performed
sequentially, like the single-threaded code of the SMART. The single variable approach
even has the advantage of drastically reduced memory requirement at the expense of lost
information about match positions, which is not mandatory for every use scenario.

However, single variable storage becomes impractical when the program is executed in a
multi-threaded fashion, with the race conditions and read-write conflicts emerging as the
result of this conversation. To avoid these problems and the slowdown caused by lock
mechanisms while trying to circumvent the single variable access issue, the CUSMART
library uses an array allocated on the global memory of the GPU in order to record match
positions. This array holds char sized variables to reduce memory requirements but still
holds the same amount of space as the text to be searched. This approach significantly
impacts the capacity of operation, practically reducing it by half, because to search =
bytes of text data, we need to allocate an additional = bytes of match array, increasing the
required memory space to twice of the input.

This is under the assumption that the other auxiliary data structures like the pattern
data and preprocessing step products can be ignored since their space requirements are
negligible. After the searching step, this match array is used the acquire total match count
by performing a counting operation over all array cells. This counting operation can be
performed efficiently using a technique called reduction.

The reduction technique sums the target array values systematically, processing, and
halving the operation area in each stage. Luckily, the reduction operation is a well-studied
technique and lends itself to parallel operation easily. There are highly efficient reduction
functions implemented in parallel environments. The CUSMART library uses such an
implementation and runs the reduction operation on the GPU side in order to reduce the
amount of required memory transfer back from device to host. Our efficient reduction
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operation is around 300 times faster than the CPU implementation, producing match count
results much faster. The whole reduction and final result transfer operation is quicker than
the array transfer back to host, let alone additional reduction operation on the CPU side.
It is recommended to use GPU side reduction, and we have performed our tests this way.
Still, we have included the ability to select between GPU and CPU reduction via a runtime
parameter if these test conditions are desired.

4.1.8. Introducing New Algorithms to the Library

The CUSMART library is designed to have a streamlined structure, making it easy to
implement new algorithms and perform comparisons with the existing ones. The GPU
side algorithms are divided into two sections, the kernel function, and thewrapper function.

The wrapper function contains the preparation steps like memory allocation, memory
transfer, preprocessing steps, reduction operation, and the timing calls required prior to
the searching phase. There are helper functions to provide boilerplate code for repetitive
parts of the wrapper function.

The kernel function contains the main logic of the search algorithm. For some special
cases like the versions using sharedmemory, additional memory transaction code is placed
in this kernel function before search logic. Lastly, all implemented algorithm wrappers
are listed in designated header files as external references to access inside the application.
Newly added source files also have to be included in the CMake configuration file in order
to ensure they are compiled correctly into the library.

Our preferred method of compilation is using the CMake tool. CMake provides a higher
level of abstraction for the code compilation and allows cross-platform compilation using
a central configuration file. Using this tool, our library can be compiled on different
platforms supporting Nvidia GPU devices and successfully tested onWindows and Linux.
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5. EXPERIMENTS AND RESULTS

In this chapter, we are going to list the stringmatching tests prepared using our CUSMART
library. The string matching algorithms are usually optimized around designated use
limitations. As a result, these algorithms work efficiently under certain conditions while
behaving poorly under others. We aimed to test the algorithms included in the library
under different scenarios to get a broader picture of their behavior. The evaluated test
scenarios are designed to accentuate the impact of different parameters under typical use
cases. These test scenarios include the best-case and the worst-case scenarios of the
algorithms, as well as some synthesized patterns and text structures. In addition, the
effects of the hardware optimizations used while implementing concurrency were tested
on the performance of the algorithms. Different datasets such as novel texts in different
languages, text consisting of random characters, Wikipedia dump files, microorganism
DNAs, and synthetic datasets were used for the tests. These test configurations are given
in more detail in the following sections.

In order to reduce the impact of the system background processes on the timings, the tests
were performed at least ten times, and the average times were reported when the deviations
between runs were negligible.

5.1. Testing Equipment

5.1.1. Workstation Specifications

For the tests, theworkstationwhichwas purchasedwithin the scope of the project was used.
This computer is an HP Z8 G4 Workstation using two Intel Xeon Silver 4114 2.20GHz
9.6GTs 13.75MB Cache 2400MHz 10Core as CPU, 128GB (4x32GB) DDR4 2666MHz
ECCRAM, 256GB SATA SSD harddisk. Ubuntu 18.04 is chosen as the operating system.
The NVIDIA GeForce GTX 1080 Ti is present on the system as the main graphics card
for GPGPU operation. This card has 11GB of memory with 11Gbps bandwidth and 3584
CUDA cores running at 1.5 GHz. The CUDA runtime was compatible with version 18.04,
and the toolkit version 8.0 was installed.

5.1.2. Mobile System Specifications

NVIDIA has developed a series of hardware mapping devices for embedded systems,
which are very small in terms of footprint and consume little energy in terms of energy
consumption but have high processing power. These embedded systems, called the Jetson
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series, are designed as a System-On-Chip on a common system of credit card-sized CPUs
and GPUs. These chips are also sold on a modular form with extra connectors on it, and
they are operation ready for application development.

NVIDIA Jetson embedded GPGPU solution architectures were also investigated for string
matching, and performance comparisons were performed. The result of these tests can be
found in the chapter 5.3.

Nvidia Jetson TX2 computing device was used for these mobile environment tests. The
Jetson TX2 device has 256 Cuda cores, HMP Dual Denver 2/2 MB L2 and Quad ARM®
A57 / 2 MB L2, 8GB Ram, and 32GB SATA disk space available.

5.2. Test Cases

5.2.1. Structured Text Datasets

The first set of data is generated from the Wikipedia content dump file containing daily
text in English. The generated sample text data sizes are selected as 1M, 10MB, 100MB,
and 1GB to analyze the impact of text size over the performance of the algorithms. In
these tests, four different patterns with the lengths of 3, 10, 50, and 200 characters were
chosen, and each pattern was searched in four different text strings. For each file, serial
implementations of all algorithms were run on CPU, and parallel implementations were
run on GPU, and their average speed-ups were calculated. Different memory sections
like shared, constant, and pinned memory are also tested using these text strings, and the
performance impact is calculated based on the parallel GPU versions of the algorithms.
The results were generated by averaging the output of 10 trials.

5.2.2. Genome Datasets

Since the Genomics study is one of the largest fields that sees the extensive use of string
matching, we have included DNA tests to compare the algorithm behavior over the DNA
sequencing problem. The DNA sequence of Drosophila melanogaster (commonly known
as fruit fly) is used as the source string in some of our test cases [96]. The sequence is
duplicated enough to get a 100MB file for the search operation. Different patterns with the
lengths of 3, 10, 50, and 200 are used in the tests. These tests examine the performance of
algorithms over structured and small alphabets with varying pattern lengths.
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5.2.3. Syntetic Repeating Datasets

Our synthetic text data contains two repeated character test files. The first test data contains
only a single character repeated for the length of the whole file, which is 100MB in our
case. Other test data is constructed in a similar fashion and only contains a repeated string
"cusmart" filling a 100MB file. These files are used along with the matching patterns with
one mismatch character. The mismatch character is positioned at the beginning in one
scenario and at the end of the string in the other scenario to simulate best-case/worst-case
scenarios of the algorithms.

5.2.4. Syntetic Randomized Datasets

The performance of the algorithms and the variations in the performance for different
pattern lengths and alphabet sizes were examined. The alphabet sizes to be tested were
determined as 2, 8, 16, 64, 128 characters, and the search operations were performed on
the text files consisting of randomly generated characters from each alphabet. The size
of the text files used during these tests was chosen as 100 Mb, which is determined from
the earlier tests. The search tests were carried out with four different patterns of different
lengths. The lengths of these patterns were chosen as 3,10, 50, and 200 characters and
were randomly generated from the characters of the corresponding alphabet. Thus, 20
different test scenarios were prepared using four different length patterns and five different
alphabets. In order to reduce variance from the test system, each test scenario was run ten
times, and the average of the results was reported. In addition, all the tests were repeated
on the re-created random text files, and the averages of the results were taken, reducing
the potential effects of inadvertently structured text sequences in the random generation.

5.3. Results

5.3.1. Optimal Search String Length

To determine if there is a preferable file size for performing the search operation, serial and
parallel versions of the algorithms are tested using four different patterns on four different
files, making 16 tests in total. The patterns were 3, 10, 50, and 200 characters long, and
chosen from the words present in the text string to guarantee at least one match. The text
strings are taken from the Wikipedia English raw data dump file and constructed from the
first 1 MB, 10 MB, 100 MB, and 1 GB of the file. The runtime of each parallel algorithm
is divided by their corresponding serial algorithm to obtain the speed-up factor. Then, the
averages of these values are calculated for each data size and pattern length. Our results
are presented in the table 5.1 and the figure 5.1.
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Pattern
Length

File Size

1 MB 10 MB 100 MB 1 GB

m = 3 10.06 22.08 25.31 28.11
m = 10 7.78 19.79 23.30 20.51
m = 50 6.47 18.04 22.16 19.95
m = 200 2.72 12.99 18.09 16.45

Table 5.1: The average speed-ups of parallel algorithms with regards to various pattern lengths
over various structured text lengths.
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Figure 5.1: The average speed-up of parallel algorithms with regards to various pattern lengths
over various text lengths.
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< = 3 < = 10 < = 50 < = 200

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

bndmq4 10,9312 sfbom 12,3764 bom 11,1426 fs 11,1482
kr 12,8345 raita 12,5348 rcol 11,3989 lbndm 11,1676
raita 14,4963 sabp 12,8413 bxs 11,4467 sbndm 11,1868
bf 14,7148 fs 12,9553 tndm 11,4561 fsbndm 11,1935
br 14,7840 svm 13,0129 lbndm 11,5302 sbndm_bmh 11,1976

Table 5.2: Top 5 parallel string matching algorithms for each pattern length (<) over 100MB
wikipedia text.

Besides the apparent monotonic increase for very short pattern lengths (< = 3), overall
speed-up factors increase until 100 MB file size mark and peak at this point before starting
to decrease. This value is most likely affected by the GPU unit’s operation throughput,
and the operational saturation is achieved around this point before the scheduler starts to
queue up the operations due to high demand.

Even though the speed-up factor of the algorithms never went below 1, meaning there is
always a net speed gain when using parallel string matching algorithms over serial ones,
some configurations resulted in better performance over others. Determination of the
peak speed-up point plays an important role when deciding on the search file size. The
applications with the freedom over their preferred search file size can designate a size
value known to result in better performance. Also, larger files can be divided into smaller
pieces of established units to achieve optimal performance. The optimal search file size
study is performed early in the testing to make informed decisions about the following
tests and reduce the number of test cases for a concise examination. The rest of the tests
are performed on 100 MB search files unless otherwise noted to benchmark the optimal
performance results of the algorithms.

5.3.2. The Parallel Algorithm Performance Rankings

Based on the results acquired in section 5.3.1, we have used a 100MB text file split from
theWikipedia raw data dump. Again, four different lengths of patterns are used to perform
the search operation over the prepared text file in order to obtain the comparison data. The
parallel versions of the string matching algorithms are then sorted into three tables based
on their performance. The first table contains the top five performers of the test for every
pattern length tested. This table is presented in 5.2.

The table 5.2 shows some points worthy of note. For the shortest pattern test (< = 3),
we see the parallel implementation of the Bruteforce algorithm at the 4th place. This is
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a notable feat for the most basic, unoptimized approach, taking the 4th place among 80+
algorithms, which are designed over decades to improve the Bruteforce algorithm itself.

The simplicity of an algorithm plays an important role (often more decisive than utilized
strategy) when it comes to the parallel operation. When the running threads in a warp
encounter a decision point in kernel code (like if clause), their execution flow might
differ based on the decision outcome. This causes a branching on execution path, where
some threads halt operation until the other threads finish executing the extra work resulting
from the decision, and the parallel operation becomes synchronized again. This partial
suspension of the warp threads caused by the branching degrade concurrency and gets
worse as the number of the branching points grow. Branch divergence is one of the major
slowdown factors along with uncoalesced memory access, causing under-utilization for
GPU assisted computing.

The algorithms that use complex decision mechanisms in order to reduce comparisons
and redundant memory operations have more branching points. These algorithms are
more susceptible to performance degradation caused by branch divergence compared to
the algorithms with more straightforward execution flows. This is a trade-off that becomes
apparent once we start translating serial string matching algorithms into parallel code.

The automaton based algorithms consistently ranked high across the lists, especially for
higher pattern lengths. These algorithms are specifically Backward Nondeterministic
DAWG Matching (2.1.3.3) variants like Backward Nondeterministic DAWG Matching
with q-grams (2.1.3.19), Backward Nondeterministic DAWG Matching for long patterns
(2.1.3.4), Simplified Backward Nondeterministic DAWG Matching (2.1.3.5), Forward
Simplified Backward Nondeterministic DAWG Matching (2.1.3.17), Simplified BNDM
withHorspool Shift (2.1.3.10), andTwo-WayNondeterministicDAWGMatching (2.1.3.6).

Backward Oracle Matching (2.1.2.7) and its variant Simplified Forward Backward Oracle
Matching (2.1.2.15) are top performers of the chart along with comparison based Fast
Search (2.1.1.29) on these tests.

Bottom 5 of the performance chart is given on the table 5.3 and shows theworst-performing
string matching algorithms during these tests. These algorithms are poorly translated or
simply not compatible with the parallel operation. They might require special care,
partial or total redesign of the underlying logic when transforming into parallel operation.
Rigorous examination of these algorithms for the possibility of finding a feasible parallel
remodeling is out of the scope of this work.
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< = 3 < = 10 < = 50 < = 200

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

bfs 83,1402 ksa 47,7346 ts 55,8337 ag 95,2882
ffs 77,1774 fdm 46,8584 ag 50,6226 kr 67,4551
bsdm 47,7171 bfs 45,7860 ksa 50,3636 fdm 54,1321
fdm 45,7309 ts 41,5247 fdm 49,3713 tw 52,8663
ksa 41,8872 ldm 32,2837 so 33,9019 ksa 51,2419

Table 5.3: Bottom 5 parallel string matching algorithms for each pattern length (<) over 100MB
wikipedia text.

Name
Time (ms)

m=3 m=10 m=50 m=200

dfah 21.8992 21.8619 21.9484 21.9329
bf 14.7148 14.3534 15.0921 15.3365
faoso2 20.7582 21.8128 22.4165 22.4480
raita 14.4963 12.5348 11.5432 11.3684
br 14.7840 13.0556 11.7371 11.4242

Table 5.4: Most stable 5 parallel string matching algorithms for each pattern length (<) over
100MB wikipedia text.

The bottom 5 list contains algorithms from multiple categories, meaning no string match-
ing strategy can be ruled as superior to others. This list also contains our Bruteforce
modification Bruteforce Shared (bfs), which is designed to study the effect of shared
memory usage on the Bruteforce algorithm performance. As apparent, the bfs algorithm
performed poorly and will be discussed in the following sections.

Lastly, we have compiled the list of most stable algorithms and presented the top 5 in
the table 5.4. In our tests, these algorithms are the least affected by the pattern length
and run at almost constant time. This is a vital parameter for some applications requiring
predictability over speed and uncertainty. The list contains our version of Deterministic
Finite Automata (2.1.2.1), the Bruteforce (2.1.1.1), the Fast Average Optimal Shift-Or
(2.1.3.15), the RAITA (2.1.1.19), and the Berry-Ravindran (2.1.1.27) algorithms.

5.3.3. Genome Data Test Results

Since the Genomics study is one of the largest fields that sees the extensive use of string
matching, we have included DNA tests to compare the algorithm behavior over the DNA
sequencing problem. The DNA sequence of Drosophila melanogaster (commonly known
as fruit fly) is used as the source string in some of our test cases [96]. The sequence is
duplicated enough to get a 100MB file for the search operation. Different patterns with the
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< = 3 < = 10 < = 50 < = 200

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

sabp 13.0156 sabp 12.2282 sbndm2 11.7540 bmh_sbndm 11.3339
ildm2 13.3445 ildm2 12.4135 bmh_sbndm 11.7779 sbndm2 11.6962
ildm1 13.3451 ildm1 12.4138 bndm 11.8721 ildm1 11.8898
bww 13.4991 bww 12.4280 ildm1 11.8810 ildm2 11.8968
bndm 13.8913 lbndm 12.5027 ildm2 11.8815 trf 11.9659

Table 5.5: Top 5 parallel string matching algorithms for each pattern length(<) over 100MBDNA
sequence.

< = 3 < = 10 < = 50 < = 200

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

fdm 50.4712 ldm 75.7919 ag 129.8907 ag 244.8445
ag 47.2614 ag 63.3685 fdm 54.0337 ldm 65.0828
ts 40.5084 fdm 62.4360 ts 40.7435 kr 64.4945
ldm 32.3250 ts 35.5995 kr 30.9725 fdm 51.5552
smoa 31.1867 smoa 31.8406 ksa 30.9442 tw 49.1941

Table 5.6: Bottom 5 parallel string matching algorithms for each patternlength (<) over 100MB
DNA sequence.

lengths of 3, 10, 50, and 200 are used in the tests. These tests examine the performance of
algorithms over structured and small alphabets with varying pattern lengths.

These tests are conducted in a similar fashion to section 5.3.2, using the DNA string as
the source file. The pattern strings are randomly extracted from the DNA sequence in four
different lengths; 3, 10, 50, and 200 characters.

These test results display similar rankings over different pattern lengths. Both Improved
Linear DAWG Matching algorithm variations (2.1.2.11) are placed in the top 5 of the list
for all cases. For shorter patterns, the ranking includes the Small Alphabet Bit-Parallel
(2.1.3.22) as the top performer and the Bit Parallel Wide Window (2.1.3.13) in top 5. For
longer patterns, the top two slots are shared between the Simplified BNDM with loop-
unrolling (2.1.3.9) and the Horspool with the BNDM test (2.1.3.11) algorithms. Genome-
basedworkloads generally use long sequences as the pattern of the search operation. Based
on our results, these string matching algorithms using automata are good candidates for
the operations involving genome processing.

Among the worst performing algorithms, it is interesting to see Linear DAWG Matching
Algorithm (2.1.2.10) since the Improved Linear DAWG Matching algorithm variants
(2.1.2.11) are some of the best performing algorithms on our lists. Some repeating names
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Name
Time (ms)

m=3 m=10 m=50 m=200

bww 13.4991 12.4280 12.1474 13.3290
sabp 13.0156 12.2282 12.1871 13.2165
tvsbs 16.6004 15.2832 14.5014 16.3633
bndm 13.8913 12.5958 11.8721 13.6282
smith 15.2085 15.9766 14.6251 15.4721

Table 5.7: Most stable 5 parallel string matching algorithms for each pattern length (<) over
100MB DNA sequence.

can be seen on the table 5.6 like the Forward DAWG Matching (2.1.2.5), the Karp-
Rabin (2.1.1.8), the Apostolico-Giancarlo (2.1.1.7), and the Tailed-Substring (2.1.1.32)
algorithms. These algorithms performed 3 to 23 times slower than the best performing
algorithms compared to the same test case.

Themost stable 5 algorithms are given on the table 5.7. Among themost stable algorithms,
the Bit Parallel Wide Window (2.1.3.13), the Small Alphabet Bit-Parallel (2.1.3.22), and
the Backward-Nondeterministic-DAWG-Matching (2.1.3.3) are also some of the fastest
algorithms and ranked top 5 in our tests. These algorithms are not affected by the pattern
length variations easily and display good performance overall.

5.3.4. Different Alphabet Test Results

The algorithm behavior for different alphabet sizes is examined, and the results are pre-
sented in this section. The performance of the algorithms and the variations in the
performance for different pattern lengths and alphabet sizes were examined. The alphabet
sizes to be tested were determined as 2, 8, 16, 64, 128 characters, and the search operations
were performed on the text files consisting of randomly generated characters from each
alphabet. The size of the text files used during these tests was chosen as 100 Mb, which is
determined following the earlier tests. The search tests were carried out with four different
patterns of different lengths. The lengths of these patterns were chosen as 3,10, 50, and
200 characters and were randomly generated from the characters of the corresponding al-
phabet. Thus, 20 different test scenarios were prepared using four different length patterns
and five different alphabets. In order to reduce variance from the test system, each test
scenario was run ten times, and the average of the results was reported. In addition, all
the tests were repeated on the re-created random text files, and the averages of the results
were taken, reducing the potential effects of inadvertently structured text sequences.

The following tables (5.8, 5.9) list the fastest five and slowest five algorithms for each

70



Top 5 of alphabet size test
f = 2 f = 8 f = 16 f = 64 f = 128

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

bndmq4 16.31 sbndm2 14.53 lbndm 14.43 ssabs 14.16 ssabs 14.01
sbndm2 17.07 fsbndm 14.56 sbndm2 14.64 ms 14.40 bxs 14.34
bmhsbndm 17.80 bndmq4 14.64 fsbndm 14.72 bxs 14.51 lbndm 14.67
sbndm 18.50 sbndmq2 14.81 sbndm 14.96 lbndm 14.62 fjs 14.79
tndm 18.58 fsbndmq2 14.87 sbndmbmh 14.96 tndm 14.80 tndm 14.80

Table 5.8: The Runtime of top 5 algorithms for different alphabet sizes (f), times are the average
values of 4 different pattern tests

Bottom 5 of alphabet size test
f = 2 f = 8 f = 16 f = 64 f = 128

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

smoa 171.18 ag 118.16 smoa 89.57 fdm 68.33 ffs 111.81
ag 165.66 smoa 102.62 ldm 68.65 ldm 67.22 bsdm 74.61
sabp 101.10 fdm 82.44 ag 65.74 smoa 58.91 fdm 70.45
ldm 72.81 ldm 68.81 fdm 65.51 ksa 49.87 ldm 67.97
fdm 70.49 ts 50.57 ts 45.62 bsdm 49.63 ksa 50.80

Table 5.9: The Runtime of bottom 5 algorithms for different alphabet sizes (f), times are the
average values of 4 different pattern tests

alphabet size sorted by the runtime. These times were obtained by averaging the search
times for four different patterns of each algorithm on the selected alphabet. In this way, our
aim was to compare the overall performance of the algorithms on the selected alphabet,
including various pattern length scenarios.

When we look at the average time test results, the Backwards Nondeterministic DAWG
Matching algorithm (2.1.3.3) derivatives are in the top five for the alphabets with 2, 8, or 16
characters. In particular, the Simplified Backwards Non-Deterministic DAWG Matching
with Loop Unrolling algorithm (2.1.3.9), represented by the sbndm2 tag, is consistently
one of the two fastest algorithms. When it comes to larger alphabet sizes, we observe
that different algorithms rise in the ranking. The SSABS algorithm is at the top of the
performance chart for 64 and 128 character alphabets.

At the other end of the ranking, when we look at the five slowest algorithms, recurrent
names can be seen on the table. Although these algorithms provide some speed gain
compared to CPU versions after parallelization, their performances are below average.
The reason is that these algorithms are not suitable for the hardware and technique applied;
some processor features available on the CPU side cannot be transferred to the GPU side.

In the following graphs (5.2, 5.3, 5.4, 5.5, 5.6), we see how much acceleration algorithms
have gained compared to CPU versions as a result of tests on selected alphabets. In these
graphs, vertical bars corresponding to each algorithm represent the range of acceleration
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Figure 5.2: The obtained speedup factors for 2 character alphabet, ordered from highest to lowest.
Vertical lines represent the range of speedup factors the algorithm achieves with the
tested set of patterns.
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Figure 5.3: The obtained speedup factors for 8 character alphabet, ordered from highest to lowest.
Vertical lines represent the range of speedup factors the algorithm achieves with the
tested set of patterns.

rates obtained as a result of searches with patterns of different lengths. The upper end of
the bar represents the highest speedup factor achieved, and the lower end represents the
lowest speedup factor. The point in the middle of the bar shows the average value of the
speedup factor obtained from all pattern tests.

When the graphs 5.2, 5.3, 5.4, 5.5, and 5.6 are examined, some inferences can be made
about the behavior of the algorithms. First of all, as the size of the alphabet grows, an
overall decrease in the values of the figure is noticeable.

For example, while approximately half of the algorithms in the figure 5.2, in which the
alphabet size is 2 characters, can take values over the 40x limit, only the first two algorithms
can reach this number in the 8 character alphabet figure (5.3). Although the downtrend
continues to persist in other figures, there is no difference as big as the first two figures.
In the light of this information, we can say that it will be advantageous to use parallel
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Figure 5.4: The obtained speedup factors for 16 character alphabet, ordered from highest to lowest.
Vertical lines represent the range of speedup factors the algorithm achieves with the
tested set of patterns.
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Figure 5.5: The obtained speedup factors for 64 character alphabet, ordered from highest to lowest.
Vertical lines represent the range of speedup factors the algorithm achieves with the
tested set of patterns.
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Figure 5.6: The obtained speedup factors for 128 character alphabet, ordered from highest to
lowest. Vertical lines represent the range of speedup factors the algorithm achieves
with the tested set of patterns.
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Figure 5.7: The variation values of algorithm speedups for alphabet size f = 2
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Figure 5.8: The variation values of algorithm speedups for alphabet size f = 8

algorithms with GPU support, especially in cases where small alphabet sizes such as
binary system or DNA are dealt with.

If we go back to the figure 5.2 again, we see that the bar lengths are longer compared
to other figures and they get shorter as the alphabet size increases. This is due to the
variance of speedup depending on the pattern length. In small alphabets, the relationship
between speed gain and pattern length is more substantial, while this effect decreases as
the alphabet size increases.

It can be seen from the graphs that the acceleration amounts of the algorithms change
according to the length of the pattern searched. The relationship between algorithm
performance and pattern length is also a case to be evaluated. For some applications,
it may be preferable that the algorithm is less affected by the pattern length, so that the
runtime is predictable rather than having variable performance gain. In different alphabets,
the way each algorithm works may differ depending on the pattern length. While some
algorithms slow down as the pattern length increases, some algorithms may accelerate, or
the speed of some algorithms may not vary much, although the pattern length changes.
In order to examine the relationship between the speed gains of the algorithms and the
pattern lengths, the graphs 5.7, 5.8, 5.9, 5.5, and 5.11 were obtained by calculating the
variation of the speed gains of the tests on each alphabet.
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Figure 5.9: The variation values of algorithm speedups for alphabet size f = 12
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Figure 5.10: The variation values of algorithm speedups for alphabet size f = 64
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Figure 5.11: The variation values of algorithm speedups for alphabet size f = 128
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For each alphabet, the variation of the run times of each algorithm in different patterns is
presented. For example, although the pattern length changes, the Bruteforce algorithm’s
standard variation value is very low, as can be seen from the graphics. The Bruteforce
algorithm’s inability to perform long shifts causes searches by sliding one by one, regard-
less of the pattern length. Thus, as the pattern length increases, the variation value stays
low since the working time does not change much.

Like the stability tests performed in sections 5.3.2 and 5.3.3, these tests indicate the
steadiness of the parallel algorithms on GPU for varying alphabet lengths and can be
valued as a decisive factor for numerous applications.

5.3.5. Mobile unit tests performed on Nvidia Jetson TX2

Our tests were repeated on Nvidia Jetson TX2, a mobile computing platform, and this
platform was compared to the desktop computer card. The specifications of the two cards
we have used in our tests can be seen in table 5.10.

Nvidia GeForce GTX 1080 Ti Nvidia Jetson TX2

CUDA cores 1500MHz 3584 cores 1300MHz 256 cores
RAM 11 GB 352-bit GDDR5X 8 GB 128-bit LPDDR4
Power Consumption 250 W 7.5 - 15 W
Price $ 1,239 $ 299

Table 5.10: The specifications of the hardware tested.

As can be seen from the table 5.10, although Nvidia Jetson TX2 has a lower computing
power compared to Nvidia GeForce GTX 1080 Ti, it is much more efficient in terms
of power consumption. When we consider the average operation power consumption as
around 11.5 W [97], the Jetson TX2 has 5% power consumption of the GTX 1080 Ti.
Considering that Jetson TX2 is an embedded system-on-module (SoM) and GTX 1080
Ti requires additional peripherals to function, it is safe to say that the difference in power
consumption is expected to be more than 20 fold. When reviewing the performance of the
Jetson TX2, these points need to be considered for a fair comparison.

We benchmarked the Jetson TX2 with the tests that were performed on GTX 1080 Ti in
section 5.3.2, and compared the performance of two devices. The search tests are carried
using different patterns with 3, 10, 50, and 200 characters, extracted from the 100 MB
structured English text. The text file used in the search operation is constructed from the
Wikipedia data dump.

Results are presented on the tables 5.11, 5.12, and 5.13.
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Jetson TX2 top 5 list
< = 3 < = 10 < = 50 < = 200

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

bndmq4 76.6029 sbndmq2 88.1343 sbndm2 73.4692 fsbndm 70.5400
sbndmq2 138.7765 bndmq2 89.7639 sbndmq2 74.3597 lbndm 70.6075
bndmq2 139.9111 fsbndmq2 89.7701 tndm 74.4925 sbndmbmh 70.6345
fsbndmq2 142.6781 sbndm2 90.2837 bndmq2 74.5494 sbndm 70.6546
sbndm2 145.6219 fsbndm 93.9733 fsbndmq2 74.6377 ildm1 71.8680

Table 5.11: Jetson TX2 top 5 parallel string matching algorithms for each pattern length (<) over
100MB wikipedia text.

Jetson TX2 bottom 5 list
< = 3 < = 10 < = 50 < = 200

Name Time (ms) Name Time (ms) Name Time (ms) Name Time (ms)

smoa 1156.6370 smoa 871.5062 smoa 1072.0115 ag 1453.0983
ldm 1080.9525 ts 595.2252 ag 913.9572 smoa 1205.4846
ww 956.1476 ag 541.0140 ts 779.2892 fdm 766.2142
bfs 753.8951 fdm 533.6792 bfbs 622.5566 kr 526.5508
ag 730.0417 ldm 484.9097 fdm 594.7779 ksa 445.1425

Table 5.12: Jetson TX2 bottom 5 parallel string matching algorithms for each pattern length (<)
over 100MB wikipedia text.

Jetson TX2 constant 5 list

Name
Time (ms)

m=3 m=10 m=50 m=200

bf 236.3945 238.0761 237.5805 244.1697
dfah 276.8970 280.6578 274.3632 286.8196
bndmq4 76.6029 97.4885 81.7373 99.5955
kmp 255.5782 226.6539 239.6609 243.4364
mp 254.9024 225.2835 239.2712 244.0607

Table 5.13: Jetson TX2 most stable 5 parallel string matching algorithms for each pattern length
(<) over 100MB wikipedia text.
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Best performing algorithms table 5.11 lists different tags compared to the corresponding
test performed on the GPU. Still, both rankings are consistent category-wise, most of the
algorithms listed here are automata-based, Backward Nondeterministic DAWG Match-
ing (2.1.3.3) variants. Especially the variants employing q-grams approach like Back-
wards Nondeterministic DAWG Matching with q-grams (2.1.3.19), Simplified BNDM
with q-grams (2.1.3.20), and Forward Simplified BNDM with q-grams (2.1.3.17) display
improved performance on Jetson TX2 platform.

The average runtime of the top 5 algorithms table 5.11 is approximately 91 ms, when
compared to 12ms, which is the average of GPU top 5 given on the table 5.2, Jetson TX2
comes out 7.5 times slower than the GPU. However, when the power consumption factor
is added to the equation, 20 times less power consumption of Jetson TX2 makes it 2.5
times more efficient than the GPU device tested.

On the downside, the initial cost of the Jetson TX2 system for the same amount of comput-
ing power is worse, the GPU device used is approximately 4.2 times more expensive, but
performs 7.5 times better for a single unit. The Jetson TX2 unit is 80%more expensive for
the initial cost. Although, when the costs of peripheral units are added, a typical computer
system running with the mentioned GPU costs around $2,000. This value puts the TX2
cost much closer to the GPU unit, only 10% more expensive.

Overall results indicate a significant work-per-watt ratio for Jetson TX2 and put the device
in a favorable position for string matching operations.

5.3.6. The Parallelism Granularity Test Results

To acquire a good balance between efficient thread utilization and parallelism, a good
granularity factor must be determined. In order to do that, we have performed 12 different
stride factor tests for 4 different patterns on the 100 MB structured text file. In our tests,
base stride length is a multiple of pattern length, and it is further modified by the selected
factor. The reasoning behind selecting a constant, pattern sized base stride length is
simple. Statistically, the first comparison of the search operation has a high probability of
mismatch, and this phenomenon is observed during our tests too. Many string matching
algorithms are improved to the point that they do full pattern length shifts after the first
mismatch, meaning they process the given text string in pattern sized jumps. Portioning
out the text into pattern sized string pieces allows these algorithms to perform efficient
shifts without wasting read operations on small substrings. In practice, this strategy
improves the performance of the majority of algorithms. The stride factor can be vaguely
understood as the number of work packets assigned to each thread. Table 5.14 indicates
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that the lower factors of stride length results in poor performance due to under-utilization,
while the higher factors also degrade performance because of reduced parallelism. There
is a sweet spot between 8 to 15 times for the most of the algorithms presented on table 5.14.
We have used the factor of 10 in our other tests to get peak performance granularity-wise.

5.3.7. Constant Memory Test Results

We carried out constant memory tests on the 100MB genome dataset with 4 different
patterns lengths: These patterns contain 10, 20, 50, and 800 characters.

The small size of the constant memory limits its usage possibilities for the string matching
problem, despite the high number of read-only access to data sources. For example, the
text string used in our tests takes a large amount of memory space and does not fit into
space reserved for constant memory. As a result, we have used constant memory space to
store our pattern strings. For these tests, the patterns are transferred into constant memory
instead of global memory, and kernel transactions are modified to use this memory space.
After performing tests and looking at the average runtimes given on table 5.15, the results
suggest that there is no significant performance difference when using constant memory.

Still, there are some outliers performing better with constant memory usage. These
algorithms are presented in table 5.16.

A few algorithms display noticeable performance gains, especially on short patterns, but
even these gains gradually decrease and almost disappear on the longest pattern test. Still,
if these algorithms are planned to be used, constant memory storage can be exercised for
the potential performance gains.

5.3.8. Shared Memory Test Results

Shared memory is a memory segment superior to global memory in terms of access speed.
Its impact on algorithm performance is examined during our tests. Since it can speed up
the repetitive accesses to the samememory region, each algorithm kernel block is arranged
to transfer the data it will process to the shared memory section reserved for it.

When this scenario was tested, instead of a decrease in working time, there was an
increase, meaning the performance is degraded. This is an expected result, given the
algorithm characteristics:
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Kernel times (ms) for different stride factors
 Tag         Name                                          1 2 3 6 9 12 15 30 60 120 150
 bf          Bruteforce                                    5.1671 5.1754 5.1760 5.1780 5.1776 5.1785 5.1766 5.1770 5.1773 5.1829 5.1773
 bfb         Bruteforce block                              10.4847 7.9903 7.2194 6.5729 6.6224 6.7905 7.0072 8.3807 8.6354 11.1742 12.8924
 bfbs        Bruteforce block shared                       9.8287 7.4124 6.5947 5.7822 5.5313 5.4052 5.3320 5.1908 5.1846 6.7309 6.7071
 mp          Morris Pratt                                  14.9288 12.4246 11.6599 10.9195 10.9171 11.0967 11.2455 11.8337 12.2151 13.8776 15.6797
 kmp         Knuth Morris Pratt                            14.9380 12.4236 11.6619 10.9165 10.9775 11.0955 11.2451 11.8306 12.2107 13.8819 15.6847
 simon       Simon                                         28.7933 19.0938 15.9713 12.6539 11.8243 11.4939 11.3289 11.7533 11.7731 12.6386 13.6887
 dfa         Det. Finite Automaton                         40.5894 28.2631 22.9177 17.8172 16.3458 15.7572 15.6029 16.0958 15.7992 15.7941 16.6280
 bm          Boyer Moore                                   10.3113 6.5763 5.2542 5.3725 5.4618 5.5730 5.7177 6.5910 6.7786 7.8939 8.9111
 ag          Apostolico Giancarlo                          22.4853 13.4570 12.1341 9.3335 8.5474 8.2141 8.0096 7.8015 7.8438 9.8757 11.2265
 hor         Horspool                                      11.8220 8.1584 7.1300 6.3749 6.2151 6.2355 6.3417 7.1733 7.2710 8.4991 9.5766
 zt          Zhu Takaoka                                   22.8672 12.0132 9.4441 9.8399 10.1299 10.3686 10.6319 11.9218 12.0531 12.1374 12.1739
 kr          Karp Rabin                                    3.9346 2.9713 2.8867 3.4064 4.0014 4.6062 5.2086 8.2562 8.5771 9.8551 12.9047
 qs          Quicksearch                                   14.4442 7.9683 6.0535 5.4868 5.3416 5.0580 4.9625 5.4944 5.4380 6.7290 7.6448
 om          Optimal Mismatch                              20.8013 11.2083 8.4390 6.6878 6.2576 5.8600 5.7109 5.9460 5.7880 7.3051 8.0840
 ms          Maximal Shift                                 27.1669 14.5611 10.8935 8.4887 7.8348 7.2078 6.9697 6.7361 6.5045 8.0695 8.3204
 smith       Smith                                         13.6797 7.9621 6.1095 5.8308 5.8050 5.8291 5.8346 6.7833 6.8283 7.3298 7.7793
 ac          Apostolico Crochemore                         15.0714 11.4889 10.2307 9.0822 8.9052 8.9818 8.9508 9.7027 9.8745 12.7404 12.5387
 raita       Raita                                         7.5343 5.0291 4.2104 4.0857 4.1273 4.2463 4.4037 5.3303 5.4400 7.8698 9.0920
 tunedbm     Tuned Boyer Moore                             24.5196 20.0914 14.2823 10.7845 9.8242 9.4754 9.3567 9.5316 9.9133 10.1013 10.1285
 so          Shift Or                                      41.0770 28.4429 23.0100 17.9005 16.4239 15.8369 15.6189 16.1091 15.8678 15.8619 16.7875
 sa          Shift And                                     37.6204 28.4408 23.0719 17.9010 16.4228 15.8449 15.6176 16.1102 15.8681 15.8673 16.7954
 nsn         Not So Naive                                  3.8861 4.5927 4.6086 4.8336 5.1351 5.4326 5.7281 7.1887 7.4938 9.6598 11.3452
 col         Colussi                                       16.6689 14.8716 13.2462 11.7453 11.4373 11.4607 11.4051 12.0190 12.2058 13.7950 15.0331
 tw          Two Way                                       13.8391 11.0688 9.2609 7.6319 7.3151 7.2648 7.3275 8.1203 8.1855 10.3662 11.9102
 smoa        SM Ordered Alphabet                           14.5005 11.6431 9.9122 8.1935 7.9259 7.8705 7.9704 8.9484 8.9350 10.5102 11.3912
 gg          Galil Giancarlo                               16.7075 14.8876 13.2625 11.7483 11.4543 11.4836 11.4274 12.0171 12.2188 13.7155 14.7866
 rf          Reverse Factor                                17.1769 16.7863 11.9414 9.2485 8.4296 8.0751 7.9111 7.8608 7.6084 7.5282 7.5938
 skip        Skip Search                                   17.9930 10.9616 14.9690 11.6247 10.6142 10.1254 9.8943 9.7334 9.5330 9.3516 9.3029
 tbm         Turbo Boyer Moore                             9.5256 6.5770 5.2533 5.3736 5.4592 5.5753 5.7201 6.5922 6.6924 7.8561 8.8781
 kmpskip     KMP Skip Search                               12.4100 7.9943 9.5415 8.4171 8.3899 8.5822 8.8269 9.7521 10.1882 10.2276 10.2167
 br          Berry Ravindran                               9.6850 6.2074 4.8934 4.3102 4.1608 3.8242 4.1523 4.7394 4.6415 5.8782 6.6997
 fs          Fast Search                                   9.2713 6.4184 5.1404 5.6488 6.0752 6.4373 6.7758 8.0138 9.0099 9.6559 9.7624
 fdm         Forward DAWG Matching                         71.7002 51.0376 42.5043 34.5391 31.3384 29.8581 29.1308 28.6461 27.8645 27.4548 27.3197
 bndm        Backward nondet. DAWG Matching                16.2991 11.0557 10.6433 9.8891 9.1191 8.7938 8.7293 8.6751 8.5039 8.4701 8.5626
 ssabs       SSABS Algorithm                               10.1333 6.9415 4.9988 5.2790 4.7428 4.5937 4.7905 5.3645 5.3591 6.6786 7.6235
 ts          Tailed Substring                              14.0173 14.0826 13.9369 15.4564 16.3200 16.5434 16.5631 15.3883 12.9272 11.9587 12.2994
 bom         Backward Oracle Matching                      31.3083 21.2970 16.5209 12.7377 11.5078 10.8839 10.4902 9.8080 9.5315 9.8251 9.8884
 ww          Wide Window                                   13.3386 9.0926 7.7378 6.5707 6.3798 6.2683 6.0846 5.7764 6.1964 9.1988 10.7037
 rcol        Reverse Colussi                               15.0996 8.3503 10.3971 8.3628 7.8830 7.8294 7.7962 8.1090 8.3198 8.7583 8.7365
 svm         Shift Vector Matching                         15.6223 9.4875 7.3987 7.1531 7.0727 7.0532 7.1370 7.4303 7.4348 7.4605 7.4915
 ldm         Linear DAWG Matching                          27.9260 19.2598 16.6748 14.4635 14.3668 14.2811 13.8804 13.2418 14.5003 22.1287 26.3385
 tndm        Two-way nondet. DAWG Matching                 21.3108 20.5819 13.8967 10.7233 9.7458 9.3183 9.0957 8.9919 8.7479 8.6609 8.6422
 tvsbs       TVSBS                                         22.2747 14.1416 9.8301 8.5422 7.1233 7.8523 7.0661 7.7981 7.8241 7.8297 7.8811
 sbndm       Simplified BNDM                               22.7919 12.8767 16.0392 13.2313 14.3090 13.6849 14.4930 15.7030 15.8530 16.0138 16.4118
 lbndm       Long BNDM                                     19.5410 11.7745 12.5415 9.7518 8.9319 8.6316 8.4165 8.4561 8.2707 8.2250 8.2094
 fjs         Franek Jennings Smyth                         11.4811 10.2626 7.6212 6.3307 6.5574 6.5835 6.9313 7.9871 8.4101 8.6022 8.6154
 sbndm2      Simplified BNDM /w loop unrolling             22.8690 13.2135 16.3044 13.5667 14.7000 14.1261 14.8837 15.9089 16.1504 16.1910 16.1871
 fndm        Forward nondet. DAWG Matching                 17.7703 9.1956 12.0349 9.1729 8.3034 7.9144 7.7075 7.6519 7.4060 7.3694 7.3632
 tsw         Two Sliding Window                            24.0496 15.0686 10.4902 9.1385 7.5487 8.3169 7.4736 8.2757 8.2519 8.2367 8.2867
 bfs         Backward Fast Search                          178.8744 109.3281 90.5356 56.7785 46.4477 39.4158 36.8212 26.2257 20.7737 17.8026 16.6573
 bndmq2      BNDM with loop unrolling                      19.2271 10.7458 13.5764 11.1347 12.1467 13.0446 13.8619 15.7053 15.9211 16.0203 16.0238
 sbndmbmh   Simplified BNDM with Horspool Shift           19.1681 10.8352 13.4948 11.8317 12.9422 13.7468 14.1130 15.6075 15.7916 16.0162 16.3498
 pbmh        Boyer Moore Horspool using Probabilities      9.4807 7.1094 5.6316 5.6669 5.4912 5.5078 5.6278 6.5128 6.6121 7.9857 8.9009
 trf         Turbo Reverse Factor                          11.9395 9.7684 6.9741 6.5042 5.9916 5.7831 5.7053 5.8396 5.6793 5.8482 5.9751
 bww         Bitparallel Wide Window                       0.5238 0.2670 5.1211 6.2940 6.4606 6.6059 6.7959 7.3196 7.5267 7.5650 7.5815
 ebom        Extended Backward Oracle Matching             37.9217 20.8187 21.1009 18.5191 19.2979 18.1226 19.1311 20.3659 21.9094 23.9442 24.5605
 fbom        Forward Backward Oracle Matching              19.1060 10.4080 8.5611 9.7644 10.5980 9.9647 10.4208 11.7088 12.6345 13.2371 13.3752
 sebom       Simplified Extended Backward Oracle Matching  10.1885 5.8486 5.7385 5.1295 5.4986 5.3291 5.8130 6.8400 6.8751 7.1734 7.3480
 sfbom       Simplified Forward Backward Oracle Matching   7.0314 4.3687 3.4347 3.1124 3.1855 2.9920 3.1851 3.7583 3.8458 4.0148 4.0974
 bmhsbndm   Horspool with BNDM test                       15.0872 8.5104 7.5539 8.4900 8.3025 8.2176 8.2072 8.4875 8.4424 8.4720 8.5310
 faoso2      Fast Average Optimal Shift Or                 19.2967 19.4648 13.2954 12.4700 8.5531 8.8152 9.1195 9.1589 8.3318 8.1569 8.2152
 aoso2       Average Optimal Shift Or                      22.2899 14.8065 10.1128 10.3901 8.6462 8.8371 8.1676 8.6601 8.3754 8.5144 8.7649
 ildm1       Improved Linear DAWG Matching 1               11.2710 5.0117 6.6623 6.2146 5.7265 5.5244 5.4444 5.5618 5.4344 5.5014 5.5899
 ildm2       Improved Linear DAWG Matching 2               11.3155 5.3873 7.6616 6.2151 5.7277 5.5243 5.4447 5.5586 5.4320 5.4951 5.5911

Table 5.14: The algorithm runtimes (ms) for different stride length factors.
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Constant Memory Average Speedups
Pattern Length (m) Speed Factor

10 1.0210
20 1.0158
50 1.0065
800 0.9974

Table 5.15: Average speed factors with constant memory usage compared to global memory.
Tested on 100 MB DNA dataset.

Constant Memory Speedup Top 5
< = 10 < = 20 < = 50 < = 800

Name Speedup (%) Name Speedup (%) Name Speedup (%) Name Speedup (%)

mp 28.13 mp 24.46 pbmh 16.57 rcol 0.72
kmp 28.00 kmp 24.41 mp 11.63 tbm 0.60
skip 21.78 pbmh 19.00 kmp 11.59 kmpskip 0.41
pbmh 21.75 skip 18.89 ac 10.75 smoa 0.40
ac 13.88 fdm 16.95 simon 10.21 mp 0.23

Table 5.16: Top 5 algorithms with improved performance when constant memory is used.

Although the algorithms we examined perform searches using a variety of strategies,
it can be seen that almost all of them follow some basic principles of string matching.
One of these principles is to avoid excessive reading and to make maximum use of the
search information obtained by reading each character. Many algorithms avoid repetitive
comparisons of the same character by encoding the information gained about the search
state into various variables and arrays. The absence of recurring access to the same
memory region prevents us from taking advantage of the shared memory.

Also, since each global memory reading process will turn into one global memory reading
plus one shared memory reading operation, the second method is slower than the first for
single accesses. Even though the shared memory reading process is fast, it is not instant.
In addition, since most algorithms are designed to make big jumps during the search
operation, they do not need to read all characters of the text when processing it. Since
we cannot predict which characters are to be read and which are to be skipped before the
actual comparison happens, all the text needs to be transferred to shared memory prior to
the search, and many unnecessary memory transactions need to be done.

Thus, combining this reasoning with our initial test results, it was understood that moving
the search text to shared memory would cause more harm than good, and shared memory
was not utilized for this purpose.
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Algorithm Name Pattern Size Global Memory (ms) Shared Memory (ms) Speedup

SSABS

3 16.1650 12.1057 25.11%
6 14.2783 11.7297 17.85%
10 13.1251 11.5359 12.11%
20 12.5579 11.4647 8.71%

Knuth Morris Pratt

3 21.8544 16.1452 26.12%
6 21.8586 16.6721 23.73%
10 19.8805 16.4145 17.43%
20 20.9353 17.5718 16.07%

Simplified BNDM /w loop unrolling

3 24.5025 12.1523 50.40%
6 17.6477 11.7191 33.59%
10 15.0924 11.6362 22.90%
20 13.4188 11.4281 14.84%

Table 5.17: Comparison of total search operation times based on the memory type. Preprocessed
data is stored on global and shared memory for these test cases

Instead, we have chosen a few algorithms with the auxiliary data structures resulted from
their preprocessing steps to test the feasibility of shared memory.

These data structures are frequently accessed during the operation of kernel. The caching
mechanism speeds up the fetching of frequently accessed data, but the cache storage is
not guaranteed through the lifetime of kernel. Shared memory offers controlled access to
data compared to cache with similar low-latency performance.

To take advantage of shared memory, first we have transferred the auxiliary data structures
by grouping them under a monolithic data block ın memory. This concatenation operation
is necessary to lower the number of uncoalesced accesses at the data termination points
of each variable. After the kernel initialization, the threads are instructed to transfer these
data structures to shared memory before the searching operation begins. A block-wide
synchronization lock is added following the shared memory transaction in order to make
sure the entire data is transferred successfully.

We have selected the SSABS algorithm(2.1.1.33), Knuth Morris Pratt Algorithm(2.1.1.3),
and Simplified BNDMwith Loop Unrolling algorithm(2.1.3.9), and evaluated their perfor-
mance using multiple patterns on structured English text. Our test results are presented on
table 5.17. On this table, the comparison of the kernel using global memory for auxiliary
data and the kernel modified to use shared memory for the same data is given for different
patterns. Also, the speed-up acquired in each test scenario is reported. The results show
that there are varying amounts of speed-ups for different algorithms when using shared
memory. The performance gain is always positive and varies between 8.71% and 50.40%,
and averages at 22% for all tests. The improvement starts bigger for shorter pattern lengths
and diminishes as the pattern length gets longer.
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Figure 5.12: Speed-up factors of overlapping for different alphabet and pattern sizes, without
pinned memory usage.

Overall, the positive impact of the shared memory usage for auxiliary data is apparent in
the test results.

5.3.9. Overlapping Test Results

Another one of the optimization techniques tested is the technique called overlapping. The
data transfer units on the graphics processor and the kernel units can work without getting
blocked by each other. In this technique, the fact that the memory transaction unit being
independent of the kernel processor unit is used to reduce the downtime of cores. In order
to use this feature, the data to be transferred to the graphics card is transferred in small
batches, and after the transfer of each piece, the kernel that will process the related part
is called. When the data is transferred and processed sequentially, the kernel processors
idle during the data transfer and wait until the memory is ready. In the case that the data
is partitioned into pieces and kernel operations are thrown in between, the hardware can
be used more efficiently since the kernel process can start from the moment the transfer
of the first piece is completed. This way, most of the kernel process can be overlapping
with data transfer and hidden under the transfer in a sense.

For the overlapping tests, stream queues of the CUDA are used. We have evaluated 20 test
cases to benchmark overlapping strategy. The patterns with the length of 3, 10, 50, and
200 characters are searched on text strings constructed from several alphabet sizes. These
alphabets consist of 2, 8, 16, 64, and 128 characters.

The overlapping test results on the figure 5.12 indicate an average speed-up factor of 1.46,
which means the algorithms running with overlapping are 46% faster in general. The
speed-up is noticeably higher for the binary alphabet results (f = 2), peaking at 89%, and
averaging at 78%.
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Figure 5.13: Speed-up factors of overlapping for different alphabet and pattern sizes, with pinned
memory usage.

Another interesting result is observed while testing overlapping strategy along with the
pinned memory usage and presented in figure 5.13. Compared to pinned memory use
without overlapping, using both strategies yielded extra performance gain. The average
speed-up of overlapping with pinned memory tests goes up to 62% from 46% of no
pinned memory usage case. Also, an upward trend on speed-ups is observed to a point
for combined test cases, while the overlapping alone shows decreasing performance gains.
These results can be seen on the figure 5.13.

Overall, the overlapping strategy is a widely implemented strategy to improve performance
and introduced a positive impact on our use case too. The overlapping strategy is also
important for online operation since the memory transaction and search phase can be
layered efficiently. This approach has the potential to hide a large chunk of operation.
For the best-case scenario, when the memory transaction takes as long as the search
operation, the theoretical speed-up is 50%, because half of the operation can be hidden
behind the other half. Our overlapping implementation achieved 46% speed-up on some
tests compared to normal, which is very close to the theoretical maximum.
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6. CONCLUSION

In this work we presented our main contribution; the CUSMART library. The CUDA
powered String Matching Research Tool (CUSMART) is a parallel string matching library
developed using NVIDIA’s CUDA toolkit and C++ language. Our motivation was to
compile a codebase of parallel string matching algorithms to aid studying, testing, and
developing string matching algorithms using GPUs. We have demonstrated the implemen-
tation details of the library along with reasoning behind design decisions and explained
the steps necessary to add new algorithms to the library in order to compare with existing
ones. Our library contains over 85 parallel string matching algorithms implemented using
CUDA alongwith their CPU versions. To best of our knowledge, a parallel stringmatching
library of this caliber was never done before.

Using our library, we have also evaluated the parallel string matching algorithms in several
test scenarios to see how they behave under different use cases. These test scenarios are
constructed using different text sizes, different pattern sizes, and different alphabets. Using
a diverse set of configurations, we have tried to simulate many different application fields.
Aside from task specific parameters, many system and architecture specific features like
different memory types, overlapping, and different stride lengths are also evaluated. On
average, a speedup factor of 40 is achieved on GPU versions of string matching algorithms
compared to CPU versions. Our results indicate that the GPU devices are great candidates
to process string matching heavy workloads. They can be used as the main computation
units for the job as well as the supporting devices to sideload some of the operation. On a
composite operation with different types of tasks, string matching job can be handed out
to the GPU device, making the CPU available for other tasks.

One of our main objectives was to evaluate the feasibility of string matching operation
on GPU unit as an extra computation resource instead of main operational unit. When
we exclude the specialized high performance computing hardware, there are hundreds
of millions of desktop computers with graphics processing units already present in use
today. The GPU devices used to be seen as extra hardware not mandatory for the operation
of computers. Nowadays, they are essential parts of the computer system. Besides
the discrete GPU devices with continuously increasing power, marketed to mainstream
audience, most of the processor chips sold by the CPU manifacturers come with powerful
integrated GPUs. It is not uncommon to encounter multiple GPUs on a desktop computer
today. Using this untapped computing potential of GPU devices on other applications
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besides graphics computing is beneficial for system performance. Consumer applications
and small-scale workstations can leverage the power of off-the-shelf GPU devices to gain
a boost of performance easily thanks to their affordability and availability.

The GPU accelerators also offer superior performance per watt on the high-end of the
computing spectrum. There is an actively maintained list of supercomputers worldwide
called Green500 [75], and this list rates supercomputers by their energy efficiency. It is no
surprise that 90% of the top supercomputers on the Green500 list employs GPU devices
for their computing needs.

On the other end of the computing spectrum, GPU accelerators also have significant
presence on mobile platforms. Our Jetson test results demonstrated increased power
efficiency compared to the GPU device on workstation. The Jetson time benchmarks
are 8 to 10 times slower than GeForce device. But when the impressively low power
consumption of the Jetson device is considered (which is 20 times less than the tested
GeForce device on average), operation efficiency becomes superior. After comparing the
running costs of both GPUs, the Jestson device proved to be around 2.5 times more power
efficient during our tests. These mobile devices offer top-notch performance for operations
carried with limited resources.

We have tried to showcase the capabilities of modern GPUs for the exact string matching
operations in this study. During our research, the lack of a large codebase on the parallel
string matching subject became apparent, and the CUSMART library was born as a result
of our pursuit. The CUSMART library constantly gained new features and improvements
for the duration of our study. However, there is still work to do to further the project.
Due to our time constraints and the magnitude of the project, we were only able to
apply the generic optimization techniques for GPU programming. These optimizations
yielded a substantial amount of performance gain but there is still room to improve. It
is possible to perform a tighter analysis on each implemented algorithm for a chance
to discover more performance improvements. CUDA programming model exposes the
detailed customization options for many of its functioning parts, which means there are
lots of potential optimization avenues to explore. These possibilites can be examined in
future studies.

Still, at its current state, the CUSMART library test results demonstrate the feasibility of
the string matching operation on GPU devices.
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