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ABSTRACT 

MAYENDRI, Farhan Kurnia. A Simple Evolutionary Model of Invention and Growth 
Takeoffs, Master Thesis, Ankara, 2020. 

This thesis studies a simple evolutionary model of invention to understand how 

different behavioral limitations would have affected the transition to modern growth. In 

-

rational, and able to solve mathematical optimization problems. In contrast, this thesis 

assumes that they are not fully informed, they are subject to bounded rationality 

constraints, and they cannot solve mathematical optimization problems. Within this 

structure, the thesis uses a genetic algorithm to model how a society where the norm 

(or the status quo) is initially not to spend valuable resources to invention can learn 

that invention is actually optimal. In other words, this thesis studies how a 

technologically stagnant society can converge to a growth equilibrium. Three 

exogenous factors are mutation (how tolerant the society is to deviant entrepreneurs), 

elite persistence (how effective the knowledge transmission is across generations), and 

the size of population. These potentially affect two model outcomes, i.e., how long the 

transition is and whether the society can converge to the neoclassical benchmark 

exactly. Results show the following: (i) Mutation is not very strongly correlated with 

the model outcomes, but higher mutation rates are observed along with faster 

convergence in some specifications. (ii) Elite persistence does not have a monotone 

effect on the duration of convergence. (iii) Societies generally exhibit variation around 

the neoclassical optimum in terms of equilibrium values. (iv) There is a very strong 

scale effect of population size; larger populations converge significantly faster, and the 

degree of variation around the neoclassical equilibrium is much smaller for larger 

populations. Even in the best-case scenario i.e., high mutation rates, high elite counts, 

and large populations the evolutionary model converges to the neoclassical 

equilibrium in 51 generations.     

Key Words 

Invention, Innovation, Entrepreneurship, Industrial Revolution, Genetic Algorithm, and 
Evolutionary Economics 
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CHAPTER 1 
 

INTRODUCTION 

A significant historical break occurred in the mid-eighteenth century with the first 

Industrial Revolution. In previous centuries, growth rates across the world had 

remained minuscule. Pre-industrial societies had faced poor standards of living 

with very low per capita income levels throughout centuries. The event turned the 

stagnant society into a society of creativity and innovation. The movement of this 

reform  began in England, where the first steam engine was invented and 

became one of the fundamental bases of the transformation. The invented engine 

succeeded in replacing the need for human resources in many industries. 

Maddison (2001) data illustrate that earlier civilizations had lived in a state of 

stagnation for centuries. His monumental project continued and is known as the 

Maddison Historical Statistics Project. The newly updated database shows that 

rate of growth in GDP per capita was nearly zero for the world from 500AD to 

1500 AD. In that period, there was no impressive progress in technological 

development.  

Before the historical change in the 18th century, the world economy did not 

generate the characteristics of growth that describe the world economy of the 19th 

and 20th centuries (Clark, 2007). Over the past centuries, there was a dramatic 

change in the world economy through technology and industry. Since the early 

19th century, the world economy's real income per capita has risen from $667 in 

1820 to $1525 in 1913, and increased to $6,012 in 2000. The Maddison data 

measures that the industrialized world brought an income per capita increase of 15 

to 20 times in the current two centuries after 1820. 

Human knowledge diffuses across individuals of a single generation and 

accumulates from one generation to another. Naturally, humans have the ambition 

to be creative with their material endowments and with their time. Coupled with 

curiosity, all pre-modern societies exhibited signs of technological advancement, 

learned new useful knowledge, and invented new things. One of the most 

significant roles of knowledge is that it is essential for humans to nurture 

innovation. New useful knowledge creates for each generation a chance to escape 
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from the ongoing economic stagnation and enter into a new technological 

civilization with more variation through invention. However, earlier advances did 

not pave the way into a new civilization in terms of economic growth. The way 

toward exploiting useful knowledge and creating a sustained growth regime 

through continuous innovation is not as simple as it sounds. 

The development of a civilization of sustained growth does not depend solely on 

the existence of useful knowledge, but directed efforts are required to exploit 

useful knowledge. Entrepreneurship skills are required to integrate knowledge, 

management, and innovation. The role of the entrepreneur in the innovative phase 

is to allocate optimal  time and resources for research in order to 

deliver advanced technological improvements in an effective manner. This 

outcome has an impact on productivity and the welfare of society.  

There is a sizable literature on the roles of entrepreneurship and technology for 

sustained growth. A large part of this literature intersects with the literature on 

endogenous growth since Romer (1986) and Lucas (1988). Another part overlaps 

with it is the literature on UGT and growth takeoffs developed since the 

pioneering works of Galor and Weil (2000). Both of these literatures commonly 

presume that stagnation and sustained growth can be understood within (general) 

equilibrium frameworks where agents are rational decision makers that have full 

information. However, there is also an evolutionary literature where some of the 

main assumptions include (i) people have bounded rationality, (ii) learning at the 

societal level takes time and is subject to inertia, (iii) society may be locked in a 

particular technological paradigm for long episodes of time, and so on. The 

intellectual foundations of evolutionary growth models are typically associated 

with Schumpeter (1934), and formal modeling dates back to Nelson and Winter 

(1982). Finally, there is also a small literature that applies some of the 

evolutionary foundations into unified growth models with entrepreneurship where 

there are different types of agents, and their group sizes change endogenously 

(Galor and Michalopoulos, 2012) and where preferences are not fixed, and people 

develop certain characteristics that promote creativity (Doepke and Zilibotti, 

2008). 

This study aims to understand the transition process from stagnation to growth 

with an evolutionary model of invention. The so-called entrepreneur-inventor is at 
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the main actor of the analysis that carries the society from technological 

stagnation to sustained innovation. The evolutionary model the thesis uses works 

as an agent- -

or inventors) are subject to behavioral limitations. More specifically, there is an 

inherent inertia since the population of entrepreneurs need to learn the optimal 

level of inventive effort through generations. In the remainder of this chapter, (i) 

the research questions, (ii) the model, (iii) the main results, and (iv) the outline of 

the thesis are explained briefly. 

1.1. QUESTIONS 

Investigating the process of a growth takeoff leads to the question of how an 

evolutionary model of invention can be useful to examine the Industrial 

Revolution. Endogenous growth models developed in the neoclassical tradition 

assumed that the optimal level of research effort is known and can be solved by 

entrepreneurs in the model. In this case, fully informed decision-makers are 

assumed to be rational and to be able to solve mathematical optimization 

problems. 

In an evolutionary economics context, these assumptions are replaced with 

behavioral biases, the delayed transmission of information, and learning processes 

that are subject to inertia. One behavioral bias is known as the status-quo bias, 

leading the individuals to follow what the earlier generations did without realizing 

that the status-quo behavior is non-optimal. Under the status-quo, every agent 

may be running her/his firm with a standard feature, using ancient knowledge and 

old technology to remain in their comfort zone. This behavior of not investing in 

knowledge and technology is not necessarily the optimal strategy. Agents may not 

be realizing that spending valuable resources into invention can be a way for them 

to increase their productivity, market share, and profit. 

Building on these notions, this thesis investigates how a society that remains in 

the status-quo of no invention in the initial period can learn that allocating 

resources to invention is in fact optimal. In other words, the thesis attempts to 

understand the dynamics of an industrial revolution and a growth takeoff when the 

society is initially subject to the status-quo of no inventive effort. 
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In particular, the thesis tries to measure how the duration of this learning process 

is affected by 

 The rate of mutation " " (that determines the fraction of individuals in 

each generation who would try invention by opposing to the status-quo) 

 The elite count " " (that determines the number of best-performing 

individuals whose behavior is ensured to survive to the next generation). 

In the initial period, mutated entrepreneurs are randomly selected to experiment 

with invention. Contrary to the status-quo, they spend resources to inventive 

activity. In later periods, mutated individuals (randomly chosen for each 

generation) would still be the ones that experiment with random levels of 

resources allocated to inventive activity. 

Clearly, the rate of mutation must be one of the central factors that affect the 

transition. If the rate of mutation is higher in a society, then this society is more 

tolerant to deviant behavior in matters of technology. In the real world, the degree 

of tolerance from this perspective is determined both by informal institutions such 

as peer pressure and social exclusion and formal institutions such as property 

rights laws and oppressive regulations that characterize deviant behaviors as 

criminal acts.    

The elite count is another and distinct dimension of the evolution. Regardless of 

whether the rate of mutation is large or small, the society needs to transmit the 

type of behavior that works best in creating productivity growth. When the elite 

count is larger, the society learns and transmits the behavior of a larger fraction of 

entrepreneurs that remain closer to the optimality. 

The elite count, relative to the total population, is thus a measure of how effective 

the transmission of useful knowledge within a generation and from one generation 

to the next. Hence, the elite count may be a central factor in explaining how fast 

the society would converge to the state of continuous innovation and sustained 

growth. In the real world, cultural and institutional situations that affect the speed 

and scope of knowledge dissemination and knowledge codification are 

determining the elite count. For instance, a society with a larger elite count may 

be imagined to have better communication and knowledge storage devices and, 

therefore, to have higher connectivity.  
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This thesis also investigates whether learning the optimal strategy through 

evolution is perfect or not in the following sense: If entrepreneurs in the society 

eventually converge exactly to the optimal level of inventive effort, then this 

learning is perfect. However, evolutionary phenomena and evolutionary models 

are always subject to the possibility of heterogeneity in the cross-section 

dimension. Hence, learning may stop in a state of equilibrium where some of the 

entrepreneurs spend resources larger than or smaller than the exact optimum. 

Finally, the thesis investigates whether the total population of entrepreneurs has a 

scale effect or not. In other words, the thesis studies whether the number of 

generations that completes convergence is affected by the total number of 

entrepreneurs in the society. Such scale effects have been studied by endogenous 

growth theorists with reference to whether more people implies higher growth 

rates. Here, the central issue is the length of the transition period, and population 

size may have an effect in this respect. Within this agent-based framework, this 

question is of prime importance because the Law of Large Numbers does not 

apply, and successful entrepreneurs cannot be a remedy for failed entrepreneurs in 

the calculation of average productivity.   

In summary, this thesis investigates the following four questions concerning the 

growth takeoff: 

 Whether higher mutation rates cause convergence to be faster in terms of 

research activity, 

 Whether higher elite counts cause convergence to be faster in terms of 

research activity, 

 Whether the society of entrepreneurs converges to the optimum in an exact 

manner or they exhibit heterogeneity around the optimum, and, finally, 

 Whether the total number of population has a scale effect on the number of 

generations that pass before the learning (growth takeoff) is completed. 
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1.2. THE APPROACH 

This thesis uses an evolutionary approach to answer the questions posed above. 

Since the thesis focuses on independent entrepreneur-inventors that compete for 

each other to have higher market shares and profits, it belongs to the 

Schumpeterian growth theory in the particular meaning of the term within the 

mainstream growth economics (Schumpeter, 1934). On the other hand, one can 

also describe the approach followed in this thesis as a neo-Schumpeterian one in 

the realm of evolutionary economics. More specifically, the thesis focuses on the 

role of technology in understanding how a stagnant economy transits from a no-

invention no-growth state of equilibrium to another equilibrium state where 

average productivity across production plants grow over time.      

More specifically, the methodology of this thesis falls within the strand of 

evolutionary growth literature emphasizing the role of mutation, selection, 

learning, etc. Nelson and Winter (1982) developed a Schumpeterian-evolutionary 

understanding of firm behavior by focusing on how technology evolves in a 

dynamic economy. In such evolutionary models, behavioral limitations and 

biases, heterogeneities, routines, and rules-of-thumb, and the endogenous market 

structures may all play fundamental roles in determining economic outcomes at 

the firm, sector, and national economy level.  

In this th -industrial state of low and 

stagnant productivity to a modern state with growth and prosperity is modeled at 

the level of entrepreneur-inventors each owning and managing a firm. In this 

respect, the industrial organization, market structures, and the firm behavior are 

extremely simplified. In fact, the employment of workers is also assumed away 

from the model without altering the main results.  

There are three distinct stages of the methodology. The thesis first develops a 

neoclassical benchmark model of invention and entrepreneurship (Chapter 3). 

This is necessary to define an entrepreneur-

concept of individual fitness. The thesis then develops an evolutionary version of 

the model (Chapter 4). The evolutionary model features a discrete set of 

entrepreneur-inventors and specifies mutation, elite persistence, and crossover 

dynamics. In the third stage, the thesis designs and implements the genetic 
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algorithm by setting values to various parameters, both economic and 

evolutionary (Chapter 5). The genetic algorithm is then executed for several times 

for different constellations of parameter values to calculate the number of 

generations that completes the learning and the level of research time chosen by 

the entrepreneur-inventors.   

The main endowment of individual entrepreneur-inventors is time that is allocated 

between routine management and inventive research. If an individual decides on 

spending their potential of the time endowment to management only, then these 

individuals work with the fixed level of technology. In this case, these agents have 

no productivity growth. On the other hand, individuals who decide to spend some 

of their time endowment to research, their productivity is larger as a result of 

micro-inventions. In evolutionary terms, higher productivity means higher fitness. 

To understand the simple mechanics of entrepreneurial invention in this way, the 

thesis constructs a very simple model. This model is inspired by 

formulation of perfectly competitive innovation that builds upon the model 

developed by Hellwig and Irmen (2001). In its neoclassical version, the individual 

is fully informed and rational, and he/she can solve a convex optimization 

problem to determine the optimal level of research time. Under appropriate 

normalizations, this is a model of independent entrepreneur-inventors whose 

research activity explains endogenous productivity growth. 

The evolutionary version of the same model assumes that entrepreneur-inventors 

have bounded rationality, their information set is limited, and they do not have 

cognitive powers to solve a mathematical problem. Instead, the behavior is 

assumed to be non-optimal in general, and the evolutionary mechanism (here, a 

genetic algorithm) allows the society of entrepreneur-inventors to learn the 

 

In any generation, entrepreneur-inventors are separated into three groups. The first 

group of them, the mutated entrepreneurs, is formed by those randomly selected to 

try random levels of research time. As mentioned above, the rate of mutation is 

exogenously given. The second group of entrepreneur-inventors, the elite 

entrepreneurs, is formed by those that replicate the best practice in the previous 

generation. As mentioned above, how many of the entrepreneur-inventors are in 

the elite group is also determined exogenously. Finally, remaining entrepreneur-
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inventors of any generation become the crossover entrepreneurs, whose behavior 

is jointly determined by any two entrepreneurs in the previous generation.  

Within the scope of this thesis, the evolution here is surprisingly both Lamarckian 

and Darwinian. It is Lamarckian because an acquired characteristic, a particular 

level of research time, is passed on to the next generation through the elites. But it 

is also Darwinian because of (i) variation that originates from mutations and (ii) 

selection that originates from crossovers. 

The approach of this thesis can now be summarized as follows: 

1. Develop a very simple model of invention as a neoclassical benchmark 

(this model allows us to calculate the optimum). 

2. Develop a simple evolutionary version of the same mechanism (with the 

rate of mutation, the elite count, and the size of population as exogenous 

givens), and choose the profit of an entrepreneur-inventor as his/her fitness 

function. 

3. Run the genetic algorithm for different values of model inputs to calculate 

(i) the length of the learning process (the growth takeoff) in terms of 

generations and (ii) the resulting level of research time chosen by 

entrepreneur-inventors.   

1.3. RESULTS   

This subsection summarizes the main results in a way structured by the research 

questions.  

1. For the effects of the rate of mutation on the duration of transition, there is 

no clear and strong relationship. Controlling for other model inputs, i.e., 

ceteris paribus, societies with differing values of the rate of mutation may 

converge at similar numbers of generations. However, there are some 

cases where the maximum number of generations is observed for lower 

rates of mutation. 

2. For the effects of the elite count, there is no relationship running from the 

elite count to the duration of transition. Again controlling for other model 
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inputs, societies with high and low levels of the elite count are observed to 

achieve similar durations, and societies with the same level of the elite 

count are observed to converge in differing durations.  

3. Regarding the question of whether convergence to the neoclassical 

optimality is exact in terms of the time endowment allocated to inventive 

activity, we find that there is generally heterogeneity. In other words, 

societies generally exhibit variation around the neoclassical optimum. 

Importantly, the degree of variation is smaller for larger populations. 

4. There are strong scale effects concerning the size of population. Societies 

-

significantly fewer generations. Hence, there is a Curse of Small Numbers. 

The best case among different societies is recorded as 51 generations. If 

one takes the lifetime of a generation as 25 years, the transition from no-

invention to a regime of continuous technological progress takes 1275 

years in the best possible scenario.      

1.4. OUTLINE 

Chapter 2 presents overviews of different related literatures. These include the 

endogenous growth theories with Marshallian externalities and Schumpeterian 

innovations, unified growth theory extended with the works of economic 

historians working on the Industrial Revolution and growth takeoffs, and 

evolutionary economics and evolutionary growth models.  

Chapter 3 is concerned with the neoclassical benchmark model of invention used 

in the formulation of evolutionary analysis. The chapter develops a simple model 

where fully- -

problem to determine what fraction of their time endowment is allocated to 

research and what fraction is allocated to routine management. Hence, the 

neoclassical benchmark specifies how the profit is determined by inventive 

activity.  

Chapter 4 introduces the evolutionary foundations and the logic of the genetic 

algorithm. The chapter explains the status-quo bias, mutation, elite persistence, 
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and the crossover mechanism. The final part of the chapter presents the 

implications of the evolutionary model.    

Chapter 5 presents the design of experiments (numerical simulations) and the 

results originating from these experiments. Through the help of tables and figures, 

results of the thesis are explained. More specifically, the number of generations 

necessarily passing to complete the transition and the resulting levels of time 

allocated to research are calculated for various levels of mutation rates and elite 

counts under different levels of population.  

Finally, Chapter 6 concludes the thesis with a non-technical summary of the 

findings and a discussion of further research avenues related with this thesis. 
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CHAPTER 2  
 

RELATED LITERATURE 

 

This thesis is related with three distinct research programs and literatures. First, 

since the thesis builds upon models with entrepreneurial invention and 

endogenous productivity, it is centrally related with endogenous growth literature. 

Second, it is related with unified growth models and the works of economic 

historians that focused on the transition from stagnation to growth. Finally, the 

thesis is centrally related with evolutionary models in general and evolutionary 

growth models in particular. 

2.1. ENDOGENOUS GROWTH THEORY 

The origin of modern economic growth theory was pioneered by Solow (1956, 

1957). His models indicate that productivity expansion explains long-term growth 

in GDP per capita. Solow (1956, 1957) shows that there is instability in the 

Harrod-Domar because they use a production function that does not allow for 

input substitution.  

One problem with the Solow model is that saving is exogenous. In Ramsey (1928) 

 Cass (1965)  Koopmans (1965) model, saving is endogenous through optimal 

control of capital accumulation. Productivity growth, however, remains as an 

exogenous determinant. The Ramsey-Cass-Koopmans model became an 

aggregate growth model as the basis of economists  thought about long-run 

growth. The main problem of both Solow and the Ramsey-Cass-Koopmans 

models is that productivity growth is exogenous. This has led economists to 

develop models that endogenize productivity. 

In general, there two classes of endogenous growth models, i.e., models that build 

upon Marshallian externalities and models that build upon Schumpeterian 

innovation.  

The Marshallian externality is originated by Marshall (1890); the idea emphasizes 

knowledge spillovers that create external benefits to the firm in a specific 

location. Then, this idea is formally developed by Romer (1986) within a general 
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equilibrium growth model. This model assumed that firms do not internalize the 

positive productivity externality of mechanization. More specifically, when the 

aggregate capital stock increases, all firms benefit from this type of knowledge 

creation because machines embed useful technological knowledge. Technically, 

this creates increasing returns in production; knowledge accumulation results in 

an increase in the marginal product.  heavily inspired 

 learning-by-doing. Hence, in the literature, this type of 

externality is sometimes called Marshall-Arrow-Romer externality.    

Lucas (1988) developed a similar model but focused on human capital. Average 

human capital increases the productivity of all workers. Hence, once again, there 

may be increasing returns that are not internalized by private sector decision 

makers. Lucas (1988) was building upon Uzawa  (1965) model. 

Externalities in such frameworks allowed researchers to construct general 

equilibria that feature balanced growth in the long run. Growth rates in such 

models, both in the short- and long-run, are endogenous. Besides, competitive 

equilibrium growth rates are smaller than social planner growth rates because the 

social planner can intervene to correct for externalities.  

Marshallian Externality and Schumpeterian Innovation models have a 

fundamental difference: While growth is endogenous in Marshallian externality 

models, the mechanism is not purposeful research. Growth is endogenous in 

Schumpeterian growth models due to the profit-seeking actions of entrepreneurs 

and firms. 

Romer (1990), Grossman and Helpman (1991), and Aghion and Howitt (1992) 

developed the first type of Schumpeterian innovation models, i.e., the First 

Generation Models. Growth is endogenous and originates from firms and 

entrepreneurs  competition with each other through research and development 

(R&D). Entrepreneurs and firms spend scarce resources on inventive activity and 

this results in increased productivity, increased market share, and, hence, 

increased profit. These models presented the role of policies affecting growth in 

the long run and sometimes called the first generation of Schumpeterian 

innovation theory. 
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In such models, there is a scale effect of population. If population grows, the total 

labor supply allocated to R&D also grows. This increases growth rates in theory. 

But, in reality, growth rates in the US and the UK, for instance, were largely 

stable after 1950s. The solutions of this scale effect have been the subject of 

intense debate since Jones (1995). Jones (1995) and Kortum (1997) developed the 

second type of Schumpeterian Semi-Endogenous Growth models. These sterilized 

the scale effects of earlier models by changing the knowledge production function 

(by imposing decreasing returns in the production of technology). But these 

models have the wrong prediction that economic growth is explained by 

population growth. In this case, policies were not useful to raise growth rates. 

Peretto (1998), Young (1998), Dinopoulos and Thompson (1998), and Howitt 

(1999) developed the third type of models, known as the Second Generation of the 

Schumpeterian model. These models sterilized scale effects without changing 

knowledge production; they correctly identified that there must be more than one 

sector or firm that innovate. More specifically, these models argue that, as long as 

population grows, product variety changes accordingly. 

This thesis is related with the endogenous growth theory because it uses an 

individual level story of technological progress. In the models studied in this 

-

allocate time to invention. This inventive activity results in micro-inventions that 

 

2.2. UNIFIED GROWTH THEORY 

Endogenous growth models are designed to explain growth and cannot explain 

poverty. There were efforts on that trajectory where several models were 

developed to explain prolonged poverty.  

The poverty trap can be characterized as an unintentional condition where poverty 

remains due to the cycle of self-reinforcing mechanism that initially causes 

poverty. Multiple factors can lead the economy to a poverty trap.  

As we discuss below, the very long-run development patterns are strongly related 

with demographic patterns, especially with the historical fertility decline. Few 
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studies that establish poverty trap models of high fertility and low education must 

be credited here (Azariadis and Drazen, 1990; Becker et al., 1990). 

In Becker et al. (1990) framework, for instance, there are two steady-states. In one 

of these, fertility is high and human capital is fixed without educational 

investment. In other steady-state, fertility is low and human capital grows. 

Because of differences in returns to education, the decentralized equilibrium of 

economies with relatively low initial human capital stocks is converging to high 

fertility without steady-state education.  

We also need models that describe poverty and growth at the same time, as well 

as the presence of historical continuity within the model. There are some initial 

thoughts of non-unified models that reflect on this transition, i.e., earlier studies 

by Goodfriend and McDermott (1995), Tamura (1996), Acemoglu and Zilibotti 

(1997), and Arifovic et al. (1997). These models have provided a range of steady-

states in which economies are either trapped in an equilibrium of stagnation or 

converge in an equilibrium of growth. However, these models explain only the 

existence of a poverty equilibrium without accounting for the transition to growth. 

In other words, these models cannot explain how the transition starts and are 

generally not consistent with the reality of demographic transition. 

poverty and growth where the transition is gradual and endogenous. Besides, it 

was consistent with the historical fertility decline, and more generally with the 

timing of broad historical transitions such as industrialization, urbanization, and 

the rise of public education.   

UGT was designed to provide a consistent model that explains the entire 

development path of the economy from ancient times to modernity. It does so by 

developing an endogenous growth and demography model that is consistent with 

history.  

Galor (2005) shows that sustained growth has started with the first Industrial 

Revolution and diffused to Western Europe and Offshoots, i.e., U.S, Canada, New 

Zealand, and Australia. The industrial revolution was a turning point from a 

stagnation era to sustained economic growth as described by others including 

economic historians (Mokyr, 2002; Clark, 2007; Allen, 2009).  In England, a 
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small minority of people created and utilized useful knowledge during the 

industrial revolution (Mokyr, 2002; Attar, 2015). However, the process of 

industrial enlightenment was strong enough to cause the rise of a knowledge 

society where technological innovation and entrepreneurship eventually led to 

modern economic development. The new technology and the new culture of 

creating new technology then diffused to the rest of Europe and to North America 

and Oceania (Lucas, 2009).  

The theory of unified growth is not only to build a growth model that merely 

forecasts several equilibria representing various phases of economic development. 

Galor and Weil (2000) have formulated a way that it is genuinely unified since the 

transition is endogenous and gradual: The key advance of philosophy is the study 

of Malthusian stagnation as a pseudo-state equilibrium that gradually and 

endogenously disappears in the process of economic development. 

There are three regimes in the UGT. The first regime is the Malthusian era, 

sometimes called zero growth ages, stagnation ages, and the poverty era. This is 

almost a typical Malthusian trap where fertility is endogenous, land is fixed, and 

increasing population depresses labor productivity. In a typical Malthusian model, 

the economy returns to fixed population and fixed income (Ashraf and Galor, 

2011). It is not exactly the Malthusian trap because population and productivity 

growth is positively related. This is due to the Boserup effect; more people means 

that (i) there is a need to develop new technologies (demand side) and (ii) that 

more useful ideas are developed by more minds (supply side) (Kremer, 1993; 

Attar, 2015). This enriched Malthusian system eventually hits an endogenous 

threshold where production becomes sufficiently productive (albeit at a very low 

level) and people become sufficiently rich (albeit at a very low level). With this 

endogenous threshold, the equilibrium moves to the second regime. 

The second regime is called the post-Malthusian era in which population and 

productivity feed each other and increase slowly. Here, increased productivity is 

directed to the quantity of children because the quality-quantity tradeoff is not 

active yet; the return to skill accumulation is still low. However, as long as 

productivity increase continues, there is another endogenous threshold where 

people started investing in the . 
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Regime 2 

t1 t2 t*

The third regime is called the Modern Growth era where the fertility rates show a 

significant decrease. This occurs simultaneously with increased education, and 

increasing education sizably increases productivity growth rates. These lead the 

society to more human capital with increased incomes. The evidence show that 

economic growth rose from nearly zero to 2% per year (Madsen et al., 2010). In 

England, the Post-Malthusian regime starts roughly in 1650s, and the modern 

growth regime in 1870s. 

There are other studies that focus on the transition from different perspectives. 

There are, for instance, models that endogenize growth through innovations, not 

through human capital (e.g., Strulik, 2014; Peretto 2015; Attar, 2015). Invention 

and the process of entrepreneurship play important roles in such models. In Figure 

population growth rate (n) and invention intensity (a). Here, the economy leaves 

the Malthusian trap at , and the industrial revolution starts at .     

 

 

 

 

 

 

Figure 2.1: The Equilibrium Path from Stagnation to Growth  
(Attar, 2015) 

The causal mechanisms behind the transition of a technologically stagnant, pre-

modern economy to a modern type of industrial organization with technological 

dynamism has been studied by Peretto (2015). In his neoclassical analysis, there 

are both entrepreneurial activity where (i) small (startup) firms enter the market 

after inventing a blueprint and (ii) existing big businesses continue to perform in-

house R&D to develop better versions of their products.  

This thesis is centrally related with the UGT because it studies the process of 

growth takeoffs. More specifically, the evolutionary model studied here tries to 

Regime 1 Regime 3 Regime 4 
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understand what happens between  and -

cal 

optimization problems.  

2.3. EVOLUTIONARY ECONOMICS AND EVOLUTIONARY GROWTH 

2.3.1. Evolutionary Thinking in Biology and Economics 

Based on the Oxford Dictionary, etymologically, the word 'evolution' is derived in 

the early 17th century from Latin word 'evolutio(n)' which means unrolling, and 

from the verb, 'evolvere' means evolve. Today, in biology, it is centrally 

associated with Darwin (1859) even though Darwin himself did not use the term. 

More generally, the concept applies to many natural and social science disciplines 

and topics including the history of the earth, economic history, development, and 

culture and society more generally. 

The term 'evolution' was first used by German biologist Albrecht von Haller for 

natural phenomena in 1744. In biology, there are three important founding fathers 

of evolutionary thinking: Lamarck, Darwin, and Spencer.  

In the Lamarckian evolution, characteristics acquired during  are 

transmitted to the genes of the individuals in the next generation. The research 

study by Morgan (1896) has rejected Lamarckism in the biological sphere and 

raised some questions such as whether human beings had developed only a little 

in the genetic sphere. 

netic 

characteristics that give the highest fitness in an environment are transmitted to 

the next generations. His theory has three principles: variation, selection, and 

inheritance. Variation means that population has an initial genetic heterogeneity 

partly explained by random mutations. Selection means that individuals that have 

genes that have the highest fit with the environment live longer. Inheritance 

means that those individuals that live longer reproduce more.  

s ideas not only in the physical world but also in 

social, economic, and political domains. He also benefitted from Lamarckian 

thinking in the social/cultural transmission of acquired traits. He is associated with 
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Social Darwinism, a naïve but erroneous application of natural selection into 

social and political domain, sometimes to justify unethical or unjust practices or 

socio-economic systems. Spencer is famous for using the notion of survival of the 

fittest. In contrast to Darwin, he believed that evolution of human development 

has a final equilibrium point of higher fitness physically and socially.  

n important milestone in 

formalizing the evolutionary concepts such as selection and fitness. For a 

population of distinct interacting individuals, fitness and relative population 

frequencies are tied mathematically. Evolution, or selection more specifically, 

works when the frequencies of individuals with above-average fitness increase, 

and those with below-average fitness decrease.  

Hodgson (1993) discusses that the development of evolutionary thinking in 

economics builds on Malthus (predator-prey relationship),  Smith (invisible hand, 

equilibrium), Marx (progress of history, evolution of socio-economic systems), 

Marshall (organic change, variation), Veblen (cumulative causation, institutional 

evolution, status, habits), Schumpeter (development, creative destruction, 

technology), and Hayek (spontaneous order, equilibrium).  

Among these economists, the most directly related ones with this thesis are 

Veblen and Schumpeter. Thorstein Veblen, in his 1898 essay, was known as the 

first man to use the term 'evolutionary economics.' Veblen has argued that 

economics would be the next 'post-Darwinian' science to reflect the main 

principles of Darwinian theory of evolution (Veblen, 1898). This masterpiece, 

explored socio-economic evolution, with the evolution of individual agents and 

changing nature of institutions and structures.  

Veble

individuality and institutions/society co-evolve by affecting each other in a web of 

-

evolves but his/her evolution is subject to societal restrictions such as tolerance to 

actions in turn.  

Schumpeter uses the word evolution as an entity and takes the notion of 

development as the same as evolution. Schumpeter (1934) shows that how, in the 
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past, the value of evolution is discredited. Schumpeter critically focuses on 

entrepreneurs as well as technical change and overall pace and pattern of 

economic development through innovation. This work provided a valuable 

opportunity to understand the dynamic transformation a society experiences in the 

long run. Schumpeter (1934) has defined economic evolution as a process through 

which knowledge grows and the wealth of the nation increases. This is through 

new markets, new products, and new organizational forms. -

the central actor in the early stages of capital accumulation (before the big 

-

obtains profits through firm ownership as infra-marginal rents (since they manage 

their own firms). For this reason, they have incentive to increase their fir

productivity through inventions. Once they are successful in creating new 

technologies or new products, they destruct profits of previously successful 

-  

There have been some works in the 20th century on evolutionary thinking in 

economics (Alchian, 1950; Downie, 1955; Steindl, 1952). However, a significant 

Since the early 1980s, the evolutionary economic theory has broadened its scope 

and direction, now featuring a field journal and attracting numerous economists. 

Silverberg and Verspagen (2005) point out two bold reasons to enhance the 

application of an evolutionary approach to economics. The first reason is based on 

a biology analogy in terms of competition, innovation, variation, and selection. 

The second reason is that the society in modern industrial stage of human 

evolution is just another discrete stage of a single socio-economic evolution. 

Throughout the evolutionary context, the growth models follow the Nelson and 

Winter (1982) approach by introducing microeconomic fundamentals. The key 

task is to broaden the initial Nelson and Winter set-up by adding more practical 

technological postulates or to interpret evolutionary concepts with behavioral 

approaches that add realism.  

economics can be categorized into (i) traditional evolutionary economics of 

Veblen where evolution is gradual and either Lamarckian or Darwinian, (ii) neo-
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Schumpeterian evolutionary economics of Nelson, Winter, and others where 

evolution is either gradual or radical and Lamarckian, and (iii) new evolutionary 

economics of Dopfer, Witt, and others where evolution is either radical or 

punctuated and neither Darwinian nor Lamarckian. The approach in this thesis is 

located somewhere between traditional and neo-Schumpeterian approaches since 

both the individual and the society evolves. Evolution has both Lamarckian and 

Darwinian features; acquired technological strategies can be transmitted to next 

evolution where higher productivity entrepreneurs have higher profits (i.e., higher 

fitness).     

2.3.2. Endogenous Technology  

As the pioneering work in evolutionary growth models, Nelson and Winter (1982) 

emphasize to understand endogenous technology characterized by the behavior of 

the firm's experiences in the quest for further sophisticated techniques. The 

Nelson and Winter Model (NWM) uses an approach based on computer 

simulations to find the different search behavior of the firms that have access to 

different levels of technology. 

Building on the NWM model, Silverberg and Verspagen (2005) indicate that 

heterogeneous firms employ production methods that differentiate between fixed 

labor (aK) and capital coefficients (aL). Technological change can be distorted 

over time such that there may also be a pattern that resembles labor-capital 

substitution. Research is being carried out within a pool of existing 

techniques. Some of the strategies that have been used are actually in progress, 

including those that need to be discovered in the future.  

In the beginning, firms are still looking for new techniques that have not yet been 

discovered. The mutation or quest method may take various forms, either local 

search or imitation. Furthermore, Nelson and Winter (1982) emphasize that the 

sense of accuracy given by conventional models is exaggerated. The causal 

relations between the key parameters in these models are not so clear until a 

microeconomic structure is implemented in practice. The key factors are 

heterogeneous firms, disequilibrium, and bounded rationality. An evolutionary 
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growth model almost completely depends on stochastic technological change as 

the motivating factor underlying economic growth. 

In terms of the evolutionary process, Nelson (2004) stresses that the evolutionary 

economics theory has a core focus to explain economic change. Economic growth 

depends centrally on the accumulation process of technological advances. 

Moreover, Metcalfe (2005) investigates the evolutionary concepts of the 

adaptation process to involve the selection unit, such as the technological 

approach and operational practices, and that there are replication of and 

interaction with the individual business entity. Technological advances are thus 

made in an endogenous way through a resource-efficient pursuit embraced by a 

variety of individuals (Faggiolo and Dosi, 2003).  

Neoclassical models developed by, e.g., Desmet and Parente (2012), Peretto 

(2015), and Attar (2015), also represent the concept of technology as a single 

efficiency term that is an endogenous scale parameter that drives the production 

limit upwards. Attar (2015) discovered that the optimum point of entrepreneurial 

invention is difficult to achieve if the productivity of the invention process is 

based solely on the limited (or narrow) stock of useful knowledge. In this thesis, 

f perfectly competitive 

innovation. 

2.3.3. Social Inertia 

Investigating cultural inertia as the origin of the industrial revolution is discovered 

by Crouzet (1986). Spencer  (1880) concept of the rate of socio-economic 

growth is important in this respect; the speed of the fundamental progress of 

human life. Most notably, social progress depended on the rate of natural change 

in individuals. Nelson and Sampat (2001) have suggested that this factor 

characterized social technologies that appear differently from physical 

technologies. Social technologies, while typically assumed away from economic 

growth models, have the potential to enable the utilization of new physical 

technologies. Simultaneously, the evolution of social technology is more robust 

and less driven than the evolution of physical technologies. In his research, 
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Nelson (2004) suggests that the life-cycle of an industry or a technology should be 

interpreted as the co-evolution of both the social and the physical.  

In understanding innovation in pre-industrial times and during the Industrial 

Revolution, Kelly (2005) has suggested that new useful knowledge and skills 

were the results of social processes with limited technical knowledge and 

education. The existing stocks of knowledge and skills of every individual 

innovator are combined with the social network interaction. Successful innovation 

produces innovators with higher skills, and technological progress stimulates 

investment in the allocation of time for learning. In such a framework, copying 

the behaviors of others and how many others each inventor is connected to are 

significant rivers of change. Hence, the social network and knowledge diffusion 

themselves become social technologies. A similar argument is made by Mokyr 

(2002) in his theory of useful knowledge. Mokyr (2002) distinguishes the role of 

useful knowledge from the role of inventions. Useful knowledge does not have a 

direct commercial application, but the invention can increase productivity and 

profit in producing goods and services. In such an environment, collective 

knowledge is more important for innovation than what each individual member of 

the society knows. 

 

 

 

 

 

 

Figure 2.2: Social Inertia 

Exploring the role of different biases (e.g., the status quo bias) or types of social 

inertia is essential for deciphering the complexity of historical process such as the 

Industrial Revolution as illustrated in Figure 2.2. This thesis studies exactly this 

type of inertia where the society is initially in a status quo of no invention even 

though it is optimal to spend resources into invention from a neoclassical point of 

view.  

Status 
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Invention Age 

Time 

Punctuated 
Equilbrium 



23

CHAPTER 3 
 

THE NEOCLASSICAL BENCHMARK 

 

This thesis first uses a simple neoclassical model to understand inventive activity 

where a single entrepreneur and inventor manages his/her time allocation for the 

firm to do research and development. This process is trying to identify how the 

individual optimally uses a scarce resource (time endowment) through research to 

increase production possibilities. 

3.1. THE MODEL 

Consider a set  of entrepreneurs:  where  is the total measure 

(or population) of entrepreneurs. Let  be an index variable for these 

entrepreneurs. 

Suppose that each entrepreneur has access to a production technology that 

satisfies 

         (3.1) 

where  is output,  is productivity, and  is the fraction of 

time spent on management by entrepreneur . Here,  is a fixed parameter 

that is common to all entrepreneurs. 

Suppose that entrepreneur  has a unit endowment of time allocated to 

management and research. 

           (3.2) 

If  units of time is allocated to research, entrepreneur 

result of micro-inventions and is equal to 

          (3.3) 

where  is some given, baseline level of productivity, and  is a fixed 

parameter; it simply determines marginal contribution of research effort (research 

productivity). 
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Suppose that entrepreneurs maximize their output (and profit). After eliminating 

 by using (3.2), the problem of maximizing profit is written as 

       (3.4) 

Hence, the main tradeoff here is between the management time that increases the 

profit through labor input (tangible) and the research time that increases the profit 

through productivity (intangible).  

3.2. OPTIMUM 

This section describes the optimality properties. The solution to the above 

problem satisfies the first-order conditions 

    (3.5) 

     (3.6) 

          (3.7) 

In an interior solution , these first-order conditions imply 

       (3.8) 

         (3.9) 

Since we have , the optimality also requires  as seen in (3.9). This 

condition also implies that  at the interior solution. 

In a boundary (or corner) solution , the first-order condition in (3.5) 

implies that  

          (3.10) 

The optimal behavior of entrepreneurs is thus characterized by a policy function 

 satisfying 

     (3.11) 

This point implies that entrepreneurs in the neoclassical benchmark care only 

about the research productivity . If their research effort is sufficiently 



25

Research Productivity 

Optimal 
Research 

Effort 

 

 

productive, the marginal return of their research effort is sufficiently large. Hence, 

they choose a positive level of . Besides, for increasing values of research 

productivity , the optimal level of research effort is increasing. Figure 3.1 

pictures this policy function. 

 

 

   

 

 

 

 

Figure 3.1: Optimal Research Time and Research Productivity 

 

Figure 3.2: Profit Multiplier and Research Productivity 

Under this optimal behavior, the optimal level  of profit can be written as in 

     (3.12) 

Research Productivity 

Profit 
Multiplier 
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where  is greater than unity (see below). Hence, when the solution is 

interior with  and , optimal profit is larger than the baseline level of 

. Put differently, entrepreneurs that spend a positive amount of time for 

research attain larger profit levels. Figure 3.2 pictures how this profit multiplier 

term changes with . 

3.3. IMPLICATIONS 

What are the messages originating from this simple model of invention regarding 

the historical evolution of actual economies? As the answer to this question, let 

the historical time be denoted by . Suppose that the research 

productivity term is not fixed but time-dependent as in 

 .       (3.13) 

In other words, research productivity is a function of time but is still exogenously 

given.  

developed economies, it must be the case that  

          (3.14) 

That is, in the initial period, research productivity must be sufficiently small so 

that entrepreneurs of the neoclassical model do not spend time on an invention. 

Hence, initially, the economy is in a state of technological stagnation where all 

production plants work with the baseline productivity 

         (3.15) 

The only way through which this economy starts inventing new technologies is 

that  grows in time. Eventually, there is a particular date  such that 

       (3.16) 

Hence, at time , research is sufficiently productive to incentivize inventive 

effort. Starting this date, then,  starts growing, and the economy industrializes. 
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To understand the mechanics of such a growth takeoff, assume that, at each , the 

productivity levels: 

        (3.17) 

Then, after substituting the optimal level of , the growth rate of average 

productivity can be described as in 

 

 

        (3.18) 

In the literature, there exist papers that endogenize the evolution of research 

productivity through useful knowledge 

(Strulik, 2014; Attar, 2015). However, along with the purposes of this thesis, it is 

assumed that the evolution of  is exogenous; this work is interested in how the 

economy travels to the point where productivity  starts growing even if  

but entrepreneurs are not fully-informed and rational.  

More specifically, in the evolutionary model, research productivity will be fixed 

in all periods at . The work then focuses on how a society that is initially 

optimal. 
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CHAPTER 4 
 

THE EVOLUTIONARY MODEL 

 

4.1. LEARNING THROUGH THE GENETIC ALGORITHM 

Once again, this thesis defines a fixed set of entrepreneurs as in the neoclassical 

benchmark, but the set of entrepreneurs is now discrete: 

        (4.1) 

Hence, even though  could be large, the growth rate of average productivity 

cannot be simplified using the integral formula used in the previous chapter. 

For clarity, the model in this section explicitly introduces time as in 

         (4.2) 

so that time starts at an initial period  and diverges to the future. 

In the evolutionary model, the production and invention technologies are the same 

technologies introduced in the previous chapter. Hence, entrepreneur  is still 

subject to the problem of choosing a time allocation  to achieve the 

highest output and profit. 

4.1.1. Status Quo and Mutation 

From the perspective of the entrepreneur, however, it is not possible to use 

optimization theory to find . It is assumed that entrepreneurs do not know the 

parameters of the model. More specifically, they cannot calculate how output and 

profit changes with , and they do not know their research productivity . 

Instead, they use information that they achieve through observation of what earlier 

generations of entrepreneurs did before . Since the purpose is to understand how 

an economy transits from a state of no invention (  for all ) to the state of 

positive invention effort (  for all ), assume that the initial generation of 

entrepreneurs spends all the available time to management: 
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       (4.3) 

Then, in period , a fraction of entrepreneurs deviates from the status quo by 

spending positive amounts of time to the invention. They are called 

mutated entrepreneurs, and the fraction of those deviating from the status quo is 

determined by the exogenous mutation rate denoted by . Hence, only in 

 and after mutation, there are two subsets of entrepreneurs: 

  

  

Clearly, the number of elements in  is equal to , and the number of status 

quo entrepreneurs after mutation is equal to  in .  

The question is, of course, how the mutated entrepreneurs choose the fraction 

 of time that they invest in research. Since they are not endowed with the 

capabilities of agents in the neoclassical benchmark, they each choose a randomly 

drawn level according to the uniform distribution.  

More specifically, suppose that 

       (4.4) 

where  is the realization of a random variable that follows a uniform 

distribution with support . 

This situation is explained by the help of a numerical example and a figure. 

Imagine an economy with  entrepreneurs and a mutation rate of . 

Then, three entrepreneurs are in the set of mutated entrepreneurs, and the 

remaining seven of them are in the set of status quo entrepreneurs after mutation 

in . More specifically, suppose that the three mutated entrepreneurs are the 

2nd, 5th, and 9th ones, and the realizations of their research time drawn from the 

uniform distribution are ,  and , 

respectively. Then, the population distribution of  after mutation is illustrated in 

Figure 4.1. 
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Figure 4.1: The Population Distribution after Mutation in  

4.1.2. Profit 

As mentioned earlier, profit is the main fitness measure throughout the analysis. 

The output and profit levels of mutated and status quo entrepreneurs are different. 

For the status quo entrepreneurs who do not attempt invention, it can be inferred 

from the neoclassical benchmark that profit is equal to  

  

        (4.5) 

since they spend their time entirely on management with the old technology (the 

one that corresponds to the baseline productivity ).  

For the mutated entrepreneurs, profit levels are generally different as determined 

by their differing  levels: 

       (4.6) 

Recall that, in the evolutionary model, we assume that . This model focuses 

the analysis on how a society that is initially subject to the status quo bias 

eventually converges to the neoclassical benchmark (if it does).  

The relative magnitudes of  and  are of course important. Notice that the 

term governs the profit ratio between a mutated entrepreneur and a status quo 

entrepreneur. 

 
      1       2        3        4        5       6        7        8       9      10 
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       (4.7) 

As in the neoclassical benchmark, this term achieves its maximum at 

. Since the randomly drawn level  of research time can be greater or less 

than , however, this study has 

         (4.8) 

for some of the mutated entrepreneurs, and  

         (4.9) 

for the other mutated entrepreneurs. As a result, it is shown that not all mutations 

contribute to the fitness level of the mutated entrepreneur. 

From the initial period to the next, there exists a distribution of profits across 

entrepreneurs once the mutation is completed. First, one group of entrepreneurs 

have a profit level that is equal to . Second, one group of mutated 

entrepreneurs have a profit larger than . Finally, the third group have a profit 

level smaller than . 

Returning to the numerical example of , we can calculate the 

 ratio for the three mutated entrepreneurs for a given level  of research 

productivity. For instance, if this model has , the  ratios for the 2nd, 

5th, and 9th entrepreneurs satisfy 
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4.1.3. Selection: Elite Persistence and Crossover 

 

Figure 4.2: The Three Types of Children   
(MATLAB, 2017) 

At the end of any period , the genetic selection takes place. This phase 

occurs through two distinct mechanisms. The first mechanism is called elite 

persistence, and the other is a crossover.  

Elite persistence determines the best performing entrepreneurs in any given 

period/generation and ensures that their behavior is copied exactly by the same 

number of entrepreneurs in the next period/generation. The number of elite 

entrepreneurs is an exogenous input of the model and denoted by  where it 

naturally has the restriction . 

Elite persistence in the numerical example works as follows: Suppose that . 

Hence, only the behavior of exactly one of the best entrepreneurs is going to be 

replicated in the next generation; his/her survival being ensured by elite 

persistence. Then this entrepreneur would be the 2nd whose profit ratio of 

 is the largest. If instead, this model has , then both the 2nd and 5th 

entrepreneurs would be elite.   

Since a fraction  of the entrepreneurs are the mutated entrepreneurs in any given 

period/generation, the second mechanism called crossover determines the research 

effort of the remaining  

         (4.10) 

entrepreneurs in the next period/generation. In the terminology of the genetic 

algorithm, these agents called the crossover entrepreneurs.  

Elite Child 

Crossover Child 

Mutation Child 
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The behavior of crossover entrepreneurs is determined as follows: The research 

effort of a crossover entrepreneur in period  is a convex combination of any 

two randomly chosen entrepreneurs in period . Formally, for the crossover 

entrepreneur  in period , the model has 

    (4.11) 

where  and  are the research times of two randomly chosen 

entrepreneurs from the previous period/generation, and  is the weight 

associated with Parent 1.  

The role of the initial generation must be emphasized at this point. In the 

economic interpretation of such an evolutionary model, the initial generation is 

completely subject to the status quo bias. Hence,  

       (4.12) 

is imposed. Then, starting in period  and for all future generations, the new 

generation of entrepreneurs can be of three types: 

1. Elite entrepreneurs, whose total number is . 

2. Crossover entrepreneurs whose total number is . 

3. Mutated entrepreneurs whose total number is  

Figure 4.3 pictures the mechanics of this evolution for  

       (4.13) 

where the initial population is restricted to be at , i.e., the status quo. The 

green dashed line represents the optimal level  of the research time in the 

neoclassical benchmark.  

In , the figure shows that no entrepreneur has a positive level of research 

time. Hence, the black dot represents all 10 of the entrepreneurs. In , the 

empty circles show the three mutated entrepreneurs with different positive values 

of research time. Notice that, since the best-performing entrepreneur in the 

previous period has  by construction, the elite agent at  is among the 

entrepreneurs indicated by a black dot at . At , the elite is represented 

by the red circle that exactly copies the best performing entrepreneur at . 
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the period  is 

represented as the elite in period . Since the early periods are affected by the 

restriction that the initial generation is at the status quo, some of the crossover 

entrepreneurs are also choosing  at .  

In the figure, one can see that four crossover entrepreneurs are still represented by 

the black dot at . It must also be noted that, at period , the best 

performing entrepreneur that becomes the elite is a crossover entrepreneur, not a 

mutated one. The figure also shows us that, for large enough , there must not be 

any entrepreneur that sticks to the status quo since the genetic algorithm gradually 

increases the relative fitness of entrepreneurs that choose a strictly positive level  

of research time.  

 

Figure 4.3: The Mechanics Evolution of Entrepreneur 

The same example is represented with respect to the entrepreneur identities, as 

shown in the table below. Here, SQ denotes status quo, M denotes mutated 

entrepreneurs, E denotes elite entrepreneurs, and CO denoted crossover 

entrepreneurs.  
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Table 4.1: Entrepreneur Identities 

i t=0 t=1 t=2   t t+1 

1 SQ SQ M   CO CO 

2 SQ M E   CO CO 

3 SQ SQ SQ   CO M 

4 SQ SQ SQ   M CO 

5 SQ M CO   CO E 

6 SQ SQ M   E M 

7 SQ SQ M   CO CO 

8 SQ SQ CO   M CO 

9 SQ M SQ   M M 

10 SQ SQ SQ   CO CO 

4.2. IMPLICATIONS 

What are the outcomes of the evolutionary model of the invention outlined above? 

First of all, by the very nature of evolution, a new generation of entrepreneurs can 

observe and copy the behavior of past generations. The critical difference between 

the evolutionary model and the neoclassical benchmark is that entrepreneurs in 

the evolutionary model are not capable of solving the profit maximization 

problem. Instead, they use their bounded rationality in a way to increase their 

profit by replicating the behavior of entrepreneurs that were successful in earlier 

periods.  

In the example given above and in the numerical application of the model studied 

in the next chapter, however, this study forces the initial population to be unaware 

of the profit opportunities through invention. Hence, the initial generation will be 

subject to the status quo bias. In such a context, the only way by which the 

learning can start is mutation. Hence, in each period, a randomly chosen subset of 

the population is allowed to try random values of research time. In every 

generation, there are also crossover entrepreneurs whose behavior is an imperfect 

copy of others in the previous generation. Finally, the model allows for the society 

to exactly copy the behavior of best-performing entrepreneurs through elite 

persistence. 
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There are thus two important mechanisms that determine how and when society 

truly learns invention. First, the rate of mutation denoted by  determines 

how open the society is to the idea of deviating from the status quo. Hence, a 

society with a larger mutation rate is a society that is more creative because  

 a larger fraction of entrepreneurs is tolerated to attempt invention in period 

  

 a larger fraction of entrepreneurs is tolerated to spend diverse amounts of 

time on the invention in later periods. 

where every entrepreneur spends a positive amount of time to research, mutation 

still works to create entrepreneurs that spend too much or too little time to the 

invention. 

The second mechanism, elite persistence, allows the society to carry the best 

performing behavior through time to future generations. It is determined by the 

number  of elite entrepreneurs: a society with a larger value of  (relative 

to ) is a society that transmits technological knowledge more effectively from 

one generation to the next. 

Consequently, these two distinct mechanisms determine the speed of convergence 

of the genetic algorithm. This study expects that a society of entrepreneurs that is 

more open to deviant behavior (higher ) and a society of entrepreneurs that is 

more effective in transmitting valuable information from one generation to the 

next (higher  relative ) should learn that invention is optimal at a faster speed. 

Hence, the diffusion of the  is 

expected to be faster in societies with higher mutation rates and stronger elite 

persistence. 

On the other hand, it must be noted that since the genetic algorithm is subject to 

randomization at several levels, it is not a priori ensured that the evolutionary 

model always converges exactly to the neoclassical benchmark. Besides, the 

inherent randomization in the genetic algorithm implies that the relationship 

between the speed of convergence and the  pair is not necessarily a 

monotonic relationship. 
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CHAPTER 5 
 

THE EXPERIMENTS AND RESULTS 

 

The purpose of this chapter is to collect the main results originating from the 

quantitative analyses of the model. There are three sections: First, the parameter 

values are specified. Second, the roles of mutation and elite persistence are 

investigated through numerical experiments. Finally, a section focuses on the role 

of population size. 

5.1. PARAMETER VALUES 

For the model to be simulated, we need to specify three parameter values that 

define the profit level for any given level  of time allocated to research. 

Recall from the previous chapter that the profit function is equal to 

      (5.1) 

Hence, to calculate  for a given level of , we need to know . As 

mentioned earlier, we are interested in a situation where the initial generation is 

subject to the status quo bias, meaning that they choose  even if . 

For this reason, we set a value for  that is strictly greater than unity.  

The remaining parameters, , enter the profit function as level shifters. In 

other words, they do not alter the curvature of the function. Besides, these 

parameters are common across entrepreneurs. These allow us to impose any 

strictly positive values to these parameters. These values do not affect our results, 

and we normalize each of these to unity.  

Consequently, the parameter values we set for the experiments are 

      (5.2) 

At this value of research productivity , the optimal level of research time is equal 

to 

       (5.3) 
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5.2. MUTATION AND ELITE PERSISTENCE 

This section presents the results originating from several alternative simulations of 

the model with various mutation rates ( ) and elite counts ( ).  

In what follows,  denotes the fraction of an entrepreneur-

endowment that is allocated to research under the genetic algorithm. In other 

words, it is the level of  at which the genetic algorithm can no longer 

increase the fitness of the population. Hence, it is the value at which the learning 

is completed and the algorithm stops.  

 denotes the number of generations that is necessary to pass for the 

learning to be completed. In other words, represents the duration of the 

transition from an equilibrium of no invention and technological stagnation to an 

equilibrium of continuing invention and technological progress. A higher value of 

 means that the society is a comparatively slow learner.    

-in genetic algorithm 

 with necessary function and run scripts developed for 

this thesis. All simulations set 250 generations as the maximum number of 

generations to ensure convergence; this maximum has been adjusted after a 

couple of runs.  

In what follows, results are presented separately for each of the four different 

levels of population size, denoted by . Specifically, we collect results for  

 , 

 , 

 , and 

 . 

 denotes the selected table ( ) based on the associated values of 

population size ( ), elite count ( ), and mutation rate ( ). These inputs of the 

genetic algorithm determine the resulting values of  and .  
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5.2.1.  

Table 5.1: Simulation Data of T(10) (E, )  

E 9 7 3 1 
 r G r G r G r G 

0.1 0.2529 62 0.3521 100 0.3611 54 0.3549 105 

0.2 0.3331 80 0.3303 88 0.3095 138 0.2529 62 

0.5 0.3402 111 0.343 88 0.3386 77 0.3306 122 

 

Table 5.1 shows the results for a society where the total population of 

entrepreneur-inventors is 10. Here, there is a wide variation in both  and . In 

every constellation of mutation rate and elite count, the resulting r values are 

generally different than the optimal value of . Different  pairs 

imply a minimum  value of 0.2529 (a value that is about 25% lower than the 

optimum) and maximum  value of 0.3611 (a value that is about 8% higher than 

the optimum).       

The minimum  value is located in  with its value of 0.2529. This 

society is an example of a trade-off where the  value is less than optimal, but the 

 is notably small. Hence, this society converges to an equilibrium with 

continuous invention in a relatively fewer number of generations, but it does not 

learn to invent at the optimal value of .  

The maximum value of  is observed in  with a value of 0.3611. This 

is a society that converges to its invention equilibrium in  generations. 

This is the lowest level of  recorded for  under alternative  pairs.  

However, this society that converges relatively quickly does not invent at the 

optimum intensity.  

Most notably, there is a considerable variation in . The highest number of 

generations for the algorithm to stop is , observed at . The  

value in this society is 0.3095, being about 8% lower than the optimal value. 
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Figure 5.1: Average Distance among Individual  Values for T(10) (3, 0.2)  

Figure 5.1 shows that the society that needs 138 generations to converge exhibit a 

large degree of variation among individual  values. The algorithm stops at 

, but it is far from being a true convergence in the sense that all 10 of the 

entrepreneur-inventors start spending the same amount of time to research. When 

judged by the average distance among individual  values, there is no 

homogeneity across the entrepreneur-inventors.  

5.2.2.  

Table 5.2: Simulation Data of T(100) (E, ) 

E 90 70 30 10 
 r G r G r G r G 

0.01 0.3276 113 0.3552 136 0.3329 122 0.2794 59 

0.05 0.3496 93 0.3374 69 0.3427 91 0.3281 56 

0.1 0.3354 63 0.3357 58 0.3388 91 0.3343 88 

0.2 0.3363 103 0.3331 52 0.3335 60 0.3321 67 

0.5 0.3333 54 0.3317 52 0.3338 57 0.3326 68 

 

Table 5.2 summarizes the results for . In terms of (i) the duration  of 

convergence and (ii) the final value of , the table shows a better performance 

compared to . In this set of results with , only one of the  values 

is found to be significantly less than the  optimum. As in the earlier case, 

there is still a large gap in the number of generations, but most of the  values 

here are below 100 generations.  
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The minimum value of  is 0.2794 at ; this is about 17% lower 

than the optimal value. In terms of the number of generations, this society needs 

 generations to converge to its  equilibrium. The required number of 

generations is among the smallest of those observed for . Hence, as in 

the case of , a society may relatively quickly converge to an equilibrium 

that is far from being the optimal one.   

The maximum value of  is observed in  is equal to 0.3552 (a 

value that is about 6% higher than the optimum). This is a society that converges 

to its invention equilibrium in  generations. Along with  value as the 

maximum value, this society also records the highest number of  recorded for 

 under alternative  pairs. Hence, this society converges very slowly 

to reach its invention equilibrium. This maximum value of  is observed along 

with the lowest mutation rate (  is 0.01), where only one person is chosen as a 

candidate for being the mutant for .  

The value of  that is closest to the optimal  value is recorded for  

and . This society also records the minimum number of generations at 

 together with  and  pair. What is significant here is that, at 

some particular characterization of mutation and elite persistence, the society 

converges to its new equilibrium in the shortest duration and highest precision 

relative to the neoclassical benchmark.  

 

Figure 5.2: Average Distance among Individual  Values for T(100) (70, 0.2) 

However, even under these parameter values, there is a large variation across the 

society in terms of  values as shown in Figure 5.2. When judged by the average 

distance among individual  values, there are -  still trying 

diverse strategies in terms of inventive effort. Initially, the average distance is 
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quite large, and it exhibits a slow decrease. However, the average distance does 

not converge to zero under .  

5.2.3.  

Table 5.3: Simulation Data of T(1,000) (E, ) 

E 900 700 300 100 
 r G r G r G r G 

0.01 0.3256 68 0.3279 57 0.3324 62 0.336 60 

0.05 0.3325 61 0.332 73 0.3334 57 0.3349 59 

0.1 0.3338 53 0.3323 58 0.3341 57 0.3333 51 

0.2 0.3333 51 0.3336 52 0.3331 56 0.3333 52 

0.5 0.3334 52 0.3331 51 0.3334 51 0.3333 51 

 

As shown in Table 5.3, this set of results documents the simulations of a society 

where the total population of entrepreneur-inventor  is . Unlike in 

the two previous cases, there is a significant improvement in the number of 

generations; all the  values here are below 100 generations. This simulation 

indicates that this population is converging faster compared to the two previous 

cases. In most of the cases considered with alternative mutation rates and elite 

counts, the society converges much closer to the optimal value of , and 

almost no society has a  value below . Different  pairs imply a 

minimum  value of 0.3256 (a value that is about 2% lower than the optimum) 

and a maximum  value of 0.3349 (a value that is about 0.2% higher than the 

optimum).       

There is also an interesting finding that can be interpreted as a case of multiple 

equilibria. Some societies with different  pairs converge at the same number 

of generations at . This is observed with  in 

,  , and . In the latter two 

societies, the elite count is , but different mutation rates result in the 

same  pair. In other words, two societies that differ only in the rate of 

mutation can converge to the same equilibrium even though the transition episode 
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can feature different dynamics in terms of average distance across the 

-  

The minimum  value for  is located in  with its 

value of 0.3256 where the rate of mutation is at its lowest level. This society is the 

one that has a longer distance to the optimal level among the population, with the 

 being the second highest number of generations for .  

 

Figure 5.3: Average Distance among Individual  Values for T(1,000) (900, 0.01) 

An interesting fact concerning the society in  is illustrated in 

Figure 5.3 above. Most of the generations have zero average distance, meaning 

that individuals have the same  value. Unlike the previous simulations with 

lower population sizes, the society decreases the average distance very fast. This 

is truly a convergence to a particular norm or modern society where everybody 

invents by choosing an inventive effort level very close to the optimal value.  

5.2.4.  

Table 5.4: Simulation Data of T(10,000) (E, ) 

E 9,000 7,000 3,000 1,000 
 r G r G r G r G 

0.01 0.3332 53 0.3332 53 0.3335 52 0.3332 52 

0.05 0.3332 52 0.3333 52 0.3334 51 0.3334 51 

0.1 0.3334 51 0.3332 51 0.3334 52 0.3333 51 

0.2 0.3333 51 0.3334 51 0.3333 51 0.3334 51 

0.5 0.3333 51 0.3333 51 0.3333 51 0.3333 51 
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-  is not 

historically accurate, we include the results for this case to investigate the roles of 

 

Overall, the societies outlined in Table 5.4 have almost identical results in terms 

of  and  regardless of the elite counts and mutation rates. This result is the 

example of a fast learner society that relatively quickly converges to an 

equilibrium value of  that is closest to the neoclassical optimum. There is no 

longer a significant gap in . The required number of  is among those observed 

for , either , , or  generations. This population has 

the lowest number of generations compared to all previous simulations. In 10,000 

populations, the majority of society requires 51 generations to learn how to invent. 

All the societies in this population have  values very close to the optimal one, 

.  

Yet, again, when the society has a smaller number of people who want to 

overcome their status quo condition (lower rate of mutation), the creation of the 

modern society requires more generations than the others. Even with large values 

of the elite count (9,000 and 7,000 out of 10,000), a society with a very low rate 

of mutation typically requires a (marginally) larger number of generations to 

converge.   

 

Figure 5.4: Average Distance among Individual  Values for T(10,000) (9000, 0.01) 

Figure 5.4 illustrates that the society in  needs 53 generations 

to converge and this converges features a significant degree of variation among 

individual  values in early generations. However, after around 10 generations, 

the average distance decreases significantly. As in the previous set of simulations, 

this figure shows that most of the individuals have zero average distance at 

several generations. 
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5.3. THE ROLE OF POPULATION SIZE 

This section presents the simulation results for different sizes of population ( ). 

We have already presented above that population size has significant effects on 

the outcomes. Here, we focus on average values of  and  across different 

societies characterized by different elite counts and mutation rates.  The average 

values of time allocation in research (r) and the number of generation (G).  

Table 5.5: The Role of Population Size 

N Avg. r Avr. G Max. r Min. r Max. G Min. G 

10 0.307925 88.10 0.3611 0.2529 138 54 

100 0.333175 77.60 0.3552 0.2794 136 52 

1,000 0.332735 56.60 0.3349 0.3256 73 51 

10,000 0.333255 51.45 0.3335 0.3332 53 51 

 

Table 5.5 collects the average, minimum, and maximum  and  values observed 

for different population sizes. Overall, the data shows that population size is an 

important determinant of the model outcomes.  

For population sizes larger than or equal to 100, average  values are very close to 

the optimal value of , i.e., the neoclassical benchmark. Hence, if 

population is larger than a certain level, the genetic algorithm lets the society 

eventually reach a state of equilibrium that is highly similar to the neoclassical 

equilibrium. 

In terms of average  values, there is a clear decreasing trend as the population 

size is getting larger. Importantly, even the largest population size of 10,000 

requires 51 generations for the learning to be completed. Hence, the initial status 

quo is not a trivial situation. -

spend considerable amount of time to converge to a modern growth regime with 

continuous invention.  

Another interesting finding is that the maximum number of generations sharply 

decreases from 136 generations in  to 73 generations in . Such 

an effect, however, is not observed for the minimum number of generations. 

Hence, while there is generally a scale effect of population, some small societies 

can achieve convergence in relatively smaller number of generations. As 
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discussed above, however, such societies may not get close enough to the 

neoclassical optimum. 

Finally, the size of population size affects the range of  values. For smaller sizes 

of population, there is a larger range between the maximum and minimum values 

of .    

What do these results tell us from an historical point of view? The total population 

of inventors was less than 10,000 inventors throughout the process by which the 

British nation realized its industrial revolution. Meisenzahl and Mokyr  (2012) 

inventor database includes a total of 759 British inventors. The birth and death 

dates of these inventors are 1660 and 1830, respectively. Hence, even if there are 

missing observations in the mentioned database and even if one must include all 

firms in the British economy to truly account for the loci of inventive activity, the 

true population size would be much less than 10,000. 

In general, we can say that there is a Curse of Small Numbers as opposed to the 

Law of Large Numbers. In some mainstream growth models that are used to 

textbook models of Schumpeterian growth, the Law of Large Numbers imply that 

average productivity grows in each generation even if some sectors or innovators 

fail. However, if the Law of Large Numbers do not apply because of the 

population size, the society may record lower growth rates as a result of 

innovation failures.     
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CHAPTER 6 
 

CONCLUSION 

 

The accumulation of useful knowledge brought the world into an inevitable 

outcome, an industrial revolution characterized by the initiation of continuous 

inventions and sustained technological progress. Inventions allowed societies to 

transit from an equilibrium of nearly zero growth to an equilibrium of sustained 

growth. For the entire history of Homo sapiens, this was a very recent 

phenomenon, covering a few centuries.  

This thesis aims to understand this process of transition (the one from stagnation 

to growth) with a simple evolutionary model of invention. The evolutionary 

model used in this study is a proper scientific way to discover the associated 

patterns of transition to modern growth. -

are not fully informed, rational and capable of solving complex optimization 

problems, it takes several generations to realize that spending valuable resources 

to invention is the optimal response.  

The evolutionary framework in this study builds on an intergenerational model 

where the behavior of earlier generations has an effect on the behavior of later 

generations. The crucial element here is that, initially, the society is in a status quo 

of no invention. Hence, there must be a process of learning where the behavior of 

-

to the next generation through.  

This thesis argues that such a learning process is mainly affected by two things: 

First, the rate of mutation -

choose a randomly drawn level of research input for invention. This is especially 

important because all members of the initial generation spend their entire time 

endowment to routine management. The rate of mutation (

tolerance or openness to new technological strategies. Second, the elite count ( ) 

determines the number of best- -

behavior is exactly copied in the next generation. Hence, the elite count measures 
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The analysis in this thesis focuses on the roles of mutation and elite persistence on 

two things: First, the duration of the learning process ( ) (i.e., how many 

generations are necessary for the society to converge to an equilibrium with 

continuous invention), and, second, the level of research input chosen by the final 

generation ( ) (i.e., what fraction of unit time endowment is spent on inventive 

-  

For the question of whether higher mutation rates cause convergence to be faster, 

we find that there is no strong monotonic relationship between  and . For 

instance, in the smallest society of , larger  values are observed for all 

levels of mutation rates. On the other hand, in larger societies, we observe that 

maximum  values are generally recorded for relatively smaller mutation rates. 

Hence, in summary, we can say that the rate of mutation is not a trivial 

determinant of the duration of transition even though there is no strong monotonic 

relationship. 

For the question of whether higher elite counts cause faster convergence, we see 

that there is no clear relationship. For a given population size and a given rate of 

mutation,  does not systematically change with the elite count . There are 

simulations where, for a particular ( ) pair, both a large and a small value of  

imply very similar  values. Besides, for a particular ( ) pair again, there are 

simulations where the same  value implies differing  values.   

For the question of whether the economy converges to the neoclassical optimum 

in an exact manner or exhibits heterogeneity around the optimum value, we find 

that there is generally heterogeneity. Importantly, there is no clear pattern on the 

resulting  values that originate from different ( ) values. However, the size of 

population has an effect; for larger populations, the societies get closer to the 

neoclassical benchmark in terms of  values. 

Finally, for the question of whether the size of population affects the number of 

generations that pass before the learning (growth takeoff) is completed, we see a 

-

the neoclassical optimum in a significantly fewer number of generations in 

general. Specifically, a minimum number of 51 generations is necessary before 

the pre-industrial, no-invention society to transform itself into a modern economy 

with sustained technological progress. The significance of this best case can be 
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explained as follows: First, suppose that each generation has a lifetime of 25 

years, a common value in the modern growth literature. We can then associate the 

start of modern growth in England with the starting date of historical fertility 

decline as in UGT. This means the end of the transition is roughly the year 1875. 

Then, 51 generations taken to the past sets the initial date as the year 600 AD. If, 

on the other hand, we look at the worst case of 138 generations, the initial 

generation 1575 BC. 

The model studied in this -

larger model, the demographic structure could be explicitly specified where some 

adult agents are workers and the rest -

Besides, the ownership structure in the economy and occupational choice would 

also be explicitly formulated. Within such an extended model, an interesting 

question is how to endogenize population growth. The interaction of population 

growth and mutation may yield interesting results for the dynamics of the growth 

takeoff. This is left for future research. 

It must also be emphasized that the model presented here is truly an abstract 

model that can be applied to any major historical transition that involves 

creativity. There are no firms, industries, or sectors. One may imagine the 

transition process studied in this model as the Neolithic Revolution where 

inventions are simply the domestication of plants and animals. Developing a fully-

fledged evolutionary model of an industrial revolution with different consumption 

and investment goods and a satisfactorily rich market structure is left for future 

research.     
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