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Abstract 

Differential item functioning (DIF) and test equating are two important subjects for 

fairness in reported test scores. However, they have been treated separately in the 

psychometric literature. Hence, studies investigating the relationship between DIF 

and equating are quite rare. Moreover, there is no study addressing this relationship 

in multidimensional perspective, yet. The purpose of this study is to reveal the 

relationship between DIF and equating in multidimensional perspective, and 

contribute to the literature. In order to reveal this relationship accurately and clearly, 

population invariance of equating was investigated. The data used in the study were 

generated in accordance with the simple structure multidimensional item response 

theory (SS-MIRT) model. Four different equating methods were used in the study: 

simple structure-multidimensional item response theory observed score, 

unidimensional item response theory observed score, unidimensional item 

response theory true score and equipercentile equating. The performances of the 

equating methods were compared according to their population invariance under 

various simulation conditions (differential form DIF, correlation between dimensions, 

group mean ability differences between two forms). According to the results, the 

method that most accurately reflects the relationship between DIF and equating is 

the multidimensional equating method for the 0.5 correlation condition. On the other 

hand, under 0.8 and 0.95 correlation conditions, all methods give similar results 

except the results of equipercentile equating method at scores with low frequencies. 

Also, group mean ability difference between two forms has no effect on the 

population invariance of the methods.     

 

Keywords: differential item functioning, DIF, test equating, multidimensional item 

response theory, multidimensional test equating, population invariance, equating 

invariance.   
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Öz 

Değişen madde fonksiyonu ve test eşitleme çalışmaları test puanlarının adil 

değerlendirilmesine hizmet etmektedirler. Ancak bu iki kavram psikometrik 

literatürde çoğunlukla ayrı ayrı ele alınmıştır. Literatürde değişen madde fonksiyonu 

ve eşitleme arasındaki ilişkiyi araştıran çalışma sayısı oldukça azdır. Dahası bunu 

çok boyutlu perspektifte ele alan çalışmaya henüz rastlanmamıştır. Literatürdeki bu 

eksikliği gidermeye yönelik olarak bu araştırmanın amacı değişen madde 

fonksiyonu ve eşitleme arasındaki ilişkiyi çok boyutlu perspektifte ortaya koymaktır.  

Bu ilişkiyi doğru ve açık bir şekilde ortaya koyabilmek için eşitlemenin popülasyon 

değişmezliği özelliği araştırılmıştır. Çalışmada kullanılan veriler basit yapılı-çok 

boyutlu madde tepki kuramına uygun olacak şekilde üretilmiştir. Çalışmada dört 

farklı eşitleme yöntemi kullanılmıştır: basit yapılı-çok boyutlu madde tepki kuramı 

gözlenen puan, tek boyutlu madde tepki kuramı gözlenen puan, tek boyutlu madde 

tepki kuramı gerçek puan ve eşit yüzdelikli eşitleme. Çalışmada kullanılan eşitleme 

yöntemlerinin performansları çeşitli simülasyon koşulları altında (formlar arası 

farklılaşan değişen madde fonksiyonu, boyutlar arası korelasyon, formlar arası grup 

yetenek ortalamaları farkı) popülasyon değişmezlik sonuçlarına göre 

karşılaştırılmıştır. Araştırmanın sonuçlarına göre değişen madde fonksiyonu ve 

eşitleme arasındaki ilişkiyi en doğru şekilde yansıtan yöntem 0.5 korelasyon koşulu 

için çok boyutlu eşitleme yöntemidir. 0.8 ve 0.95 korelasyon koşullarında ise, eşit 

yüzdelikli eşitleme yönteminin düşük frekanslı puanlarda verdiği sonuçlar dışında 

tüm yöntemler benzer sonuçlar vermektedir. Formlar arasındaki grup yetenek 

ortalaması farkının ise yöntemlerin popülasyon değişmezlik sonuçları üzerinde bir 

etkisi bulunmamaktadır.         

    

Anahtar sözcükler: değişen madde fonksiyonu, DMF, test eşitleme, çok boyutlu 

madde tepki kuramı, çok boyutlu test eşitleme, popülasyon değişmezliği, eşitleme 

değişmezliği.   
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Chapter 1 

Introduction 

Test scores are commonly used to provide information when making 

important decisions. Some of these decisions focus at the individual level, some 

focus at the institutional level, and some others focus at the public policy level. 

Making decisions in these contexts require tests to be applied on multiple occasions 

(i. e. test dates). If same test items are administered on each occasion, examinees 

may inform each other about the test items, or examinees who tested twice may 

remember the items. In both cases, security problems occur. To handle these 

problems, a different set of test items can be administered to the examinees who 

are tested on different test dates. This different set of test items is referred as a test 

form. There may be differences in difficulties of the test forms even if they are built 

to be similar in their content and difficulty.  

Equating is a statistical process to adjust test scores on different test forms, 

and gives us the opportunity of using test scores interchangeably by adjusting 

scores for difficulty differences. It should be emphasized that scores are adjusted 

for form difficulty differences not for form content differences in an equating process. 

After a successful equating process, it can be said that the equated test scores have 

the same meaning. That is, for equated scores, it does not matter to whom and 

when the test was administered. To be able to conduct equating, test forms should 

be as similar as possible in content and statistical characteristics, otherwise this 

statistical process cannot go beyond linking. Although, linking and equating use 

similar statistical procedures, their purposes are different. Specifically, linking relate 

tests that are built to be different, while equating adjusts test scores on different 

forms that are built to be similar in content and statistical characteristics (Kolen & 

Brennan, 2014). 

In order to conduct equating properly, five basic requirements should be met 

in addition to the techniques used in test linking: (1) same construct requirement, 

(2) equal reliability requirement, (3) symmetry requirement, (4) equity requirement, 

and (5) population invariance requirement. According to Dorans and Holland (2000) 

“population invariance” is one of the most important requirements of equating. This 

requirement means that equating function used to link scores obtained from test 

forms should be population invariant. That is, it does not matter which subpopulation 
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is used when equating test forms by using the equating function (Dorans & Holland, 

2000). In other words, the function used to equate test scores should be the same 

for various populations or subpopulations. Otherwise, when equating functions of 

populations or subpopulations differing systematically, interchangeability of test 

scores is questionable (Kolen, 2004).  

Dorans and Holland (2000) state that equating invariance is never exact 

because there are always some subpopulation effects on equating function. 

However, just for the test forms which are reliable and parallel in form and content, 

it may hold approximately. Flanagan (1951) also states that differences in content 

and reliability across forms can cause population dependence of equating. Green’s 

(2003) assertion also confirms Flanagan’s belief about the relationship between 

content, reliability and population dependence of equating. In a following study, 

Kolen (2004) indicates the same by referring equating theory and empirical 

research.  

Lack of equating invariance means that difference between the difficulties of 

two forms is not consistent across subpopulations. In other words, there is an 

interaction among the relative difficulty of two forms and subpopulation membership. 

In this case, scores obtained from two forms are not interchangeable and hence 

treating subpopulations the same by using same conversions is a concern for 

fairness and score equity (Dorans, 2004, 2008).  

Differential item functioning (DIF) is another facet of fairness. DIF occurs 

when probability of correct response to the same item for examinees at the same 

ability level differs according to group membership (Camilli & Shepard, 1994). Lack 

of DIF, or presence of test fairness in DIF perspective, requires the regression of 

item score onto the total score to be invariant across subpopulations. Hence, 

subpopulation invariance is also a key concept in a DIF study (Dorans, 2004). 

Although equating and DIF are both interested in subpopulation invariance, they 

have been treated separately in psychometric perspective (Huggins, 2012, 2014).  

Item bias may occur when test scores are obtained as if they are measuring 

only a single ability but in fact are capable of measuring multiple abilities. Let us 

assume that there are two subpopulations having different underlying ability 

distributions and test items that are able to measure these multiple abilities. In such 
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a case, using unidimensional item response theory (UIRT) and getting test scores 

as if they reflect only one ability may cause item bias (Ackerman, 1992). In the case 

of multidimensional DIF, there are multiple traits relevant to the test’s purpose and 

some test items are sensitive to irrelevant or nuisance traits (Mazor, Hambleton & 

Clauser, 1998). In fair test use, there are not any strict rules aiming to measure only 

one dimension; on the contrary, multidimensionality is very useful for fair test use 

but is confusing for DIF (Dorans, 2004). Because, as mentioned above, the 

multidimensional structure of the item increases the potential of existence of DIF. In 

other words, we need multidimensionality for fairness in assessment. However, it is 

very difficult to mention the lack of DIF in this case.  

For common-item nonequivalent groups (CINEG) design, that is frequently 

used in actual applications and also used in this research, DIF in common items has 

the potential to result in systematic equating error and cause the lack of equating 

invariance (Kolen & Brennan, 2014). Hence, to represent the relationship between 

DIF and equating clearly and accurately, equating invariance should be investigated 

in addition to DIF analysis. DIF focuses on items whereas equating focuses on 

reported scores. Therefore, the assessment of DIF is not sufficient alone to 

represent the effect of DIF on reported scores and there is a need for assessment 

of population invariance of equating. 

In most cases, there is a need for an examinee to have more than one ability 

to answer an item correctly. The necessity of having more than one ability is called 

multidimensionality. We need multidimensionality for fair assessment but the 

presence of multidimensionality has the potential to cause DIF and equating 

dependence. In most cases, practitioners use unidimensional methods to score and 

equate tests that are multidimensional. Currently, multidimensional methods are 

popular and getting more attention in scoring and equating (Lee & Brossman, 2012; 

Lee & Lee, 2016; Lee, Lee & Brennan, 2014; Kim, Lee & Kolen, 2020; Peterson & 

Lee, 2014).  

Aim and Significance of the Study 

Standard tests used to measure student achievement mostly require multiple 

abilities. In this respect, data sets are mostly multidimensional. However, DIF occurs 

when items are related to an undesired dimension other than the desired ones. 
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Therefore, it is unlikely to talk about lack of DIF in the presence of multidimensional 

data. Hence, examining the results of equating conducted with multidimensional 

data under the presence of DIF is an important research topic. In this respect, the 

results of multidimensional equating conducted in the presence of DIF are aimed to 

be discussed in this study. In other words, the goal of this study is to reveal the 

effects of DIF on equating in a multidimensional perspective. On the other hand, in 

the literature, generally unidimensional equating methods have been used to equate 

multidimensional data sets since the multidimensional equating methods are quite 

new and complex to use. However, it is recommended (Lee & Brossman, 2012; Lee 

& Lee, 2016; Lee, Lee & Brennan, 2014; Kim, Lee & Kolen, 2020; Peterson & Lee, 

2014) that equating studies conducted with multidimensional data sets should be 

based on multidimensional equating methods to reduce the equating error. In the 

current study, it is also aimed to compare the performance of multidimensional and 

unidimensional equating methods in the presence of multidimensional data 

structure based on the population invariance of the methods. Thus, the 

performances of multidimensional equating methods are discussed in terms of 

population invariance, and this will make an important contribution to the 

psychometric literature.  

According to the literature review, researches that reveal the relationship 

between DIF and equating are quite rare. One of the most basic studies was 

conducted by Dorans (2004) in Classical Test Theory (CTT) perspective. However, 

this research includes theoretical information only. Hence, in this study, it is aimed 

to prove this theoretical knowledge on different applications. Another basic study 

aimed at dealing with the relationship between DIF and equating invariance was 

conducted in Item Response Theory (IRT) perspective and belongs to Huggins 

(2014). Unlike this study, the relationship between DIF and equating is aimed to be 

examined in a multidimensional perspective in the current study. There are also 

some other studies in which changes were observed in equating errors for 

conditions where DIF exists (Atalay Kabasakal & Kelecioglu, 2015; Demirus & 

Gelbal, 2016; Yurtcu & Guzeller, 2018). However, to reveal the relationship between 

DIF and equating accurately and clearly, population invariance should be examined 

in detail as suggested by Dorans (2004), and Huggins (2014). From this point of 

view, in the current study population invariance is emphasized. On the other hand, 
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multidimensional item response theory (MIRT) equating is an essential study 

subject. However, there is a limited number of studies conducted on this subject yet 

(Lee & Brossman, 2012; Lee & Lee, 2016; Lee, Lee & Brennan, 2014; Kim, Lee & 

Kolen, 2020; Kumlu, 2019; Peterson & Lee, 2014). Moreover, no research has 

appeared so far regarding the relationship between DIF and multidimensional 

equating. Therefore, it is quite important to discuss this relationship in MIRT 

perspective. Also, with the current study, it is aimed to reveal which equating 

methods serve to fair assessment when the data is multidimensional and there are 

some DIF items in the common item set. And, it is also aimed to show what kind of 

drawbacks may arise when an equating method that is inappropriate for a specific 

condition is used.  

Research Questions 

Under the light of the information given above, the goal of this study can be 

clearly stated as to investigate the effect of differential item functioning on population 

invariance of multidimensional IRT (MIRT), unidimensional IRT (UIRT), and 

Equipercentile (EQ) equating methods, when equating multidimensional test forms 

that contain DIF items in common item set.  

Below are the specific research questions:  

1. What is the performance of MIRT equating method compared to UIRT and 

EQ equating methods with respect to the effect of differential form DIF on 

population invariance?  

2. What is the performance of MIRT equating method compared to UIRT and 

EQ equating methods with respect to the effect of correlation between 

dimensions on population invariance?  

3. What is the performance of MIRT equating method compared to UIRT and 

EQ equating methods with respect to the effect of group mean ability 

differences between two forms on the relationship between DIF and 

population invariance?  
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Definitions 

Another point to be mentioned is the definitions of "no-DIF, DIF in both forms, 

and DIF in new form only", which are frequently used in the research. Accordingly, 

“no-DIF” refers to the absence of DIF in both forms. “DIF in both forms” states that 

the same amount of DIF is added in the same direction to the same common items 

of two forms. And, “DIF in new form only” states that while there is no DIF in the 

common items in the old form, DIF is added to the common items in the new form. 

Thus, the difficulties of the common items in the two forms are differentiated from 

each other. And accordingly, these three conditions are collectively defined as 

"differential form DIF".  

Limitations of the Study 

Before proceeding with the literature review, it is desired to mention about the 

time limitation, which was an important limitation of this research. Parameter 

estimation of multidimensional data with concurrent calibration in this process 

required a very long time. Therefore, the research had to be limited to 100 iterations.  

On the other hand, existence of DIF in common items is more problematic 

compared to existence in non-common items in terms of equating invariance results. 

Therefore, in this study, DIF was added only to common items to examine the effect 

of DIF on equating invariance. It can be said that the presence of DIF in common 

items is also a limitation for this research, as the equating is conducted by using the 

common items in CINEG design.  
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Chapter 2 

Literature Review 

This chapter provides a general overview of linking, equating, equating 

methods, equating designs, population invariance of equating, differential item 

functioning (DIF), relationship between equating invariance and DIF, and some 

other important concepts. At the end of this chapter, a detailed literature review is 

also provided.  

Linking and Equating  

Tests are generally used to give information in making important decisions. 

These decisions may focus at the individual level, institutional level, or public policy 

level. Making decisions in these contexts requires tests to be applied on multiple 

occasions. If the same test questions are administered on each occasion (test date), 

some security problems may occur: examinees may inform each other about test 

questions, or examinees who tested twice may remember the questions. To prevent 

these problems, a different collection of test questions can be administered to the 

examinees, who are tested on different test dates. This different collection of test 

questions is referred as a test form. Although test forms are built to be similar in their 

content and difficulty, there may be some difficulty differences between them. 

Equating is a statistical process to adjust scores for these difficulty differences on 

different test forms, and hence gives us the opportunity of using test scores 

interchangeably. It should be noted that equating adjusts scores for form difficulty 

differences not for form content differences. After a successful equating, equated 

test scores have the same meaning. That is, for equated scores it does not matter 

to whom and when the test was administered. To be able to conduct equating, test 

forms should be as similar as possible in content and statistical characteristics 

otherwise this statistical process cannot go beyond linking. Although, linking and 

equating use similar statistical procedures, their purposes are different. Specifically, 

linking relate tests that are built to be different, while equating adjusts test scores on 

different forms that are built to be similar in content and statistical characteristics 

(Kolen & Brennan, 2014). 

In order to conduct equating appropriately, five basic requirements should be 

met in addition to the techniques used in test linking: (a) The Same Construct 
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Requirement, (b) The Equal Reliability Requirement, (c) The Symmetry 

Requirement, (d) The Equity Requirement, (e) Population Invariance Requirement. 

According to population invariance requirement, the choice of (sub) population used 

to compute the equating function between the scores of two forms should not matter. 

In other words, the equating function used to link the scores of old and new forms 

should be population invariant (Dorans & Holland, 2000). This study focuses on the 

population invariance requirement of equating. Because, population invariance 

results are needed to reveal the relationship between DIF and equating, accurately. 

This issue is discussed in detail in the following section.     

Equating Invariance   

The primary purpose of equating is to use test scores, which are obtained 

from different forms interchangeably (Kolen, 2004). To be able to use test scores 

from alternate forms interchangeably, the equating function used to link their scores 

should be invariant across subpopulations (Dorans, 2004; Kolen, 2004). On the 

contrary, when the equating functions of populations or subpopulations differ 

systematically, it is questionable to use test forms interchangeably because it might 

result in a disadvantage for some subpopulations (Kolen, 2004; Powers & Kolen, 

2014).  

According to a large number of researches, it is not possible for an equating 

function to be completely population invariant. This is due to the constant existence 

of an effect on equating functions caused by important subpopulations. Instead, 

population invariance may hold approximately for tests that are parallel in form and 

content and are very reliable. Since, for test scores which suit these conditions the 

subpopulation does not have a very important effect on equating. In conclusion, 

subpopulation invariance never really holds exactly, but under proper conditions it 

may hold to some degree which is accepted to be sufficient (Dorans, 2004; Dorans 

& Holland, 2000; Petersen, 2008). 

Besides, population invariance other important criteria must also be achieved 

to guarantee that a linking is an equating. According to Dorans and Holland (2000), 

there are five basic requirements of equating: (a) tests should measure the same 

constructs, (b) tests should have the equal reliability, (c) the equating function for 

equating the scores of Form 1 to the scores of Form 0 should be the inverse of the 
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equating function for equating the scores of Form 0 to the scores of Form 1, (d) it 

should not make a difference for an examinee to be tested by any of two tests that 

have been equated, (e) equating function used to link the scores of two tests should 

be invariant to subpopulations of examinees. The last requirement is population 

invariance which is the most important one for score equity. In assessing fairness, 

we need to assess subpopulation invariance. If subpopulation invariance does not 

hold to a sufficient degree, linking functions can still be computed but we cannot call 

this linkage as equating although the same statistical computations are carried out 

for both (Dorans, 2004; Dorans & Holland, 2000). It happens because, for saying 

that a linking is as an equating, test scores obtained from alternate forms should be 

interchangeable. In such a situation, the use of equated scores as if they were 

population invariant results in a big mistake in fair assessment. It would be a better 

idea not to conduct equating instead of causing an unfair assessment. To sum up, 

subpopulation invariance is very useful to assess fairness but of course it is not 

sufficient alone for equating. While lack of invariance indicates that a linking is not 

an equating, existence of invariance does not indicate that score interchangeability 

is achieved by equating (Dorans, Liu & Hammond, 2008).  

Examining population invariance of equating is found useful by many 

researchers for all testing programs, which are interested in high-stakes outcomes 

(Brennan, 2008; Dorans, 2004; Kolen, 2004; Petersen, 2008). Assessing equating 

invariance is termed as score equity assessment by Dorans (2004, 2008) and in 

addition to DIF analysis, score equity assessment is expressed as another facet of 

fairness. Both of them use population invariance to assess fairness, however DIF is 

interested in items while equating is based on test scores. Therefore, using only DIF 

analyses is not sufficient to assess equated scores. As pointed out by Dorans 

(2004), some testing programs only address DIF, not score equity assessment. With 

this study, DIF and equating invariance aspects that are treated separately in 

psychometric perspective are discussed together. Besides, these aspects are tried 

to be expressed in multidimensionality perspective, which is one of the most 

interesting research topics recently. However, before talking about IRT methods, 

the methods used to measure equating invariance will be mentioned. These 

methods and their classification are as follows.  
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Methods for evaluating equating invariance. There are multiple methods 

for evaluating equating invariance in the psychometric literature. A taxonomy 

categorizing available methods were presented by Huggins and Penfield (2012). 

Based on this, methods were categorized into two sections. In the first section, the 

focus is how between-group differences are aggregated or separated across 

specific subpopulations. This section covers three different approaches: omnibus, 

group-to-overall, and pairwise. In the next section of current dissertation, omnibus 

and group-to-overall methods were explained.  

Omnibus methods. In this approach, there is a single index that computes 

the distance between each subpopulation’s linking function and the overall (all 

groups) linking function. For example, to compute the degree of equating invariance 

with respect to gender, three equating functions are estimated (i.e., one for males, 

one for females, and one for overall), and then a chosen omnibus method compares 

both male and female functions simultaneously to the overall equating function. 

Here, the computed index represents the equating invariance or lack of equating 

invariance (i.e., equating dependence) (Huggins, 2012; Huggins & Penfield, 2012). 

Equating invariance methods can be conditional or unconditional on score 

level. When an omnibus method measures the invariance of equating relationships 

between subgroups and the overall group at each score level, this method belongs 

to the conditional omnibus method section in the taxonomy. On the other hand, 

when an omnibus method measures the same thing but this time across all score 

levels, this method belongs to the unconditional method section in the taxonomy 

(Huggins, 2012; Huggins & Penfield, 2012).  

One of the most used omnibus methods in the psychometric literature is the 

root mean square difference (RMSD) (Dorans & Holland, 2000) which is conditional 

on score levels. In current dissertation the RMSD index was used to estimate the 

equating invariance of various equating methods. This index, which is appropriate 

to be used for single or equivalent group design and linear linking function, can be 

explained in detail as below: 

𝑅𝑀𝑆𝐷(𝑥) =
√∑ 𝑤𝑗 [𝑒𝑃𝑗

(𝑥) − 𝑒𝑃(𝑥)]
2

 
𝑗

𝜎𝑌𝑃
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The above equation is computed at each 𝑥 value. Where, j represents 

different subgroups, P represents the overall group, 𝑒𝑃𝑗
(𝑥) represents separate 

linking functions for specified subgroups, 𝑒𝑃(𝑥) represents the overall linking 

function, 𝑤𝑗 represents the weighting of each subgroup (a proportional 

representation of each subgroup in the overall group), 𝜎𝑌𝑃 represents the standard 

deviation of Y scores in P (Dorans & Holland, 2000).  

According to some studies (von Davier, Holland & Thayer, 2004; von Davier 

& Wilson, 2008), RMSD index can be adopted to other equating designs and 

methods. In current study, unstandardized version of this index (obtained by 

removing the dominator component) was used to equate test forms with CINEG 

design. 

Root expected mean square difference (REMSD) (Dorans & Holland, 2000), 

which is another omnibus method, is an unconditional version of RMSD index. 

Dorans and Holland (2000) created this index to summarize the values of RMSD 

(𝑥) into a single number. This index is an average over the distribution of X in P. 

The REMSD (𝑥) is as below: 

REMSD =
√𝐸𝑃 {∑ 𝑤𝑗 [𝑒𝑃𝑗

(𝑋) − 𝑒𝑃(𝑋)]
2

 
𝑗 }

𝜎𝑌𝑃
=  

√∑ 𝑤𝑗𝐸𝑃 {[𝑒𝑃𝑗
(𝑋) − 𝑒𝑃(𝑋)]

2

} 
𝑗

𝜎𝑌𝑃
 

 where 𝐸𝑃 represents averaging over the distribution of X in P.   

Group to overall methods. Group to overall invariance methods compares 

one subgroup’s linking function to the overall linking function ignoring all other 

subgroups’ linking functions. These methods produce a separate index of equating 

invariance for each subgroup (Huggins & Penfield, 2012). One of the group-to-

overall invariance indices is the root expected squared difference (RESD𝑗) (Yang, 

2004). RESD𝑗 which is an unconditional index is explained below (von Davier & Liu, 

2006; Yang, 2004):  

 

            𝑅𝐸𝑆𝐷𝑗 =

√𝐸𝑃{[𝑒𝑃𝑗
(𝑥)−𝑒𝑃(𝑥)]

2
}

𝜎𝑌𝑃

  =

√∑ 𝑤𝑥𝑃
{[𝑒𝑃𝑗

(𝑥)−𝑒𝑃(𝑥)]
2

}𝑍
𝑥=0

𝜎𝑌𝑃
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where j represents a subgroup, 𝑤𝑥𝑃
 represents the weighting of the relative 

number of candidates in the total population, ∑  𝑍
𝑥=0 represents the averaging the 

weighted differences at each score level, 𝜎𝑌𝑃
 represents the standard deviation of 

the composite score in the total population, and the others are the same with the 

above equations. 

Root squared difference (RSD𝑗(𝑥)), which is a conditional version of 𝑅𝐸𝑆𝐷𝑗 

invariance index, is created by Huggins and Penfield (2012). This index is presented 

below:    

𝑅𝑆𝐷𝑗(𝑥) =
|𝑑𝑗(𝑥)|

𝜎𝑄
 

where 𝜎𝑄 represents the standard deviation of scores in population 𝑄, and 

𝑑𝑗(𝑥) represents the difference between a linked score y based on subgroup j’s 

linking function and a linked score y based on the overall linking function at score 

level 𝑥 (Huggins & Penfield, 2012). This index gives the standardized distance 

between the one subgroup’s equating function and the overall equating function at 

one score level (Huggins, 2012).    

Above, the methods for evaluating equating invariance are discussed in 

detail. Another important topic to be addressed in this study is the equating designs. 

Hence, detailed information about the equating designs frequently used in the 

literature is given below. 

Equating Designs       

     In psychometric literature, there are various equating designs to conduct 

test equating. In the literature, three most commonly used equating designs are: 

random groups (RG), single group (SG), and common-item nonequivalent groups 

(CINEG) designs.  

In RG design, examinees are randomly assigned to different test forms. 

Difference between group level performances on two forms is attributed to the 

difficulty difference between two forms, because examinee groups who take 

different forms are considered to be equivalent in their ability level. One advantage 

of this design is that each examinee takes only one form and this feature minimize 

testing time compared to designs that request examinees to take more than one 
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form. On the other hand, this design requires all test forms be administered at the 

same time. And also, large sample sizes are needed because different examinees 

take different forms. These are the limitations of this design. 

In SG design, the same examinees take both forms, Form X and Form Y. 

Because of the possible effects of fatigue and familiarity with the test on the 

performance, this design has some strong limitations. Specifically, for examinees, 

taking two forms consecutively may cause fatigue. In such a situation, Form Y 

(second form) could appear relatively more difficult than Form X. On the other hand, 

there may be familiarity with the forms. In this case, Form Y could appear to be 

easier than Form X. Counterbalancing the order of administration of the forms is a 

common method to deal with these undesirable effects. However, even so this 

design is rarely used in practice.   

The last design is called common-item nonequivalent groups (CINEG) design 

in this dissertation. This design has been referred to as common-item nonequivalent 

groups design by some researchers, while it has been referred to as non-equivalent 

anchor test design by some others. CINEG is preferred in this study. According to 

CINEG design, there are two different examinee groups and they take two forms, 

which have a set of common items. Two forms are linked by using these common 

items. It should be noted that common items should be the representative of total 

test forms in their content and statistical characteristics, like a mini version of total 

tests. Another important point is that, the examinee groups are nonequivalent. 

Hence, group differences should be separated from form differences. Finally, it is a 

very popular design because of the similarity with the actual testing situations (Kolen 

& Brennan, 2014). 

It can be said that CINEG design is a complex design to execute well because of 

the differences in ability between the old and new groups. Complexity increases as 

the differences increase. Also, the type of common item set, external or internal, and 

type of score linking also have an effect on the complexity of this design (Dorans, 

Moses & Eignor, 2010).    

Another important topic of this study is the equating methods. In this study 

MIRT, UIRT and EQ equating methods are used. Before mentioning these methods, 

MIRT and UIRT models will be discussed in detail. These models are used in many 
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testing situations. There are many IRT applications in the literature, such as test 

development, item banking, differential item functioning, adaptive testing, test 

equating, and test scaling. IRT models examine responses at the item level, 

whereas, classical test models examine responses at the level of test scores. This 

makes the IRT model very powerful. In this study IRT models are used to generate 

data, and then IRT and the traditional EQ equating method results are compared.    

Item Response Theory 

IRT can be classified in two sections according to the number of underlying 

latent traits in the model: UIRT and MIRT. In UIRT there is only one underlying latent 

ability that is specified in the model whereas in MIRT this is more than one.  

Unidimensional item response theory. In unidimensional item response 

theory, item response function represents a mathematical statement as to how 

response depends on level of ability or skill. For a dichotomous item, the item 

response function is simply the probability (P or P (θ)) of a correct response to the 

item. Based on a common assumption this probability can be represented by the 

logistic function (Lord, 1980). Three parameter logistic function (Birnbaum, 1968), 

which is the most popular in logistic models, can be expressed as below: 

𝑃𝑗(𝜃𝑖)  = 𝑐𝑗 +  
1 − 𝑐𝑗

1 +  𝑒−1.7𝛼𝑗(𝜃𝑖−𝑏𝑗)
, 

where          

𝜃𝑖 is the examinee 𝑖 ability parameter, 

𝛼𝑗 is the item 𝑗 discrimination parameter, 

𝑏𝑗 is the item 𝑗 difficulty parameter,  

𝑐𝑗 is the item 𝑗 pseudo-guessing or lower asymptote parameter, 

1.7 is the scaling factor D, which is used to make the logistic function as close as 

possible to the normal ogive function. When 𝑐𝑗 equals to zero, three parameter 

logistic (PL) model turns into two PL model. And, when 𝛼𝑗 equals to one, two PL 

model turns into one PL model (Hambleton, Swaminathan & Rogers, 1991; Lord, 

1980). The number of item parameters that is used in the logistic model determines 
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the type of the model: one, two and three parameter logistic models. There is also 

a four-parameter logistic model in the literature.  

Item response function can be represented graphically by the item 

characteristic curve (ICC). On the other hand, test characteristic curve (TCC) 

graphically represents the test characteristic function that gives the relationship of 

the number right score and ability level (Lord, 1980). In other words, TCC is used to 

represent the characteristics of a test and can be found by summing the item 

characteristic curves across all items in the test. That is, this curve is the regression 

of the sum of the item scores on θ. For the sake of clarity, visual examples of the 

ICC and TCC are shown in Figure 1 and Figure 2, respectively.  

 

Figure 1. ICC for an item described by a three PL model (Reckase, 2009).  

 

Figure 2. TCC for items described by a three PL model (Reckase, 2009).   

 

This section provides some basic notions about UIRT. In order to use this 

model effectively, some assumptions should be met. Unidimensionality, 

monotonicity, and local independence are some of them. When unidimensionality 
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assumption holds, there are only one ability in the latent space. On the other hand, 

the monotonicity assumption means that the probability of correct response to the 

item increases, or at least does not decrease, as the ability level increase. Finally, 

according to the local independence assumption, the items should only be 

correlated through the latent trait that the test is measuring, should not be related to 

each other. However, things are more complicated than thought and it is hard to 

meet these assumptions. And hence, a more complicated model is needed to 

explain individuals’ responses. This is where MIRT models emerge.  

According to the literature, research subjects of UIRT have been generalized 

to MIRT models. Differential item functioning (Ackerman, 1992; Li & Stout, 1996; 

Shealy & Stout, 1993), equating (Lee & Brossman, 2012; Lee & Lee, 2016; Kim, 

Lee & Kolen, 2020), and scale linking (Davey, Oshima & Lee, 1996; Li & Lissitz, 

2000; Oshima, Davey & Lee, 2000; Yao, 2011; Yao & Boughton, 2009) are the 

examples of these research subjects that are being studied in multidimensional 

perspective. MIRT models are discussed in more detail below.  

Multidimensional item response theory. Unidimensionality, which requires 

a single ability parameter, is a strong assumption of IRT. In actual testing situations, 

it is difficult to meet this assumption. It occurs because examinees are likely to have 

more than one ability to answer an item correctly, especially for natural sciences. 

Hence, although UIRT is very useful under certain conditions, there is a need for 

MIRT models, which are more complex and capable of reflecting the complex 

relationship between examinees and test items more accurately (Kolen & Brennan, 

2014; Reckase, 2009).  

In MIRT models, there is a complex multidimensional space to describe 

individual differences in the target traits. A general representation of a MIRT model 

is represented as follows:   

𝑃𝑖(𝑈 = 𝑢|𝜃) = 𝑓(𝜃, 𝜂𝑖 , 𝑢). 

In this equation, θ, which contains m ability parameters (𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑚, )) for the 

m dimensional space, is a vector of person parameters, 𝜂 is a vector of item 

parameters, 𝑈 is the score on the item, and 𝑢 is a possible value for the score. It 

should be noted that in this mathematical representation the item score, 𝑢, exists 

only when the item has two score categories (Reckase, 2009).   
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In multidimensional item response theory, item response function can be 

represented graphically by the item characteristic surface (ICS). On the other hand, 

test characteristic surface (TCS), which can be found by summing the item 

characteristic surfaces across all the items in the test, is used to represent the 

characteristics of a test. That is, test characteristic surface is the regression of the 

sum of the item scores on θ vector (Reckase, 2009). Visual examples of the ICS 

and TCS are shown in Figure 3 (Reckase, 2009) and Figure 4, respectively 

(Reckase, 2007).    

 

Figure 3. ICS for an item with 𝑎1 = 1.3, 𝑎2 = 1.4, 𝑑 = −1, 𝑐 = 0.2 (Reckase, 2009). 

 

Figure 4. TCS for a 20-item test (Reckase, 2007). 
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Monotonicity and local independence are two basic assumptions of MIRT 

models. Monotonicity assumes that the probability of a correct response to an item 

increases with an increase of any element in the 𝜃 vector. Local independence 

assumes that all examinees respond all test items independently. That is, the 

response of any person to any item only depends on the vector of person 

parameters, 𝜃, and the vector of item parameters, 𝜂 (Reckase, 2009).   

MIRT models can be classified in different ways. The two most basic of these 

are compensatory (Reckase, 1985) and non-compensatory (Sympson, 1978) 

models. Compensatory model is based on a linear combination of θ coordinates. 

Here in this type of MIRT model, one θ coordinate can compensate the other θ 

coordinate. So, the sum can be the same for various combinations of θ coordinates. 

So, according to this model an examinee with a low ability on one dimension will be 

able to answer the item correctly even if she/he has high abilities on other 

dimensions. The second type of model, which is called non-compensatory or 

partially compensatory model, uses a UIRT model for each dimension. Moreover, 

the probability of a correct response to the item is computed by the product of the 

probabilities for each part. This class of model results in a nonlinear feature because 

of the product of probabilities (Reckase, 2009). So, according to this model an 

examinee with a low ability on one dimension will not be able to answer the item 

correctly even if she/he has high abilities on other dimensions.   

Another classification of MIRT models is based on the number of possible 

score points of the test items: MIRT models with dichotomously scored items (Bock 

& Aitken, 1981), and MIRT models with polytomously scored items (Adams, Wilson 

& Wang, 1997; Kelderman & Rijkes, 1994; Yao & Schwarz, 2006). 

MIRT models can be classified also based on the dimensional structure of 

the items in the test. First type of model is complex structure MIRT models, which 

assume that items in the test measure more than one ability simultaneously. 

Multidimensional extension of the Rasch model (Adams, Wilson & Wang, 1997), the 

multidimensional two parameter logistic model (McKinley & Reckase, 1982), the 

multidimensional three parameter logistic model (Reckase, 1985), and the 

multidimensional two parameter partial credit model (Yao & Schwarz, 2006) are 

some of the examples of complex structure MIRT models. The second type of model 

is constrained MIRT models. According to this model, items in the test measure only 
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one or two abilities. Simple structure-MIRT (SS-MIRT) model (Segall, 1996) and bi-

factor model (Gibbons et al., 2007; Gibbons & Hedeker, 1992) are the examples of 

constrained MIRT models. Comparing the complex structure and the constrained 

MIRT models, the constrained MIRT model has some advantageous over the 

complex structure MIRT model, because of its easier interpretability.      

Simple structure MIRT models. According to Thurstone’s (1947) principle 

of simple structure, for a given item the factor loadings should be relatively large, 

suggesting a clear relationship between the latent ability and item, or should be 

relatively small, suggesting no relationship between the latent ability and item 

(Finch, 2006; McLeod, Swygert & Thissen, 2001). In other words, latent traits have 

high loadings on some of the items when they have low loadings (close to 0) on the 

rest of the items (Finch, 2006).  

A figure was added below to explain simple structure clearly. In Figure 5, 

there are ten items and two latent abilities (𝜃1, 𝜃2) with correlation ρ. The first ability, 

𝜃1, has high loadings on the first six items and the second ability, 𝜃2, has high 

loadings on the rest four items. Furthermore, there is a correlation between these 

two abilities. Without the correlation between abilities, this model reflects two 

separate UIRT models.  

 

Figure 5. Simple structure-MIRT model.  
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There are some advantageous of SS-MIRT model compared to complex 

MIRT models. First, the number of item parameters does not change as the number 

of dimension increases. This feature gives the opportunity of reducing the estimation 

time of the analyses. Second, there is no need for an additional work to calibrate the 

item parameters, because of the multiple UIRT structure of this particular MIRT 

model. That is, estimation can be done by using UIRT item calibration for each 

separate data structure. Third, this model is very similar to UIRT in terms of general 

concepts and interpretation of parameters. Fourth, unlike other complex MIRT 

models, this model does not have a specific mathematical equation of item response 

function (IRF). Hence, combination of any kinds of UIRT models can be used to 

model the latent abilities (Kim, 2018). In conclusion, this model provides great 

flexibilities in many aspects and it has been used in many psychometric studies: 

calibration (Yao & Boughton, 2007; Zhang, 2004, 2012), equating (Kim, Lee & 

Kolen, 2020; Lee & Brossman, 2012), computerized adaptive testing (Li & Schafer, 

2005; Luecht, 1996; Segall, 1996), and dimensionality (Li, Jiao, & Lissitz, 2012). 

IRT Equating  

Many testing programs use IRT models when creating their tests. Therefore, 

these programs generally use IRT equating methods when equating the tests. Also, 

IRT equating methods can be used for some specific situations in which traditional 

methods are not used (such as equating to an item pool). Thus, IRT methods are 

very important for equating methodology. However, IRT models have strong 

statistical assumptions. For this reason, for IRT applications it is crucial to 

investigate the violations of the assumptions, and IRT model fit (Kolen & Brennan, 

2014). In this study IRT equating is examined under two headings: unidimensional 

and multidimensional IRT equating. First, UIRT equating is discussed as follows. 

Unidimensional IRT equating. There are two IRT based equating methods 

in the literature: (1) IRT observed score, and (2) IRT true score equating methods 

(Kolen & Brennan, 2014).  

Unidimensional IRT observed score equating. Unidimensional IRT 

observed score (UO) equating method obtains an estimated distribution of observed 

number correct scores for each form by using IRT models. Then, equating these 

distributions by using traditional EQ equating. First of all, it should be ensured that 
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item parameters are on the same metric. After that, for Form X conditional observed 

score distribution for examinees of a given ability is obtained by using the compound 

binominal distribution. A recursion formula (Lord & Wingersky, 1984) can be used 

to implement this process. This formula is given below: 

      𝑓𝑟(𝑥|𝜃𝑖) = 𝑓𝑟−1(𝑥|𝜃𝑖)(1 − 𝑝𝑖𝑟),                                         𝑥 = 0 

             = 𝑓𝑟−1(𝑥|𝜃𝑖)(1 − 𝑝𝑖𝑟) + 𝑓𝑟−1(𝑥 − 1|𝜃𝑖)𝑝𝑖𝑟,          0< 𝑥 < 𝑟,      

                      = 𝑓𝑟−1(𝑥 − 1|𝜃𝑖)𝑝𝑖𝑟,                                            𝑥 = 𝑟 

  

where 𝑓𝑟(𝑥|𝜃𝑖) is the probability of earning a score of x on the first 𝑟th item 

for examinee 𝑖 with ability 𝜃𝑖; and 𝑝𝑖𝑟 is the probability of a correct response on the 

𝑟th item.  

After the conditional distributions of observed scores for each ability level are 

obtained using the recursion formula above, the marginal observed score 

distribution is found by accumulating these observed score distributions using the 

equation below: 

                               𝑓(𝑥) = ∫ 𝑓(𝑥|𝜃)𝜓(𝜃)𝑑𝜃
 

𝜃
,                                                

 

where 𝜓(𝜃) is the distribution of θ. Because of the complexity of the 

integration, distribution of ability is approximated by a discrete distribution on a finite 

number of equally spaced points, which is referred as quadrature points. This 

approximation is as below:  

                              𝑓(𝑥) = ∑ 𝑓(𝑥|𝜃𝑖)𝜓(𝜃𝑖)𝑖 .                                                   

 

 To conduct UO equating, the above steps should be done also for Form Y. 

As the final step, equating the two estimated marginal distributions is conducted by 

using traditional EQ equating methods (Kolen & Brennan, 2014).    

Unidimensional IRT true score equating. According to unidimensional IRT 

true score (UT) equating, the true scores on Form X 𝑇𝑋(𝜃𝑖) and Form Y 𝑇𝑌(𝜃𝑖) 

corresponding to a given 𝜃𝑖 are considered to be equivalent. This can be explained 

by the equation below,  
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𝑖𝑟𝑡𝑌(𝑇𝑋) = 𝑇𝑌(𝑇𝑋
−1),       ∑ 𝑐𝑗 < 𝑇𝑋 < 𝐾𝑋𝑗:𝑋  

where 𝑇𝑋
−1 is the 𝜃𝑖 that corresponds to 𝑇𝑋 true score. According to Kolen and 

Brennan (2014), UT equating consists of three steps:  

1. Specify a true score 𝑇𝑋 on Form X,  

2. Find the ability level 𝜃𝑖 that corresponds to that true score (𝑇𝑋
−1),  

3. Find the true score 𝑇𝑌 that corresponds to the 𝜃𝑖 on Form Y. 

Step 1 and 3 are straightforward but for step 2 an iterative procedure is 

needed. The Newton-Raphson method is used for finding the roots of nonlinear 

functions. In UT equating, to find the equivalent of 𝑇𝑋 true score, first of all 𝜃𝑖 is going 

to be found by following the below equation: 

𝑓𝑢𝑛𝑐(𝜃𝑖) = 𝑇𝑋 − ∑ 𝑃𝑖𝑗(𝜃𝑖; 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗)

𝑗:𝑋

 

and this function is going to be set to zero. The Newton-Raphson method 

uses the first derivative of 𝑓𝑢𝑛𝑐(𝜃𝑖) with respect to (𝜃𝑖). And hence, 𝜃𝑖 is tried to be 

find. The first derivative of 𝑓𝑢𝑛𝑐(𝜃𝑖) is as below: 

𝑓𝑢𝑛𝑐′(𝜃𝑖) = − ∑ 𝑃𝑖𝑗
′

𝑗:𝑋

(𝜃𝑖 ; 𝑎𝑗, 𝑏𝑗 , 𝑐𝑗) 

here 𝑃𝑖𝑗
′ (𝜃𝑖; 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) is defined as the first derivative of 𝑃𝑖𝑗(𝜃𝑖; 𝑎𝑗 , 𝑏𝑗 , 𝑐𝑗) with 

respect to 𝜃𝑖 and is going to be calculated as below: 

𝑃𝑖𝑗
′ (𝜃𝑖; 𝑎𝑖, 𝑏𝑖, 𝑐𝑖) =

1.7𝑎𝑗(1 − 𝑃𝑖𝑗)(𝑃𝑖𝑗 − 𝑐𝑗)

1 − 𝑐𝑗
 

here 𝑃𝑖𝑗 = 𝑃𝑖𝑗(𝜃𝑖; 𝑎𝑗, 𝑏𝑗, 𝑐𝑗). To apply the Newton-Raphson method an initial 

ability estimate, which is referred as 𝜃− is chosen. And then, the new value of the 

ability level is estimated by using 

                                               𝜃+ = 𝜃− −
𝑓𝑢𝑛𝑐(𝜃)

𝑓𝑢𝑛𝑐′(𝜃)
.                                                                                   

𝜃+ will be closer to the ability parameter than 𝜃−. The new value is redefined 

as 𝜃− and these steps are repeated multiple times until 𝜃+ and 𝜃− are equal at a 

specified level of precision (Kolen & Brennan, 2014).  
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Multidimensional IRT equating. Using UIRT procedures with 

multidimensional data is likely to increase the error. The same is true for equating. 

To prevent this problem, MIRT equating methods have been developed. These 

methods are quite new.  

Two observed score and one true score procedure have been developed by 

Brossman and Lee (2013). The first observed score procedure is a direct extension 

of UO equating method, and is called as “Full multidimensional IRT Observed score 

equating method”. The second observed score procedure is an approximation of 

UO equating. This method equates multidimensional exams by using 

unidimensional IRT equating principles and referred as “Unidimensional 

approximation of multidimensional IRT observed score equating method”. The last 

method is a true score equating method and is referred as “Unidimensional 

approximation of multidimensional IRT true score equating method”. This method is 

an extension of UT equating method.  

Under simple structure MIRT model (SS-MIRT), both observed score (Lee & 

Brossman, 2012) and true score methods (Kim, Lee & Kolen, 2020) have been 

developed. And, multidimensional equating methods under the bi-factor models 

have been proposed for both observed score (Lee & Lee, 2016) and true score 

equating methods (Lee et al., 2015). Also, for observed score and true score testlet 

response, model MIRT equating methods have been developed by Tao and Cao 

(2016). Some comparison studies have been conducted recently in the literature by 

using multidimensional IRT equating methods (Lee, Lee & Brennan, 2014; Peterson 

& Lee, 2014; Zhang, 2012). In this study, the next part will mainly focus on SS-MIRT 

observed score (SMO) equating and the other part will represent a summary of SS-

MIRT true score (SMT) equating.  

SS-MIRT equating. SS-MIRT framework is different from complex MIRT 

framework in many aspects. First of all, in SS-MIRT framework each item is 

associated with only one ability and this makes the calibration process much easier 

than complex MIRT framework. Second, the correlations between abilities are 

estimated in SS-MIRT framework but from complex MIRT perspective this is not the 

case. Third, the complex MIRT framework requires a scale linking procedure even 

for random groups design, when the SS-MIRT framework does not. Moreover, the 

SS-MIRT allows explicit interpretation of dimensionality. When items are grouped 



24 
 

according to a pre-specified dimension, such as content domains or item formats, it 

is considered appropriate to use SS-MIRT framework to equate test forms.  

SS-MIRT observed score equating method. Lee and Brossman (2012) 

developed SS-MIRT observed score (SMO) equating. In their study they used mixed 

format tests consisting of MC (multiple choice) and FR (free response) items. The 

three-parameter logistic model was used for MC items when the graded response 

model was used for FR items. And, the study consisted of two abilities (𝜃1, 𝜃2) which 

were associated with MC and FR items, respectively.   

There are some basic assumptions of SS-MIRT model: (a) each item in the 

test measures an ability, which corresponds to a specific item type or content 

domain, and these abilities are correlated, (b) each of the groups of items that are 

associated with the same ability can be modeled by using unidimensional IRT 

model.   

To conduct a SMO equating, first, items are calibrated using SS-MIRT model. 

Based on these estimated item parameters, the conditional observed score 

distributions for each ability (𝜃1 and 𝜃2) is obtained for each form. The conditional 

observed score distributions of each ability (𝜃1 and 𝜃2) are computed respectively as 

below: 

𝑓1(𝑥1|𝜃1) = Pr(𝑋1 = 𝑥1|𝜃1)   and   𝑓2(𝑥2|𝜃2) = Pr(𝑋2 = 𝑥2|𝜃2)  

   By using a recursive formula (Hanson, 1994; Lord & Wingersky, 1984) the 

conditional distributions can be found. Total observed score is a sum of weighted 

scores of different item types or different content domains, 𝑋 = 𝑤1𝑋1 + 𝑤2𝑋2. Where 

X is defined as total observed score. And then, the conditional total score distribution 

can be computed, under the local independence assumption, as: 

     𝑓(𝑥|𝜃1, 𝜃2) = Pr(𝑋 = 𝑥|𝜃1, 𝜃2) = ∑ 𝑓1(𝑥1|𝜃1)𝑓2(𝑥2|𝜃2)𝑋=𝑤1𝑋1+𝑤2𝑋2
,                 

where the summation is taken over all possible pairs of 𝑤1𝑋1 + 𝑤2𝑋2 that 

gives a particular total score 𝑥. To obtain a marginal total score distribution, 

conditional total score distributions are aggregated over a bivariate ability 

distribution, 𝑔(𝜃1, 𝜃2), as below: 

                      𝑓(𝑥) = ∫ ∫ 𝑓(𝑥|𝜃1, 𝜃2)𝑔(𝜃1, 𝜃2)𝑑𝜃1𝑑𝜃2
∞

−∞

∞

−∞ 
.                                        
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When a quadrature point set is used for ability distribution, integration is 

replaced with the summation, as: 

                             𝑓(𝑥) = ∑ ∑ 𝑓(𝑥|𝜃1, 𝜃2)𝑞(𝜃1, 𝜃2)𝜃2𝜃1
,                                    

where 𝑞(𝜃1, 𝜃2) is the density for a particular 𝜃1 and 𝜃2 pair, and ∑ 𝑞(𝜃1, 𝜃2) =

1. The marginal observed score distribution is computed for both Form X and Form 

Y. Traditional EQ equating is then conducted to equate the two forms using the two 

marginal observed score distributions.  

Lee and Brossman (2012) applied SS-MIRT method to a mixed format test 

that consists of two different item type MC (multiple choice) and FR (free response) 

items, which are associated with different abilities (𝜃1,𝜃2). And, there was a 

correlation between these abilities. According to Lee and Brossman’s (2012) results, 

SMO equating method performed better than the UO equating method. Results from 

their study represented that as the correlation between abilities (dimensions) 

decreases, bias in SS-MIRT method tends to decrease, while the opposite happens 

for UO equating method. That is, when multidimensionality increases, the SS-MIRT 

method performs better while UIRT method’s performance gets worse.   

Equating under SMO equating method provides many advantages. First, it 

gives the opportunity of easy calibration of items due to the capability of using UIRT 

model. Second, it provides enhanced interpretation of the results unlike the very 

complex interpretation of many MIRT methods. Moreover, it allows to use score 

weights effectively (Lee & Brossman, 2012).   

SS-MIRT true score equating method. The logic used to perform SMT 

equating is that under the SS-MIRT framework, only one ability is needed to 

estimate the probability of a correct response on the item (Kim, Lee & Kolen, 2020). 

Therefore, equating two forms can be conducted by using a subset of the test that 

measures the same construct. And then, the final equating relationship can be 

determined by combining these subset equating relationships. Specifically, the SMT 

equating method can be conducted by following the steps below: 

1. Conducting item calibration for both forms using the SS-MIRT framework; 

2. Conducting UT equating for each dimension separately by using the item 

parameters that are obtained from step 1;   
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3. Obtaining the weighted equated scores of each dimension to compute the 

equated composite scores for each combination of section scores. This 

can be explained as below: 

           𝑒𝑞(𝑥|𝑥1, 𝑥2, … , 𝑥𝑚) =  𝑤1𝑒𝑞1(𝑥1) + 𝑤2𝑒𝑞2(𝑥2) + ⋯ + 𝑤𝑚𝑒𝑞𝑚(𝑥𝑚)        

     where 𝑤𝑚 is the weight of equated score for dimension m and, 𝑒𝑞𝑚(𝑥𝑚) 

is the equated equivalent of 𝑥𝑚 score for dimension m. 

4. For the new form, estimating a multivariate observed score distribution for 

the m dimension scores, 

5. Summing weighted equated composite scores to obtain the final equated 

score. This can be computed as below: 

𝑒𝑞(𝑥) = ∑ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑚|𝑥)(𝑤1𝑒𝑞1(𝑥1) + 𝑤2𝑒𝑞2(𝑥2)

𝑋=𝑤1𝑋1+𝑤2𝑋2+⋯+𝑤𝑚𝑋𝑚

+ ⋯ + 𝑤𝑚𝑒𝑞𝑚(𝑥𝑚)) 

where  𝑓(𝑥1, 𝑥2, … , 𝑥𝑚|𝑥) is defined as the relative frequency (Kim, 2018; Kim, 

Lee & Kolen, 2020).  

Equipercentile Methods  

Equipercentile (EQ) equating methods have been developed for common 

item nonequivalent groups design. These methods focus on total score and 

common item score distributions, instead of focusing on the means, standard 

deviations and covariances that are the focus of many other methods. Hence, a 

synthetic population is usually required to conduct EQ equating with common item 

nonequivalent groups design (Kolen & Brennan, 2014). Frequency estimation and 

chained equipercentile (CE) equating methods are some of the EQ equating 

methods. In this study, one of the investigated equating methods is CE equating 

method, which is described in detail below. Additionally, in this study the 

abbreviations of EQ and CE are preferred in order to be compatible with current 

studies on multidimensional equating.    

Chained equipercentile equating. In this method, first scores on Form X 

are converted to the scores on common items by using population 1. And then, the 

sores on common items are converted to the scores on Form Y by using population 
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2. As the last step, these two conversions are chained together and hence, a 

conversion of the scores of Form X to the scores of Form Y is obtained (Kolen & 

Brennan, 2014). Marco et al. (1983) referred to this method as the “direct 

equipercentile” method. On the other hand, Livingston et al. (1990) referred to this 

method as the “chained equipercentile” method. As the reason, they pointed out that 

this method consists of two separate equipercentile equatings and these are linked 

by the anchor test (common items). This method is entirely different from many other 

methods according to the way of using the common item scores. For example, it 

does not use the new and old form distributions. Instead, it equates the new form to 

the common items in new form sample and the old form to the common items in the 

old form sample. Also, this method assumes that the equating relationship between 

each form and common items is the same across the populations (Livingston et al., 

1990). To explain this method specifically, the steps are given by Kolen and Brennan 

(2014) in detail below: 

1. Use EQ equating method to convert scores of Form X to the scores of 

common items for population 1. And, refer this equating function as 

𝑒𝑉1(𝑥).  

2. Use again EQ equating method to convert scores of common items to the 

scores of Form Y for population 2. And, refer this equating function as 

𝑒𝑌2(𝑣).  

3. To equate Form X scores to Form Y scores, first use 𝑒𝑉1(𝑥) to convert a 

score of Form X to a score of common items and then use 𝑒𝑌2(𝑣) to 

convert the resulting common item score to a score on Form Y.  

Consequently, these steps point out a composed function which involves a chain of 

two equipercentile conversions:  

𝑒𝑌(𝑐ℎ𝑎𝑖𝑛) = 𝑒𝑌2[𝑒𝑉1(𝑥)] 

It should be noted that, to conduct the EQ equating, the marginal distributions for 

scores on X and V in Population 1 and the marginal distributions for scores on Y 

and V in Population 2 are required only (Kolen & Brennan, 2014).  
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Item Bias and Test Bias   

Item bias occurs when examinees, from different groups, have equal ability 

level, but have different probability of answering an item correctly. The same 

definition applies to bias in the test. In psychometric literature, for statistical 

observations, a term other than bias was suggested to be used. And then, 

differential item functioning (DIF), which is quite apart from judgmental or 

interpretive meaning and use of bias, came into use. DIF is based on the simple 

observation that an item has different statistical properties for the examinees, whose 

abilities are checked to be matched but are from different groups (Holland & Wainer, 

1993).   

There are two directions of DIF in the literature: unidirectional and 

bidirectional. In unidirectional DIF condition, all DIF items in the test favor only one 

subgroup. On the other hand, in bidirectional DIF condition, while some of DIF items 

favors one subgroup, the other DIF items favor another subgroup. In this dissertation 

only unidirectional conditions were used.     

According to the literature, there are two types of differential item functioning: 

uniform and non-uniform DIF. If the association between the item response and the 

group is constant for all ability levels then it is called uniform DIF; otherwise, it is 

called non-uniform DIF when the mentioned association is a function of the ability 

levels (Hanson, 1998). On the other hand, differentiation of a, b, and c parameters 

in groups can also be used to define DIF type.  

While DIF focuses on group invariance at item level, differential test 

functioning (DTF) refers to the sum of DIF in the test. That is, DTF concerns 

invariance at the raw test score level. Equating invariance, DTF, and DIF deal with 

invariant relationships across subgroups. Specifically, DIF focuses on invariance at 

item level, DTF focuses on invariance at raw score level, and equating invariance 

focuses on invariance at reported score level (Huggins, 2012). To sum up, DTF 

represents the aggregate effect of all DIF items in a test and can be computed as 

below:    

𝐷𝑇𝐹 = 𝐸𝐹(𝑇𝐹 − 𝑇𝑅)2, 

where E is the expectation which may be taken over the reference (R) or the 

focal (F) group, 𝑇𝐹 is the true score for being a member of the focal group, and 𝑇𝑅 is 
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the true score for being a member of the reference group. The greater the difference 

between 𝑇𝐹 and 𝑇𝑅, the greater the DTF (Oshima, Raju & Flowers, 1997).    

A potential for item bias exists, when subgroups of examinees have different 

underlying abilities. That is, multidimensionality may cause item bias. True and 

nuisance ability dimensions need to be identified carefully to decide an item as 

biased in multidimensional framework. The true ability (or abilities) is the ability that 

the test is designed to measure. There may be more than one true ability intended 

to be measured by the test. On the other hand, the nuisance ability helps examinee 

to solve the particular item but it is not intended to be measured by the test. If the 

distribution of the nuisance ability differs across subgroups, the potential for item 

bias exists. Item impact and item bias should not be confused by each other. To 

summarize, when subgroups of examinees differ in their performances on the 

abilities that are intended to be measured by the test items, item impact occurs. That 

is, true differences in the ability cause difference in the results. As opposite, in item 

bias the reason of the difference in the results is the nuisance abilities (Ackerman, 

1992).   

Relationship between Equating Invariance and DIF 

Equating invariance and DIF both use the population invariance to assess 

the level of group dependence of statistical functions. Equating invariance does not 

hold when the differential difficulty of the two test forms is not consistent across 

subgroups. On the other hand, DIF examines whether the item score is invariant 

across subgroups. When DIF focuses on the item scores, equating invariance 

focuses on the reported scores. The DIF analysis alone is insufficient to explain the 

effect of DIF on the reported scores. As two aspects of fairness, equating invariance 

and DIF should be addressed together (Dorans, 2004). 

According to the literature in CTT (Classical Test Theory), differential difficulty 

across test forms results in equating dependence (Cook & Petersen, 1987; Dorans, 

2004). With a similar logic, for IRT, it can be hypothesized that in the absence of 

DIF in all test items, equating invariance should be ensured (Huggins, 2012). 

However, this is too general to explain the relationship between DIF and equating 

invariance. Hence, Huggins (2014) addressed this relationship in IRT perspective.  
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There are more studies needed to explain the relationship between DIF and 

equating invariance clearly. MIRT is a rapidly developing study field and it is 

considered to be important to clarify the relationship between DIF and equating 

invariance in MIRT perspective. Based on the hypothesis that DIF in items has an 

effect on equating in MIRT, in current dissertation different equating methods were 

used to investigate this effect in multidimensional perspective.     

Review of Relevant Research 

For psychometric literature, MIRT equating is an essential subject area. 

However, there is a limited number of studies conducted on this subject yet. These 

studies have been carried out in recent years. Some of these studies are for 

developing MIRT equating methods, and the remaining studies are for comparison 

of various equating methods. According to the relevant literature, there is only two 

study (Kim, Lee & Kolen, 2020; Zhang, 2012) using the CINEG design so far. Also, 

in the present dissertation, the CINEG design was used.  

The number of studies investigating the relationship between DIF and 

equation is also rare. In particular, there is no study on the relationship between DIF 

and MIRT equating. The main research topics of the current dissertation are 

multidimensional IRT equating, the relationship between equating and DIF, and 

population invariance of equating. The main studies in the literature on these 

research topics, as well as current studies dealing with similar issues were 

investigated and then summarized below. 

Lee and Brossman (2012) developed SMO equating method based on the 

expectation that using multidimensional equating methods with multidimensional 

data would give more accurate results. In this study, they used multidimensional 

tests that consisted of items, each of which matched with a single proficiency. These 

proficiencies, which were separate but correlated, were associated with two different 

item formats, multiple choice and free response. Because of consisting two different 

item formats, tests were referred as mixed format tests. Both real data and 

simulation studies were used and according to the results using SMO equating 

method gave adequate results when the data structure was multidimensional. Also, 

it should be noted that SMO equating method outperformed the traditional UIRT 

method in the presence of multidimensional data.     
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Kim, Lee and Kolen (2020) were developed SMT equating method. In their 

study, they conducted four studies with different data types: (1) real data, (2) 

simulated data, (3) pseudo forms data, and (4) intact single form data with identity 

equating. They also added four different equating methods to compare the 

performances of these methods with SMT equating method: (a) EQ equating with 

presmoothing, (b) UT equating, (c) UO equating, and (d) SMO equating. According 

to the results of SMT equating method behaved similarly to the four equating 

methods. Moreover, SMT equating method produced more accurate results 

compared to UIRT methods. SMT equating outperformed UT equating method in 

three studies consistently. Hence, these results supported the use of 

multidimensional equating methods with multidimensional data.    

Brossman and Lee (2013) created two observed and one true score equating 

methods for use in multidimensional IRT. The first observed score equating method, 

which is a direct extension of UO equating, is referred as “Full MIRT observed score 

equating method”. The second observed score equating and the true score equating 

methods used unidimensional approximation procedures to conduct equating under 

unidimensional principle. These procedures are referred as the ‘‘Unidimensional 

Approximation of MIRT True Score Equating Procedure”, and the ‘‘Unidimensional 

Approximation of MIRT Observed Score Equating Procedure’’. In addition to these 

methods UO and UT equating methods, and EQ equating method were used in this 

study. Here, EQ equating method was used as a criterion because this method does 

not violate the unidimensionality assumption. According to the results of this study, 

MIRT equating methods performed more similarly to the equipercentile method than 

the UIRT methods. This may be caused due to the violation of unidimensionality 

assumption of UIRT methods. 

Lee and Lee (2016) developed bi-factor multidimensional IRT (BF-MIRT) 

observed score equating method and then evaluated its performance compared to 

UO equating method. They conducted equating for mixed format tests containing 

MC and FR items and treated these item formats as different dimensions. According 

to the results of this study, two methods acted similar in many cases. 

Lee and his colleagues (Lee et al., 2015), developed BF-MIRT true score 

equating method. In this study, eight different equating methods, which contain both 

true and observed score equating methods, based on dichotomous IRT, polytomous 
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IRT, testlet response model, and bi-factor model were used. These methods were 

compared to EQ equating. According to the results, while true and observed score 

equating methods based on dichotomous and bi-factor model gave similar results 

to each other, methods based on polytomous model gave similar results to the EQ 

equating. 

Tao and Cao (2016) created true and observed score equating methods for 

testlet response theory (TRT) model under multidimensional framework. Results of 

this study indicated that when local item dependence is at moderate or high level, 

testlet response theory methods produced more accurate equating results 

compared to the unidimensional methods. 

All of the above-mentioned studies are method development studies for MIRT 

equating. The next ones are comparison studies, which compared these methods 

to various equating methods and evaluated their performances. Zhang (2012), used 

three MIRT equating methods (the full MIRT observed score equating, the 

unidimensional approximation of MIRT true score equating, and the unidimensional 

approximation of MIRT observed score equating methods) with various linking 

methods under the CINEG design. According to the results of this study, the 

unidimensional approximation of MIRT true score equating method performed best 

across all linking methods and all group distributions conditions.    

Lee, Lee and Brennan (2014) compared six equating methods under random 

groups design: (1) full MIRT observed score equating, (2) unidimensionalized MIRT 

observed score equating, (3) unidimensionalized MIRT true score equating, (4) 

unidimensional IRT observed score equating, (5) unidimensional IRT true score 

equating, (6) equipercentile equating. Four main conditions were investigated in this 

study: test length, sample size, form difficulty difference, and correlation between 

dimensions. The FMIRT (full MIRT) observed score equating and identity equating 

were used for criterion equating relationships. Finally, results were evaluated by 

investigating bias, standard error, and overall error. According to the results, the full 

MIRT observed score equating method performed better than other methods 

especially for the condition of low correlation between dimensions. Another 

important result of this study was that even for multidimensional tests the UIRT 

equating methods gave adequate equating results. As a final result, for small form 



33 
 

difference, large sample size, and long test length, equating of multidimensional 

tests gave more accurate results.      

Peterson and Lee (2014), introduced a full MIRT observed score equating 

method for mixed format tests. The other equating methods used in this study were 

bi-factor observed score equating, UO and traditional EQ equating methods. Identity 

and EQ equating were used in this study to obtain criterion equating relationships. 

In general, for the data sets that showed more dimensionality, the multidimensional 

methods performed better. On the other hand, for the data sets, which were 

unidimensional, unidimensional methods performed better.  

According to the literature review, there is a limited number of studies about 

the relationship between DIF and test equating. One of these studies was conducted 

by Dorans (2004). This study showed that subpopulation is very important for both 

DIF and equating. However, DIF analysis focuses on items while equating focuses 

on reported scores. Therefore, DIF analyses are not adequate alone to assess 

fairness. DIF and equating invariance analyses should be done together.  

One of the most basic studies aimed at dealing with the relationship between 

DIF and equating invariance more clearly and understandably belongs to Huggins 

(2014). In this study, it was emphasized that DIF and equating invariance analyses 

are both affected from subpopulation invariance. But in psychometric literature these 

two issues have been treated separately. From this point of view, in this study, the 

effect of DIF on equating invariance was investigated. According to the results, 

differential form DIF have an important effect on equating invariance of test 

equating.   

Atalay Kabasakal and Kelecioglu (2015), investigated equating results of 

various methods for conditions where DIF existed and did not exist in multilevel item 

response models and traditional item response models perspective. They assessed 

the performances of the methods according to equating errors. According to the 

results of this study, for some conditions the results of multilevel item response 

models, for the other conditions the results of traditional item response models were 

better. Thus, it could not be said that any of these methods outperformed the others.   

Demirus and Gelbal (2016), compared various methods under conditions that 

contained and did not contain DIF. They used RMSD index, which was computed 
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by using the difference between ability estimates, to compare the performances of 

the methods. Based on the results they pointed out that when DIF existed on 

common items, mean-mean method produced the biggest equating error, while 

mean-sigma method produced the smallest error. When DIF did not exist in the 

common items, mean-sigma method produced the biggest error, while Stocking-

Lord (SL) and Haebara methods produced the smallest.  

Yurtcu and Guzeller (2018) compared the errors of mean-mean, mean-

sigma, Haebara, and SL methods by adding DIF to some specific items. Based on 

the results of this study, they pointed out that adding DIF to test items caused an 

increase in the errors. 

In the studies mentioned above, the change in the equating results was 

observed for the conditions where DIF exists. However, to clarify the relationship 

between DIF and test equating, population invariance must be examined. Unlike 

these studies, in this dissertation, population invariance is emphasized to explain 

the relationship between DIF and test equating. There are some basic studies about 

population invariance in psychometric literature. These are mentioned below. 

Dorans and Holland (2000), conducted a study containing the statistics they 

developed to measure the population invariance of equating. In their opinion, when 

two tests are not equitable, it is very likely that the linking functions are not invariant 

across different subpopulations. According to the ideas that they pointed out, there 

is not any equating function, which is completely population invariant. Instead, the 

population dependence is small enough to be ignored. In this study, they developed 

two indices to compute the difference between subpopulations and the overall 

population in equating dependence. The first index was the root mean square 

difference (RMSD), which computes the difference for the subpopulation linking 

function and the overall linking function. The second index was the root expected 

mean square difference (REMSD), which is computed by averaging the values 

before taking the square root in RMSD.    

Yang (2004), conducted an application study to investigate group invariance 

of linking functions over subgroups defined by region. Hence, the root expected 

squared difference (𝑅𝐸𝑆𝐷𝑗), which is one of the group-to-overall indices, was 

developed by this study. In conclusion, linkings across regions were group invariant.  
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Dorans, Liu and Hammond (2008) conducted an exploratory study to clarify 

the role of population invariance in equating results. They investigated equating 

results under small and large ability differences. According to the results, they 

emphasized that population invariance is a prerequisite for equating. In other words, 

if there is a lack of equating invariance, it can be said that the linking is not an 

equating. On the other hand, meeting population invariance cannot guarantee that 

score interchangeability feature of equating has been achieved.  

Huggins and Penfield (2012) conducted a study that presented available 

methods for evaluating population invariance in linking and equating. In this study, 

they pointed out that population invariance in linking and equating is very important 

to ensure the validity and fairness of test scores. This study was an instructional 

module that provides an overview of relevant researches about the population 

invariance of linking and equating. Methods for evaluating equating invariance were 

categorized and introduced under two topics: omnibus or group-to-overall methods, 

and conditional or unconditional methods. In this study, they also developed an 

equating invariance method called RSD𝑗, which is a conditional version of 𝑅𝐸𝑆𝐷𝑗 

(Yang, 2004) method.   

Powers and Kolen (2014), investigated equating results of various equating 

methods by creating group differences. In this study, frequency estimation, chained 

equipercentile, IRT true score equating, and IRT observed score equating methods 

were used. According to the results, when group differences increased, equating 

results became dissimilar among equating methods, and also behaved biased. They 

pointed out in this study that an equating method should be selected by considering 

the size of group differences, the likelihood of the violation of the equating 

assumptions, and the error associated with the equating method.  

Dorans, Lin, Wang and Yao (2014), investigated the linking relationships 

between latent test scores. From this point of view, they tried to present how 

observed score linkings were affected from these latent linking relationships. The 

effects of correlation between latent dimensions, and difference in test content on 

linking functions were examined. In conclusion, the results of this study focused on 

the relationship between the correlation between latent dimensions and equitability 

of test scores as test content differentiates.      
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According to the literature review, the number of studies examining the 

relationship between DIF and equating is quite rare. And, there is no study to 

address this relationship in MIRT perspective yet. In this respect, the results of this 

research are very important for psychometric literature. In addition, the number of 

studies conducted with multidimensional equating methods is also rare. And, 

previous studies were focused on equating errors while the current study examines 

the performance of MIRT, UIRT and EQ equating methods in terms of population 

invariance. Therefore, the results of the current study will make significant 

contribution to the MIRT methodology. 
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Chapter 3 

Methodology 

In this study, different equating methods were compared under the presence 

of DIF in multidimensional tests. In current applications, examinees are need to have 

more than one ability to answer test items correctly. Hence, multidimensionality and 

multidimensional test equating have become interesting research topics. In the 

presence of multidimensionality, it is very difficult to prevent DIF. According to 

literature review, there are not any studies which investigate the relationship 

between differential item functioning and multidimensional test equating yet. 

Therefore, it is very important to find out the effects of DIF on test equating in this 

perspective.  

Research objective of this study was comparing MIRT, UIRT and EQ 

equating methods in the presence of various simulation conditions. These 

conditions are related to group differences and DIF. Simulation procedures which 

are conducted to find out the relationship between DIF and equating are explained 

in detail below.  

Data Preparation 

In this study, MIRT, UIRT and EQ equating methods were compared based 

on their population invariance measures obtained in different simulation conditions. 

To investigate the relationship between test equating and DIF in multidimensional 

perspective, two-dimensional data structure was used. In order to obtain the SS-

MIRT model, both dimensions were created by using 3-PL model. Specifically, item 

parameters of two dimensions were generated by using the distributions of an item 

parameter pool and then correlation between two dimensions was formed to obtain 

the SS-MIRT structure. These generated parameters served here as true item 

parameters. And, data were generated by using true item parameters. The weights 

of 1 was used for the scores in both dimensions, and hence total score range 

obtained as 0-80.  

CINEG (Common item nonequivalent groups) design was used, in which two 

equated samples were assumed to come from different populations with bivariate 

normally distributed abilities. 1.681 (41x41) pairs of bivariate quadrature points and 

weights were used. For both abilities, the range of theta values were assumed to be 
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from -4 to +4 According to Kolen and Brennan (2014), common items should be at 

least 20% of the total test items. Based on this, common items were formed to be 

25% of the total test items. Based on 100 replications, four equating procedures 

conducted in this study: SMO, UO, UT, and CE.   

Composite scores consist of two or more content areas (e.g., a mathematic 

test is formed of algebra and geometry) or two or more item types (e.g., a test is 

formed of multiple-choice and free-response items). Content areas mentioned here 

and item types measure different abilities which are correlated to provide a single 

score of achievement (Kolen, Wang and Lee, 2012). In the present study, two 

dimensions were considered to measure two different content areas and it is 

assumed that there is a correlation between these two dimensions. Therefore, it is 

suitable to call this model “Simple Structure-MIRT Model”. Composite scores were 

formed by summing scores from two content areas. For the purpose of this study, 

only raw score equating was conducted.   

In this study, two subgroups were considered: reference group and focal 

group. For most situations, it is very difficult for sample sizes of subgroups to be 

approximately equal to each other. Therefore, subgroups were disaggregated to 

have different percentages. While focal group was formed of 25% of total group, 

reference group was formed of 75% of total group. For many equating situations, 

3.000 can be argued to be a sufficiently large sample size (Lee et al., 2012). In this 

study, sample size was fixed to 1.000 for focal group, 3.000 for reference group, 

and hence total group sample size was fixed to 4.000.   

In the current study, DIF items were only generated in the common items. 

According to Huggins’ (2012) study, the effect of frequency of DIF items on equating 

dependence was small in IRT equating. Based on this result and by also considering 

the purpose of the current study, frequency of DIF items were fixed to a particular 

value. And, this amount was decided to be 20%. Even though it may be unlikely for 

a test to include 20% DIF common items after examination of item fairness (Lee & 

Zhang, 2017), it was anticipated to be useful to investigate this amount to represent 

a severe scenario. In addition to this, moderate level of DIF items were used to 

investigate the effect of DIF on test equating. DIF in b parameters is generally seen 

as the primary concern of problematic DIF in operational testing situations (Huggins, 

2012). Thus, all DIF was simulated in b parameters.   
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Simulation Factors  

Ability effect size (ES). According to Lee et al. (2012), ability differences 

between groups have the potential impact on equating results with CINEG design. 

When the effect size (ES) is .05 or .1, all methods have acceptable equating results. 

Thus, .1 was considered as small group difference for the current study. According 

to Kolen and Brennan (2014), around .3 or more standard deviation unit of mean 

group differences can cause large differences on equating results with CINEG 

design. And hence, in the present study, .3 was considered as large group 

difference. To sum up, in this study, two levels of ability effect size measures were 

considered: .1 for small group differences and .3 for large group differences. Kolen 

and Brennan (2014) also stated that the difference in group standard deviations can 

cause differences among equating methods at least as great as the difference 

caused by mean group differences. And hence, standard deviations were fixed to 1 

across all study conditions to prevent any other differences in equating methods. 

Means, standard deviations, and correlations for the combined groups were 

computed by using the formulas which were expressed in detail in Dunlap’s (1937) 

study. To obtain the ability effect size measures for population 1 and 2, distributions 

of focal and reference groups were formed as below: 

• ES = .1:  

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~ BN(0, 0, 1, 1, ρ) and (𝜃1, 𝜃2)𝑁𝑒𝑤 ~ BN(.1, .1, 1, 1, ρ) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
 ~ BN(-.3, -.3, .9, .9, ρ) and (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

 ~ BN(-.2, -.2, .9, .9, ρ) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
 ~ BN(.1, .1, .99, .99, ρ) and (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

 ~ BN(.2, .2, .99, .99, ρ) 

• ES = .3:  

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~ BN(0, 0, 1, 1, ρ) and (𝜃1, 𝜃2)𝑁𝑒𝑤 ~ BN(.3, .3, 1, 1, ρ) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
 ~ BN(-.3, -.3, .9, .9, ρ) and (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

 ~ BN(0, 0, .9, .9, ρ)   

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
 ~ BN(.1, .1, .99, .99, ρ) and (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

 ~ BN(.4, .4, .99, .99, ρ) 

Correlation between dimensions. Lee and Brossman (2012) investigated 

SS-MIRT and UIRT procedures in their study and indicated that when the correlation 

was .8 or higher both methods might produce adequate results. Lee and Lee (2016) 

used MIRT and UIRT equating methods in their study and they concluded that at 
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the correlation level of .8 or higher, UIRT and MIRT equating results might be similar. 

According to this literature review, .8 as correlation between two dimensions was 

decided to be used as a benchmark for this study. As a higher level, .95 was decided 

to be used in current dissertation to represent approximately unidimensional 

situations. .5 or lower level of correlation may be rarely seen in actual situations. But 

in some testing conditions distinct abilities may be included to the exam to be tested 

(e.g., language exams). To investigate this type of conditions, .5 were used. To sum 

up, tree levels of correlation between dimensions were used: .5, .8 and .95. It should 

be emphasized that correlation levels were checked after data was generated.  

Differential form DIF. In CTT (Classical Test Theory) equating, equating 

dependence occurs when the differential difficulty of the two tests changes across 

two groups (Dorans, 2004). According to Huggins’ (2012) results, in IRT equating, 

identical DIF in anchor items across forms does not have an impact on equating 

invariance but when DIF in anchor items differs across forms, equating dependence 

occurs. In current study, this understanding was discussed in MIRT equating 

perspective. Based on this, two conditions were formed in this current study: DIF 

that is identical across test forms and DIF that is differential across test forms. In the 

first condition, DIF was equivalent across two test forms. That is, for an anchor DIF 

item, the magnitude and the direction of DIF were the same at two forms. In the 

second condition, while true DIF were not added to the items in the old form, true 

DIF were added to the items in the new form. In current study CINEG design was 

used. According to this design, non-equivalent groups were formed across test 

forms. The second sub condition were simulated to reflect the possibility of DIF that 

might be differential across test forms in the non-equivalent groups. A third condition 

was that DIF did not exist in both forms. Thus, in this research, the results of the 

equating methods were compared in terms of equating invariances for conditions 

where DIF did not exist (no-DIF), DIF existed in both forms (DIF in both forms) and 

DIF existed only in one form (DIF in new form only).    

Magnitude of DIF. To investigate the effect of DIF on test equating, moderate 

DIF level was aimed to be used in current dissertation. Using items which include 

large amount of DIF may not be practical because these items are mostly detected 

well by specialists and generally omitted from the tests. Hence, the level of DIF 

magnitude was used in the current study is .6 and this magnitude was chosen based 
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on Educational Testing Service’s (ETS) classification (Dorans & Holland, 1992). SS-

MIRT allows each dimension to be modeled using UIRT. And, this gives us the 

opportunity of using UIRT while adding DIF to the items. Hence, in both dimensions, 

uniform DIF was formed by increasing b parameters as 0.6 unit to create moderate 

level of DIF. It should be emphasized that DIF magnitude was checked after data 

was generated.   

Direction of DIF. The aggregated effect of small or moderate DIF items on 

test equating may be significant. This understanding can be extended to the MIRT 

equating. Unidirectional DIF items were used in this study to express the 

combination of DIF effects. Hence, all DIF items in the test favored to R group in 

both dimensions.   

Data Generation 

Distributions of a, b, and c parameters of an item parameter pool were used 

in this study. The item parameter pool was obtained from multiple forms of a 

language exam of a large-scale testing program applied in the United States. The 

item parameter pool was consisted of 800 a, b, and c parameters (based on 3-PL 

model). The distribution of these item parameters was investigated in detail. The 

distributions of a, b, and c parameters were shown in Figure 6.  

 

 



42 
 

 

Figure 6. Distributions of real item parameters.  

As can be seen in Figure 6, the distributions of a, b, and c parameters nicely 

fit to log-normal (-0.307, 0.358), normal (-0.0502, 0.879), and beta distributions 

(4.62, 13.2), respectively. The mean of this beta distribution can be computed as 

below:  

𝜇 =
𝛼

𝛼 + 𝛽
=

4.62

4.62 + 13.2
= 0.259 

The computed mean is appropriate for a 4-choice item test: 
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After determining the distributions of a, b, and c parameters, item parameters 

(a, b, and c) of this study were generated by using these distributions to represent 

the characteristics of the item parameter pool. That is, item parameters (item 

parameters for 20 common items, 60 non-common items for Form 0, and 60 non-

common items for Form 1) were generated by using log-normal distribution for a 

parameter, normal distribution for b parameter, and beta distribution for c parameter. 

For both common and non-common item parameters, same distributional properties 

were used to ensure that the common items were a “mini version” of the total test 

form (Kolen & Brennan, 2014).  

Generated item parameters for 40 items (10 common and 30 non-common) 

represented the first dimension, while the other 40 items represented the second 

dimension. Correlation was formed between two dimensions to create an SS-MIRT 

structure for the test form. After generating the item parameters for the old form, 

similar process was repeated for the new form by considering the common items as 

the same in both forms. The generated item parameters of two forms were used as 

the true item parameters for this study. Additionally, DIF were added to the first two 

items of both dimensions for DIF conditions. Specifically, these items were items 1 

and 2 for the first dimension, items 41 and 42 for the second dimension. For items 

1, 2, 41, and 42, difficulty parameters of focal group were increased by 0.6 unit to 

create uniform DIF. All these processes were repeated for 100 times for each 

simulation condition.   

After generating item parameters, ability parameters of both forms were 

generated by using bivariate normal distributions 𝐵𝑁(𝜇1, 𝜇2, 𝜎1
2, 𝜎2

2, 𝜌𝜃1𝜃2
) which were 

mentioned in ability effect size conditions. According to these conditions, ES=0.1 

and ES=0.3 were used to form group ability differences between two forms for both 

dimensions. Thus, in accordance with the CINEG design, difference was made 

between the ability means of the groups that took different test forms. While creating 

ability parameters, previously specified distributions were used. Specifically, focal 

and reference groups distributions were determined to form a specified total group 

distribution for both dimensions. To achieve this, the following equations that were 

included in Dunlap's study were used in both dimensions. 
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𝑀𝑇 =
𝑟𝑀𝑟 + 𝑓𝑀𝑓

𝑟 + 𝑓
 

 

Where, 𝑀𝑇 is the ability mean of the total group, 𝑀𝑟 is the ability mean of the 

reference group, 𝑀𝑓 is the ability mean of the focal group, r is the sample size 

of the reference group, and f is the sample size of the focal group. In addition 

to this, the following equation was used for the calculation of variances: 

 

𝜎𝑇
2 =

𝑟(𝜎𝑟
2 + 𝛿𝑟

2) + 𝑓(𝜎𝑓
2 + 𝛿𝑓

2)

𝑟 + 𝑓
 

 

where, 𝜎2 represents the variance, and 𝛿𝑟 = 𝑀𝑟 − 𝑀𝑇 represents the 

difference between the subgroup mean and the total group mean. Finally, the 

following equation was used for combining correlation coefficients: 

 

𝑟𝑥𝑦 =
𝑟𝜎𝑥𝑟

𝜎𝑦𝑟
𝑟𝑥𝑟𝑦𝑟

+ 𝑟𝛿𝑟∆𝑟 + 𝑓𝜎𝑥𝑓
𝜎𝑦𝑓

𝑟𝑥𝑓𝑦𝑓
+  𝑓𝛿𝑓∆𝑓

√𝑟(𝜎𝑥𝑟
2 + 𝛿𝑟

2) + 𝑓 (𝜎𝑥𝑓
2 + 𝛿𝑓

2) √𝑟(𝜎𝑦𝑟
2 + ∆𝑟

2) + 𝑓 (𝜎𝑦𝑓
2 + ∆𝑓

2)

 

 

where, r and f refer again groups to be combined. For any x or y values in 

group m, 

𝑥 = 𝑥𝑚 + 𝛿𝑚,              𝑦 = 𝑦𝑚 + ∆𝑚, 

 

For any x or y values in group n, 

𝑥 = 𝑥𝑛 + 𝛿𝑛,              𝑦 = 𝑦𝑛 + ∆𝑛, 

and, 

𝛿𝑚 = 𝑀𝑥𝑚
− 𝑀𝑥,          ∆𝑚= 𝑀𝑦𝑚

− 𝑀𝑦, 

𝛿𝑛 = 𝑀𝑥𝑛
− 𝑀𝑥,          ∆𝑛= 𝑀𝑦𝑛

− 𝑀𝑦. 
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As a result, by using these equations, bivariate normal (BN) distributions for 

focal, reference, and total groups were formed with respect to ES=0.1, and ES=0.3 

conditions as follows: 

 

• Effect Size = .1:  

o For correlation value of 0.5: 

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~BN(0, 0, 1, 1, .5)   (𝜃1, 𝜃2)𝑁𝑒𝑤 ~BN(.1, .1, 1, 1, .5) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
~BN(-.3, -.3, .9, .9, .5)   (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

~BN(-.2, -.2, .9, .9, .5) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
~BN(.1, .1, .993, .993, .48)  (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

~BN(.2, .2, .993, .993, .48) 

 

o For correlation value of 0.8: 

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~BN(0, 0, 1, 1, .8)  (𝜃1, 𝜃2)𝑁𝑒𝑤 ~BN(.1, .1, 1, 1, .8) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
~BN(-.3, -.3, .9, .9, .8)  (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

~BN(-.2, -.2, .9, .9, .8) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
~BN(.1, .1, .993, .993, .792) (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

~BN(.2, .2, .993, .993, .792) 

 

o For correlation value of 0.95: 

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~BN(0, 0, 1, 1, .95)  (𝜃1, 𝜃2)𝑁𝑒𝑤 ~BN(.1, .1, 1, 1, .95) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
~BN(-.3, -.3, .9, .9, .95) (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

~BN(-.2, -.2, .9, .9, .95) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
~BN(.1, .1, .993, .993, .948) (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

~BN(.2, .2, .993, .993, .948) 

 

• Effect Size = .3:  

o For correlation value of 0.5: 

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~BN(0, 0, 1, 1, .5)  (𝜃1, 𝜃2)𝑁𝑒𝑤 ~BN(.3, .3, 1, 1, .5) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
~BN(-.3, -.3, .9, .9, .5)  (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

~BN(0, 0, .9, .9, .5)   

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
~BN(.1, .1, .993, .993, .48) (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

~BN(.4, .4, .993, .993, .48) 
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o For correlation value of 0.8: 

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~BN(0, 0, 1, 1, .8)  (𝜃1, 𝜃2)𝑁𝑒𝑤 ~BN(.3, .3, 1, 1, .8) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
~BN(-.3, -.3, .9, .9, .8)  (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

~BN(0, 0, .9, .9, .8)   

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
~BN(.1, .1, .993, .993, .792) (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

~BN(.4, .4, .993, .993, .792) 

 

o For correlation value of 0.95: 

(𝜃1, 𝜃2)𝑂𝑙𝑑 ~BN(0, 0, 1, 1, .95)  (𝜃1, 𝜃2)𝑁𝑒𝑤 ~BN(.3, .3, 1, 1, .95) 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
~BN(-.3, -.3, .9, .9, .95) (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹

~BN(0, 0, .9, .9, .95)   

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
~BN(.1, .1, .993, .993, .948) (𝜃1, 𝜃2)𝑁𝑒𝑤𝑅

~BN(.4, .4, .993, .993, .948) 

 

 

With respect to the specified distributions, 1000 ability parameters were 

generated for the focal group, and 3000 ability parameters were generated for the 

reference group in accordance with the sample size condition for the old form. And, 

this process was repeated for the new form by creating group ability differences (for 

ES=0.1, and ES=0.3) as pointed out above. As a final step, all processes were 

repeated 100 times for both forms.  

Finally, item responses were formed by using the generated item and ability 

parameters with respect to the SS-MIRT model. For each condition, item responses 

were generated for both forms 100 times. All these steps were performed in the 

computer program R (R Core Team, 2016) by using the codes which were written 

by the researcher.  

Data Analysis  

In this study, the generated item parameters were used as the true 

parameters and these true item parameters were used to obtain criterion equating 

relationships which are discussed in the next section in detail. On the other hand, 

item responses were used in the process of conducting equatings. First, to conduct 

SMO equating, item parameters were estimated under the SS-MIRT framework 

using flexMIRT (Cai, 2017). Concurrent calibration was used in this process. In 
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concurrent calibration, scale linking was carried out at the time of item calibration, 

hence additional scale transformation was not needed. After the item parameters 

were estimated on the same scale, SMO equating was conducted three times to 

equate two forms: first for the focal group, second for the reference group, and third 

for the total group. These steps were repeated 100 times. For the sake of clarity, the 

steps of SMO equating are given below.  

 

1. Item parameters of two forms were estimated on the same scale by using 

concurrent calibration based on SS-MIRT model.  

2. Conditional observed score distributions for each dimension were 

obtained for each form.  

3. Conditional total score distributions were obtained for each form using the 

conditional observed score distributions. 

4. A bivariate normal ability distribution was constructed for each form using 

the corresponding mean, variance, and correlation estimates obtained 

from flexMIRT concurrent calibration.  

5. Marginal observed score distributions were computed for each form by 

aggregating conditional total score distributions over the bivariate normal 

theta distribution.  

6. Finally, traditional EQ equating was conducted for the two forms.  

7. Steps 1 to 6 were carried out for the focal, reference, and total groups. 

8. Steps 1 to 7 were repeated 100 times (for all item response files 

generated).    

 

After the SMO equating was completed for the focal, reference, and total 

groups, UIRT and EQ equating were conducted using the estimated item 

parameters which were obtained according to UIRT procedures. Item parameters 

were estimated under the UIRT framework using concurrent calibration in flexMIRT. 

After the item parameters were estimated on the same scale, UO, UT and EQ 

equating methods were conducted for the focal, reference, and total groups. These 

steps were repeated for each condition 100 times (for all item response files 

generated). In many equating studies, 100 was used as the iteration number (Kim, 

Lee & Kolen, 2020; Lee & Brossman, 2012).    
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After equating results of all methods (SMO, UO, UT, and EQ) were obtained, 

RMSD and RSD (for both focal, and reference groups) values were calculated using 

the equating results of focal, reference, and total groups for each condition and each 

iteration. And then, means of RMSD and RSD values of each method were obtained 

for each condition by taking the averages over 100 iterations. Finally, RMSD and 

RSD means of all methods were compared both among each other and with the 

results of criterion equating relationship. Detailed information on how these indices 

are calculated is repeated below.  

As an additional information, it should be emphasized that CE equating 

method was used as the EQ equating method in this study. Because, this research 

was carried out with CINEG design, and among EQ equating methods the most 

appropriate one for CINEG design was the CE equating method. However, as can 

be seen from the figures in the findings section, there are fluctuations on RMSD and 

RSD plots of the CE equating method. This is because this method uses frequency 

distributions based on number correct scores. To improve the stability of the results, 

a univariate log-linear presmoothing method, which is called as log-linear pre-

smoothed CE equating method, with polynomial degree of 6 was used. All 

procedures applied to other methods were repeated for this method, and the 

obtained results were interpreted all together.      

Criterion Equating Relationships 

When conducting comparison studies with various equating methods, 

evaluating the results of these methods with each other is not sufficient. For these 

studies, it is essential to rely on a criterion relationship known to be correct. 

Unfortunately, a perfect, complete, and objective criterion does not exist in the 

literature. Therefore, when equating studies are carried out, the equating 

relationship, that is considered to give the most accurate results depending on the 

conditions of the study, is selected as criteria. Some of the criterion equating 

relationships used in MIRT equating literature are EQ, SMO, identity equating, Full-

MIRT observed score, TRM-MIRT (Testlet Response Model-MIRT) observed score 

equating methods.   

The structure of the data (MIRT model), the design used (CINEG), the 

subgroups created (reference, and focal), the methods compared (SMO, UO, UI, 
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EQ) were important factors taken into account when choosing criterion equating 

relationship of this study. Considering these factors, the criterion equating 

relationships were created based on SMO equating method with true item 

parameters (not estimates). Specifically, SMO equating was performed for focal, 

reference, and total groups using 100 previously generated true parameters for each 

condition. Then, 100 RMSD and RSD (RSDF and RSDR) distributions were 

calculated for each condition based on the equating results obtained. And, RMSD 

and RSD means were obtained by averaging these 100 RMSD and RSD 

distributions for each condition. Thus, these RMSD and RSD means for each 

condition expressed the criterion equalization relationship. It should be emphasized 

that true parameters were regenerated for each condition and iteration, as Huggins 

did in her study (Huggins, 2012). Thus, the results were aimed to be generalized to 

a particular distribution, not to a particular test. This made the research more 

generalizable.   

Using SMO equating with true parameters minimized the measurement and 

the equating error. Hence, we could compute the ideal equating invariance indices, 

and monitored ideally how DIF conditions effect equating invariance, and then 

compared methods according to this ideal effect. At last, we could show practitioners 

which method was affected most or least or near to ideal. And warned practitioners 

to be careful about fairness when equating test scores in some specific DIF 

conditions. 

Evaluation Criteria  

Selection of evaluation criteria is another important point in evaluating the 

performance of equating methods. The focus of the study was comparing the 

methods according to their population invariances. In accordance with the aim of 

this study, unstandardized RMSD and RSD indices were chosen as evaluation 

criteria. These indices were calculated after equating processes were conducted for 

each condition and for each trial. Hence, there were 100 𝑅𝑀𝑆𝐷(𝑥) and 100 

𝑅𝑆𝐷𝑗(𝑥) (100 RSDR, and 100 RSDF) distributions of each method for each 

condition. The averages of these distributions were computed. Finally, RMSD and 

RSD means of all methods were compared both among each other and with the 

criterion equating relationship results. Here, mean distributions represented the 
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estimate of population invariance of each method. To sum up, for each condition, 

methods were compared based on their population invariance results.  

It should be emphasized that the reason for using the 𝑅𝑆𝐷𝑗(𝑥) index in 

addition to the 𝑅𝑀𝑆𝐷(𝑥) index was to prevent the differential form DIF from 

affecting the smallest group (Huggins, 2012). Both indices used for evaluation 

criteria explained in detail as below:             

𝑅𝑀𝑆𝐷(𝑥) =

√∑ 𝑤𝑗 [𝑒𝑃𝑗
(𝑥) − 𝑒𝑃(𝑥)]

2
 
𝑗

𝜎𝑌𝑃
 

The above equation is computed at each 𝑥 value. Where, j represents 

different subgroups, P represents the overall group, 𝑒𝑃𝑗
(𝑥) represents separate 

linking functions for specified subgroups, 𝑒𝑃(𝑥) represents the overall linking 

function, 𝑤𝑗 represents the weighting of each subgroup (a proportional 

representation of each subgroup in the overall group), 𝜎𝑌𝑃 represents the standard 

deviation of Y scores in P (Dorans & Holland, 2000).  This index was adapted to 

CINEG design (unstandardized version) by removing the dominator component. On 

the other hand, RSD𝑗(𝑥) index can be explained as below:  

𝑅𝑆𝐷𝑗(𝑥) =
|𝑑𝑗(𝑥)|

𝜎𝑄
 

where 𝜎𝑄 represents the standard deviation of scores in population 𝑄, and 

𝑑𝑗(𝑥) represents the difference between a linked score y based on subgroup j’s 

linking function and a linked score y based on the overall linking function at score 

level 𝑥 (Huggins & Penfield, 2012). This index gives the standardized distance 

between the one subgroup’s equating function and the overall equating function at 

one score level (Huggins, 2012). This index was also adapted to this study (to 

CINEG design) by removing the dominator component. In other words, the 

unstandardized version of this index was used for this research.   

 To assess the magnitude of equating dependence, two difference that 

matters (DTM) criteria were chosen: 0.5 and 1. While 0.5 is a value that has been 

used in most studies, as stated in Huggins’ (Huggins, 2012) study, to better reveal 

the problematic level of equating dependence also 1 was used. Equating invariance 

results compared graphically and visually across all conditions by considering both 
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DTM criteria. Equating methods were evaluated as the best and worst according to 

the amount of differentiation from the criterion equating relationship, and according 

to the distance from both DTM criteria. In particular, the equating method, which 

gave the closest results to the criterion equating relationship results, were defined 

as the best method. Besides, DTM values were also taken into consideration while 

interpreting the results.  
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Chapter 4 

Findings  

The results of this study are presented in four sections as follows. In the first 

section, equating methods (multidimensional, unidimensional, and equipercentile 

equating) are compared with respect to the findings representing the effect of 

differential form DIF on equating invariance of the methods. In the second section, 

comparison of equating methods is discussed according to the effect of correlation 

between dimensions on equating invariance. In the third section, the findings of the 

effect of group mean ability differences between two forms on the relationship 

between DIF and equating invariance of the methods are presented and all methods 

are compared according to these findings. In the final section, equating methods are 

compared with respect to the findings obtained in all sections.  

Research Question 1 

What is the performance of MIRT equating method compared to UIRT and 

EQ equating methods with respect to the effect of differential form DIF on population 

invariance?  

In this section all equating methods are compared with respect to differential 

form DIF which include three conditions: no-DIF, DIF in both forms, and DIF in new 

form only. In no-DIF condition, items were generated to have no true DIF. In DIF in 

both forms condition, DIF was added to the same common items (1, 2, 41, 42) in 

both forms in the same direction (favored to R group) and in the same amount 

(moderate level). In DIF in new form only condition, DIF was added to common items 

in the new form only.  

First, RMSD means of the methods for these conditions with 0.5 correlation 

between dimensions and 0.1 group mean ability difference between two forms 

(ES=0.1 for focal, reference, and total groups) are shown in Figure 7. Specifically, 

Figure 7 represents no-DIF, DIF in both forms, and DIF in new form only results, 

respectively.  
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Figure 7. RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.5 correlation and ES=0.1. 
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In order to see the results more clearly, Figure 8 containing only (M)IRT 

methods results and Figure 9 containing the zoomed versions of the plots of all 

methods results were added to the study as below. 

 

 

    Figure 8. RMSD means of (M)IRT methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.5 correlation and ES=0.1. 
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Figure 9. Zoomed RMSD means of all methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.5 correlation and ES=0.1. 
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As can be seen in Figures 7, 8, and 9, RMSD results are similar across no-

DIF and DIF in both forms conditions, smaller than the DTM of 1.0, and mostly 

smaller than the DTM of 0.5. However, for DIF in new form only condition, there is 

an increase in RMSD values for all methods. The results of all methods except the 

chained and the log-linear pre-smoothed chained methods are around the DTM of 

0.5. The results of chained and log-linear pre-smoothed chained methods are 

smaller for a specific score range. However, these methods produce quite high 

RMSD values in the score ranges with low frequencies because they conducted 

equating with respect to the frequency distributions based on number correct 

scores. Besides, as expected, the log-linear pre-smoothed CE equating method 

gives smoother results than the CE equating method. Hence, in the next sections of 

this study, the log-linear pre-smoothed CE equating method results are interpreted. 

To sum up, according to the results shown in Figures 7, 8 and 9, even if log-linear 

pre-smoothed CE equating method gives very close results to the criterion equating 

relationship for a specific score range with high frequencies, for the whole score 

range SMO equating method gives the closest results to the criterion equating 

relationship in terms of the distribution and the values.  

Figure 10 represents the RMSD means for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.5 correlation between dimensions and 

ES=0.3. Besides, Figure 11 represents only (M)IRT methods results, while Figure 

12 represents the zoomed versions of the plots containing all methods results.   
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Figure 10. RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.5 correlation and ES=0.3. 
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Figure 11. RMSD means of (M)IRT methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.5 correlation and ES=0.3.  
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Figure 12. Zoomed RMSD means of all methods for no-DIF, DIF in both forms, 

and DIF in new form only conditions with 0.5 correlation and ES=0.3.  
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According to Figures 10, 11, and 12, the results are quite similar to the 

conditions where ES = 0.1. Specifically, RMSD results are similar across no-DIF 

and DIF in both forms conditions, smaller than the DTM of 1.0, and often smaller 

than the DTM of 0.5. However, for DIF in new form only condition, there is an 

increase in RMSD values for all methods. The results of all methods except the CE 

equating method are around the DTM of 0.5. The results of the CE equating method 

are smaller for a specific score range however, this method gives quite high RMSD 

values in the score ranges with low frequencies. To sum up, according to the results 

shown in Figures 10, 11 and 12, even if the CE equating method gives very close 

results to the criterion equating relationship for a specific score range with high 

frequencies, for the whole score range the SMO equating method gives the closest 

results to the criterion equating relationship in terms of the distribution and the 

values. Based on these results mentioned for ES=0.3, it can be said that difference 

in ES has not an impact on the distribution and the values of RMSD results. Similar 

to the results of ES=0.1, it is seen that the RMSD values of the methods in no-DIF 

and DIF in both forms conditions are often smaller than the DTM of 0.5, but for DIF 

in only new form condition, the values are close to the DTM of 0.5 and above. To 

sum up, in the conditions mentioned, the equating method that gives the closest 

results to the criterion equating relationship results in terms of the distribution and 

the values is the SMO.  

RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation, and ES=0.1 are represented in Figures 13, 14, and 

15 as below. While Figure 13 shows the results of all methods, Figure 14 shows the 

results of (M)IRT methods only, and Figure 15 includes zoomed versions of the 

results for all methods.   
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Figure 13. RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation and ES=0.1. 
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Figure 14. RMSD means of (M)IRT methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.8 correlation and ES=0.1.  
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Figure 15. Zoomed RMSD means of all methods for no-DIF, DIF in both forms, 

and DIF in new form only conditions with 0.8 correlation and ES=0.1.  
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According to Figures 13, 14, 15, with 0.8 correlation between dimensions and 

ES=0.1, the comparison of all equating methods according to no-DIF, DIF in both 

forms and DIF in new form only conditions is as follows. For no-DIF and DIF in both 

forms conditions, the results of MIRT and UIRT methods, and the results of the CE 

equating method for scores with high frequencies are below the DTM of 0.5. When 

DIF is added to new form only, the RMSD results increase and reach around the 

DTM of 0.5, and even some of them exceed this value. That is, DIF in one form only 

causes an increase in the RMSD values of all methods. The results obtained from 

the conditions mentioned are quite similar in terms of MIRT and UIRT equating 

methods. In some score ranges SMO, in some others UT, and in some others UO 

method gives closer results to the criteria. To sum up, it seems difficult to distinguish 

these methods in terms of the distributions and values of the RMSD results. On the 

other hand, CE equating method’s results are very close to the criterion equating 

relationship results for the scores with high frequency. However, for the scores with 

low frequency the RMSD results are quite high.  

Figures 16, 17, and 18, which are given below, represent the RMSD means 

of the methods for no-DIF, DIF in both forms, and DIF in new form only conditions 

with 0.8 correlation and ES=0.3. Specifically, Figure 16 includes the results of all 

methods, while Figure 17 shows (M)IRT methods results only, and Figure 18 shows 

the zoomed versions of the results of all methods.   
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Figure 16. RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation and ES=0.3. 
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Figure 17. RMSD means of (M)IRT methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.8 correlation and ES=0.3.  

 

 

 

 



67 
 

 

Figure 18. Zoomed RMSD means of all methods for no-DIF, DIF in both forms, 

and DIF in new form only conditions with 0.8 correlation and ES=0.3.  
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As can be seen in the Figures 16, 17, and 18, the RMSD results of the 

methods are similar to those for conditions with ES=0.1. Specifically, for no-DIF and 

DIF in both forms conditions, the results of MIRT and UIRT methods, and the results 

of the EQ method for scores with high frequencies are below the DTM of 0.5. When 

DIF is added to new form only, the RMSD results reach around the DTM of 0.5, and 

even some of them exceed this value. That is, the RMSD values of all methods 

increase when DIF added to new form only. MIRT and UIRT equating methods 

results are quite similar in terms of the values and the distributions. In some score 

ranges SMO, in some others UT, and in some others UO method gives closer results 

to the criteria. To sum up, it seems difficult to distinguish these methods in 0.8 

correlation with ES=0.3. On the other hand, EQ method results are very close to the 

criterion equating relationship results for the scores with high frequencies. However, 

for the scores with low frequencies the RMSD results of this method are quite high.   

RMSD means are represented for no-DIF, DIF in both forms, and DIF in new 

form only conditions with 0.95 correlation, and ES=0.1 in Figure 19. While in Figure 

20 IRT methods are compared with each other, in Figure 21 the zoomed results of 

all methods are presented. Figures 19, 20, and 21 are given below.  
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Figure 19. RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.95 correlation and ES=0.1. 
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Figure 20. RMSD means of (M)IRT methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.95 correlation and ES=0.1.  
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Figure 21. Zoomed RMSD means of all methods for no-DIF, DIF in both forms, 

and DIF in new form only conditions with 0.95 correlation and ES=0.1.  
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Findings with respect to Figures 19, 20, and 21 are as follows. With 0.95 

correlation between dimensions and ES=0.1, for no-DIF and DIF in both forms 

conditions, the RMSD results of MIRT and UIRT methods and results of the EQ 

method for scores high frequencies are smaller than the DTM of 0.5. When DIF is 

added to new form only, the RMSD results increase and reach around the DTM of 

0.5 and even some results exceed this value. For the cases mentioned, the results 

are quite similar in terms of MIRT and UIRT methods and the EQ method for the 

scores with high frequencies. On the other hand, when ES changes to 0.3, results 

obtained are given in figures below. 

 

Figure 22. RMSD means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.95 correlation and ES=0.3.  
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Figure 23. RMSD means of (M)IRT methods for no-DIF, DIF in both forms, and 

DIF in new form only conditions with 0.95 correlation and ES=0.3.  
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Figure 24. Zoomed RMSD means of all methods for no-DIF, DIF in both forms, 

and DIF in new form only conditions with 0.95 correlation and ES=0.3.  
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According to findings shown in Figures 22, 23, 24, results obtained are similar 

to those for conditions with ES=0.1. Specifically, with 0.95 correlation between 

dimensions and ES=0.3, for no-DIF and DIF in both forms conditions, the RMSD 

results of MIRT and UIRT methods and results of the EQ method for scores with 

high frequencies are smaller than the DTM of 0.5. When DIF is added to new form 

only, the RMSD results increase and reach around the DTM of 0.5 and even some 

results exceed this value. Consequently, MIRT and UIRT results, and the EQ 

method results for scores with high frequencies are quite similar to each other as in 

the 0.8 correlation condition.   

The other evaluation criterion of this study is RSD, which is one of the group-

to-overall conditional equating invariance indices. In the following figures (Figures 

25 and 26) RSDF (for the focal group) and RSDR (for the reference group) means 

are represented for no-DIF, DIF in both forms, and DIF in new form only conditions 

with 0.5 correlation and ES=0.1.  

As can be seen in these figures, RSDR results are similar across no-DIF and 

DIF in both forms conditions, smaller than the DTM of 1.0, and often smaller than 

the DTM of 0.5. On the other hand, RSDF results are also similar across no-DIF and 

DIF in both forms conditions, smaller than the DTM of 1.0, and often close to the 

DTM of 0.5. For DIF in new form only condition, there is an increase in RSD values 

for all methods. The RSDR results of all methods except the CE equating method 

are close to the DTM of 0.5. The results of the CE equating method are smaller for 

a specific score range. However, this method gives quite high RSDR values in the 

score ranges with low frequencies. The RSDF results of all methods except the CE 

equating method are close to the DTM of 1. The results of CE equating method are 

smaller for a specific score range. However, this method gives quite high RSDF 

values in the score ranges with low frequencies. To sum up, according to the results 

shown in Figures 25, and 26, the method that behaves most similarly to the criterion 

equating relationship in terms of both distributions and values is the SMO. 
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 Figure 25. RSDF means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.5 correlation and ES=0.1. 
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Figure 26. RSDR means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.5 correlation and ES=0.1. 
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Figures 27, and 28 represent the RSDF and RSDR means, respectively. 

These figures include no-DIF, DIF in both forms, and DIF in new form only conditions 

with 0.5 correlation between dimensions and ES=0.3.  

 

Figure 27. RSDF means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.5 correlation and ES=0.3. 
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Figure 28. RSDR means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.5 correlation and ES=0.3. 
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According to Figures 27, and 28, the results are quite similar to those for ES 

= 0.1. Specifically, RSDR results are similar across no-DIF and DIF in both forms 

conditions, smaller than the DTM of 1.0, and often smaller than the DTM of 0.5. On 

the other hand, RSDF results are also similar across no-DIF and DIF in both forms 

conditions, smaller than the DTM of 1.0, and often close to the DTM of 0.5.  For DIF 

in new form only condition, there is an increase in RSD values for all methods. 

Specifically, the RSDR results of all methods except the CE equating method are 

around the DTM of 0.5. The results of CE equating method are smaller for a specific 

score range however, this method gives quite high RSDR values in the score ranges 

with low frequencies. Besides, the RSDF results of all methods except the CE 

equating method are around the DTM of 1. The results of CE equating method are 

smaller for a specific score range however, this method gives also quite high RSDF 

values in the score ranges with low frequencies. To sum up, according to the results 

shown in Figures 27, and 28, SMO equating method gives the closest results to the 

criterion equating relationship in terms of the distribution and the values. Based on 

these results mentioned for ES=0.3, it can be said that difference in ES has not an 

impact on the distribution and the values of RSD results. Consequently, in the 

conditions mentioned, the equating method that works closest to the criterion 

equating relationship in terms of the distribution and the values is the SMO.  

RSDF, and RSDR means for no-DIF, DIF in both forms, and DIF in new form 

only conditions with 0.8 correlation, and ES=0.1 are represented in Figures 29 and 

30 as below. 
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Figure 29. RSDF means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation and ES=0.1. 
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Figure 30. RSDR means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation and ES=0.1. 
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According to Figures 29 and 30, with 0.8 correlation between dimensions and 

ES=0.1, the comparison of all equating methods according to no-DIF, DIF in both 

forms and DIF in new form only conditions is as follows. For no-DIF and DIF in both 

forms conditions, the RSDR results of MIRT and UIRT methods, and the RSDR 

results of the EQ method for scores with high frequencies are below the DTM of 0.5. 

On the other hand, for no-DIF and DIF in both forms conditions, the RSDF results of 

MIRT and UIRT methods, and the RSDF results of the EQ method for scores with 

high frequencies are below the DTM of 1, and often close to the DTM of 0.5. When 

DIF is added to new form only, the RSD results increase, and RSDF results reach 

around the DTM of 1. That is, DIF in one form only causes an increase in the RSD 

values of all methods. The results obtained from the conditions mentioned are quite 

similar in terms of MIRT and UIRT equating methods. In some score ranges SMO, 

in some others UT, and in some others UO method gives results closer to the 

criteria. Consequently, in general it seems difficult to distinguish all methods in terms 

of the distributions and values of the RSD results.  

RSDF, and RSDR means for no-DIF, DIF in both forms, and DIF in new form 

only conditions with 0.8 correlation, and ES=0.3 are represented in Figures 31 and 

32, respectively. As can be seen in these figures, the RSD distributions of the 

methods are similar to those for conditions with ES=0.1. Specifically, for no-DIF and 

DIF in both forms conditions, the RSDR results of MIRT and UIRT methods, and the 

RSDR results of the EQ method for scores with high frequencies are below the DTM 

of 0.5. On the other hand, for no-DIF and DIF in both forms conditions, the RSDF 

results of MIRT and UIRT methods, and the RSDF results of the EQ method for 

scores with high frequencies are below the DTM of 1, and often close to the DTM of 

0.5. When DIF is added to new form only, the RSD results increase, and RSDF 

results reach around the DTM of 1. Besides, MIRT and UIRT equating RSD results 

are quite similar in terms of the values and the distributions. In general, it can be 

emphasized that all methods behave similarly for 0.8 correlation with ES=0.3.  
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Figure 31. RSDF means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation and ES=0.3. 
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Figure 32. RSDR means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.8 correlation and ES=0.3. 
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Figures 33 and 34 show the RSDF and RSDR means, respectively. These 

figures include no-DIF, DIF in both forms, and DIF in new form only conditions with 

0.95 correlation between dimensions and ES=0.1.  

 

 

Figure 33. RSDF means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.95 correlation and ES=0.1. 
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Figure 34. RSDR means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.95 correlation and ES=0.1. 
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Findings with respect to Figures 33 and 34 are as follows. With 0.95 

correlation between dimensions and ES=0.1, for no-DIF and DIF in both forms 

conditions, the RSDR results of MIRT and UIRT methods, and the RSDR results of 

the EQ method for scores with high frequencies are smaller than the DTM of 0.5. 

Additionally, for no-DIF and DIF in both forms conditions, the RSDF results of MIRT 

and UIRT methods, and the RSDF results of the EQ method for scores with high 

frequencies are below the DTM of 1, and often close to the DTM of 0.5. When DIF 

is added to new form only, the RSD results increase for all methods. For the cases 

mentioned, the results are similar in terms of MIRT and UIRT methods and the EQ 

method for the scores with high frequencies.  

When ES changes to 0.3, RSD distributions obtained are given in Figures 35 

and 36 as below. According to findings shown in these figures, RSD results obtained 

are similar to those for conditions with ES=0.1. Specifically, with 0.95 correlation 

between dimensions and ES=0.3, for no-DIF and DIF in both forms conditions, the 

RSDR results of MIRT and UIRT methods and results of the EQ method for scores 

with high frequencies are quite smaller than the DTM of 0.5. Additionally, for no-DIF 

and DIF in both forms conditions, the RSDF results of MIRT and UIRT methods, and 

the RSDF results of the EQ method for scores with high frequencies are below the 

DTM of 1, and often close to the DTM of 0.5. When DIF is added to new form only, 

all RSD results increase. Consequently, MIRT and UIRT results, and the EQ method 

results for scores with high frequencies are similar to each other as in the 0.8 

correlation condition.   
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Figure 35. RSDF means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.95 correlation and ES=0.3. 
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Figure 36. RSDR means for no-DIF, DIF in both forms, and DIF in new form only 

conditions with 0.95 correlation and ES=0.3. 
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As can be seen in above figures, group-to-overall conditional equating 

invariance (the RSDF, and the RSDR) results for differential form DIF conditions 

show the same patterns as the RMSD results. However, for the RSDF and the RSDR 

results, it should be noted that the magnitudes of equating dependence are larger 

for the focal group as compared to the reference group, and also the fluctuations of 

equating dependence across the scores are more dramatic. In general, the RSDR 

results of the methods are quite close to the criteria for reference group while the 

RSDF results are well above the criteria for focal group.       

Research Question 2 

What is the performance of MIRT equating method compared to UIRT and 

EQ equating methods with respect to the effect of correlation between dimensions 

on population invariance? 

Correlation between dimensions was formed as 0.5 from condition 1 to 

condition 6, 0.8 from condition 7 to condition 12, and 0.95 from condition 13 to 

condition 18. According to the findings of 0.5 correlation condition with no-DIF and 

ES=0.1 (Case 1 – in Figures 7, 8 and 9), all methods except SMO give high RMSD 

results, close to the DTM of 0.5. Unlike the others, SMO gives the closest results to 

the criterion equating relationship in terms of the distribution and values. Besides, 

for the score rage with high frequencies CE equating method also gives close results 

to the criterion equating relationship, however for the score ranges with low 

frequencies the results of this method are quite high. For 0.8 correlation condition 

with no-DIF and ES=0.1 (Case 7 – in Figures 13, 14 and 15), all methods give close 

RMSD results to each other. Also, the RMSD results of all methods are smaller than 

the DTM of 0.5, except the CE equating results for the score ranges with low 

frequencies. For 0.95 correlation condition with no-DIF and ES=0.1 (Case 13 – in 

Figures 19, 20 and 21), the RMSD results of all methods are smaller than the DTM 

of 0.5 and are quite similar, except the CE equating method’s results with low 

frequencies.  

For 0.5 correlation condition with DIF in both forms and ES=0.1 (Case 2 – in 

Figures 7, 8 and 9), UT gives the highest RMSD results compared to SMO and UO 

methods. The RMSD results of this method are slightly above the DTM of 0.5. On 

the other hand, UO results are around the DTM of 0.5. Unlike other methods, the 
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RMSD results of SMO are well below the DTM of 0.5 and hence considerably lower 

than the results of the other methods. Again, for the score ranges with high 

frequencies the CE equating method gives very close results to the SMO and the 

criterion equating relationship results. For 0.8 correlation condition with DIF in both 

forms and ES=0.1 (Case 8 – in Figures 13, 14 and 15), the RMSD results of SMO, 

UO, and UT methods are close to each other, and below the DTM of 0.5. For the 

CE equating method, the RMSD results are below the DTM of 0.5 at the score range 

with high frequencies, and are very close to the other methods’ results at this score 

range. For 0.95 correlation condition with DIF in both forms and ES=0.1 (Case 14 – 

in Figures 19, 20 and 21), except for the results of the CE equating method in low 

frequency score ranges, all methods yield results close to each other and below the 

DTM of 0.5.  

At the 0.5 correlation condition with DIF in new form only and ES=0.1 (Case 

3 – in Figures 7, 8 and 9), IRT methods give RMSD results above the DTM of 0.5. 

The UT method has the highest RMSD results among the SMO, UO and UT 

methods. It is followed by the UO method. On the other hand, the SMO method 

gives the closest result to the criterion equating relationship in terms of both the 

distribution and values. At the score range with high frequencies, the CE equating 

method’s results are also close to the criterion equating relationship results. 

However, this method’s results are interpreted separately from other methods due 

to the high RMSD results at the score ranges with low frequencies. For 0.8 

correlation condition with DIF in new form only and ES=0.1 (Case 9 – in Figures 13, 

14 and 15), the results of SMO, UO, and UT methods are very close to each other, 

and around the DTM of 0.5. It should be noted that the CE equating method’s results 

are very close to the criterion equating relationship results, however, just for the 

scores with high frequencies. For the 0.95 correlation condition (Case 15 – in 

Figures 19, 20 and 21), results look similar to those of 0.8. Specifically, SMO, UO, 

and UT give very close results to each other, around the DTM of 0.5. On the other 

hand, the CE equating method’s results are very close to the criterion equating 

relationship results but just for the scores with high frequencies.  

When ES = 0.3, the results appear to be similar to those in ES=0.1. 

Specifically, for 0.5 correlation condition with no-DIF and ES=0.3 (Case 4 – in 

Figures 10, 11 and 12), all methods except SMO give high RMSD results, close to 
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the DTM of 0.5. Unlike the others, SMO gives the closest results to the criterion 

equating relationship in terms of the distribution and values. Besides, for the score 

rage with high frequencies CE equating method also gives close results to the 

criterion equating relationship, however for the score ranges with low frequencies 

the results of this method are quite high. For 0.8 correlation condition with no-DIF 

and ES=0.3 (Case 10 – in Figures 16, 17 and 18), all methods give close RMSD 

results to each other. Also, the RMSD results of all methods are smaller than the 

DTM of 0.5, except the CE equating results for the score ranges with low 

frequencies. For 0.95 correlation condition with no-DIF and ES=0.3 (Case 16 – in 

Figures 22, 23 and 24), The RMSD results of all methods are smaller than the DTM 

of 0.5 and are similar, except the CE equating method’s results with low frequencies. 

To sum up, for 0.5 correlation condition, the methods which give the closest results 

to the criterion equating relationship are the SMO method, and the CE equating 

method for high frequencies. For the correlations of 0.8 and 0.95, the results of all 

methods, except for the EQ equating results in the scores with low frequencies, are 

close to each other and to the criterion equating relationship.     

  For 0.5 correlation condition with DIF in both forms and ES=0.3 (Case 5 – 

in Figures 10, 11 and 12), UT gives the highest RMSD results compared to SMO 

and UO methods. The RMSD results of this method are slightly above the DTM of 

0.5. On the other hand, UO results are around the DTM of 0.5. Unlike other methods, 

the RMSD results of SMO are well below the DTM of 0.5 and hence considerably 

lower than the results of the other methods. Again, for the score ranges with high 

frequencies the CE equating method gives very close results to the SMO and the 

criterion equating relationship results. On the other hand, for 0.8 correlation 

condition with DIF in both forms and ES=0.3 (Case 11 – in Figures 16, 17 and 18), 

the RMSD results of SMO, UO, and UT methods are close to each other, and below 

the DTM of 0.5. For the CE equating method, the RMSD results are below the DTM 

of 0.5 at the score range with high frequencies, and are very close to the other 

methods’ results at this score range. For 0.95 correlation condition with DIF in both 

forms and ES=0.3 (Case 17 – in Figures 22, 23 and 24), except for the results of 

the CE equating method in low frequency score ranges, all methods yield results 

close to each other and below the DTM of 0.5.  
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At the 0.5 correlation condition with DIF in new form only and ES=0.3 (Case 

6 – in Figures 10, 11 and 12), the UT method has the highest RMSD results among 

the SMO, UO and UT methods. On the other hand, the SMO method gives the 

closest result to the criterion equating relationship in terms of both the distribution 

and values. At the score range with high frequencies, the CE equating method’s 

results are also close to the criterion equating relationship results. However, these 

method’s results are quite high at the score ranges with low frequencies. For 0.8 

correlation condition with DIF in new form only and ES=0.3 (Case 12 – in Figures 

16, 17 and 18), the results of SMO, UO, and UT methods are very close to each 

other, and around the DTM of 0.5. It should be noted that the CE equating method’s 

results are also close to the criterion equating relationship results, however, just for 

the scores with high frequencies. For the 0.95 correlation condition (Case 18 – in 

Figures 22, 23 and 24), results look similar to those of 0.8. Specifically, SMO, UO, 

and UT give very close results to each other, around the DTM of 0.5. On the other 

hand, the CE equating method’s results are close to IRT methods results but just 

for the scores with high frequencies. 

The results of the other evaluation index discussed in the study are as 

follows. According to the RSDF distributions of 0.5 correlation condition with no-DIF 

and ES=0.1 (Case 1 – in Figure 25), among the IRT methods SMO gives the lowest 

results. And also, SMO gives the closest results to the criterion equating relationship 

in terms of the distribution and values. Besides, for the score rage with high 

frequencies CE equating method also gives close results to the criterion equating 

relationship, however for the score ranges with low frequencies the results of this 

method are quite high. On the other hand, according to the RSDR distributions of 

0.5 correlation condition with no-DIF and ES=0.1 (Case 1 – in Figure 26), among all 

methods SMO gives the lowest results. So, SMO method results are the closest to 

the criterion equating relationship results in terms of the distribution and values. For 

0.8 correlation condition with no-DIF and ES=0.1 (Case 7 – in Figure 29), all 

methods give close RSDF results to each other. Also, the RSDF results of all 

methods are smaller than the DTM of 1, and close to the DTM of 0.5, except the CE 

equating results for the score ranges with low frequencies. Additionally, all methods 

give close RSDR results to each other (Case 7 – in Figure 30). And, the RSDR results 

of all methods are quite smaller than the DTM of 0.5, except the CE equating results 
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for the score range with low frequencies. For 0.95 correlation condition with no-DIF 

and ES=0.1 (Case 13 – in Figure 33), The RSDF results of all methods are smaller 

than the DTM of 1, and are around the DTM of 0.5. Also, all methods’ RSDF results 

are quite similar, except the CE equating method’s results with low frequencies. On 

the other hand, except the CE equating method’s results for the scores with low 

frequencies, the RSDR results of all methods are quite smaller than the DTM of 0.5, 

and are quite similar to each other (Case 13 – in Figure 34). 

For 0.5 correlation condition with DIF in both forms and ES=0.1 (Case 2 – in 

Figure 25), UT gives the highest RSDF results compared to SMO and UO methods. 

The RSDF results of this method are above the DTM of 0.5. The RSDF results of the 

SMO are lower than the results of the other methods. Also, for the score ranges with 

high frequencies the CE equating method gives very close results to the SMO and 

the criterion equating relationship results. On the other hand, for 0.5 correlation 

condition with DIF in both forms and ES=0.1 (Case 2 – in Figure 26), UT gives the 

highest RSDR results compared to SMO and UO methods. The RSDR results of this 

method are close to the DTM of 0.5. The RSDR results of the SMO are lower than 

the results of the other methods. Among all methods, the SMO is the method which 

gives the closest results to the criterion equating relationship. For 0.8 correlation 

condition with DIF in both forms and ES=0.1 (Case 8 – in Figure 29), the RSDF 

results of SMO, UO, and UT methods are close to each other, and are around the 

DTM of 0.5. For the CE equating method, the RSDF results are also around the DTM 

of 0.5 at the score range with high frequencies, and are very close to the other 

methods’ results at this score range. Additionally, for 0.8 correlation condition with 

DIF in both forms and ES=0.1 (Case 8 – in Figure 30), the RSDR results of SMO, 

UO, and UT methods are close to each other, and below the DTM of 0.5. For the 

CE equating method, the RSDR results are also around the DTM of 0.5 at the score 

range with high frequencies, and are very close to the other methods’ results at this 

score range. For 0.95 correlation condition with DIF in both forms and ES=0.1 (Case 

14 – in Figure 33), except for the results of the CE equating method at the score 

ranges with low frequencies, all methods yield RSDF results close to each other and 

around the DTM of 0.5. On the other hand, the RSDR results of all methods (Case 

14 – in Figure 34), except the CE equating method results at the scores with low 

frequencies, are close to each other, and are below the DTM of 0.5.   
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At the 0.5 correlation condition with DIF in new form only and ES=0.1 (Case 

3 – in Figure 25), all methods give RSDF results above the DTM of 0.5. On the other 

hand, the SMO method behaves similarly to the criterion equating relationship in 

terms of both the distribution and values. At the score range with high frequencies, 

the CE equating method’s results are also close to the criterion equating relationship 

results. However, this method’s results are interpreted separately from other 

methods due to the high RSDF results at the score ranges with low frequencies. 

Additionally, the RSDR results of the SMO method are smaller than the UO and UT 

methods results (Case 3 – in Figure 26). And, among all methods the SMO method 

gives closest results to the criterion equating relationship results. For 0.8 correlation 

condition with DIF in new form only and ES=0.1 (Case 9 – in Figure 29), the RSDF 

results of SMO, UO, and UT methods are very close to each other, and are around 

the DTM of 1. It should be noted that the CE equating method’s results are close to 

the other methods results, however, just for the scores with high frequencies. The 

RSDR results of all methods are also close to each other, and are below the DTM of 

0.5 (Case 9 – in Figure 30). For the 0.95 correlation condition (Case 15 – in Figure 

33), results look similar to those of 0.8. Specifically, all methods, except the CE 

equating method at the scores with low frequencies, give very close RSDF results 

to each other, and these values are around the DTM of 1. Also, the RSDR results of 

all methods, except the CE equating method results at the scores with low 

frequencies, are close to each other, and are below the DTM of 0.5 (Case 15 – in 

Figure 34).   

When ES = 0.3, the RSD results appear to be similar to those in ES=0.1. 

Specifically, for 0.5 correlation condition with no-DIF and ES=0.3 (Case 4 – in Figure 

27), among IRT methods, SMO gives the closest RSDF results to the criterion 

equating relationship in terms of both the distribution and values. Besides, for the 

score rage with high frequencies CE equating method also gives close results to the 

criterion equating relationship, however for the score ranges with low frequencies 

the results of this method are quite high. On the other hand, according to the RSDR 

results (Case 4 – in Figure 28), the method which gives the closest results to the 

criterion equating relationship is the SMO. For 0.8 correlation condition with no-DIF 

and ES=0.3 (Case 10 – in Figure 31), all methods give close RSDF results to each 

other. Also, the RSDF results of all methods are smaller than the DTM of 1, and are 



97 
 

around the DTM of 0.5, except the CE equating results for the score ranges with low 

frequencies. The RSDR results of all methods are well below the DTM of 0.5, and 

are close to each other, except the CE equating results for the score ranges with 

low frequencies (Case 10 – in Figure 32). For 0.95 correlation condition with no-DIF 

and ES=0.3 (Case 16 – in Figure 35), except the CE equating method’s results for 

low frequencies, the RSDF results of all methods are around the DTM of 0.5 and are 

similar to each other. As in the 0.8 correlation condition, the RSDR results of all 

methods are well below the DTM of 0.5, and are close to each other, except the CE 

equating results for the score ranges with low frequencies (Case 16 – in Figure 36). 

To sum up, for 0.5 correlation condition, the methods which give the closest results 

to the criterion equating relationship are the SMO method, and the CE equating 

method for high frequencies. For the correlations of 0.8 and 0.95, the results of all 

methods, except for the EQ method results at the scores with low frequencies, are 

close to each other.     

For 0.5 correlation condition with DIF in both forms and ES=0.3 (Case 5 – in 

Figure 27), UT gives the highest RSDF results compared to SMO and UO methods. 

Also, the SMO method gives the closest results to the criterion equating relationship 

results. Again, for the score ranges with high frequencies the CE equating method 

also gives very close results to the criterion equating relationship. For the conditions 

mentioned, UT gives the highest RSDR results compared to SMO and UO methods 

(Case 5 – in Figure 28). And, the SMO method gives the closest RSDR results to 

the criterion equating relationship results. On the other hand, for 0.8 correlation 

condition with DIF in both forms and ES=0.3 (Case 11 – in Figure 31), the RSDF 

results of all methods, except the CE equating results at the score ranges with low 

frequencies, are very close to each other, and are around the DTM of 0.5. 

Additionally, the RSDR results of all methods (Case 11 – in Figure 32), again except 

the CE equating results at the score ranges with low frequencies, are very close to 

each other, and are well below the DTM of 0.5. For 0.95 correlation condition with 

DIF in both forms and ES=0.3 (Case 17 – in Figure 35), except for the results of the 

CE equating method at the score ranges with low frequencies, all methods yield 

RSDF results close to each other and around the DTM of 0.5. On the other hand, 

the RSDR results of all methods (Case 17 – in Figure 36), again except the CE 
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equating results at the score ranges with low frequencies, are very close to each 

other, and are well below the DTM of 0.5.  

At the 0.5 correlation condition with DIF in new form only and ES=0.3 (Case 

6 – in Figure 27), based on the RSDF results, the SMO method behaves most 

similarly to the criterion equating relationship in terms of both the distribution and 

values. At the score range with high frequencies, the CE equating method’s results 

are also close to the criterion equating relationship results. However, these method’s 

results are quite high at the score ranges with low frequencies. On the other hand, 

for RSDR results the method which gives the closest results to the criterion equating 

relationship is again the SMO (Case 6 – in Figure 28). For 0.8 correlation condition 

with DIF in new form only and ES=0.3 (Case 12 – in Figure 31), the RSDF results of 

SMO, UO, and UT methods are very close to each other, and around the DTM of 1. 

It should be noted that the CE equating method’s results are also close to the 

criterion equating relationship results, however, just for the scores with high 

frequencies. Also, except the CE equating method results at the scores with low 

frequencies, the RSDR results of all methods are very close to each other, and are 

well below the DTM of 0.5 (Case 12 – in Figure 32). For the 0.95 correlation 

condition with DIF in new form only and ES=0.3 (Case 18 – in Figure 35), RSD 

results look similar to those for 0.8. Specifically, SMO, UO, and UT give very close 

RSDF results to each other, around the DTM of 1. On the other hand, the CE 

equating method’s results at the scores with high frequencies are similar to IRT 

methods results. Again, except the CE equating method results at the scores with 

low frequencies, the RSDR results of all methods are very close to each other, and 

are well below the DTM of 0.5 (Case 18 – in Figure 36). 

Finally, it should be emphasized that the RSDF, and the RSDR results for all 

conditions of correlation between dimensions show the same patterns as the RMSD 

results. However, for the RSDF, and the RSDR results, the magnitudes of equating 

dependence are larger for the focal group as compared to the reference group, and 

also the fluctuations of equating dependence across the scores are more dramatic.   
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Research Question 3 

What is the performance of MIRT equating method compared to UIRT and 

EQ equating methods with respect to the effect of group mean ability differences 

between two forms on the relationship between DIF and population invariance?   

In this section, equating invariance results are interpreted with respect to 

group mean ability differences between the old and new forms. To form group ability 

difference between the forms, group ability means of both dimensions were 

increased as 0.1 and 0.3 unit in the new form. The same effect was created also in 

the focal and reference groups as in the total group. For example, while the focal 

group ability means for the old form were -0.3 for both dimensions, in the ES = 0.1 

condition these means increased to -0.2 in the new form.  

First, for ES=0.1 condition with no-DIF and 0.5 correlation (Case 1 – in 

Figures 7, 8 and 9), the RMSD results of the SMO, and the CE equating method at 

the score range with high frequencies are close to the criterion equating relationship 

results. UT method’s results are higher than all methods, except the results of the 

CE equating method at the score ranges with low frequencies. Additionally, while 

the SMO method results, and the CE equating method results for the scores with 

high frequencies are well below the DTM of 0.5, UO and UT methods results reach 

around the DTM of 0.5. When ES changes to 0.3 (Case 4 – in Figures 10, 11 and 

12), the results almost remain the same. That is, the SMO results, and the CE 

equating method results at the scores with high frequencies are close to the criterion 

relationship. Besides, UT method results are higher than the results of all methods, 

except the results of CE equating method at the score ranges with low frequencies. 

Also, while the SMO method results, and the CE equating method results for the 

scores with high frequencies are well below the DTM of 0.5, UO and UT methods 

results reach around the DTM of 0.5 and even exceed this value.  For ES=0.1 with 

no-DIF and 0.8 correlation (Case 7 – in Figures 13, 14 and 15), MIRT and UIRT 

methods results are close to each other and well below the DTM of 0.5. On the other 

hand, the EQ method results are also below the DTM of 0.5 for the scores with high 

frequencies. When ES changes to 0.3 (Case 10 – in Figures 16, 17 and 18), the 

results again remain almost the same. Specifically, IRT methods results are close 

to each other, and are below the DTM of 0.5. Besides, the EQ method results are 
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also below the DTM of 0.5 for the scores with high frequency. And, in general all 

methods, except the CE equating method for the scores with low frequencies, 

behave similar. For ES=0.1 condition with no-DIF and 0.95 correlation (Case 13 – 

in Figures 19, 20 and 21), IRT methods’ RMSD results are close to each other, and 

well below the DTM of 0.5. On the other hand, at the scores with high frequencies 

the EQ method’s results are also well below the DTM of 0.5. It should be 

emphasized that all methods, except the CE equating method at the scores with low 

frequencies, behave similar, and give close results to the criterion equating 

relationship. For ES=0.3 (Case 16 – in Figures 22, 23 and 24), the results look 

similar to those for ES=0.1. That is, the RMSD means of IRT methods are close to 

each other, and below the DTM of 0.5. And, the EQ method results are also below 

the DTM of 0.5 at the scores with high frequencies. Consequently, for the conditions 

mentioned IRT methods, and the CE equating method (just for the scores with high 

frequencies) behave similarly to each other and to the criterion equating 

relationship.   

Above, the effect of group mean ability differences on equating invariance is 

examined for no-DIF and various correlations. In this paragraph, the effect of group 

mean ability differences on equating invariance is examined for DIF in both forms 

and various correlations. For ES=0.1 condition with DIF in both forms and 0.5 

correlation (Case 2 – in Figures 7, 8 and 9), UT method gives the highest RMSD 

results among all methods (except the CE equating method at the scores with low 

frequencies). Also, the methods which give the closest results to the criterion 

equating relationship are the SMO method, and the CE equating method for high 

frequencies. For ES=0.3 condition with DIF in both forms and 0.5 correlation (Case 

5 – in Figures 10, 11 and 12), the RMSD results are similar to those for ES=0.1. 

That is, UT method gives the highest RMSD results, and the SMO method, and the 

CE equating method for high frequencies give the closest results to the criterion 

equating relationship. For ES=0.1 condition with DIF in both forms and 0.8 

correlation (Case 8 – in Figures 13, 14 and 15), the results of all methods, except 

the CE equating method results for the scores with low frequencies, are very close 

to each other, and are below the DTM of 0.5. On the other hand, For ES=0.3 

condition with DIF in both forms and 0.8 correlation (Case 11 – in Figures 16, 17 

and 18), again results are similar to those for ES=0.1. Specifically, the results of all 
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methods, except the CE equating method results for the scores with low 

frequencies, are close to each other, and are below the DTM of 0.5. For ES=0.1 

condition with DIF in both forms and 0.95 correlation (Case 14 – in Figures 19, 20 

and 21), the RMSD means of all methods, again except the results of the CE 

equating method for the score ranges with low frequencies, are close to each other, 

and are below the DTM of 0.5. When ES changes to 0.3 (Case 17 – in Figures 22, 

23 and 24), the RMSD results are almost the same. That is, the results of all 

methods, except the CE equating method results for the scores with low 

frequencies, are close to each other, and are below the DTM of 0.5.  To sum up, the 

RMSD results of the methods are quite similar for 0.1 and 0.3 effect size conditions 

with DIF in both forms and various correlations.  

For DIF in new form only, and various correlation conditions, the effects of 

group mean ability differences on equating invariance are as follows. For ES=0.1 

condition with DIF in new form only and 0.5 correlation (Case 3 – in Figures 7, 8 and 

9), the method which gives the closest results to the criterion equating relationship 

is the SMO. Also, the CE equating method results are also very close to the criterion 

equating relationship, however at the scores with low frequencies this method 

results are very high. On the other hand, the UT method gives the highest RMSD 

results among IRT methods. When ES changes to 0.3 (Case 6 – in Figures 10, 11 

and 12), the results almost remain the same. That is, the SMO method, and the CE 

equating method for the scores with high frequencies behave similarly to the criteria. 

Additionally, unlike the other IRT methods results, the UT method results are above 

the DTM of 0.5. For ES=0.1 condition with DIF in new form only and 0.8 correlation 

(Case 9 – in Figures 13, 14 and 15), IRT methods results are very close to each 

other, and are slightly above the DTM of 0.5. The CE equating method results are 

also around the DTM of 0.5, but this is only valid for the scores with high frequencies. 

When ES changes to 0.3 (Case 12 – in Figures 16, 17 and 18), the results again 

remain the same. To mention in detail, all methods behave similarly, and the results 

of all methods, except again the CE equating method results for the scores with low 

frequencies, are around the DTM of 0.5. For ES=0.1 condition with DIF in new form 

only and 0.95 correlation (Case 15 – in Figures 19, 20 and 21), IRT methods results 

are very close to each other, and are slightly above the DTM of 0.5. Additionally, the 

CE equating method results, for the scores with high frequencies, are also close to 
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the DTM of 0.5. In other words, all methods, except the CE equating method for the 

scores with low frequencies, behave similarly for this case. When ES changes to 

0.3 (Case 18 – in Figures 22, 23 and 24), the results remain the same. Specifically, 

all methods behave similarly, and the results of all methods, except again the CE 

equating method results for the scores with low frequencies, are slightly above the 

DTM of 0.5.   

The results of the other evaluation index (RSD) discussed in the study are as 

follows. According to the findings, RSD results for all conditions with group mean 

ability difference between two forms show the same patterns as the RMSD results. 

First, for ES=0.1 condition with no-DIF and 0.5 correlation (Case 1 – in Figure 25), 

the RSDF results of the SMO, and the CE equating method at the score range with 

high frequencies are close to the criterion equating relationship results. UT method’s 

results are higher than all methods, except the results of the CE equating method 

at the score ranges with low frequencies. On the other hand, based on RSDR results 

(Case 1 – in Figure 26), the method that gives the closest results to the criterion 

equating relationship is the SMO. And, the SMO method results are well below the 

DTM of 0.5. Also, all other methods’ RSDR results, except the CE equating method 

results for the scores with low frequencies, are below the DTM of 0.5. For ES=0.3 

condition with no-DIF and 0.5 correlation (Case 4 – in Figure 27), the RSD results 

almost remain the same. That is, the RSDF results of the SMO method, and the 

RSDF results of the CE equating method at the scores with high frequencies are 

closer to the criterion equating relationship than the results of other methods. 

Besides, UT method results are higher than the results of all methods, except the 

results of CE equating method at the score ranges with low frequencies. Based on 

RSDR results (Case 4 – in Figure 28), the method that gives the closest results to 

the criterion equating relationship is the SMO. And, the SMO method results are 

well below the DTM of 0.5 while the RSDR results of other methods, except the CE 

equating method results for the scores with low frequencies, are around the DTM of 

0.5. For ES=0.1 condition with no-DIF and 0.8 correlation (Case 7 – in Figure 29), 

the RSDF results of all methods, except the CE equating method results for the 

scores with low frequencies, are close to each other, and are around the DTM of 

0.5. On the other hand, the RSDR results of all methods, again except the CE 

equating method results for the scores with low frequencies, are close to each other, 
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and are well below the DTM of 0.5 (Case 7 – in Figure 30). When ES changes to 

0.3 (Case 10 – in Figure 31), the RSD results again remain almost the same. To 

mention in detail, the RSDF results of all methods, except the CE equating method 

results for the score ranges with low frequencies, are close to each other and around 

the DTM of 0.5. Also, the RSDR results of all methods (Case 10 – in Figure 32), 

again except the CE equating method results at the scores with low frequencies, 

are very close to each other and well below the DTM of 0.5. For ES=0.1 condition 

with no-DIF and 0.95 correlation (Case 13 – in Figure 33), the RSDF results of all 

methods, except the CE equating method results at the score ranges with low 

frequencies, are close to each other, and are around the DTM of 0.5. According to 

the RSDR results (Case 13 – in Figure 34), again except the CE equating method 

at the scores with low frequencies, all methods behave similar, and give close 

results to the criterion equating relationship. When ES changes to 0.3 (Case 16 – in 

Figure 35), the results remain the same. That is, the RSDF means of all methods, 

except the CE equating method at the score ranges with low frequencies, are close 

to each other, and are around the DTM of 0.5. On the other hand, the RSDR results 

of all methods (Case 16 – in Figure 36), again except the CE equating method 

results at the scores with low frequencies, are very close to each other, and are well 

below the DTM of 0.5. Consequently, for the condition mentioned IRT methods, and 

the CE equating method (just for the scores with high frequencies) behave similarly 

to each other and to the criterion equating relationship.   

Above, the effect of group mean ability differences on equating invariance is 

examined for no-DIF and various correlations. In this paragraph, the effect of group 

mean ability differences on equating invariance is examined for DIF in both forms 

and various correlations. For ES=0.1 condition with DIF in both forms and 0.5 

correlation (Case 2 – in Figure 25), UT method gives the highest RSDF results 

among all methods (except the CE equating method at the scores with low 

frequencies). The methods which give the closest results to the criterion equating 

relationship are the SMO method, and the CE equating method for high frequencies. 

Also, for the RSDR results (Case 2 – in Figure 26), the SMO method gives the closest 

results to the criterion equating relationship. For ES=0.3 condition with DIF in both 

forms and 0.5 correlation (Case 5 – in Figure 27), the RSDF results are similar to 

those for ES=0.1. That is, UT method gives the highest RSDF results. And the SMO 
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method, and the CE equating method for high frequencies behave similarly to the 

criterion equating relationship. Additionally, also the RSDR results are similar to 

those for ES=0.1 (Case 5 – in Figure 28). Specifically, the SMO method gives the 

closest results to the criterion equating relationship. For ES=0.1 condition with DIF 

in both forms and 0.8 correlation (Case 8 – in Figure 29), the RSDF results of all 

methods, except the CE equating method results for the scores with low 

frequencies, are very close to each other, and are around the DTM of 0.5. And, the 

RSDR results of all methods (Case 8 – in Figure 30), again except the CE equating 

method results for the scores with low frequencies, are very close to each other, 

and are well below the DTM of 0.5. On the other hand, For ES=0.3 condition with 

DIF in both forms and 0.8 correlation (Case 11 – in Figure 31), the RSDF results are 

similar to those for ES=0.1. Specifically, the results of all methods, except the CE 

equating method results for the scores with low frequencies, are close to each other, 

and are around the DTM of 0.5. And, the RSDR results of all methods (Case 11 – in 

Figure 32), again except the CE equating method results for the scores with low 

frequencies, are fairly close to each other, and are well below the DTM of 0.5. For 

ES=0.1 condition with DIF in both forms and 0.95 correlation (Case 14 – in Figure 

33), the RSDF means of all methods, again except the results of the CE equating 

method for the score ranges with low frequencies, are close to each other, and are 

around the DTM of 0.5. Also, the RSDR results of all methods (Case 14 – in Figure 

34), except the results of the CE equating method for the score ranges with low 

frequencies, are very close to each other, and are well below the DTM of 0.5. When 

ES changes to 0.3 (Case 17 – in Figure 35), the RSDF results are almost the same. 

That is, the results of all methods, except the CE equating method results for the 

scores with low frequencies, are close to each other, and are around the DTM of 

0.5. Also, the RSDR results of all methods (Case 17 – in Figure 36), again except 

the CE equating method results for the scores with low frequencies, are very close 

to each other, and are well below the DTM of 0.5. To sum up, the RSD results of the 

methods are quite similar for 0.1 and 0.3 effect size conditions with DIF in both forms 

and various correlations. 

For DIF in new form only, and various correlation conditions, the effects of 

group mean ability differences on equating invariance are as follows. Based on the 

RSDF results, for ES=0.1 condition with DIF in new form only and 0.5 correlation 
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(Case 3 – in Figure 25), the SMO, and the CE equating method for high frequencies 

behave similarly to the criterion equating relationship. Also, for the RSDR results 

(Case 3 – in Figure 26), the SMO method gives the closest results to the criterion 

equating relationship. When ES changes to 0.3 (Case 6 – in Figure 27), the RSD 

results almost remain the same. That is, for the RSDF results, the SMO method, and 

the CE equating method for the scores with high frequencies behave similarly to the 

criteria. For the RSDR results (Case 6 – in Figure 28), the method that gives the 

closest results to the criteria is the SMO. For ES=0.1 condition with DIF in new form 

only and 0.8 correlation (Case 9 – in Figure 29), IRT methods’ RSDF results are very 

close to each other, and are around the DTM of 1. The CE equating method results 

are also around the DTM of 1, but this is only valid for the scores with high 

frequencies. On the other hand, the RSDR results of all methods (Case 9 – in Figure 

30), except the CE equating method results at the scores with low frequencies, are 

similar, and are below the DMT of 0.5. When ES changes to 0.3 (Case 12 – in Figure 

31), the results again remain the same. To mention in detail, IRT methods’ RSDF 

results are very close to each other, and are around the DTM of 1. Also, the CE 

equating method results are around the DTM of 1, but this is only valid for the scores 

with high frequencies. Additionally, based on the RSDR results (Case 12 – in Figure 

32), it is very difficult to distinguish the methods. That is, all methods’ results, except 

the CE equating method results for the scores with low frequencies, are similar to 

each other, and are below the DTM of 0.5. For ES=0.1 condition with DIF in new 

form only and 0.95 correlation (Case 15 – in Figure 33), IRT methods’ RSDF results 

are very close to each other, and are around the DTM of 1. Additionally, the CE 

equating method results, for the scores with high frequencies, are also close to the 

DTM of 1. In other words, all methods, except the CE equating method for the scores 

with low frequencies, behave similarly for this case. Also, for the RSDR results (Case 

15 – in Figure 34), all methods, except the CE equating method for the scores with 

low frequencies, behave similarly, and give close results to each other. When ES 

changes to 0.3 (Case 18 – in Figure 35), the RSDF and RSDR results remain the 

same. Specifically, for RSDF results, all methods behave similarly, and the results 

of all methods, except again the CE equating method results for the scores with low 

frequencies, are around the DTM of 1. On the other hand, for the RSDR results 

(Case 18 – in Figure 36), all methods, except the CE equating method for the scores 

with low frequencies, behave similarly, and give close results to each other.     
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According to the findings, the group-to-overall conditional equating invariance 

(the RSDF, and the RSDR) results for all conditions with group mean ability 

difference between two forms show the same patterns as the RMSD results. 

Specifically, group mean ability differences between two forms do not have an effect 

on the relationship between DIF and equating invariance of the methods. The 

probable reason for this is that the differences in group abilities between forms are 

the same for total, reference and focal groups. On the other hand, for the RSD 

results, the magnitudes of equating dependence are larger for the focal group as 

compared to the reference group, and also the fluctuations of equating dependence 

across the scores are more dramatic for again the focal group.  

Summary of Findings  

This study is a simulation study which includes various simulation conditions 

including differential form DIF, correlation between dimensions, and group mean 

ability differences between two forms. CINEG design is used in this study. Data are 

generated according to SS-MIRT models. Equating procedures are conducted by 

using SMO, UO, UT, and EQ (CE equating with log-linear pre-smoothing) methods. 

And then, equating methods are compared with respect to their equating invariance 

results and the criterion equating relationship results. Here, the results of the SMO 

method, that is conducted with true parameters (generated parameters - not 

estimates), are used as the criterion equating relationship. Finally, results obtained 

from various conditions are interpreted in detail in the Findings section. Also, a brief 

summary of the findings is given below.        

According to the findings, for 0.5 correlation condition, the method which 

demonstrates the effect of DIF on equating invariance most accurately is the SMO. 

It can be said that, the results of the CE equating method are also quite good and 

even sometimes the CE equating method is superior to the SMO. However, this is 

just valid for the scores with high frequencies. On the other hand, 0.8 correlation is 

the cut point of this study. That is, for 0.8 correlation and above, all methods behave 

similarly to each other, and give close results to the criterion equating relationship. 

Besides, when DIF added to both forms, the RMSD, the RSDR and the RSDF results 

are almost the same as those for no-DIF condition. But, adding DIF to one form only, 

increases the RMSDs, and group-to-overall indices. Specifically, the RMSD results 
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reach around the DTM of 0.5 while the RSDF results almost reach around the DTM 

of 1. And, the RSDR results approach the DTM of 0.5. On the other hand, group 

mean ability differences between two forms do not have an effect on the relationship 

between DIF and equating invariance. That is, for ES=0.3 condition the RMSD, the 

RSDR and the RSDF results are almost the same as those for ES=0.1 condition.   
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Chapter 5 

Conclusion, Discussion, and Suggestions 

This study examines the relationship between DIF and equating in 

multidimensional perspective. To reveal this relationship most accurately, equating 

invariance results were investigated for various DIF conditions. A major reason to 

examine equating invariance is to gain a better understanding of what happens 

when we use various equating methods with multidimensional tests which include 

DIF in common items. As equating procedures, MIRT, UIRT and EQ equating 

methods were used. And, the results of SMO equating with true parameters, were 

used as the criterion equating relationship of this study. Then, equating invariance 

results of MIRT, UIRT, and EQ equating methods were compared both within each 

other and with the criterion equating relationship. Finally, according to the findings, 

the methods which express the relationship between DIF and equating, most 

accurately were detected. And, for the fairness of test results, researchers and 

practitioners are advised to use this/these method(s) under certain conditions. From 

this point of view, the results of this study are discussed with the results of previous 

studies, and suggestions of the current study are presented below.       

For the first research question, it was aimed to compare MIRT, UIRT, and EQ 

equating methods with respect to the effect of differential form DIF on population 

invariance of these methods. This condition was formed in this study to investigate 

the effect of difficulty difference between forms on population invariance, in MIRT 

perspective. According to the findings, when DIF is added in the same amount and 

in the same direction to the same common items in both forms, equating invariance 

of the methods are not affected. That is, the equating invariance results are similar 

to those for no-DIF condition. However, when DIF is added to one form only, the 

equating dependence of the methods increases and reaches the critical value. And, 

this may result in possible problems in validity and fairness of the reported scores. 

It has been shown in previous studies that differential difficulty across test forms 

may result in equating dependence in CTT (Cook & Petersen, 1987; Dorans, 2004), 

and in IRT (Huggins, 2012, 2014). The results of the current study support these 

findings. Specifically, Cook and Petersen (1987) emphasized that the difficulty 

difference in common items of the new and old forms increases the equating 

dependence. Therefore, they stated that anchor items should be examined in terms 
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of difficulty differences between two forms. Likewise, the research results of Huggins 

(2012, 2014) show that the difficulty difference in anchor items for different forms 

affects the equating invariance of equating methods based on IRT. While Huggins’ 

study emphasizes the relationship between DIF and unidimensional IRT-based 

equating methods, current research goes one step further and examines this 

relationship in terms of multidimensional IRT. Also, Dorans (2004) discussed in 

detail the relationship between DIF and equating invariance. According to this study, 

differential difficulty across two forms may cause lack of equating invariance. 

However, this research includes theoretical information only. On the other hand, in 

the current research this theoretical knowledge has been proven on different 

applications. Dorans also emphasized that DIF and equating invariance studies 

should be carried out together for fair assessments. A similar result is presented in 

the suggestions of current research. Besides the mentioned studies, Dorans, Lin, 

Wang and Yao (2014) examined the effects of multidimensionality on latent score 

and observed score linking results. According to the results, if the two tests had 

parallel structure (no difference in test difficulty and content structure between two 

tests), then the linking relationship between two forms was invariant across different 

sub-populations. However, when the parallel structure disappeared, sub-population 

invariance was not achieved, especially under the 0.5 correlation condition. These 

results are quite consistent with the results of the present study. In other words, the 

difficulty differences between two forms cause equating dependence.  

On the other hand, Atalay Kabasakal and Kelecioglu (2015) emphasized that 

equating error (RMSE) and equating bias (BIAS) of the equating methods (MIRM, 

IRM-CC, and IRM-SC) increased in the presence of high-level of DIF. Also, Demirus 

and Gelbal (2016) used DIF and linking together in their study. According to the 

results of this research, when DIF was added to the anchor items, equating errors 

of the mean-mean, Haebara, and Stocking-Lord methods increased. Also, Yurtcu 

and Guzeller (2018) investigated the equating errors of mean-mean, mean-sigma, 

Haebara, and Stocking-Lord linking methods in the presence of DIF. According to 

the results of this study, equating errors increased when DIF was added to one form 

only. Although the results of mentioned studies seem similar to the results of the 

current study, there are fundamental differences between these studies. One of 

these is the evaluation criteria used in the aforementioned studies. These criteria 
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represent equating errors. However, the current study examines population 

invariance in the presence of DIF to reveal the relationship between DIF and 

equating. Hence, equating invariance indices were used in the current study as 

evaluation criteria. In this perspective, the results expressed by the current study 

are different from mentioned studies.          

Second research question is formed to compare MIRT, UIRT and EQ 

equating methods with respect to the effect of correlation between dimensions on 

population invariance of these methods. With 0.5 correlation condition, the method 

that gives the closest results to the criterion equating relationship among the 

compared equating methods is the SMO. UO and UT give high equating invariance 

indices results even in the conditions with no-DIF. These results are consistent with 

Ackerman's (1992) study. Ackerman (1992) stated in his study that using UIRT 

methods with multidimensional data sets and treating test scores as if they reflect a 

single dimension may cause item bias. This is the reason why the population 

invariance values of UIRT methods in the present study are much higher than MIRT 

method. On the other hand, CE equating behaves very close to the criterion at the 

scores with high frequencies, but deviates far from the criterion at the scores with 

low frequencies. Here, in this study, the scores with low frequencies correspond to 

very low (close to 0) and very high scores (close to 80). In 0.8 and 0.95 correlations, 

the results of the methods are very close to each other. In summary, it can be said 

that for 0.5 correlation the method that shows the effect of DIF on the equating 

invariance most accurately (closest to the criterion) is the SMO, and for correlations 

of 0.8 and above, all methods reflect this effect appropriately. The results for the 

correlation levels are consistent with previous studies that were conducted by using 

various MIRT equating methods. Specifically, Lee and Brossman (2012) 

emphasized in their study that when data were multidimensional, the SMO method 

produced adequate equating results and outperformed UIRT procedure. Also, Lee, 

Lee and Brennan (2014) specified that MIRT procedure provided more accurate 

equating results than other equating procedures especially when the correlation 

between dimensions was low. Another study that used MIRT and UIRT equating 

procedures together belongs to Lee and Lee (2016). According to the results of this 

study, the MIRT equating method produced more accurate equating results than the 

UIRT equating method when a certain degree of multidimensionality existed (e.g., 
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for 0.5 correlation). Kumlu (2019) also used UIRT and MIRT equating procedures in 

his study. According to the results, the MIRT equating method produced more 

accurate equating results than the UIRT equating method when the data was 

multidimensional. Kim, Lee and Kolen (2020) also stated in their study that MIRT 

equating methods showed more accurate equating results compared with the UIRT 

equating when the data were multidimensional. These studies mentioned, 

presented similar results with the current study. Additionally, according to Peterson 

and Lee (2014) the multidimensional equating methods were found to perform better 

for datasets that evidenced more multidimensionality. The result of this study so far 

is consistent with the results of the present study. However, Peterson and Lee 

(2014) also highlighted in the rest of their results that unidimensional methods 

worked better for unidimensional datasets. But, in the current study, in a correlation 

of 0.8 and above both multidimensional and unidimensional methods yield similar 

results, and neither one is superior to the other. It can be said that the results of the 

two studies differ from each other in this respect.  

The above comparisons have focused on MIRT and UIRT methods. On the 

other hand, the comparison of IRT and non-IRT methods is as follows. For the 

present study, it can be said that non-IRT method (CE equating method) give close 

results to IRT methods and even sometimes better results than IRT methods. 

Specifically, when the correlation between dimensions is 0.5, CE equating method 

gives closer results to the SMO method than the UIRT method. However, this case 

is valid at the scores with high frequencies. The reason why CE equating method 

results differ according to frequency is that it does not use parameter estimates as 

IRT methods do, on the contrary, it conducts equating by using frequencies based 

on the number correct scores. Hence, considering the whole score range, IRT 

methods always give better results. Lee and Brossman (2012) state that the results 

of SMO procedure were more similar to the results of equipercentile procedure than 

to the results of UIRT procedure. According to them one plausible explanation for 

this observation might be that when the data were not strictly unidimensional, the 

UIRT procedure violated the assumption of unidimensionality. On the other hand, 

the SMO procedure took into account the multidimensionality, and the 

equipercentile procedure did not have an assumption about dimensionality, hence 

was less effected by the dimensional structure of the test. Considering the entire 
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score range for the current study, it can be said that the results of these two studies 

are different from each other. On the other hand, Lee, Lee and Brennan (2014) 

stated in their study that the IRT-based equating procedure seemed to perform 

better than the EQ equating procedure. Peterson and Lee (2014) also stated that 

the MIRT and UIRT methods behaved close to each other, but the EQ method 

behaved slightly different from them. In this respect, the results of the two studies 

mentioned are consistent with the results of the present study.    

Finally, it should also be noted that, comparison results for different equating 

methods always depends on what criterion to use. In this study, the criterion is based 

on IRT, and hence it is in favor of IRT methods. This important point should always 

be taken into account in the comparison studies.  

Third research question is added to this study with the aim of comparing 

MIRT, UIRT, and EQ equating methods with respect to the effect of group mean 

ability differences between two forms on the relationship between DIF and 

population invariance of MIRT, UIRT and EQ equating methods. For the focal, 

reference and total group, the group mean ability difference (ES) between two forms 

are formed as 0.1 and 0.3. For example, in the first condition group abilities are 

formed as  (𝜃1, 𝜃2)𝑂𝑙𝑑 ~ BN(0, 0, 1, 1, ρ), (𝜃1, 𝜃2)𝑂𝑙𝑑𝐹
 ~ BN(-.3, -.3, .9, .9, ρ), 

(𝜃1, 𝜃2)𝑂𝑙𝑑𝑅
 ~ BN(.1, .1, .99, .99, ρ) in the old form, and for ES=0.1 condition they 

changed to (𝜃1, 𝜃2)𝑁𝑒𝑤 ~ BN(.1, .1, 1, 1, ρ), (𝜃1, 𝜃2)𝑁𝑒𝑤𝐹
 ~ BN(-.2, -.2, .9, .9, ρ), 

(𝜃1, 𝜃2)𝑁𝑒𝑤𝑅
 ~ BN(.2, .2, .99, .99, ρ) in the new form. According to the findings, both 

ES=0.1, and ES=0.3 conditions do not have an effect on the equating invariance 

results of the methods. One plausible explanation for this observation might be that 

when the difference in group abilities between old and new form is equal in focal, 

reference, and total group, the equating invariance of the methods do not change. 

That is, these equal differences in the sub groups and in the total group do not make 

a difference on the equating invariance results of the methods. These findings are 

compared with other research findings in the literature. First of all, Lee et al. (2012) 

used EQ equating methods in their study. With respect to the results, they stated 

that the error increased as the effect size of the group mean ability differences 

increased. In this respect, the research results are different from the current 

research results. According to Peterson (2014), (M)IRT methods were robust to 

large group mean ability differences while the traditional equipercentile method was 
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affected from this. However, the following point was emphasized in this research 

that there were mixed findings in the literature on whether traditional or IRT equating 

methods were more robust to group differences. So, it was difficult to hypothesize 

the extent to which the presence of group differences affected each of the studied 

equating methods in that research. And, it was difficult to make that judgment since 

the population equating relationship was unknown. On the other hand, the results 

of the current research are as follows: both effect size of 0.1, and 0.3 do not have 

an effect on the equating invariance results of the (M)IRT and EQ equating methods. 

And these results are based on the population equating relationship that Peterson 

mentioned in her study. In this respect, the results of the current study will help to 

eliminate the confusion in the literature. In summary, the results of the third research 

question are also very important and useful for the psychometric literature. Finally, 

Kim, Lee and Kolen (2020) also used effect size of 0.1 and 0.3 in their study. And, 

according to the results, SS-MIRT procedures (SMO and SMT) seemed relatively 

robust to large group difference. In terms of the SMO method, the results of this 

study and the results of the current study support each other. 

Above, the findings of the current study are summarized and compared with 

the findings of other similar studies. Based on the conclusions mentioned, various 

methods and their performances in the presence of DIF and multidimensionality 

conditions are discussed. To ensure score equity of the reported scores, this study 

helps practitioners to be careful with some specific conditions. First, it is advisable 

to monitor for anchor items that display differential form DIF, because using these 

items in reporting equating relationships may lead to problematic levels of equating 

dependence. Second, many tests are multidimensional, and there are many sources 

of DIF. The structure of the test should be investigated first, and if it turns out to be 

multidimensional, it is recommended to use multidimensional equating methods 

because they are thought to give the most reliable results in equating invariance 

studies. And third, the population invariance results of both the SMO and EQ 

equating methods do not change according to 0.1 or 0.3 effect size conditions for 

both sub groups and the total group. However, more studies are needed on this 

subject to confirm these results.  
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Suggestions  

The results of this research are very important for both practitioners who will 

equate multidimensional tests and researchers who will work on this subject. In this 

respect, various suggestions are presented to researchers and test practitioners in 

this part of the study. Suggestions based on the research results, and suggestions 

for future research are presented below. 

Suggestions based on the research results 

1. As mentioned above, it is recommended to use multidimensional equating 

methods in the presence of multidimensional data. Thus, whether the equating 

results are group dependent or not under various DIF conditions caused by 

multidimensionality can be reflected most accurately. At the correlation conditions 

of 0.8 and above, any of the (M)IRT methods can be used, as each of these methods 

properly reflect the effect of DIF on equating. However, this is not valid for the EQ 

method. Because, this method gives very high population invariance results at the 

scores with low frequencies. Therefore, the EQ method is only suggested to be used 

at the score ranges with high frequencies.  

2. Both, DIF in both forms (same direction and same amount) and no-DIF 

conditions create the same effect on the population invariance of the equating 

results. On the contrary, differential form DIF may cause equating dependence. In 

this respect, especially for differential form DIF conditions, the equating results 

should be monitored in terms of population invariance. And, as Dorans (2004) 

stated, to ensure the fairness of the equating results, DIF and population invariance 

studies should be conducted together.  

3. (M)IRT or EQ methods can be used when the group mean ability difference 

between the two forms is 0.1 or 0.3 for the subgroups and total group. Because, the 

results of these methods are not affected by group mean ability differences. 

However, in this study, group differences between two forms are the same for the 

subgroups and total group. In this respect, more research is needed on this issue. 

Suggestions for future research   

1. For the MIRT model, in some iterations the number of cycles was not 

sufficient and the convergence criterion could not be met, hence, these replications 
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were repeated. On this issue, it can be suggested to increase the MaxE (maximum 

allowed number of E-steps in the EM algorithm) and MaxM (the number of allowable 

iterations in each of the iterative M-steps) values in the flexMIRT input in order to 

obtain more successful estimations. 

2. The time which is required for SS-MIRT estimations is another issue of this 

study. Also, conducting concurrent calibration for the CINEG design requires 

additional time. Hence, it is recommended that researches who will use MIRT 

models should be aware of the time limitation.     

3. Another important issue of this study is the equating criterion. 

Unfortunately, a perfect equating criterion does not exist in the literature. In this 

study, SMO method with true parameters was used to reflect the criterion equating 

relationship. And, the DTM of 0.5 and 0.1 were used to reflect the degree of equating 

dependence of the methods. Employing SMO as the equating criterion of this study 

is thought to be in favor of the IRT methods. It is also seen from the results that EQ 

equating method behaved differently from the other methods at the scores with low 

frequencies. Because, EQ equating method conducted equating by using the 

frequencies based on the number correct scores while IRT methods used parameter 

estimates. From this point of view, the comparison between non-IRT and IRT 

methods should be done with caution. 

4. Besides, future studies may be conducted by using various levels of 

sample size, magnitude of DIF, and numbers of DIF items.  

5. It is also recommended to examine the equating results using the bi-

directional DIF. Thus, the DTF effect created by bi-directional DIF items and its effect 

on the equating results can be discussed. 
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