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ABSTRACT 
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March 2020, 73 pages 

 

 

Images acquired from airborne oblique sensors and from Unmanned Aerial Vehicles 

(UAV) are widely used. On one hand, oblique imaging allows better visualization of 

side views of objects in three dimensional spaces. On the other hand, UAV imaging 

closes the gap between aerial and terrestrial photogrammetry. Therefore, combining 

airborne oblique and UAV images with a precise feature matching strategy can provide 

reliable information that can be useful for applications such as dense point cloud 

extraction for 3D city modeling, visualization, textured 3D city models, and so forth. 

In this study, a novel framework for the point-based feature matching of the airborne 

oblique and UAV imagery is presented. The proposed framework makes use of the 

powerful A-KAZE descriptor for feature extraction in both oblique and UAV images. 

Feature extraction with an iterative scheme is developed to construct tentative matches 

as many as possible. During the iterations, Brute Force matching is utilized for the 

initial matching of the corresponding features and left-right consistency check together 

with Lowe’s nearest-next distance ratio test are forced to filtering erroneous matches. 

In order to extract putative matches from the tentative matches, three different 

strategies are implemented. Each strategy employed outlines a different robust method 
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for the selection of matching points along with the epipolar constraint enforced between 

the two datasets.  

The developed framework is tested for image pairs acquired over the Dortmund-

Centre, Germany, from the International Society for Photogrammetry and Remote 

Sensing (ISPRS) image orientation benchmark dataset. The proposed framework 

yields successful results in terms of matching precision and provides a nice balance 

between the true-positive and false-positive matches. Besides, the results of the 

proposed framework for two different test pairs outperformed the results of the 

previously developed approaches in the literature.  

 

 

Keywords: Point-based Feature Matching, Feature Detection, Airborne Oblique 

Image, UAV Image, A-KAZE Descriptor, ISPRS Image Orientation Benchmark 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

ÖZET 

 

 

UÇAK VE İHA PLATFORMLARINDAN ELDE EDİLEN EĞİK 

GÖRÜNTÜLERİN NOKTA TABANLI EŞLEŞTİRİLMESİ 

 

 

Yüksek Lisans, Geomatik Mühendisliği Bölümü 

Tez Danışmanı: Doç. Dr. Ali Özgün OK  

Mart 2020, 73 sayfa 

 

 

Eğik hava algılayıcılarından ve İnsansız Hava Araçları’ndan (İHA) alınan görüntüler 

yaygın olarak kullanılmaktadır. Eğik görüntüleme, üç boyutlu uzaydaki nesnelerin 

yanal görünümlerinin daha iyi görselleştirilmesini sağlar. Öte yandan İHA ile 

görüntüleme, hava ve yersel fotogrametri arasındaki boşluğu doldurur. Bu yüzden, eğik 

hava görüntüleri ve İHA görüntülerinin hassas özellik eşlemesinde birlikte kullanılması 

3 boyutlu şehir modelleri için yoğun nokta çıkarımı, görselleştirme, 3 boyutlu şehir 

modellerine doku giydirilmesi vb. gibi uygulamalarda faydalı olabilecek güvenilir bilgiyi 

sağlayabilir. 

Bu çalışmada eğik hava ve İHA görüntülerinin nokta-tabanlı özellik eşlemesi için yeni 

bir yaklaşım sunulmuştur. Önerilen yaklaşım, hem eğik hem de İHA görüntülerinde 

özellik çıkarımı için güçlü A-KAZE tanımlayıcısını kullanmaktadır. Mümkün olduğunca 

fazla sayıda potansiyel eşleme oluşturmak için yinelemeli bir şekilde özellik çıkarımı 

geliştirilmiştir. Yinelemeler sırasında karşılık gelen özelliklerin eşlenmesi için Brute 

Force, sol-sağ tutarlılık kontrolü ve hatalı eşlemelerin filtrelenmesi içinse Lowe’nin en 

yakının bir sonraki en yakına mesafe oranı testi kullanılmıştır. Potansiyel eşlemelerden 

başarılı eşlemelerin elde edilmesi için 3 farklı strateji uygulanmıştır. Uygulanan her 

strateji, iki veri seti arasında uygulanan epipolar kısıtı ile birlikte eşleme noktalarının 

seçimi için sağlam birer yöntem sunmaktadır. 

Geliştirilen yaklaşım, Almanya Dortmund merkezi üzerinde çekilen ve Uluslararası 

Fotogrametri ve Uzaktan Algılama Birliği (ISPRS) görüntü yöneltme değerlendirmesi 
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çerçevesinde sağlanan görüntü çiftleri üzerinde test edilmiştir. Geliştirilen yaklaşım 

eşleme hassasiyeti açısından başarılı sonuçlar verirken doğru-pozitif ve yanlış-pozitif 

eşlemeler arasında güzel bir denge sağlamaktadır. Ayrıca, önerilen yaklaşımın iki farklı 

test çifti üzerindeki sonuçları daha önce literatürde geliştirilen yaklaşımların 

sonuçlarından daha iyi olarak bulunmuştur. 

 

 

Anahtar Kelimeler: Nokta-tabanlı Özellik Eşleme, Özellik Tespiti, Eğik Hava 

Görüntüsü, İHA Görüntüsü, A-KAZE Tanımlayıcısı, ISPRS Görüntü Yöneltme 

Karşılaştırmalı Değerlendirme Testi 
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1. INTRODUCTION 
 

1.1. Purpose and Scope 

 

Airborne imaging is a classical technique to obtaining consistent and up-to-date 

information. Photogrammetric methods are applied to measuring and interpreting the 

collected information from state-of-the-art airborne sensors; thus, such (timely) 

information can be a critical input for various applications, e.g. mapping, 3D modelling, 

environment monitoring and disaster management and so forth. 

At the present time, images collected from oblique airborne sensors and from 

Unmanned Aerial Vehicle (UAV) platforms become very popular. Oblique imaging 

allows better visualization of objects in three dimensional (3-D) spaces with a vertical 

extent. The actual interest in oblique imaging for mapping purposes arises from its 

primary characteristic: the exposure of the objects’ side views. Many applications such 

as 3D city modelling, building detection and reconstruction, urban and infrastructural 

planning, tax assessment, and structural damage identification etc. are based on 

oblique aerial images. 

UAVs (a.k.a Drones) are airborne platforms gaining huge interest in the field of remote 

sensing recently since they are closing the gap between aerial and terrestrial 

photogrammetry [1]. UAVs were originally developed for military purposes, but they 

have started to exploit in numerous civilian tasks in the past decade, thanks to their 

significant advantages in data acquisition, portability, and cost-efficiency. These small 

platforms are controlled by ground stations and can reach inaccessible areas. UAVs 

are particularly appealing for surveillance and emergency applications since a pilot 

onboard is not required. Moreover, a UAV can be used whenever it is needed and 

allows the acquisition of extremely-high-resolution (EHR) data (up to 1 mm [2]) with 

respect to the traditional imaging systems since it can fly very close to the objects 

under investigation. By giving opportunity to many users to repeatedly acquire low-cost 

imagery with a very high level of detail, UAV remote sensing techniques became 

revolutionizing in agricultural, environmental, archaeological and surveillance fields [3].  

In addition to acquiring high level of detailed imagery from UAVs, accurate and reliable 

information about the surface objects becomes crucial in mapping tasks. Even though 
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UAVs make capturing up-to-date aerial imagery practical and with a low-cost, they 

have in general poor georeferencing information due to low-quality GNSS and IMU 

onboard. Therefore, precise georeferencing of UAV images is a requirement. At this 

point, feature matching with a pre-georeferenced oblique aerial images can be utilized 

to reach better UAV geo-registration performance beyond hardware limits [1]. 

Besides, oblique aerial images include facade details detected and recorded with high 

accuracy and completeness level.  Hence, combining the use of UAV and oblique 

aerial images with feature matching can provide reliable tie points that can be useful 

for further applications such as dense point cloud extraction for 3D city modeling, 

visualization, textured 3D city models, etc. [4]. Up till now, a small number of research 

studies have been conducted for the feature matching of the UAV and oblique aerial 

imagery. However, the outputs of the approaches developed are still limited due to 

large differences in terms of scale, rotation, viewpoint, and illumination, between the 

two datasets. A crucial part in attempting to alleviate these problems involves a feature 

extraction step to identify a sufficient number of keypoints being input of the image 

matching step. Besides, the numbers of true matching correspondences remain at an 

insufficient level for most of the previously developed approaches. 

This thesis presents a novel feature matching framework (Fig. 1.1) and evaluates its 

performance for the airborne oblique and UAV imagery acquired over a test area in 

Germany. The motivation of the developed framework is to mitigate the problems 

identified above, and is to enhance the performances of the point-matching between 

the oblique and UAV images. The principal motivations of the proposed framework are 

(i) to increase the number of unique point-based features detected, (ii) to provide 

tentative matches as large as possible, and (iii) to extract putative matches from the 

tentative matches up to the best possible extent. In this respect, the framework 

proposed in this thesis consists of three essential steps; (i) feature detection with an 

iterative scheme to collect keypoints, (ii) initial matching of the collected keypoints 

between the oblique and UAV images, and (iii) final matching step including outlier  
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removal. Figure 1.1 depicts a flowchart showing briefly the proposed strategy to 

perform a point-based feature matching between the oblique an UAV images. 

 

1.2. Contributions 
 

The novelties of this thesis are as follows: 

 

 In this thesis, a novel framework for the matching of oblique images acquired 

from airplane and UAV platforms is proposed. To the best of our knowledge, 

there are only a few studies conducted in the literature in this context.  

 An iterative strategy is proposed to increase the number of tentative matches. 

Thus, a combination of the outputs of different detector response thresholds is 

manipulated to increase the number of initial matches. 

 Three different strategies are implemented and evaluated to accurately extract 

putative matches from the tentative matching candidates. To the best of our 

knowledge, it is the first time in the literature that the performance of a graph-

based RANSAC strategy is assessed and revealed in this context. 

 A Python script to implement the proposed framework is developed. 

 

1.3. Organization of the Thesis 
 

This thesis consists of six chapters. Chapter 2 provides a brief summary of the airborne 

oblique and UAV imaging with a literature review related to previous studies in the field 

of point-based feature extraction and feature matching of the remote sensing images.  

Chapter 3 presents the details of the developed matching approach. The chapter 

begins with explaining the initial processing applied. Next, feature detection method 

and the iterative approach to construction of the potential matching candidates are 

described. Finally, three different strategies for identifying putative matches are 

introduced.  

The information related to the dataset and the evaluations of the experiments 

conducted are provided in Chapter 4. First, the study area and the dataset utilized are 
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described. Thereafter, the accuracy assessment strategy and the evaluation of the 

critical parameters are reported.  

Chapter 5 involves the evaluation of the results of the proposed framework. The 

comparative assessment of the results of the developed approach with previously 

developed feature matching approaches is also provided. 

Finally, in Chapter 6, the outcomes of this study and the potential future works are 

stated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

2. BASICS AND STATE-OF-THE-ART 
 

 

The standard environment of photogrammetric imaging and processing has been well 

known and established for decades. Digital imaging sensor technologies and camera 

systems have significantly improved compared to the former designs. Since aerial 

oblique and UAV images are utilized in this thesis, a short overview of the airborne 

oblique cameras and UAV platforms are firstly presented in this section. Thereafter, a 

summary of literature about the previous studies regarding point-based feature 

extraction and feature matching from remotely sensed images are provided. 

2.1. Overview of Airborne Oblique and UAV Imaging 
 

2.1.1. Oblique Imaging 
 

Oblique aerial images, unlike vertical nadir-viewing counterparts, better expose the 

side views of the objects on the Earth’s surface. Therefore, observing an oblique image 

is more natural and intuitive compared to viewing a vertical image, and even 

uninformed users can identify and interpret features on the ground [5]. Oblique images 

are exposed with the camera axis intentionally tilted between the vertical and 

horizontal. The total area captured with oblique images is much larger than that of 

vertical images. Generally, oblique imaging is divided into two categories, low and high 

oblique imagery, according to angular position of the camera utilized: 

 

Figure 2.1: Differences between vertical and oblique imaging [6]. 
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 Low Oblique Aerial Imagery: A low oblique image is taken with the camera 

inclined about 30ₒ from the vertical. This type of aerial image does not include 

horizon (Fig. 2.1). The ground area covered is a trapezoid, but the image is 

square or rectangular. Distance cannot be measured due to scale changes in 

the entire image. Parallel lines located on the ground are not parallel on image; 

thus, direction (azimuth) cannot be measured. Relief information is detectable 

but distorted. 

 High Oblique Aerial Imagery: A high oblique image is taken with the camera 

inclined about 60ₒ from the vertical. In this type of aerial image, horizon is visible 

and it captures a large area (Fig. 2.1). The ground area covered is a trapezoid, 

while the image is square or rectangular. Distances and directions cannot be 

measured on image due to the same reasons stated for the low aerial oblique 

imaging. Relief may be quite detectable but distorted as in any oblique view [7].  

Oblique images are usually acquired by multi-camera systems as introduced by many 

companies such as IGI, Leica, Midas, Vexcel/Microsoft and VisionMap and can be 

classified into three categories according to their configurations [8, 9] (Table 2.1). 

These systems comprise of more than one lenses mounted in the same camera body 

or more than one cameras mounted in an array in order to keep the angles between 

their optical axes fixed (Fig. 2.2). The shutters are generally synchronized for obtaining 

exposures at the same time. Eventually, the output accuracy mostly depends on the 

calibration of the optical axes [5]. 

 

2.1.2. UAV Imaging 
 

In the past, UAV systems were mainly developed for military purposes and tasks such 

as surveillance, reconnaissance, unmanned inspection or recording of inimical regions. 

But recently for mapping purposes, UAV imaging has opened a variety of new 

application fields in the close-range domain, providing a cost effective alternative to 

the traditional airborne photogrammetry for large-scale topographic mapping or three 

dimensional capturing of terrain information, and therefore, being a fundamental 

complementing solution to terrestrial photogrammetry [10]. 
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Table 2.1: Summary of oblique multi-camera systems [9]. MC: Maltese-Cross, F: 
Fan, B: Block. 

System Type Number 
of 

Sensors 

Geometric 
Resolution 

(px) 

Pixel 
Size 

(m) 

Spectral 
Bands 

Focal 
Length 
(mm) 

Vexcel Osprey 

2 

MC 4+1 11674 x 7514 

8900 x 6650 

6.0  

 

RGB, 

NIR 

80-120 

MIDAS 5 MC 4+1 5616 x 3744 

(Canon EOS-

1D) 

7360 x 4912 

(Nikon D800E) 

 

6.4 

4.8 

RGB 27-90 

IGI DigiCAM 

Penta 

MC 4+1 7304 x 5487 

8176 x 6132 

8956 x 6708 

(Hasselblad) 

6.8 

6.0 

6.0 

RGB, 

CIR 

50-80 

Pictometry MC 4+1 2672 x 4008 9.0 RGB 65-80 

Optron/Trimble 

AIC 

B 4 7228 x 5428 

(RolleiMetric) 

6.8 RGB, 

CIR 

60-100 

VisionMap A3 

Edge 

F 2 4864 x 3232 

(KODAK) 

7.4 RGB, 

CIR 

300 

 

 

                    

(a)                                        (b) 

Figure 2.2: (a) a view of the IGI DigiCam Penta [5], (b) the configuration of the 
camera system [11]. 
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UAV-based images can be obtained by operating flying unmanned platforms with 

different sizes and usually with small weights. The costs of such platforms are 

significantly lower than the operations conducted by conventional aircrafts. UAV can 

be classified into variety of types and classes. The UAVs can be classified as fixed and 

rotary wings based on their main airframe types (Fig. 2.3). A runway area is not needed 

for the Rotary wing UAV platforms which have high flexibility for the take-off and 

landing in a vertical manner; however, fixed wing UAVs enable capturing larger survey 

areas in a relatively short amount of time [12]. 

 

 

(a) 

 

(b) 

Figure 2.3: Fundamental airframe types of UAVs [13]; (a) a fixed wing UAV, (b) a 
rotary wing UAV. 

 

UAV based data collection can replace the terrestrial acquisitions performed in small 

scale applications. The derived high-resolution products can be used in 3D modelling, 

dense point cloud generation, texture mapping on existing 3D data, map production or 

orthophoto generation. In comparison to long-established airborne platforms, UAVs 

may provide better accuracies and significantly reduce the risk of recovering 

information in brutal areas. However, small or medium format cameras especially on 
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low-cost and small payload systems, enforce the acquisition of a higher number of 

images in order to obtain the same image coverage at a comparable level of detail 

[12]. 

2.2. Related Work   
 

Image matching is defined as establishing the correspondence between the image 

data, while feature extraction can be thought of as a pre-processing step for the image 

matching tasks [14]. Generally, image matching techniques are classified into two 

major groups, dense (energy-based) and sparse (feature-based), according to their 

principal ideas [15]. 

The main objective of a dense correspondence algorithm is to establish the 

corresponding pixels between images. In this context, the corresponding pixels may 

look quite different because of different illumination conditions and different image 

acquisition angles. Also, in some cases such as uniform surfaces, it is not easy to 

compute a discriminative feature that can describe a pixel. Therefore, the dense 

correspondence problem can be seen as an optimization problem to find the best 

correspondence between pixels of two images. The taxonomy proposed by [16] 

defines four stages (matching cost computation, cost aggregation, disparity 

computation and disparity refinement) as building blocks of a dense correspondence 

algorithm. Early dense matching approaches rely on area-based methods, also termed 

as correlation-like methods or template matching, and there is no pre-processingf 

stage for the extraction of salient features from the images [17]. These matching 

approaches use algorithms that searching for the matches between images based on 

areas within the images, by using predefined matching windows. The matching cost 

computation block of a modern dense correspondence algorithm defines a way of 

assessing the resemblance of image locations. An extensive evaluation of different 

matching cost computation methods can be found in [18]. Their evaluation shows that, 

BilSub [19] performs best for low radiometric difference; Mutual Information [20] is 

more stable for image noise; and as overall performance, Census performs best. The 

cost aggregation step accumulates the matching costs within a certain neighborhood. 

Once the cost calculations are done, the disparity estimation can be done locally, 

globally or semi-globally. A comprehensive study on different techniques can be found 

in [21] and [22]. More recently, deep learning also became popular for generating 

dense correspondences [23]. 
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In sparse image matching, the first step is to detect image features such as corners, 

blobs, edges, etc. in given input images. Once image feature descriptors are computed 

by feature extraction methods, they are compared, e.g. in stereo geometry, to reveal a 

relationship between the input images to realize image matching. 

Each of the matching methods has specific characteristics and hence they are suitable 

for solving different type of problems. Dense correspondence is mostly required when 

dense 3D surface is necessary, e.g. DSM generation, orthophoto production, optical 

flow etc., whereas sparse correspondence is mostly used to relate two or more images, 

e.g. image registration, robotics applications etc. The literature on both methods is 

vast. In accordance with the topic of this thesis, we only discuss point-based (sparse) 

methods dealing with optical remote sensing images. 

 

In this section, the former studies are examined in an article by article manner, in which 

each article is investigated and summarized regarding their certain key aspects such 

as the methodology proposed, the data utilized, and (if available) the results reported. 

2.2.1. Point-based Feature Extraction 
 

Extracting features from image data is an essential step for variety of research fields, 

especially in computer vision domain. Image registration, object recognition, image 

classification, 3D scene reconstruction, motion tracking and robotics applications are 

based on defining a set of stable features [24-28]. In addition, many feature extraction 

methods have been developed in the literature to provide successful image matching.  

An image feature is an image element that has a specific structure in the image, such 

as corners and edges (Fig. 2.4), which is possible to discriminate from surrounding 

parts of the image while providing rich information about the image content. Feature 

extraction can be defined as detecting and isolating desired features from the image 

or pattern for identifying or interpreting meaningful information from the image data. 

Feature extraction for local features can be divided into two different stages; feature 

detection and feature description [29]. Feature detector is a function which finds a set 

of stable distinctive features in an image, while the feature descriptor encodes 

information in spatial neighborhoods of the determined features.  
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(a)                                             (b)                                            (c) 

Figure 2.4: For (a) a “flat” region, shifting a window in any direction gives no change, 
(b) an “edge”, shifting a window gives no change along the edge 
direction, (c) a “corner”, shifting a window gives significant intensity 
change in all directions [30]. 

 

The most popular feature descriptor for detecting interest features from images was 

Scale Invariant Feature Transform (SIFT) proposed by D. Lowe [31] in 2004. SIFT 

descriptor aims to find features that are invariant to image scale and rotation, affine 

distortion, change in illumination and 3D perspective, and noise. SIFT algorithm 

includes four major steps for producing a set of image features. Initial step begins with 

computing a scale space extrema using the Difference-of-Gaussian (DoG) filters to 

ensure scale invariant keypoint set. Thereafter, the keypoint candidates are localized 

and refined by eliminating the low contrast keypoints and edge keypoints. Next, an 

orientation value is assigned to each keypoint based on local image gradient to achieve 

invariance to image rotation. For each keypoint, the local image descriptors are 

computed based on the image gradient magnitude and orientation in the final step. 

Although SIFT has been found successful various object recognition applications, the 

major drawback; however, is the relatively large computational cost. 

The Speeded-up Robust Features Method (SURF) [32] which was an approximation 

of the SIFT, operated in a scale space with using Laplacian of Gaussian (LoG) 

approximation with box filters and utilized a Blob detector based on the determinant of 

Hessian matrix. Convolution with box filters can be faster if calculation done with the 

integral images and with this advantage, SURF performs faster than SIFT. However, 

although SURF features are rotation and scale invariant, they have almost no 

invariance to affine type distortions. 
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Yu et al. [33] introduced a fully affine invariant method called ASIFT (Affine-SIFT) to 

improve the SIFT method which is fully invariant concerning only translation, rotation, 

and scale. Unlike SIFT, ASIFT method also covers two camera axis orientation 

parameters, latitude and longitude angles. It performs this by simulating many views 

of the initial two images with changing rotation angles and projection. ASIFT method 

can detect many feature points but it requires large computational time both for feature 

extraction and matching. 

Binary Robust Independent Elementary Features (BRIEF) [34] was developed as an 

alternative local binary descriptor for SIFT and SURF with almost similar matching 

performance unless there is large rotation difference between the input images. When 

feature extraction is performed on low-power devices, the selection of computationally 

efficient algorithms is crucial [35]. Therefore, BRIEF descriptor compares feature 

points relatively faster and stores in memory more efficiently. It dramatically reduces 

the matching time by means of the Hamming distance utilized in the approach. 

ORB [36] is an acronym for Oriented FAST [37] (Features from Accelerated Segment 

Test) and Rotated BRIEF, and is another effective alternative for SIFT and SURF. 

ORB, as the name suggests, was based on the combination of FAST and BRIEF 

descriptors with certain modifications. In ORB, feature detection relies on the FAST 

detector, which is an effective corner detector suitable for real-time applications due to 

its computational advantages. It expands FAST through adding orientation component 

while overcoming BRIEF descriptor’s lack of rotational invariance weakness.  

Alcantarilla et al. [38] introduced KAZE features in 2012. The name of the algorithm 

arises from the Japanese word kaze which denotes wind and referring the flow of air 

on a large scale ruled by nonlinear processes. Their method was based on utilizing 

nonlinear scale spaces to overcome the drawbacks of Gaussian blurring employed by 

previous approaches, such as SIFT, to operate a scale space with DoG approximation. 

Non-linear diffusion filtering together with the AOS (Additive Operator Splitting) 

technique has been used to build the non-linear scale spaces. This allowed locally 

adaptive blurring of image data to extract feature points, thereby, reducing the noise 

level while preserving the boundaries of regions. KAZE detector calculates the 

response of the (scale normalized) determinant of the Hessian matrix at various scale 

levels. The maxima of the responses are labelled as the potential keypoints. KAZE 

features are invariant to scale, rotation and have more distinctiveness at varying image 
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scales. Although KAZE features require more computational cost than SURF, its’ 

results are found to be comparable with SIFT. 

One year later in 2013, Alcantarilla et al. [39] introduced Accelerated-KAZE (A-KAZE) 

to overcome the main drawback of KAZE; the high computational cost involved. A-

KAZE utilizes a faster method, Fast Explicit Diffusion (FED) scheme embedded in a 

pyramidal framework in order to create the non-linear scale space. In addition to FEDs, 

A-KAZE exploits a modified version of the Local Difference Binary (LDB) descriptor 

that utilizes gradient and intensity information from the nonlinear scale spaces. 

Although the LDB descriptor follows the same basis as BRIEF algorithm, it computes 

binary tests in the influence region surrounding each keypoint.  

 

2.2.2. Point-based Matching of Optical Remote Sensing Images  
 

Up to now, many feature-based methods are developed and commonly used in a 

variety of application areas. Zhuo et al. [1] investigated the performance of SIFT-based 

image matching to match the low altitude nearly nadir UAV images with the high 

altitude nadir aerial images. The authors stated that SIFT and ASIFT methods often 

performed badly or even fail, because of the large differences between the images 

regarding scale and rotation, hence they proposed an approach [1] to overcoming 

these problems. Their method was comprised of the SIFT descriptor, a one-to-many 

strategy and a geometric verification of the putative matches with the help of pixel-

distance histograms. Although their method can found thousands of correct matches 

even at image regions that have repetitive patterns, their approach requires pre-

information about position and orientation for alignment of the UAV image. 

Barath et al. [40] described a novel method called Graph-Cut RANSAC (GC-RANSAC) 

for separating inlier and outlier matchings. The graph cut algorithm proposed a new 

local optimization step that globally optimal and simple to implement.  The authors 

concluded that the GC-RANSAC algorithm is more geometrically accurate than 

conventional methods on a variety of problems e.g. line fitting, homography, affine 

transformation, fundamental and essential matrix estimation.  

A two-view matching technique, named as Matching on Demand with Synthesis 

(MODS) was presented by Mishkin et al. [41] in 2015. MODS employed a combination 
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of different detectors in which an iterative scheme that powerful still slower detectors 

and descriptors were applied. They also proposed correspondence selection strategy 

which generalized the standard strategy based on first to second closest distance ratio. 

They rigorously evaluated their approach in multiple datasets including a dataset 

comprising 30 pairs of airborne images. 

Bansal et al. [42] proposed a method for facade matching of low altitude aerial images 

with the street-level images. Their approach was based on a novel descriptor called as 

Scale-Selective Self-Similarity (S4) to perform matching of these images with huge 

viewpoint and illumination variations. In their study, street level queries matched with 

a database of pre-processed bird’s-eye view aerial images for the rectification of the 

facades. The authors stated that the use of S4 features instead of SIFT features 

provided a significant improvement in the final performance. 

An approach for the purpose of building recognition was introduced by Chung et al. 

[43] in 2009. In this work, repetitive structures on buildings are found by the use of 

MSERs (Maximally Stable Extremal Regions) [44] and exploited for the construction of 

sketch-based representations of the buildings. Thereafter, the spectral graph theory is 

used for the matching of the images having large differences regarding scale and 

viewpoints. 

Verykokou and Ioannidis [45] presented a novel algorithm for automatically estimating 

the exterior orientation parameters of the images including planar surfaces in the 

captured scenes. In their procedure, main stages composed of (i) the determination of 

overlapping images, (ii) image matching with using a template matching method, and 

feature tracking with a homography based technique, (iii) estimation of the exterior 

orientation parameters, (iv) and a Structure from Motion workflow combined with 

iterative adjustment methods for outlier removal. The proposed algorithm was tested 

on a subset of UAV oblique images of the multi-platform photogrammetry benchmark 

dataset provided.  

A procedure for ultra-wide baseline image matching for urban environments was 

presented by Altwaijry et al. [46] in 2013. Their method benefited advantage of multiple 

ideas proposed in the literature, and principally based on creating synthetic affine 

views along with the self-similarity graph and a RANSAC-based scheme. 30 image 

pairs collected from Google Maps were utilized, and the authors argued that their 
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method demonstrated an improved performance than the alternate methods in the 

literature regarding the ultra-wide baseline matching. 

Onyango et al. [47] proposed a strategy to register UAV and aerial oblique images for 

accurately orienting UAV images via already georeferenced oblique images. In this 

study, used image data is a sample of images in the framework of the multi-platform 

photogrammetry benchmark that available to researchers and provided by the ISPRS 

(Scientific Initiative) and EuroSDR. Their procedure implemented the A-KAZE 

descriptor since the A-KAZE was tested against SIFT, SURF, KAZE, BRISK, BRIEF 

and gave the best results. They used Brute force hamming distance to find putative 

matches between the images. To filter wrong matches, Lowe’s ratio test was used and 

this followed by the computation of multiple homography to remove remaining outlier 

matches. The accuracy evaluation criteria of the study, based on the computation of 

the average residual error of the successfully matched points with using their 

corresponding epipolar lines and comparing this value with the average residual error 

computed from manually matched points. The authors stated that their procedure gave 

satisfying results in most of the challenging scenarios for the cases having scale, 

geometry and illumination differences.  

In the past years, deep learning has mainly utilized for computer vision tasks such as 

image classification, object recognition and image segmentation. But recently, the 

advances in deep learning also allow finding good feature representations for feature 

extraction tasks. The layers of Convolutional Neural Networks (CNN) manage 

to intercept complex image characteristics and perform better than traditional 

algorithms [48]. Therefore, many researchers have implemented these networks in the 

feature extraction step (Fig. 2.5) rather than SIFT or similar algorithms [49]. 

Fischer et al. [50] introduced a CNN trained on ImageNet, and a CNN only trained with 

unlabeled data. While supervised CNN training is advantageous for descriptor 

matching, the supervised trained network is superior when the features are used for 

further classification tasks. The authors concluded that these features outperformed 

SIFT on descriptor matching while requiring more computational cost than SIFT.   

In 2018, Yang et al. [51] proposed a feature based image registration approach using 

a CNN based feature extraction method. In their procedure, they used a pre-trained 

VGG network to construct a feature descriptor that exploited high-level convolutional 
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information while keeping localization capabilities. Similar to the previous approach, 

these descriptors provide better accuracy compared to SIFT especially where SIFT 

includes a large portion of outliers or performed matching with an insufficient number 

of keypoints. 

A vision-based framework for geolocalizing a UAV with using its on-board camera and 

satellite imagery was presented by Nassar et al. [52] in 2018. The proposed method 

allows navigation in GPS-denied regions and improving existing GPS modules. In few 

words, their strategy combined traditional computer vision techniques and deep 

learning networks to registering a reference satellite image with a UAV image to guide 

the UAV localization. 

 

Figure 2.5: Hierarchical learning of features in CNN architecture [53]. 
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3. PROPOSED FRAMEWORK 
 

 

This chapter presents the details of the developed matching approach. The chapter 

begins with explaining the initial processing applied. Next, feature detection method 

and the iterative approach to construction of the potential matching candidates are 

described. Finally, three different strategies for identifying putative matches are 

introduced. 

3.1. Initial Processing  

 

 

In the first step, large scale differences between the oblique and UAV images are 

mitigated by applying a down-sampling process to the UAV image (Fig. 3.1). For that 

purpose, the “RasterResampler” function of the Feature Manipulation Engine (FME) is 

utilized. To do that, a down-sampling ratio (down-sampling ratio indicates the 

percentage of the original image resolution, see Chapter 4.4 for the details on this 

parameter) is defined and successively applied with using nearest neighbor 

interpolation to all UAV images available. In this way, scale discrepancies amongst the 

oblique and UAV images are reduced before any further processing.  

 
(a) Total # of pixels: 6000x4000 

 
(b) Total # of pixels: 1800x1200 

 
(c) Total # of pixels: 1200x800 

 
(d) Total # of pixels: 600x400 

Figure 3.1: Down-sampling process applied to the UAV images. (a) UAV image at 
original scale, a region in UAV image with (b) down-sampling rate of 30% 
applied, (c) down-sampling rate of 20% applied, and (d) down-sampling 
rate of 10% applied. 
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In the second step, a search window is manually defined to limit the search space in 

the quite large oblique coverage compared to the relatively small area covered by the 

UAV images. For that purpose, for each UAV image, the region covered by the UAV 

images are cropped out from the aerial oblique image by taking into account the 

common overlap area between the two datasets (Fig. 3.2). Note that, in this thesis, it 

is assumed that no information is given for the related dataset, and therefore, this 

search window is manually selected. However, the search window can be 

approximately set to limit the search space within airborne oblique image with the help 

of the (initial) orientation information, if exists, for both datasets, as shown in [54]. 

 

(a) 

 

(b) 

Figure 3.2: (a) An oblique image and the scene covered by the UAV image in Fig. 
3.1a, (b) cropped area from the aerial oblique images. 

 

3.2. Feature Detection 
 

A detailed comparison of the performance of different point-based feature descriptors 

and matching of aerial oblique and UAV images were performed in [47]. In that study, 

the A-KAZE [39] descriptor was tested against SIFT [31], SURF [32], KAZE [38], 

BRISK [55], BRIEF [34], and provided the best results for all cases. Therefore, based 

on the results achieved in the previous study in [47], the descriptor A-KAZE is selected 

as the base feature detection strategy in this thesis.  

A-KAZE principally makes use of KAZE features developed in [38]. However, the non-

linear diffusion process utilized in KAZE relies on a computationally expensive 

numerical solution (Additive Operator Splitting [56]) of a large system of linear 

equations. For that reason, A-KAZE significantly speeds up the process by replacing 

the numerical solution with a faster numerical solution scheme (Fast Explicit Diffusion 

[57]). In the A-KAZE framework, this scheme is also implemented in a pyramidal 
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framework to increase the processing speed of feature detection in nonlinear scale 

spaces. 

The scale spaces of A-KAZE are illustrated in Fig. 3.3. In KAZE, anisotropic diffusion 

is performed considering the input image size in all diffusion steps, and the smoothing 

realized after the diffusion process preserves the details, i.e. edges, corners. However, 

A-KAZE utilizes a pyramidal scale space (Fig. 3.3) when compared to KAZE. The sizes 

of the images in each pyramid level (a.k.a. octave) reduce by a factor of 2 while moving 

upper level of the pyramidal framework (Fig. 3.4). Similar to KAZE, the diffusion 

process in each level of the pyramid preserves the details during anisotropic 

smoothing. The anisotropic diffusion for an image I(x) and at a time t is defined as  

𝜕𝐼

𝜕𝑡
= 𝑑𝑖𝑣(𝑐(𝐱, 𝑡). ∇𝐼)  ,    (3.1) 

where c is the conductivity function, ∇ is the gradient operator, and div denotes the 

divergence. The function c controls the diffusion process all over the image by applying 

a function, e.g. as the one proposed in [58]: 

𝑐(𝐱, 𝑡) = 𝑔(|∇𝐼𝜎(𝐱, 𝑡)|) =
1

1+(
|∇𝐼𝜎|

𝑘
)
2   ,   (3.2) 

where function ∇𝐼𝜎 is the gradient of the image I in which Gaussian smoothing is 

applied, σ and k denote the standard deviation of Gaussian smoothing, and the 

contrast factor that manages the extent of the diffusion applied, respectively. A-KAZE 

also includes a histogram thresholding method (70% percentile of the gradient 

histogram) to obtain automatically the contrast factor k.  

 

Figure 3.3: The scale spaces of A-KAZE consisting 3 octaves and 4 sub-levels [59]. 



21 
 

 

Figure 3.4: The difference between the scale spaces of (a) KAZE, and (b) A-KAZE. 
Note that all images represent only the first sub-level of each octave [60]. 

 

In the next step A-KAZE detects the keypoints (or interest points), which are points that 

will be used for the matching step. Keypoints may have certain requirements, e.g. 

independence of position, robustness against image transformations, and scale 

independence [60]. A-KAZE extracts keypoints with the help of the determinant of the 

Hessian matrix (H) at the different scale levels (i) including the second order derivatives 

(Ixx, Iyy, Ixy) of the input image I: 

𝐼𝐻
𝑖 = 𝜎𝑖,𝑛𝑜𝑟𝑚

2 (𝐼𝑥𝑥𝐼𝑦𝑦 − 𝐼𝑥𝑦
2 )  ,    (3.3) 

where norm denotes the normalized smoothing based on the current state of the sub-

level of the octave processed. Thereafter, all keypoints are collected by thresholding 

the Hessian matrix at each level through a user-defined threshold (a.k.a. detector 

response threshold, tdr). Finally, A-KAZE utilizes a modified version of Local Difference 

Binary (LDB) [61] that exploits 3 bits per comparison (two gradient orientations for x 

and y, and one intensity information) to generate the descriptor. Compared to LDB, 

modification includes additional sampling information from nonlinear scale space, and 

also estimating the main orientation rotation and accordingly rotating the grid of LDB 

(Fig. 3.5). 
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Figure 3.5:  (a) LDB, and (b) modified-LDB [39]. 

 

3.3. Iterative Approach to Construct Tentative Matches 
 

In this stage, the main tasks are (i) to increase the number of unique point-based 

features and (ii) to locate tentative matches as many as possible. For that purpose, 

two strategies are promoted, and finally, an iterative scheme is proposed.    

To accomplish the first task, i.e. increasing the number of unique point-based features, 

it is realized that more unique keypoints can be detected when different values of the 

detector response threshold (tdr) parameter of the A-KAZE are defined. Therefore, 

multiple threshold values are defined (see Chapter 4.4 for the details on this 

parameter), and applied for the range of the detector response threshold through an 

iterative processing. The threshold values are increased through an increment 

parameter (td) which is identified after rigorously evaluating a range of different 

threshold values.  

For the second task, i.e. retrieving the tentative matches as many as possible, relaxed 

Nearest Neighbor Distance Ratio (NNDR) values are tested. The NNDR matching 

technique also known as Lowe’s ratio test, was proposed by D. Lowe [31]. NNDR is 

relying on the fact that the correct matches need to have the closest matching similarity 

significantly closer than the closest incorrect match to accomplish reliable matching. 

For false matches, there will likely be several other false matches within comparable 

matching similarities [31] (see the details of NNDR computation in Appendix A.1). 

Therefore, utilizing low NNDR values (e.g. ≤ 0.7) lead to rejecting a number of true 

matches together with the mismatches; thus, preserving only a small number of 

matches in the output. In this thesis, different NNDR values are evaluated to maximize 

the number of initial matches (see Chapter 4.4 for the details on this parameter). 
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During the construction of tentative matches, for each different detector response 

threshold, A-KAZE keypoints are detected from the aerial oblique and UAV images, 

independently. Thereafter, the detected keypoints in both datasets are compared and 

evaluated using the Hamming distance [62]. Hamming distance efficiently compares 

every descriptor in the oblique aerial image with the descriptors found from the UAV 

image using XOR instruction on bit sets, in which the matching is performed. 

The left-right consistency check, also known as cross check test, is also applied to filter 

erroneous matches found. It is based on the mutual matching hypothesis: only the 

keypoints whose left-to-right (i.e. oblique-to-UAV) and right-to-left (i.e. UAV-to-oblique) 

matching correspondences stand for the same best matching descriptors in all possible 

matching candidates can be accepted as valid matching keypoint pairs. Therefore, left-

right consistency check removes the inconsistent feature matches amongst the input 

images (see the details of left-right consistency check computation in Appendix A.2).  

Once the validation of feature matches is completed, the matches approved are 

appended to the initial matching list. After all the required iterations are completed, only 

the unique matches between the oblique and UAV images are exposed, and finally 

labeled as tentative matches (Fig. 3.6).  

The pseudo-code to construct tentative matches is provided in Algorithm 1. 

 

 
(a) 

 
(b) 

Figure 3.6: The detected features (in red color). (a) Oblique image #5 and (b) UAV 
image #1. 
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Algorithm 1: Iterative Approach to Construct Tentative Matches 

Input One oblique and one UAV image 

Output Initial matching list between the oblique and the UAV images 

1. Initialize A-KAZE algorithm parameters and define detector response threshold 

value (d) and the increment level (td) 

2. Initialize NNDR value (ratio) 

3. Initialize empty matching list 

4. for each detector response threshold (d+td) 

Detect A-KAZE keypoints for input images using the current response 

threshold  

Perform feature matching between images using Hamming distance 

Apply left-right consistency check to the matches found  

 Validate matches with NNDR threshold 

 Append validated matches through updating the matching list  

5. Find unique matches in the matching list and label them as tentative matches  

 

3.4. Identifying Putative Matches  
 

In this section, three different strategies are implemented to extract putative matches 

from the tentative matching list, and as a common check for all strategies, epipolar 

constraint is applied. However, the fundamental matrix (F) (the matrix that encodes the 

epipolar geometry between any two images of the same scene) relating the 

corresponding points between the oblique and UAV images is required to enforce the 

epipolar constraint between two images. If fundamental matrix is known, given a point 

in oblique image, the epipolar line which the point lies on in the UAV image (or vice 

versa) can be computed by multiplying the point with the fundamental matrix (see the 

details of epipolar constraint computation in Appendix A.3). However, the fundamental 

matrix is commonly not available, and must be calculated from an unreliable 

correspondence set, i.e. tentative matches, including a large number of false matches. 

Therefore, robust approaches are necessary to pick out a reliable correspondence set 

within the tentative matching list.  

The main motivation of the strategies implemented is that the fundamental matrix in 

each strategy is estimated via several robust approaches available in different libraries 
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of the Python; thus, a comparative performance investigation amongst different 

approaches becomes expressive. In this thesis, we preferred RANSAC, LMedS & 

RANSAC, and Graph-Cut RANSAC approaches for a comparison. However, other 

estimators such as MSAC (M-estimator SAmple and Consensus) [63] and MLESAC 

(Maximum Likelihood Estimation SAmple and Consensus) [64] are also popular in the 

literature. Note also that, although MLESAC approach is not exclusively tested in this 

thesis, the unary term of Graph-Cut RANSAC relies on the MLESAC approach.  

In this thesis, all matching points are equally weighted during the estimation of the 

fundamental matrix. However, the fundamental matrix can also be computed by 

providing different weights for the matching points (e.g. higher weights can be assigned 

to the points in the central part of the oblique image than the points closer to the horizon 

part of the oblique image since they are more reliable). However, such a weight 

assignment requires the image orientations beforehand, and in this thesis, it is 

assumed that no information is given for the related datasets.    

  

3.4.1. Strategy #1 (RANSAC) 
 

In this strategy, fundamental matrix is estimated using Random Sampling Concensus 

(RANSAC) through “findFundamentalMat” function of the OpenCV library (see the 

details of RANSAC in Appendix A.4).  

A critical parameter, maximum distance (dmax), of the epipolar constraint controls the 

inlier/outlier decision of this strategy. This user-based input parameter (see Chapter 

4.4 for the details on this parameter) defines the maximum orthogonal distance from a 

point to an epipolar line in pixels. If the calculated distance is higher than this value for 

a point, the point is considered as an outlier; thus, it is not used during the computation 

of the fundamental matrix. 

The output is a mask array of N (size of the points from the first image) elements, and 

in this array, all inliers and outliers points are set to 0 and 1, respectively. Thus, this 

information can be utilized to select the putative matches amongst the tentative 

matching list. 
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Algorithm 2: Strategy #1 (RANSAC) to Identifying Putative Matches  

Input Tentative Matching List 

Output Putative matches between the oblique and the UAV images 

1. Estimate F through RANSAC approach 

2. Define maximum distance threshold (dmax) for epipolar constraint 

3. for each matching candidate in input 

Apply epipolar constraint with the threshold, dmax 

Return a mask array  

4. Find inliers in the matching list using mask array 

5. Label inlier matches as putative matches 

 

3.4.2. Strategy #2 (LMedS + RANSAC) 
 

In this strategy, an initial fundamental matrix is estimated with the Least Median of 

Squares (LMedS) approach (see the details of LMedS in Appendix A.5), based on the 

hypothesis that 50% or more points in the input tentative matching list belongs to 

inliers. According to this initial fundamental matrix, epipolar constraint is enforced, and 

mask array whose values refer to early separation of inliers/outliers are generated. 

Next, the tentative matching list is updated based on the matches labelled as inliers, 

and the fundamental matrix is re-estimated with the RANSAC approach. 

“findFundamentalMat” function of the OpenCV library is also employed for estimation 

methods utilized in this strategy. 

 

Algorithm 3: Strategy #2 (LMedS + RANSAC) to Identifying Putative Matches 

Input Tentative Matching List 

Output Putative matches between the oblique and the UAV images 

1. Estimate F through LMedS approach 

2. Define maximum distance threshold (dmax) for epipolar constraint 

3. for each matching candidate in input 

Apply epipolar constraint with the threshold, dmax 

Return a mask array  

Find inliers in the matching list using mask array 
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4. Re-estimate the F using the inliers found after step 3 through RANSAC 

approach 

5. Utilize the same maximum distance threshold (dmax) for epipolar constraint 

6. for each matching candidate in updated matching list 

Apply epipolar constraint with the threshold, dmax 

Return a mask array  

7. Find inliers in the matching list using mask array  

8. Label inlier matches as putative matches 

 

3.4.3. Strategy #3 (GC-RANSAC) 
 

In this strategy, fundamental matrix is estimated using Graph-Cut RANSAC (GC-

RANSAC) through “findFundamentalMat” function of the OpenCV “pygcransac”. 

Graph-Cut RANSAC method benefits from a maximum likelihood process, i.e. 

MLESAC, and considers the point-to-point proximity (see the details of GC-RANSAC 

in Appendix A.6).  Similar to the previous strategies, epipolar constraint is forced; a 

mask array is created, and this information is exploited to select the putative matches 

amongst the tentative matching list. 

 

Algorithm 4: Strategy #3 (GC-RANSAC) to Identifying Putative Matches 

Input Tentative Matching List 

Output Putative matches between the oblique and the UAV images 

1. Estimate F through GC-RANSAC approach 

2. Define maximum distance threshold (dmax) for epipolar constraint 

3. for each matching candidate in input 

Apply epipolar constraint with the threshold, dmax 

Return a mask array  

4. Find inliers in the matching list using mask array 

5. Label inlier matches as putative matches  
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4. DATASET AND EXPERIMENTS 
 

 

This chapter presents the study area, and related dataset, the assessment strategy, 

and the evaluations related to the experiments conducted. The dataset utilized in this 

thesis are oblique and UAV images acquired over a part of Germany. The rigorous 

evaluations of the critical parameters required by the strategies implemented are also 

presented. 

4.1. Study Area  
 

The study area is affiliated with the “Image Orientation” benchmark, provided by the 

International Society for Photogrammetry and Remote Sensing (ISPRS) Scientific 

Initiative and EuroSDR1, and covers a part of Dortmund, Germany. The aim of the 

benchmark is twofold [65]: (i) to evaluate and test the performance of different 

approaches developed for the calibration and orientation of images acquired by 

different platforms, and (ii) to assess the performance of different approaches 

developed for image matching and dense point cloud generation. In the context of the 

benchmark, three different test areas made available for researchers, Dortmund-

Centre (Germany), Dortmund, Zeche Zollern (Germany), and Zurich (Switzerland). In 

this thesis, the area covering the Dortmund-Centre is selected to evaluate the 

strategies implemented. This area is composed of dense urban environment 

containing tall modern buildings together with the historical constructions such as 

churches and public buildings (Fig. 4.1). Frame in yellow color in Fig. 4.1 defines the 

entire area of the Dortmund-Centre benchmark. 

4.2.  Dataset  
 

The yellow boundary in Fig. 4.1 defines the entire region acquired by the airborne 

oblique image acquisition system IGI PentaCam, whereas the rectangular region in red 

frame illustrates the region covered by the UAV flights. The small region labels the 

                                                           
1 EuroSDR is a not-for-profit organization linking National Mapping and Cadastral Agencies with Research 
Institutes and Universities in Europe for the purpose of applied research in spatial data provision, management 
and delivery. 



29 
 

Dortmund town hall, the place where the oblique and UAV images in this region are 

exploited in this thesis: 

 

Figure 4.1: Dortmund-Centre study area [65]. Rectangles with yellow and red 
boundaries define the area of the oblique and UAV campaigns. 

 

 Oblique Images: A total 1260 images were acquired with Pentacam IGI (flown 

by AeroWest - Dortmund) on May 19th, 2014. The ground sampling distance is 

10 cm in nadir images and it varies from 8 to 12 cm for the oblique views. The 

overlap for the nadir images is 75%-80% at along/across-track directions while 

it is 80% for oblique images [65]. 

In this thesis context, a single side (from the west view) of the Rathaus (town hall) 

building (also one of the benchmark buildings in the area) is purposefully selected to 

evaluate the performance of the strategies implemented. The main reason for selecting 

this building is that it is composed of many different repetitive patterns which turn into 

a challenging scenario for any kind of feature matching strategy. Both the selected 

oblique images and the benchmark Rathaus building (within the red colored 

rectangles) are visible in Fig. 4.2. 

 UAV Images: A total of 1073 images were acquired with a multi-rotor DIJ S800 

on June 8th, 2014. Images were taken with the drone cover the Rathaus (town 

hall) and Stadthaus buildings together with the obelisk and the surrounding 

square area. Both nadir and oblique images were collected on the area during 

4 different flights and an image GSD varying from 1 to 3 cm was adopted in 

each flight. A Sony Nex-7 camera was mounted on the drone [65]. 

Two UAV images utilized in this thesis are shown in Fig. 4.3. 
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Image ID: ‘005_018_148000201’ 

 

 
(a) Oblique Image #1 

(Image size 1159 x 558 pixels) 

 
Image ID: ‘005_017_148000202’ 

 

 
(b) Oblique Image #2 

(Image size 1267 x 648 pixels) 

 
Image ID: ‘005_016_148000203’ 

 

 
(c) Oblique Image #3 

(Image size 1397 x 732 pixels) 

 
Image ID: ‘005_015_148000204’ 

 

 
(d) Oblique Image #4 

(Image size 1553 x 854 pixels) 

 
Image ID: ‘005_014_148000205’ 

 

 
(e) Oblique Image #5 

(Image size 1744 x 1032 pixels) 
Figure 4.2: (a-e) Aerial oblique images (from West view). The red colored regions 

illustrate the benchmark Rathaus building. 
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(a) ID: ‘7111’ – UAV Image #1 

(Image size 6000 x 4000 pixels) 

 

(b) ID: ‘7148’ – UAV Image #2 

(Image size 6000 x 4000 pixels) 

Figure 4.3: Selected UAV images of the Rathaus building. 

 

4.3. Assessment Strategy 
 

In order to evaluate the accuracies of different matching strategies, the computed 

putative matches in Section 3 are divided into two categories, True Positive (TP), and 

False Positive (FP), by checking the automatically matched point features with the aid 

of manual inspection. If a feature match correctly represents the same point between 

the oblique and UAV images, it is labeled as a True Positive. Analogously, a False 

Positive is a feature match that does not indicate any correct correspondence during 

the visual evaluation. Thus, in this thesis, the well-known Precision (a.k.a. correctness) 

measure is utilized to interpret the quality of the matching: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
‖𝑇𝑃‖

‖𝑇𝑃‖ + ‖𝐹𝑃‖
     (Eq. 4.1) 

where ‖ . ‖ indicates the number of matches assigned to each class. As well known, 

another common measure frequently used to evaluate the performance is the number 

of False Negatives (FNs). This measure provides important information about a feature 

match that exists in reality but cannot be found by the automated matching strategies. 

However, due to the iterative approach (e.g. different detector response thresholds 

d+td, see Algorithm 1), a large number of unique point-based keypoints are found and 

computed (see Fig. 3.6), and unfortunately, it become impossible to generate a 

manually prepared reference matching list that can be used to infer FNs from the 

results.  
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4.4. Parameter Evaluation 

 

The parameters necessary to initialize the proposed strategies are presented in Table 

4.1. A number of tests on different parameters are performed to select the best 

parameter configuration, and the effects of each parameter on the matching 

performances of oblique images (#1 - #5) and UAV image #1 are investigated using 

the measures defined in (Eq. 4.1). Thereafter, oblique images (#1 - #5) and UAV image 

#2 are tested with the parameters fixed. In this thesis, only the main parameters are 

evaluated, whereas certain values that would normally not be changed for different 

datasets remain fixed, see Table 4.1. 

 

Table 4.1: Parameter test settings defined for the strategies implemented. 

Stage Parameters  {Tested} / “Selected” 

3.1 Initial 

Processing 
Down-sampling ratio (rds) (%) {0, 10, “20”, 30} 

3.2 Feature 

Detection 

Descriptor size  “486” bits 

# of Channels in the descriptor “3” 

Multiscale detection factor  

(# of Octaves) 
“4” (default) 

Scale levels (# of Octave Layers) “4” (default) 

Diffusivity type Perona-Malik [58] 

3.3 Construction 

of Tentative 

Matches 

Increment parameter (td) “5×10-4” 

A-KAZE detector response  

threshold value (tdr) 

“1×10-7, 5×10-4, 10×10-4,  

15×10-4, 20×10-4” 

Nearest Neighbor Distance Ratio 

(rnnd) 

{0.6, 0.65, 0.7, 0.75, 0.8, 

“0.85”} 

3.4 Identifying 

Putative Matches 

Maximum distance to  

epipolar line in pixels (dmax) 
{1, 2, “3”} 

Level of confidence (probability) “99%” (default) 

 

 

The first test investigates the effect of the scale differences between the oblique and 

UAV images. During the tests, first, oblique and UAV images are matched with their 

original scales, without applying any down-sampling process (i.e. rds = 0). The results 

presented in Table 4.2 indicate that the scale differences between the oblique and UAV 

images during matching are critical; thus, all strategies reported only a small number 

of feature matches along with a number of FPs. The results achieved with down-
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sampling rates of 10% and 20% demonstrate significant increases of TPs (Tables 4.3 

and 4.4). However, the results presented in Table 4.5 confirm that the down-sampling 

rate of 30% noticeably reduce the precision ratios computed. Note also that, the 

numbers of FPs remain more or less on the same level for all experiments within each 

strategy (i.e. #1, #2, and #3) implemented. According to these results, the down-

sampling rate is fixed to 20% since this ratio provide the highest number of TPs while 

generating comparable number of FPs. 

 

Table 4.2: UAV image is not down-sampled (i.e. rate 0%). The other parameters 
required are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 19 4 82.60 22 4 84.62 85 18 82.52 

Pair 2-1 18 4 81.82 23 2 92.00 88 29 75.21 

Pair 3-1 28 2 93.33 31 2 93.94 106 28 79.10 

Pair 4-1 18 1 94.74 17 3 85.00 94 26 78.33 

Pair 5-1 10 4 71.43 5 7 41.67 52 21 71.23 

 

 

Table 4.3: UAV image is down-sampled at rate 10%. The other parameters required 
are set based on Table 4.1.  

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 69 2 97.18 67 6 91.78 85 15 85.00 

Pair 2-1 53 2 96.36 52 4 92.86 77 12 86.52 

Pair 3-1 44 7 86.27 39 4 95.12 65 9 87.84 

Pair 4-1 26 5 83.87 28 4 87.50 46 11 80.70 

Pair 5-1 11 7 61.11 10 9 52.63 15 13 53.57 
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Table 4.4: UAV image is down-sampled at rate 20%. The other parameters required 
are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 209 9 95.87 241 1 99.59 272 12 95.77 

Pair 2-1 213 4 98.16 245 7 97.22 276 14 95.17 

Pair 3-1 227 3 98.70 282 2 99.30 322 10 96.99 

Pair 4-1 280 9 96.89 311 8 97.49 360 12 96.77 

Pair 5-1 117 5 95.90 187 2 98.94 226 13 94.56 

 

 

Table 4.5: UAV image is down-sampled at rate 30%. The other parameters required 
are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 124 11 91.85 178 5 97.34 254 21 92.36 

Pair 2-1 162 4 97.59 204 5 97.61 317 22 93.51 

Pair 3-1 158 11 93.49 175 9 95.11 302 23 92.92 

Pair 4-1 100 6 94.34 138 5 96.50 334 28 92.27 

Pair 5-1 115 10 92.00 127 5 96.21 343 19 94.75 

 

The descriptor size of A-KAZE is set to full size, 486 bits, as this descriptor size slightly 

provides the best results for matching in overall sense [39]. The number of channels 

in the descriptor is set to 3 (intensity, x derivative, and y derivative), as this input is 

shown to significantly improve the matching precision when compared with 1 channel 

case, i.e. the intensity [39]. For the parameters related to feature detection, we 

preferred to utilize default values: multiscale detection factor and scale levels are both 

set to 4, and for the diffusivity parameter, one of the two conductivity functions 

introduced in [58] is utilized. 
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During the construction of tentative matches, the aim is to increase the number of 

unique keypoints with different values of the detector response thresholds (tdr). We 

performed repeated and varied attempts to select the best values. According to our 

investigation, we first initialize the tdr parameter with a very small value (i.e. 1×10-7) to 

focus on weak evidences as descriptor. Next, we increment this threshold using td = 

5×10-4, up to a certain value (i.e. 20×10-4) which the number of unique matches found 

on images dramatically reduces to a minor level (see Fig. 4.4). 

 

 

(a) 

 

(b) 

 

Figure 4.4: (a) Number of matches, and (b) number of unique point matches found 
during the construction of tentative matches for different detector 
response thresholds (tdr). 
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The numbers of TPs and FPs for different Nearest Neighbor Distance Ratio (rnnd) 

thresholds during the generation of tentative matches are presented in Tables 4.6 - 

4.10. As clearly observable from Table 4.6, a threshold of 0.6 provides perfect scores 

for matching by completely eliminating all FPs. However, this threshold throws out a 

large number of TPs as well, e.g. check the number of TPs found with a relaxed 

threshold in Table 4.10. However, for this scenario, discarding a large number TPs 

allows computing a fundamental matrix, F, that solely localized to certain part of the 

image. Thus, this significantly reduces the possibility of computing a reliable 

fundamental matrix F considering the whole image (see the Section 5 for more 

information on this issue), whose accurate computation might be very useful for 

different subsequent tasks to be done after feature matching, e.g. orientation, edge 

matching, dense image matching etc. During our experiments, for rnnd threshold values 

larger than 0.85, FPs are found to increase noticeably in the whole image domain. 

Therefore, in this thesis, rnnd threshold value is fixed to 0.85 for all experiments (Table 

4.4). 

 

Table 4.6: Nearest Neighbor Distance Ratio (rnnd) threshold value set as 0.60 in 
each method. The other parameters required are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 45 0 100 42 0 100 46 0 100 

Pair 2-1 40 0 100 34 0 100 43 0 100 

Pair 3-1 43 0 100 37 0 100 46 0 100 

Pair 4-1 35 0 100 30 0 100 35 0 100 

Pair 5-1 23 0 100 23 0 100 28 0 100 
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Table 4.7: Nearest Neighbor Distance Ratio (rnnd) threshold value set as 0.65 in 
each method. The other parameters required are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 68 0 100 54 1 98.18 72 0 100 

Pair 2-1 64 0 100 61 0 100 65 0 100 

Pair 3-1 72 0 100 64 0 100 83 0 100 

Pair 4-1 62 1 98.41 64 0 100 73 0 100 

Pair 5-1 44 1 97.78 36 1 97.30 44 2 95.65 

  
Table 4.8: Nearest Neighbor Distance Ratio (rnnd) threshold value set as 0.70 in 

each method. The other parameters required are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 91 0 100 81 0 100 99 0 100 

Pair 2-1 89 0 100 82 0 100 93 1 98.94 

Pair 3-1 107 1 99.07 92 0 100 116 2 98.31 

Pair 4-1 105 0 100 92 0 100 114 1 99.13 

Pair 5-1 56 0 100 55 1 98.21 61 2 96.83 

 
Table 4.9: Nearest Neighbor Distance Ratio (rnnd) threshold value set as 0.75 in 

each method. The other parameters required are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 123 0 100 121 0 100 142 2 98.61 

Pair 2-1 120 1 99.17 117 0 100 134 2 98.53 

Pair 3-1 162 0 100 165 0 100 177 1 99.44 

Pair 4-1 166 0 100 149 0 100 185 2 98.93 

Pair 5-1 84 1 98.82 86 0 100 93 3 96.88 
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Table 4.10: Nearest Neighbor Distance Ratio (rnnd) threshold value set as 0.80 in 
each method. The other parameters required are set based on Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 178 0 100 179 0 100 202 2 99.02 

Pair 2-1 168 1 99.41 156 1 99.36 187 2 98.94 

Pair 3-1 194 2 98.98 202 1 99.51 232 4 98.31 

Pair 4-1 223 1 99.55 219 0 100 253 5 98.06 

Pair 5-1 129 3 97.73 147 3 98.00 161 8 95.27 

 

During the selection of putative matches, first, maximum distance to epipolar line in 

pixels (dmax) must be provided, and the results related to this experiment are presented 

in Tables 4.11 - 4.13. As strongly anticipated, increasing the dmax threshold also 

amplifies both the TPs and FPs. Nevertheless, the increase in the number of TPs is 

significantly higher than the increase in the number of FPs; therefore, this parameter 

is set to 3 pixels. Second, during RANSAC iterations, at least one outlier free set of 

matching list must be sampled; therefore, the probability (confidence) is set to the 

highest value such as 0.99 (the default). 

 

Table 4.11: The maximum distance (dmax) from a point to an epipolar line is set as 1 
pixel in each method. The other parameters required are set based on 
Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 123 1 99.19 145 1 99.32 209 1 99.52 

Pair 2-1 106 1 99.07 150 2 98.68 224 3 98.68 

Pair 3-1 118 0 100 163 1 99.39 281 5 98.25 

Pair 4-1 160 5 96.97 193 1 99.48 307 9 97.15 

Pair 5-1 61 4 93.85 118 1 99.16 170 2 98.84 
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Table 4.12: The maximum distance (dmax) from a point to an epipolar line is set as 2 
pixels in each method. The other parameters required are set based on 
Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 167 5 97.09 209 1 99.52 262 7 97.40 

Pair 2-1 168 3 98.25 219 2 99.10 259 6 97.74 

Pair 3-1 182 2 98.91 247 1 99.60 314 6 98.13 

Pair 4-1 235 7 97.11 288 1 99.65 348 10 97.21 

Pair 5-1 94 6 94.00 166 1 99.40 213 13 94.25 

 

Table 4.13: The maximum distance (dmax) from a point to an epipolar line is set as 3 
pixels in each method. The other parameters required are set based on 
Table 4.1. 

Pairs Methods 

Strategy #1 Strategy #2 Strategy #3 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

TP FP Precision 
(%) 

Pair 1-1 209 9 95.87 241 1 99.59 272 12 95.77 

Pair 2-1 213 4 98.16 245 7 97.22 276 14 95.17 

Pair 3-1 227 3 98.70 282 2 99.30 322 10 96.99 

Pair 4-1 280 9 96.89 311 8 97.49 360 12 96.77 

Pair 5-1 117 5 95.90 187 2 98.94 226 13 94.56 

 

The contribution of the proposed iterative strategy during the construction of tentative 

matches is seen in Table 4.14. As we see from the table, original A-KAZE approach 

presented in [39] (with NNDR thresholding)  results in a satisfactory number of tentative 

matches ranging from 261 to 471. However, if we apply the left-right consistency check 

(see the details of left-right consistency check computation in Appendix A.2) to remove 

erroneous matches amongst these results, this constraint removes a significant 

number of (incorrect) matches (ranging between 48% - 75%). However, thanks to the 

Algorithm 1 presented in this thesis, the total number of tentative matches are 

considerably increased (≈ 2x compared to A-KAZE results in [39]). These results clearly 
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prove the importance of the proposed iterative strategy performed with different 

detector response thresholds in Section 3.3. 

 

Table 4.14: The contribution of the proposed iterative strategy during the construction 
of tentative matches. The parameters required for Algorithm 1 are set 
based on Table 4.1. 

Pairs Total # of Tentative Matches 

Results of 
A-KAZE [39] 
(with NNDR) 

Results of A-KAZE [39] (with 
NNDR)  and 

Left-Right Consistency Check 

Results of the Algorithm 1 
(A-KAZE + NNDR + Left-Right 

Consistency Check) 

Pair 1-1 261 136 (eliminated ≈ 48%) 614 (increased ≈ 235%) 

Pair 2-1 325 147 (eliminated ≈ 55%) 683 (increased ≈ 210%) 

Pair 3-1 348 142 (eliminated ≈ 59%) 811 (increased ≈ 233%) 

Pair 4-1 407 125 (eliminated ≈ 69%) 904 (increased ≈ 222%) 

Pair 5-1 471 117 (eliminated ≈ 75%) 833 (increased ≈ 177%) 

 

The implementation and processing was performed in Python version 3.7. The 

experiments were performed on a computer with a quad core Intel Xeon CPU @ 

3.00GHz and 32 GB RAM. The number of pixels in each test image is provided in 

Figures 4.2 and 4.3. The time elapsed for each part of the methodology is presented 

in Table 4.15. 

The total processing time of 5 images took approximately 50 seconds with an average 

processing time of nearly 10 seconds (Table 4.15). Approximately 80% of the total 

processing time is spent during the construction of the tentative matches during the 

iterative approach (cf. Section 3.3). On the other hand, the feature detection step 

constitutes 20% of the total processing time (cf. Section 3.2). Identification of putative 

matches (cf. Section 3.4) seems to the fastest step (at most 4% of the total processing 

time). The results indicate that our approach runs nearly 13-18 times (Table 4.16) 

slower than the A-KAZE method [39]. This is obviously due to reason that an iterative 

framework is utilized during the generation of tentative matches which eventually 

increases the number of candidate correspondences to be matched. 
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Table 4.15: Elapsed time of each section of the proposed approach (the average 

processing times of all matching pairs (#1-#5) are calculated). 

Process (Section) 
Elapsed Time 

seconds (%) 

Feature Detection (Section 3.2) 1.94 (≈19-20%) 

Iterative Approach to Construct Tentative Matches (Section 3.3) 7.76 (≈77-79%) 

Identifying Putative Matches (Section 3.4) 

 Strategy #1 (RANSAC) 

 Strategy #2 (LMedS + RANSAC) 

 Strategy #3 (GC-RANSAC) 

 

0.09 (≈1%) 

0.11 (≈1%) 

0.36 (≈4%) 

Total Processing 

 Section 3.2 + Section 3.3 + Strategy #1 

 Section 3.2 + Section 3.3 + Strategy #2 

 Section 3.2 + Section 3.3 + Strategy #3 

 

9.79 (%100) 

9.81 (%100) 

10.06 (%100) 

 

 

Table 4.16: The processing time required during the construction of tentative 
matches. 

Pairs Total Processing Time Required (seconds) 

A-KAZE [39] 
(with NNDR) 

A-KAZE [39] (with NNDR) and 
Left-Right Consistency Check 

Algorithm 1 
(A-KAZE + NNDR + Left-Right 

Consistency Check) 

Pair 1-1 0.44  0.46 5.95 

Pair 2-1  0.52  0.54 8.32 

Pair 3-1  0.58  0.60  9.49 

Pair 4-1  0.69  0.72  12.32 

Pair 5-1 0.79  0.87 15.73 
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5. RESULTS & DISCUSSION 
 

 

This chapter provides all information related to the results of the proposed matching 

framework. First, the numerical and visual results are presented. Next, the reasons 

related to the false positive matches are discussed in detail. Finally, the results 

computed are compared with the matching approaches selected from the literature 

considering the same test area. 

5.1. Results for Oblique Images (#1 - #5) vs. UAV Image #1 
 

The overall results computed for the matching of oblique images (#1 - #5) and UAV 

image #1 are presented in Table 5.1. According to Table 5.1, the matching results of 

the novel feature matching framework seem to be robust, and the final results are 

convincing. According to the numerical results presented, the precision ratios range 

between 94.56% and 99.59%. The best precision ratios in an overall sense are 

computed for Strategy #2 in which the Least Median of Squares (LMedS) and RANSAC 

approaches are successively utilized. In that case, the worst FP is computed for the 

pair 1-4 with a total of 8 FPs. Additionally, all FPs detected using Strategy #2 are 

comparatively lower than the number of FPs detected for the other two strategies 

(expect for the pair 1-2, Strategy #1).  

On one hand, the best results are achieved for the pair 3-1 when the results of all 

strategies are taken into account. This is an expected result since image patch cropped 

out from the large oblique image is the closest one to the center area (see Fig. 4.2c); 

and therefore, this patch is the most similar patch to the UAV image in terms of the 

viewing direction amongst the available five image patches. On the other hand, worst 

numerical results are computed for the pairs 1-1 and 5-1. These results are also due 

to the viewing direction differences between the oblique and UAV images as these two 

combinations hold the largest viewing differences. However, even for such view point 

differences, all computed results provided ≈ 95% precision ratio or higher.  

Strategy #3 which utilizes a Graph-Cut RANSAC procedure provides the highest 

number of TPs for all cases. On average, nearly 40 and 80 TP improvements are 

observed compared to the results of Strategies #1 and #2, respectively. In this 
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Table 5.1: The results of matching between oblique images (#1-#5) and UAV Image 
#1. 

 

             
                   

 UAV                                
Image 

           
Oblique 
Images 

 
UAV Image #1 

 
Oblique Image #1 

Pair 1-1 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 209 9 241 1 272 12 

Precision 95.87% 99.59% 95.77% 
 

 
Oblique Image #2 

Pair 2-1 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 213 4 245 7 276 14 

Precision 98.16% 97.22% 95.17% 
 

 
Oblique Image #3 

Pair 3-1 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 227 3 282 2 322 10 

Precision 98.70% 99.30% 96.99% 
 

 
Oblique Image #4 

Pair 4-1 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 280 9 311 8 360 12 

Precision 96.89% 97.49% 96.77% 
 

 
Oblique Image #5 

Pair 5-1 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 117 5 187 2 226 13 

Precision 95.90% 98.94% 94.56% 
 

 

manner, we can state that the highest TP performance is strikingly achieved by 

Strategy #3. For sure, this result is also expected since this strategy benefits from a 

graph-cut energy minimization framework considering point-to-point proximity to 

perform the inlier selection of RANSAC procedure. However, as a negative side effect, 
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this strategy pays the price of the increase of TPs by also increasing the FPs. 

Nevertheless, it is believed that the numbers of computed FPs are tremendously low 

for a point matching scenario between an oblique and UAV image. 

The numerical results given in Table 5.1 are also investigated visually by marking the 

matches found in both images for all strategies tested (Fig. 5.1 – 5.3). At this point, we 

principally analyze and present the point matches in terms of their distribution amongst 

the input pairs since this information is crucial to computing an accurate Fundamental 

Matrix (F) which represents the geometric relationship between the image pair. If a 

good distribution of matching is not presented, then all subsequent processing (e.g. 

epipolar image generation, image matching, 3D reconstruction etc.) utilizing the F 

matrix would become unsuccessful. Therefore, evenly distributed matching 

correspondences must be favored.  

As seen from the results of Strategy #1 in Fig. 5.1a and 5.1b, most of the point matches 

found for pairs 1-1 and 2-1 are located on the rooftop of the Rathaus building. Only a 

small number matches belong to the other parts of the images: (i) a few of them are 

on the top-left corner of the oblique image, and (ii) a small number of matches are 

detected on the other building visible on the right-side of the Rathaus building. The 

scenario is slightly different for the pair 3-1 (Fig. 5.1c) where a number of correct 

matches are observed in front of the Rathaus building on the ground level. However, 

a major change is observed for the pair 4-1 (Fig. 5.1d). In that case, nearly half of the 

matches are found on the ground level, and a large area of the rooftop of the Rathaus 

building does not reveal any matches. Finally, for the pair 5-1, almost all of the matches 

belong to the ground level, and as a result, the matches are accumulated only a 

specific part of the input images. Note also that pair 5-1 is the most challenging pair of 

all image pairs which presents the highest perspective differences between the oblique 

and UAV images. 

The trend observed above is also valid for the outputs of the Strategies #2 and #3 

illustrated in Fig. 5.2 and Fig. 5.3, respectively. The main difference observed is that 

the numbers of matches are increased significantly which eventually supports better 

matching distributions throughout the images. The differences between the Strategies 

#2 and #3 are comparable; however, it is believed that the distributions of point 

correspondences of Strategy #3 are slightly better due to the increase in the numbers 

of TP matches. 
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(a) Pair 1-1 – Total matches: 218 (TP: 209 – FP: 9) 

 
(b) Pair 2-1 – Total matches: 217 (TP: 213 – FP: 4) 

 
(c) Pair 3-1 – Total matches: 230 (TP: 227 – FP: 3) 

 
(d) Pair 4-1 – Total matches: 289 (TP: 280 – FP: 9) 

 
(e) Pair 5-1 – Total matches: 122 (TP: 117 – FP: 5) 

 

Figure 5.1: Matching results of oblique and UAV image pairs for Strategy #1. 
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(a) Pair 1-1 – Total matches: 242 (TP: 241 – FP: 1) 

 
(b) Pair 2-1 – Total matches: 252 (TP: 245 – FP: 7) 

 
(c) Pair 3-1 – Total matches: 284 (TP: 282 – FP: 2) 

 
(d) Pair 4-1 – Total matches: 319 (TP: 311 – FP: 8) 

 
(e) Pair 5-1 – Total matches: 189 (TP: 187 – FP: 2) 

 

Figure 5.2: Matching results of oblique and UAV image pairs for Strategy #2. 
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(a) Pair 1-1 – Total matches: 284 (TP: 272 – FP: 12) 

 

 
(b) Pair 2-1 – Total matches: 290 (TP: 276 – FP: 14) 

 

 
(c) Pair 3-1 – Total matches: 332 (TP: 322 – FP: 10) 

 

 
(d) Pair 4-1 – Total matches: 372 (TP: 360 – FP: 12) 

 

 
(e) Pair 5-1 – Total matches: 239 (TP: 226 – FP: 13) 

 

Figure 5.3: Matching results of oblique and UAV image pairs for Strategy #3. 
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It is also observed that fewer numbers of matches are observed on the facade of the 

Rathaus building in each case. Although the west-side facade of the Rathaus building 

has a good texture and nice contrast for point matching, most of the point matches in 

this context are presumably lost after the NNDR thresholding due to the repetitive 

design of the facade pattern. 

Fig. 5.4 proves the importance of well-distributed correspondences. As seen from Fig. 

5.4a, b, although 222 matches (with 117 TPs) are detected, lack of a good distribution 

throughout the scene caused incorrect computation of the epipolar geometry; thus the 

epipoles and the epipolar lines are inaccurate. However, better epipolar geometry is 

estimated using the outputs of the strategies #2 and #3 (see Fig. 5.4c-f).  

5.2. Results for Oblique Images (#1 - #5) vs. UAV Image #2 

 

The overall results computed for the matching of Oblique Images (#1 - #5) and UAV 

Image #2 are presented in Table 5.2. Similar to the previous results presented, the 

matching results of the novel feature matching framework are robust even for this test. 

The precision ratios range between 95.10% and 99.67% as given in Table 5.2. In 

general, once again, the best precision ratios are computed for Strategy #2. In that 

case, the worst FP is computed for the pair 1-2 with a total of 6 FPs. Besides, all FPs 

detected using the three strategies are in the same order (except for the pair 5-2, 

Strategy #3). 

The best results are achieved for the pair 4-1 in which the results of all strategies are 

computed to be higher than 98%. For that pair, evenly distributed point 

correspondences all around the rooftop of the Rathaus building are detected for all 

strategies (see Figs. 5.5 - 5.7). As a general observation, for all strategies, the point 

correspondences are located mainly over the rooftop; only a marginal number of 

correspondences are detected in other parts of the image. However, once again, the 

largest number of point correspondences, and therefore the best matching point 

distributions all around the images (see Figs. 5.8) are found by the graph-cut energy 

minimization framework (i.e. the Strategy #3). In spite of this fact, this strategy suffers 

from the number of FPs detected, e.g. pair 5-2 with 19 FPs (Table 5.2), and thus, an 

additional post-processing step to further eliminating the erroneous correspondences 

seems to be essential for this approach.       
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
 (g) 

 
(h) 

 

Figure 5.4: The illustration of epipolar geometry computed from (a, b) Strategy #1, 

(c, d) from Strategy #2, (e, f) from Strategy #3, and (g, h) from manually 

collected (well-distributed) points. All results belong to Pair 5-1 (first 

column: oblique image #5, second column: UAV image #1). Each color 

refers to the epipolar line of corresponding matching points in both 

images. 
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Table 5.2: Matching results of oblique images (#1 - #5) with UAV Image #2 obtained 

with all strategies.  

 

             
                   

 UAV                                
Image 

           
Oblique 
Images 

 
UAV Image #2 

 
Oblique Image #1 

Pair 1-2 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 143 7 163 3 201 7 

Precision 95.33% 96.45% 96.63% 
 

 
Oblique Image #2 

Pair 2-2 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 242 3 249 6 310 7 

Precision 98.78% 97.65% 97.79% 
 

 
Oblique Image #3 

Pair 3-2 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 251 6 285 4 344 9 

Precision 97.66% 98.62% 97.45% 
 

 
Oblique Image #4 

Pair 4-2 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 353 6 360 2 406 8 

Precision 98.33% 99.45% 98.06% 
 

 
Oblique Image #5 

Pair 5-2 
Strategy #1 Strategy #2 Strategy #3 

TP FP TP FP TP FP 

Total # 267 5 303 1 369 19 

Precision 98.16% 99.67% 95.10% 
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(a) Pair 1-1 – Total matches: 150 (TP: 143 – FP: 7) 

 
(b) Pair 2-1 – Total matches: 245 (TP: 242 – FP: 3) 

 
(c) Pair 3-1 – Total matches: 257 (TP: 251 – FP: 6) 

 
(d) Pair 4-1 – Total matches: 359 (TP: 353 – FP: 6) 

 
(e) Pair 5-1 – Total matches: 272 (TP: 267 – FP: 5) 

 

Figure 5.5: Matching results of oblique and UAV image pairs for Strategy #1. 
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(a) Pair 1-1 – Total matches: 166 (TP: 163 – FP: 3) 

 
(b) Pair 2-1 – Total matches: 255 (TP: 249 – FP: 6) 

 
(c) Pair 3-1 – Total matches: 289 (TP: 285 – FP: 4) 

 
(d) Pair 4-1 – Total matches: 362 (TP: 360 – FP: 2) 

 
(e) Pair 5-1 – Total matches: 304 (TP: 303 – FP: 1) 

 

Figure 5.6: Matching results of oblique and UAV image pairs for Strategy #2. 
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(a) Pair 1-1 – Total matches: 208 (TP: 201 – FP: 7) 

 
(b) Pair 2-1 – Total matches: 317 (TP: 310 – FP: 7) 

 
(c) Pair 3-1 – Total matches: 353 (TP: 344 – FP: 9) 

 

(d) Pair 4-1 – Total matches: 414 (TP: 406 – FP: 8) 

 
(e) Pair 5-1 – Total matches: 388 (TP: 369 – FP: 19) 

 

Figure 5.7: Matching results of oblique and UAV image pairs for Strategy #3. 
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5.3. Discussion of the False Correspondences 

 

Although successful results are achieved for the proposed framework, there are 

several reasons for the correspondences that are found to be incorrect. In this respect, 

the related reasons can be classified into two broad cases: 

 

 Repetitive patterns 

 Accidental correspondence 

 

The major problem in this context is still the repetitive textures and patterns. During the 

test performed, the repetitive patterns found to be occurring on building elements like 

windows on a facade of a building (especially on the Rathaus building), trees, bushes 

or tiles on the ground level (Fig. 5.8). Although NDDR and left-right consistency check 

measures are applied to mitigate such cases, apparently there is still room for further 

research on this topic.   

 

The other case is the errors that occur due to the accidental similarity of (completely) 

different regions (Fig. 5.9a). Most of these cases are removed through the epipolar 

constraint; however, several erroneous matches still exist which also satisfy this 

constraint by chance. One other reason for this type of error is due to the similarity of 

the point neighborhood in different images caused by mainly perspective viewing (Fig. 

5.9b). 

 

5.4. Comparison with Previous Studies 
 

In this section, the results of the proposed iterative approach are compared with the 

results of the matching approach presented by Onyango et al. [47]. They proposed a 

matching method for the UAV and aerial oblique imagery to perform a relative 

orientation for UAV images via already georeferenced oblique images. In their study, 

they also evaluated the same benchmark dataset utilized in this thesis, and promoted 

the usage of multiple homography information. Besides, A-KAZE operator is also 

implemented for the point-based feature detection. Thus, for the sake of completeness 

of the comparison conducted, the results of A-KAZE approach  
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(a) 

  
(b) 

  
(c) 

  
(d) 

Figure 5.8: Examples of incorrect point correspondences due to repetitive patterns. 
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(a) 

  
(b) 

Figure 5.9: Examples of incorrect point correspondences due to accidental 
correspondence. 

 

presented in [39] (also with left-right consistency check applied) are also provided in 

this part.    

The comparative results with respect to the TPs, FPs and precision ratios of the 

approaches for the two pairs consisting of Rathaus building are provided in Table 5.3. 

Based on the results given in Table 5.3, A-KAZE approach in [39] provides too many 

FPs (i.e. 290). Nonetheless, applying the left-right consistency check significantly 

reduces the number of FPs; but, also reduces the number of TPs detected. For these 

two image pairs, the proposed framework in this thesis provided significantly better 

precision results compared to the results of the approach in [39]. For the approach 

conducted by Onyango et al. [47], FP values are not provided, and therefore, only a 

comparison based on TPs are carried out. Considering the results, the proposed 

framework provided significantly higher TPs, especially for the pair 4-2. In that case, 

the proposed framework increased the number of TPs more than 2.6 times than the 

number of TPs provided by the approach presented in Onyango et al. [47]. Such 

comparisons reveal that the proposed framework in this thesis provides superior 



57 
 

performance as it has direct ability to increase the number of TPs while suppressing 

the number of FPs. As a result, a better point matching performance can be reached. 

 

Table 5.3: Matching results of the developed approach and the other approaches 

for the two pairs of the Rathaus building scene. 

 

 

Image 

Pair 

A-KAZE [39] 

(with NNDR) 

A-KAZE [39] 
(with NNDR) and 

Consistency 

Check Applied 

Onyango  

et al. [47] 

Proposed 

Framework 

(Strategy #3) 

TP FP 
Pre.

(%) 
TP FP 

Pre.

(%) 
TP FP 

Pre.

(%) 
TP FP 

Pre.

(%) 

 

Pair 4-1 117 290 28.8 74 51 59.2 229 NP - 360 12 96.8 

 

Pair 4-2 163 291 35.9 105 84 55.0 155 NP - 406 8 98.1 

*NP: not provided 
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6. CONCLUSIONS AND RECOMMENDATIONS

In this chapter, the conclusions derived from the introduced framework are 

summarized, and the recommendations for future studies are presented. 

6.1. Conclusions 

In this thesis, a feature matching framework is proposed to guiding point matching 

between airborne oblique and UAV imagery. The framework presented in this thesis 

consists of three steps. First, a feature detection step applying A-KAZE descriptor is 

utilized to collect keypoints. Second, an initial matching step is developed to identify 

tentative matches between the oblique and UAV images. In the third and final matching 

step, putative matches are extracted from the previously collected tentative matches. 

In this thesis, the area covering the Dortmund-Centre from a benchmark dataset is 

selected to evaluate the results of the proposed framework. 

The following conclusions are reached from the results achieved for the proposed point 

matching framework: 

 The results of the proposed point matching framework are found to be robust

for the test carried out. All precision ratios are found to be better than 94.5%

and therefore, the final results can be expressed as convincing for an output of

a point matching task between an airborne oblique and a UAV image.

 A-KAZE descriptor is known to be scale independent [39]. However, rigorous

evaluations state that down-sampling operation has an obvious impact on the

computed matching results. Therefore, the down-sampling process might still

be required before any further operation, and it seems to be critical to achieve

large number of consistent correspondences between the airborne oblique and

the UAV image.

 It is found that the proposed iterative strategy noticeably increased (≈ 2x

compared to A-KAZE results) the number of tentative matches. Therefore, a

combination of the outputs of different detector response thresholds seems to

be a straightforward way to increase the number of initial matches.

 According to the results, the best precision ratios in an overall sense are

computed for Strategy #2 in which the Least Median of Squares (LMedS) and
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RANSAC approaches are successively utilized. However, the highest numbers 

of TPs for all cases are computed for the Strategy #3 utilizing a graph-cut energy 

minimization framework, and resulting nearly 40 and 80 TP improvements on 

average compared to the results of Strategies #1 and #2, respectively. 

 Considering the distribution of point matches, Strategies #1 in which a classical 

RANSAC approach is utilized provided the worst results. The distributions of the 

output correspondences between the Strategies #2 and #3 are found to be 

comparable; however, it is believed that the outputs of Strategy #3 are slightly 

better due to the increase in the numbers of TP matches. 

 Although successful results are achieved for the proposed framework, repetitive 

patterns and accidental matching of irrelevant features are still the major 

concerns. FPs due to repetitive patterns are mostly observed on facades of 

buildings, trees, bushes or tiles on the ground level. Perspective viewing 

differences are one of the major reasons of blunders that exist in the output. 

 The analyses with oblique images having different perspective views denote 

that the performance of matching highly depends on viewing differences 

between the oblique and UAV images. If a satisfactory matching performance 

is required, the viewing differences between the datasets should not be large. 

 The proposed framework runs 13-18x slower than the A-KAZE method. This is 

obviously due to brute force matching applied and the iterative framework 

developed during the generation of tentative matches to increase the number of 

candidate correspondences to be matched. 

 For the two image pairs evaluated for comparison, the proposed framework 

developed in this thesis provided significantly better results compared to the 

results of the previous studies evaluated. Such comparisons reveal that the 

proposed framework in this thesis provides superior performance by achieving 

a nice balance between the TPs and FPs detected. 
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6.2. Recommendations 

 

The followings are suggested for further studies: 

 A final post-processing step constitutes a topic for further development, 

especially for the outputs of Strategy #3 in which the highest FPs are observed. 

In this way, the precision ratios computed can be further increased. 

 The randomness within the proposed framework can be investigated. All 

strategies eventually rely on a RANSAC approach that includes an internal 

random point selection procedure. Although the level of confidence (probability) 

is set to the highest value of 99% in all test conducted, there may still be an 

effect of randomness in the outputs, and this effect can be further revealed. 

 A-KAZE descriptor is known to be rotation invariant [39]; however, no explicit 

test on this issue is performed. Therefore, new tests revealing the performance 

of matching with respect to different rotations of oblique and UAV images can 

be performed. 

 Increasing the number of test cases with different airborne oblique and UAV 

images should be performed to better understand and further improve the 

proposed framework and the related parameters. In the end, this will also help 

to provide more reliable comparative results compared to previous studies in 

the same context. 

 The initial processing stage of the proposed framework can be easily conducted 

in an automatic manner. First, if the ground sampling distances of both datasets 

are known a priori, the related down-sampling ratio can be computed and 

specifically applied. Second, the search window can be approximately set to 

limit the search space within airborne oblique image with the help of the (initial) 

orientation information for both datasets, as shown in [54]. 

 Local Difference Binary (LDB) [61] exploits 3 bits per comparison (two gradient 

orientations for x and y, and one intensity information) to generate the 

descriptor. Therefore, the effect of color information on the computed results 

can be investigated. 

 Another interesting test using the proposed framework would be to assessing 

the performance with the terrestrial images acquired. In that case, the 

perspective differences would be extremely large, and such evaluations 

constitute another topic for further development. 
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 One of the drawbacks of the proposed framework is the processing speed. For 

large databases brute force matching can be replaced with efficient search 

strategies like Kd-trees. Besides, the iterations can be reformulated and 

adapted in a parallel processing scheme. In this way, this deficiency can be 

mitigated. 

 The advances in deep learning allow finding good feature representations for 

feature extraction tasks. In this context, a future work would be to adapting 

and/or expanding the current framework with deep network architecture. 

 The outputs of this framework can be utilized in very different areas and 

applications, e.g. for improving the dense matching, 3-D reconstruction, surface 

analysis etc. Besides, the proposed approach might also be tested for tie point 

generation within the blocks generated from either oblique or UAV images, or 

both.    
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APPENDIX  
 

 

The strategies utilized to constrain the matches and removing the outliers after stereo 

image matching are described in this part. 

 

1. Nearest Neighbor Distance Ratio 
 

The NNDR technique also known as Lowe’s ratio test, was proposed by D. Lowe [31] 

and performed to eliminate keypoints in the query image which do not have any correct 

match in the training database because these keypoints were not detected in the 

training images or they can be originated from the background clutter.  

For a feature descriptor in the reference image, if the distance ratio between the first 

and second nearest neighbor matches in the target image is below a threshold, DR 

and D1 are matched [66], i.e., 

 

||𝐷𝑅 − 𝐷1||

||𝐷𝑅 − 𝐷2||
< 𝑡𝑟𝑎𝑡𝑖𝑜  

   ,  (Eq. 1) 

where; 

i. DR: a feature descriptor in the reference image; 

ii. D1: the nearest descriptor to DR in the target image; 

iii. D2: the second nearest descriptor in the target image; 

iv. ||𝐷𝑅 − 𝐷1||: Euclidian distance of DR to D1; 

v. ||𝐷𝑅 − 𝐷2||: Euclidian distance of DR to D2; 

vi. tratio: threshold value for the ratio computed. 

NNDR technique finds only one and best match for a feature in the reference image. 

A low NNDR value is interpreted as D1 can be a good match while a high value of 

NNDR demonstrates D1 can be an incorrect or ambiguous match. Thus, the pre-

defined NNDR threshold value must provide a good separation between correct and 

false matches.  
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2. Left-Right Cross Check 
 

The cross check technique is a good alternative to the NNDR test mentioned above. 

Two features in both image feature sets should match each other to be chosen by this 

technique, and this process provides consistent matching results by returning only 

those features. The cross check test chooses matches (FA and FB) so that;  

o FB is the best match for FA in IB, 

o and FA is the best match for FB in IA. 

where; 

i. FA: the feature in the image-A, 

ii. FB: the feature in the image-B, 

iii. IA: the image-A, 

iv. IB: the image-B. 

 

3. Epipolar Constraint   
 

If a homogeneous point in 3D-space X is imaged as x in the first view, and x′ in the 

second, then the image points satisfy the below relation; 

                                           x′T * F * x = 0   .    (Eq. 2) 

In this equation F is the fundamental matrix and it is the algebraic representation of the 

epipolar geometry. It is a 3 × 3 homogeneous matrix of rank 2, which encodes the 

epipolar geometry of two views and defined in terms of pixel coordinates.  

Given a point in one view, one can be find out the epipolar line which the point lies on 

in the second view by multiplying with fundamental matrix. 

For any point x in the first image, the corresponding epipolar line is; 

                                                  l′ = F * x    .             (Eq. 3) 

 Similarly, 

l = FT * x ′  ,       (Eq. 4) 

represents the epipolar line corresponding to x′ in the second image [67].  
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4. RANSAC 
 

The RAndom SAmple Consensus (RANSAC) algorithm was introduced by Fischler 

and Bolles [68] as an iterative parameter estimation approach designed to deal with 

outlier points in the input dataset. RANSAC estimates a relation that fits the input data 

while classifying the data into inliers and outliers, hence it can be evaluated as an 

outlier detection method [69]. 

The main algorithm steps are summarized as follows [70]: 

Algorithm RANSAC 

1. Given a set of data points, the minimum number of points required to determine 

a model are selected randomly. 

2. An initial model is determined with these randomly selected points. 

3. Points from the input dataset which fit the initial model with a pre-defined 

tolerance d are searched and initial point set is enlarged with those points. The 

enlarged point set is called as a consensus set and all points in this set assumed 

as inlier points. 

4. If the ratio of the number of inlier points to the total number of points within the 

set exceed a threshold t, a new model is estimated by using the consensus set. 

5. Otherwise, if the ratio is below the threshold, steps 1 to 4 are repeated for a pre-

defined number of iteration value N. 

 

RANSAC has been used in numerous robust estimation problems in computer vision, 

since it has a high capability of tolerating a great number of outliers within the input 

data [69]. 

5. Least Median of Squares (LMedS) 
 

The least median of squares (LMedS) method was proposed by Rousseeuw [71] in 

1984 as an alternative estimator to the ordinary least squares (LS) method. The aim of 

the least square estimation is to find parameters of a given equation which is the best 

fit for the data points. The main idea of this technique is to minimize squares of the 

residuals (r) of the points from the fitted model; 

 

minimize ∑ 𝑟𝑖
2𝑛

𝑖=1    .   (Eq. 5) 
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This technique became a cornerstone in statistics but yet it has been subject to 

criticism due to its lack of robustness to outliers. To overcome the drawbacks of the LS 

method many algorithms have been proposed such as least mean squares. In the case 

of computer vision, the given dataset is generally noisy meaning that there is a large 

portion of outliers and least mean squares often gives a poor fit. To solve this problem 

one can be use the LMedS estimation. 

In this approach the sum is replaced by the median of the squared residuals for 

introducing a robust estimator to contamination in the dataset; 

minimize med 𝑟𝑖
2   .   (Eq. 6) 

 

LMedS is a more robust fitting technique than least mean squares.  It should come as 

no surprise that an estimator using the median would be less sensitive to extreme 

values than least mean squares, which is related to the average [72].  

LMedS estimator is resisting the effect of nearly 50% of contamination in the data. This 

is the percentage of outliers that can be tolerated while estimator still returning a good 

fit [73]. 

 

6. Graph-Cut RANSAC 

 

In [40], a RANSAC approach utilizing the spatial coherence of inliers and outliers in a 

dataset was proposed. Compared to the classical RANSAC approach, the major 

improvement proposed was the integration of the neighborhood information, i.e. 

E(𝐿) = U(𝐿) + λ V(𝐿)      .  (Eq. 7) 

E is the energy, U and V represent the unary and smoothness terms, L ∈ {0,1}|P| is a 

labeling where Lp ∈ L is the label of point p ∈ P, |P| denotes the number of points in P, 

and l parameter controls the level of smoothing. For binary cases, the globally optimal 

labeling can be computed by searching the minimum of the energy term E with respect 

to the labels L using the graph-cut minimization. 

The unary term in Eq. 7 is computed as 
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U(𝐿) = ∑ ‖𝐿𝑝‖𝐾𝑝∈𝑃    ,  (Eq. 8) 

where 

‖𝐿𝑝‖𝐾 = {
1 − 𝐾(𝛿, 𝜖)      𝑖𝑓  𝐿𝑝 = 1 

𝐾(𝛿, 𝜖)              𝑖𝑓  𝐿𝑝 = 0 
 .  (Eq. 9) 

In Eqs. 8-9, K denotes the Gaussian kernel function, 𝐾(𝛿, 𝜖) = 𝑒
−(

𝛿

√2𝜖
)
2

where 𝛿 is the 

distance measuring the point-to-model assignment cost. If 𝛿=0 for a point, i.e. the point 

perfectly fits the model, thus, ‖𝐿𝑝‖𝐾 term equals to zero if the point is an inlier. The 

smoothness term is computed as 

V(𝐿) = ∑

{
 
 

 
 

1                                         𝑖𝑓  𝐿𝑝 ≠ 𝐿𝑞
𝐾(𝛿𝑝,𝜖)+𝐾(𝛿𝑞,𝜖)

2
               𝑖𝑓  𝐿𝑝 = 𝐿𝑞 = 0 

1 − 
𝐾(𝛿𝑝,𝜖)+𝐾(𝛿𝑞,𝜖)

2
     𝑖𝑓  𝐿𝑝 = 𝐿𝑞 = 1

𝑝,𝑞 ∈𝐺    , (Eq. 10) 

where (p, q) is an edge of neighborhood graph G between points p and q. The 

algorithms related to the energy minimization of E(L) in Eq. 7 can be found in [40]. 
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