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ABSTRACT

GENERATING STORIES FROM LARGE SCALE IMAGE
COLLECTIONS

İsmail Bora ÇELİKKALE

Doctor of Philosophy, Computer Engineering Department
Supervisor: Assoc. Prof. Dr. İbrahim Aykut ERDEM

June 2020, 93 pages

Making sense of ever-growing amount of visual data that is available on the web is one of the

biggest challenges we face today. As a step towards this goal, this study tackles a relatively

less-studied topic in the literature, namely generating structured summaries of large photo

collections in a purely unsupervised manner. Our methodology relies on the notion of a

story graph which captures the main narratives in the data and their complex relationships by

means of a directed graph with a set of (possibly intersecting) paths. Our proposed method

identifies coherent visual story lines and exploits submodularity to select a subset of these

lines which have the maximum coverage. Various experiments and user studies demonstrate

that the approach delivers better performance than the previous methods.

Furthermore, this study explores the role of visual attention and image semantics in under-

standing image memorability. In particular, we present an attention-driven spatial pooling

strategy and show that considering image features from the salient parts of images improves

the results of the previous models. We also investigate different semantic properties of im-

ages by carrying out an analysis of a diverse set of semantic features which encode meta-level

object categories, scene attributes, and invoked feelings. We show that these features which
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are automatically extracted from images provide memorability predictions as nearly accurate

as those derived from human annotations.

Finally, by incorporating the memorability property together with aesthetics into the story

graph generation framework, the effects of intrinsic properties on story graphs are explored.

Experiments utilizing these memorable and aesthetic story graphs as a prior knowledge base

show further improvements.

Keywords: Visual Storygraph, Structured Summarization, Visual Memorability
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ÖZET

BÜYÜK ÖLÇEKLİ GÖRÜNTÜ DERLEMLERİNDEN ÖYKÜ
OLUŞTURMA

İsmail Bora ÇELİKKALE

Doktora, Bilgisayar Mühendisliği
Danışman: Doç. Dr. İbrahim Aykut ERDEM

Haziran 2020, 93 sayfa

Web’de mevcut olan ve giderek artan miktarda görsel veriyi anlamak, bugün karşılaştığımız

en büyük zorluklardan biridir. Bu hedefe doğru bir adım olarak, bu çalışma literatürde nis-

peten daha az çalışılmış bir konu olan “tamamen güdümsüz olarak büyük ölçekli fotoğraf

kümelerinden yapısal özetler oluşturma” konusunu ele almaktadır. Metodolojimiz, verideki

ana anlatıları ve karmaşık ilişkileri yakalayan ve bir dizi (muhtemelen kesişen) öykü yol-

larından oluşan bir yönlendirilmiş grafik oluşturmaya dayanır. Önerdiğimiz yöntem, veri-

den tutarlı görsel öykü şeritlerini çıkartır ve bu şeritlerin maksimum kapsama sahip bir alt

kümesini seçmek için alt-modülerlikten yararlanır. Çeşitli deneyler ve kullanıcı çalışmaları,

yaklaşımın önceki yöntemlerden daha iyi performans sağladığını göstermektedir.

Ayrıca, bu çalışma görsel dikkat ve görüntü semantiğinin görüntü hatırlanabilirliği üzerindeki

rolünü araştırmaktadır. Özellikle, dikkate dayalı bir havuzlama stratejisi kullanarak görüntülerin

dikkat çekici kısımlarından gelen görüntü özelliklerinin kullanılması, hatırlanabilirlik tahmin

sonuçlarını iyileştirdiğini göstermektedir. Ayrıca, meta-düzey nesne kategorilerini, sahne

niteliklerini ve duyguları kodlayan özelliklerin bir analizini yaparak görüntülerin farklı se-

mantik özelliklerini araştırmaktadır. Görüntülerden otomatik olarak çıkarılan bu özelliklerin,
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neredeyse insanlardan toplanan hatırlanabilirlik tahmin skorlarına yakın hatırlanabilirlik tah-

minleri sağladığı gösterilmektedir.

Son olarak, hatırlanabilirlik özelliğini estetikle birlikte öykü grafiği oluşturma methodolo-

jisine dahil ederek, içsel özelliklerin öykü grafikleri üzerindeki etkileri araştırılmaktadır.

Oluşturulan yeni öykü grafikleri üzerinde gerçekleştirilen deneyler, grafiklerin bir öncül bilgi

tabanı olarak kullanıldığında daha iyi sonuçlar verdiğini göstermektedir.

Anahtar Kelimeler: Görsel Öykü Grafiği, Yapısal Özetleme, Görsel Hatırlanabilirlik
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GENİŞLETİLMİŞ ÖZET

Son yıllarda internet üzerinde toplanan ve biriken görsel veri miktarı büyük boyutlara ulaşmaktadır.

Özellikle sosyal ağlar ve bulut teknolojilerinin artmasıyla insanların ortak katılımı sağlanarak

büyük çapta görüntü veri kümelerinin oluşturulması sağlanmaktadır. Bu verinin büyüklüğüne

bağlı olarak sahip olduğu bilgi miktarı da dikkate alınması gereken önem arz etmektedir.

Bu bilgiyi yine bu veri yığını içerisinden çıkarmak, bugünün en büyük zorluklardan biridir.

Bu çalışma belirtilen problem için bir yaklaşım olarak görsel öykü grafikleri oluşturma

yöntemini ele almaktadır.

Çalışmada öncelikle öykü grafiğinin tanımı yapılarak olası kullanım alanları incelenmiş ve

bu konuda yapılan çalışmalar araştırılıp, kategoriler altında toplanarak verilmiştir. Daha

sonra önerilen öykü grafiği oluşturma metodolojisinin detaylı açıklamasına geçilmiştir. İlk

olarak öykü grafiğinin temel özellikleri olan tutarlılık, kapsam ve bağlanılırlık tanımları

yapılmış ve her bir özellik için formüller oluşturulmuştur. Öykü grafiğinin oluşturulması

da bu özellikleri kullanan bir optimizasyon problemi olarak formülize edilmiştir.

Görüntülerin ifade şekilleri olarak güncel bir çalışma olan “Konvolüsyonların Bölgesel Mak-

simum Aktivasyonları” (RMAC) derin öğrenme yaklaşımı kullanılmıştır. Buna ek olarak

ifade şekillerine fotoğrafların meta verilerinden metin tanımları da dahil edilmiş, ayrıca kısıt

olarak zaman damgaları ve coğrafi konum bilgileri de kullanılmıştır.

Oluşturulan ifade şekilleri üzerinde bir tutarlılık grafiği oluşturularak, bu grafikten tutarlı kısa

görüntü zincirleri elde edilmiştir. Daha sonra bu zincirlerin üst üste bindirilmesi ile daha uzun

öykü şeritleri oluşturulmuştur. Uzun öykü şeritlerinden, fotoğrafların maksimum görsel ve

metinsel elemanlarını kapsayan bir alt kümesi belirlenerek ön öykü grafiği oluşturulmuştur.

Son olarak yine uzun öykü şeritleri arasından, kapsam miktarında kısıtlı bir azalmaya izin

verecek şekilde bağlantı noktalarına sahip şeritler bulunarak değiştirilmiş ve son öykü grafiği

elde edilmiştir. Gerçekleştirilen kullanıcı deneyleri sonuçlarına göre önerilen yöntem ile

oluşturulan öykü grafikleri, benzer çalışmalardan daha iyi tutarlılık ve kapsam değerlerine

sahiptir.
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Oluşturulan öykü grafiklerin değerlendirilmesi için bir görsel özetleme deneyi planlanmıştır.

Bu deneyde amaç öykü grafiğini öncül bilgi olarak kullanarak nitelikli görsel özetler oluşturabilmektir.

Bunun için öncelikle YFCC100M veri kümesi içinden 6 turistik şehir seçilerek bu şehirler

için seyahat fotoğrafları taranmıştır. Bu sayede toplamda 25118 fotoğraftan oluşan, her şehir

için birer kollektif veri kümesi elde edilmiştir. Öykü grafiklerini kullanarak oluşturulan

özetler çeşitli referans yöntemler ile birlikte güncel çalışmalar ile karşılaştırılmış, daha iyi

sonuçlar elde edildiği gözlemlenmiştir.

Diğer bir çalışmada görüntülerin dikkat çeken bölgelerinin hatırlanabilirlik üzerindeki etkisi

araştırılmıştır. Bunun için görüntülerin sadece dikkat çeken bölgelerindeki özniteliklerini

kullanan bir havuzlama yöntemi geliştirilmiş ve bu öznitelikleri kullanan bir ifade şekli

oluşturulmuştur. Bu ifade şekli ile, diğer benzer çalışmalardan daha yüksek hatırlanabilirlik

tahmin sonuçlarına ulaşılmıştır. Buna ek olarak anlamsal özniteliklerin de eklenmesi sonuçları

daha da iyileştirmiş, görüntülerin anlamsan özelliklerinin de hatırlanabilirlik üzerinde etkisi

olduğu gösterilmiştir.

Son olarak geliştirilen öykü grafiği oluşturma yaklaşımına, görüntülerin hatırlanabilirlik ve

estetik özellikleri de eklenerek bu özelliklerin etkileri araştırılmıştır. Daha önce gerçekleştirilmiş

görsel özet oluşturma deneyleri, yeni oluşturulan hatırlanabilir ve estetik öykü grafikleri

üzerinde de uygulanarak daha iyi özetleme sonuçlarının elde edildiği gözlemlenmiştir.
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GENİŞLETİLMİŞ ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. What is a Storygraph? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Exploratory Data Analysis and Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Summarization of Visual Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Visual Story Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4. Intrinsic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3. Background. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1. Regional Maximum Activations of Convolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2. Dissimilarity-based Sparse Subset Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3. AMNet: Memorability Estimation with Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4. Attention-based Multi-patch Aggregation for Image Aesthetic Assessment . . . . . 17

4. Visual Storygraph Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1. Definition of a Story Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1. Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.2. Coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.3. Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2. Constructing the Story Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1. Visual representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

viii



4.2.2. Textual Representation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.3. Finding Coherent Story Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.4. Finding Story Lines with High Coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.5. Increasing Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5. Application: Visual Summarization Using Story Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.1. Story-Graph Guided Photo Album Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2. YFCC100M-CITIES Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.1. Evaluation Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.2. Photo Album Summarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3. Next Image Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.4. Coverage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6. Intrinsic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.1. Attention Related Memorability With Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1. Attention-driven Spatial Pooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.1.2. Semantic Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.1.3. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.2. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7. Story Graphs with Intrinsic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.1. Memorable Story Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.2. Aesthetic Story Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.3. Summarization Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8. Conclusion and Further Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



TABLES

Page

Table 5.1. Statistics of YFCC100M-CITIES.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Table 5.2. Statistics of additional photo set for summarization experiments. . . . . . . . 36

Table 5.3. V-ROUGE scores for the summarization experiments.. . . . . . . . . . . . . . . . . . . 40

Table 5.4. F-measure scores for the summarization experiments. . . . . . . . . . . . . . . . . . . . 41

Table 5.5. User study results for the next image prediction task. The preference

rate denotes the percentage of comparisons in which the users favor

one method over the other. On average, our predictions are preferred

61% of the time against the state-of-the-art method in [1]. . . . . . . . . . . . . . . 44

Table 5.6. Tags used in coverage experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Table 5.7. User study results for the coverage task. The scores denote the av-

erage percentage of the tags selected by the workers for images in-

cluded in the story graphs. On average, our story graphs cover 46%

of the tags, providing a significantly higher rate than that of the state-

of-the-art method in [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Table 6.1. Comparison of pooling schemes (Spatial Pyramid pooling (SP Level-

1) and Attention-based Pooling (AP Level-1)) using dense global fea-

tures SIFT, HOG and SSIM. Results are given as the average empir-

ical memorability scores reported for the top 20, top 100 highest and

bottom 20, bottom 100 lowest predicted memorability scores and the

Spearman’s Rank Correlation (ρ) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Table 6.2. Comparison of the best local dense feature (SSIM) and all seman-

tic features. Results are given as the average empirical memorability

scores reported for the top 20, top 100 highest and bottom 20, bottom

100 lowest predicted memorability scores and the Spearman’s Rank

Correlation (ρ) values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

x



Table 6.3. The first four rows indicate average empirical memorability scores

over different memorability levels. (ρ) is the Spearman’s rank corre-

lation between predictions of existing fully automatic models and the

empirical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Table 6.4. Memorability scores of our framework and more recent methods us-

ing deep learning approaches. (ρ) is the Spearman’s rank correlation

between predictions of existing fully automatic models and the em-

pirical results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Table 7.1. V-ROUGE scores for the summarization experiments for aesthetic

and memorable story graphs. Y = S
V GTM denotes story graphs with

the addition of memorability scores. Y = S
V GTA denotes story graphs

with the addition of aesthetic scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Table 7.2. F-Measure scores for the summarization experiments for aesthetic and

memorable story graphs. Y = S
V GTM denotes story graphs with the

addition of memorability scores. Y = S
V GTA denotes story graphs

with the addition of aesthetic scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xi



FIGURES

Page

Figure 1.1. Left: A travel photo album consisting of huge amount of photos

where it is not practical to extract or acquire information. Right:

A story graph constructed from the photo pile. Several distinct story

paths shown in different colored lines indicate diverse themes that

can be seen during a travel in this location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2. A visual story graph generated automatically by our approach for

the city of Istanbul. On the left, we show the density map of the

geo-tagged images collected from trips to the city of Istanbul. In the

middle, we provide some sample story lines which cover coherent

and distinct stories. On the right, we draw the story graph on the city

map. For illustrative purposes, here we only show four story lines. . . . . 4

Figure 4.1. Coherent and incoherent chain examples in terms of (a) visual ele-

ments and (b) textual elements. For each case, we show a number

of images composing a story. The bars indicate the elements that are

active on the images. The coherent chain given on the left tells a con-

sistent story through smooth transitions over the active elements. On

the other hand, within the incoherent chain shown on the right, the

active elements change very rapidly over the images, which result in

inconsistencies in the story told.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Figure 4.2. Sample visual elements from the visual dictionary constructed from

the Paris vacation photo albums. These elements are visualized by

finding the image patches having the closest RMAC representations [2].

While some of them captures the details from touristic attractions

(left), some correspond to very ordinary regions such as trees, clouds,

and sky (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xii



Figure 4.3. The story graphs of (a) Istanbul and (b) Paris, which are based on

travel photo albums collected from the web. The nodes (images) of

the graphs are arranged based on the available timestamp information. 29

Figure 4.4. The story graphs of (a) Amsterdam and (b) Tokyo, which are based

on travel photo albums collected from the web. The nodes (images)

of the graphs are arranged based on the available timestamp infor-

mation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Figure 4.5. The story graphs of (a) New York and (b) Venice, which are based on

travel photo albums collected from the web. The nodes (images) of

the graphs are arranged based on the available timestamp information. 31

Figure 5.1. The distribution of photos in our YFCC100M-CITIES dataset. The

area of a circle is proportional to the density of the photos in that

location.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Figure 5.2. Summarization results of city Istanbul. Top: Input photo album. Bot-

tom: Visual summaries done by a human, the baselines approaches

Uniform Sampling, K-Means clustering, and S-RNN [3] along with

the ones obtained via the DS3 method using self summarization (Y =

X), the story graphs constructed with visual features (Y = S
V ), both

visual and GPS features (Y = S
V G) and all visual, GPS and textual

features (Y = S
V GT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Figure 5.3. Summarization results of city Amsterdam. Top: Input photo al-

bum. Bottom: Visual summaries done by a human, the baselines

approaches Uniform Sampling, K-Means clustering, and S-RNN [3]

along with the ones obtained via the DS3 method using self summa-

rization (Y = X), the story graphs constructed with visual features

(Y = S
V ), both visual and GPS features (Y = S

V G) and all visual,

GPS and textual features (Y = S
V GT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

xiii



Figure 5.4. Summarization results of city New York. Top: Input photo album.

Bottom: Visual summaries done by a human, the baselines approaches

Uniform Sampling, K-Means clustering, and S-RNN [3] along with

the ones obtained via the DS3 method using self summarization (Y =

X), the story graphs constructed with visual features (Y = S
V ), both

visual and GPS features (Y = S
V G) and all visual, GPS and textual

features (Y = S
V GT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Figure 5.5. Summarization results of city Paris. Top: Input photo album. Bot-

tom: Visual summaries done by a human, the baselines approaches

Uniform Sampling, K-Means clustering, and S-RNN [3] along with

the ones obtained via the DS3 method using self summarization (Y =

X), the story graphs constructed with visual features (Y = S
V ), both

visual and GPS features (Y = S
V G) and all visual, GPS and textual

features (Y = S
V GT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Figure 5.6. Summarization results of city Tokyo. Top: Input photo album. Bot-

tom: Visual summaries done by a human, the baselines approaches

Uniform Sampling, K-Means clustering, and S-RNN [3] along with

the ones obtained via the DS3 method using self summarization (Y =

X), the story graphs constructed with visual features (Y = S
V ), both

visual and GPS features (Y = S
V G) and all visual, GPS and textual

features (Y = S
V GT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Figure 5.7. Summarization results of city Venice. Top: Input photo album. Bot-

tom: Visual summaries done by a human, the baselines approaches

Uniform Sampling, K-Means clustering, and S-RNN [3] along with

the ones obtained via the DS3 method using self summarization (Y =

X), the story graphs constructed with visual features (Y = S
V ), both

visual and GPS features (Y = S
V G) and all visual, GPS and textual

features (Y = S
V GT ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

xiv



Figure 5.8. Next image prediction. (a) Screenshot of the user interface used in

our experiments on the next image prediction task. (b) Example im-

ages predicted by our algorithm and the method of Kim and Xing

[1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Figure 5.9. A screenshot of the user interface used in our experiments on the

coverage task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 6.1. Sample images from the MIT memorability dataset [4]. The images

are sorted from more memorable (top left) to less memorable (bottom

right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 6.2. Top: Examples for the most memorable (left), typically memorable

(middle), least memorable (right) images in the MIT memorability

dataset. Bottom: Salient regions of the images extracted by the

method in [5]. The color coding shows the strength of saliency with

yellow, green and blue regions corresponding to top 10%, 20%, %30

most salient parts, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Figure 6.3. Top: Examples for the most memorable (left), typically memorable

(middle), least memorable (right) images in the MIT memorability

dataset. Bottom: Sample human annotated attributes as collected

in [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 6.4. Interesting and uninteresting patches extracted from two natural im-

ages based on visual attention. From the images, 8 image patches are

sampled randomly from the top 10% salient locations (top 2 rows)

and 8 others from the bottom 20% salient locations (bottom 2 rows)

according to (a) a bottom-up visual saliency map and (b) an object-

level saliency map, respectively.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 6.5. The proposed visual attention-driven spatial pooling pipeline for im-

age memorability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

xv



Figure 6.6. Visual attention-driven feature pooling scheme. For a given image

a bottom-up saliency map and (b) an object-level saliency map are

estimated and then the feature vectors are pooled over the salient

regions of the images (depicted as bright areas in the images. . . . . . . . . . . 57

Figure 6.7. Sample images from memorability database. Top row shows sam-

ples from most memorable images which mostly contain close-up

human faces. Middle row shows samples from typically memorable

images which generally have humans and/or human-made structures

or objects at a distance. Bottom row shows least memorable samples

which are mainly the images of natural scenes. . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 6.8. Sample images from memorability database for most memorable

(left), typically memorable (middle) and least memorable (right) with

their most confident scene attributes predicted by [7]. . . . . . . . . . . . . . . . . . . 60

Figure 6.9. Sample images from memorability database for most memorable

(left), typically memorable (middle) and least memorable (right) with

their most confident sentiment ANPs as predicted by [8]. . . . . . . . . . . . . . . 61

Figure 6.10. Memorability predictions by the proposed strategy. Out of all test

images, the 8 images in (a) are found to be the most memorable, the

ones in (b) are predicted as typically memorable and the other 8 im-

ages in (c) are guessed as the least memorable. The numbers denote

the average prediction scores of the given image sets. The images

predicted as highly memorable contains highly distinctive visually

salient elements as compared to other groups of images. . . . . . . . . . . . . . . . 66

Figure 6.11. Sample images on which our proposed scheme failed to capture the

memorability. The memorability ranks are predicted too high for the

images in (a) and too low for the ones in (b), as compared to their

empirical memorability ranks. The numbers in the parentheses show

the mean rank error between the predicted and the empirical ranks

across each group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xvi



Figure 6.12. Memorability maps versus bottom-up saliency and object-level saliency

maps of two of the images from Figure 6.11.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 7.1. The memorable story graphs of (a) Istanbul and (b) Paris, which are

based on travel photo albums collected from the web. The nodes

(images) of the graphs are arranged based on the available timestamp

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 7.2. The aesthetic story graphs of (a) Istanbul and (b) Paris, which are

based on travel photo albums collected from the web. The nodes

(images) of the graphs are arranged based on the available timestamp

information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Figure 7.3. Summarization with aesthetic and memorable story graph results of

city Istanbul. Top: Visual summaries using story graph constructed

with visual, GPS and textual features. Middle: Visual summaries

using memorable story graph. Bottom: Visual summaries using aes-

thetic story graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 7.4. Summarization with aesthetic and memorable story graph results of

city Amsterdam. Top: Visual summaries using story graph con-

structed with visual, GPS and textual features. Middle: Visual sum-

maries using memorable story graph. Bottom: Visual summaries

using aesthetic story graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 7.5. Summarization with aesthetic and memorable story graph results of

city Newyork. Top: Visual summaries using story graph constructed

with visual, GPS and textual features. Middle: Visual summaries

using memorable story graph. Bottom: Visual summaries using aes-

thetic story graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 7.6. Summarization with aesthetic and memorable story graph results of

city Paris. Top: Visual summaries using story graph constructed with

visual, GPS and textual features. Middle: Visual summaries using

memorable story graph. Bottom: Visual summaries using aesthetic

story graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xvii



Figure 7.7. Summarization with aesthetic and memorable story graph results of

city Tokyo. Top: Visual summaries using story graph constructed

with visual, GPS and textual features. Middle: Visual summaries

using memorable story graph. Bottom: Visual summaries using aes-

thetic story graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 7.8. Summarization with aesthetic and memorable story graph results of

city Venice. Top: Visual summaries using story graph constructed

with visual, GPS and textual features. Middle: Visual summaries

using memorable story graph. Bottom: Visual summaries using aes-

thetic story graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xviii



1. Introduction

Traveling and discovering locations contributes a lot to one’s life. ”Traveling turns you into

a storyteller” said Ibn Battuta in the middle age. While it is still a valid and effective motive,

today we have technology to build those stories for us in terms of visual narratives. When

we are planning a trip to a place we have never been before, we usually use a travel app or

visit websites such as tripadvisor.com or wikitravel.org to choose which places

to visit and what to do in that destination. City guides which were prepared by professional

travelers typically include essential information about the attractions, museums or parks in

that city. Hence, each traveler, in a way, joins a collaborative act of living and enjoying

the city and its culture. This joint act is clearly visible when we look at related travel photo

albums shared on the web. Of course, the individual details can vary across trips, but common

elements manifest themselves, providing collaborative stories about a city. Same landmark

locations and attractions are visited regularly by tourists, and are being photographed again

and again.

Together with shared landmarks and locations on these photo albums, individual photogra-

phers have their own taste of aesthetics and preferences while they are taking photos. In-

evitably, these personal preferences will take part on their craft. So, when we examine the

photo albums we would have different feelings evoked and we personally prefer specific al-

bums to the others. This artistic property of photos adds value to the photo itself and deserves

special consideration.

We propose a novel approach to automatically generate an informative visual summary of a

specific city directly from a large set of travel photo albums related to that city. We formulate

this task as a sub-modular optimization problem in which the structured summary is repre-

sented in terms of a story graph, providing information about different characteristics of the

city. Furthermore, we investigated the effects of intrinsic properties of images on these story

graphs. More specifically, we utilized memorability and aesthetics properties of photos on

the construction phase of the story graphs.
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We put more emphasis on the memorability property due to it’s less obvious characteristic

and hard to predict nature. We proposed an attention-driven framework to predict memora-

bilities of photos. Specifically, we utilize attention maps extracted from photos to identify

regions to be considered on the prediction scheme. Our intuition is the memorability property

of a photo will have extensive effect on the story graphs.

Similarly for the aesthetics property, our intuition is that people generally prefer to see and

visit interesting and visually appealing locations during their vacations. So incorporating this

property into our visual summary construction solution should yield improved results on user

preference. We utilized the state-of-art visual aesthetics prediction method in our framework

and analysed the outcomes.

1.1. What is a Storygraph?

In general, a story graph is a representation which allows to illustrate the common relation-

ships between data samples in an informative manner, and has been a topic of interest in the

scientific community lately. For instance, story graphs have been used to create summarizes

of news articles [9], scientific papers [10], ego-centric videos [11] and the interactions among

different characters in a movie or TV series [12].

Story graph representation is useful in terms of exhibiting the associations and interrelations

of different aspects over the information overload. Furthermore, it presents the data in a

non-linear way that facilitates extracting information and capturing patterns. Consider in

Figure 1.1., on left there exist a pile of photos where it consist of a visual information load

and it is hard to catch any patterns or extract useful information. On the right a story graph is

extracted from the same pile. The graph shows several distinct and coherent paths providing

some useful insights about the information the pile is hiding in terms of visual stories or

semantic connections between photos.
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Figure 1.1. Left: A travel photo album consisting of huge amount of photos where it is not practical

to extract or acquire information. Right: A story graph constructed from the photo pile.

Several distinct story paths shown in different colored lines indicate diverse themes that

can be seen during a travel in this location.

1.2. Thesis Statement and Contributions

This thesis research grounds on the following statement:

“We create visual information maps to enhance user experience over handling collabo-

rative and massive photo collections.”

Given tens of thousands of images of a city, in our work, we aim to identify a few story

lines that (1) are coherent, i.e. each tells a coherent but different story, (2) cover most of

the interesting attractions, i.e. they provide collective information regarding important and

salient characteristics of the city, and (3) are connected, i.e. they effectively capture the hid-

den interconnections. Fig. 1.2. demonstrates an example story graph for the city of Istanbul,

reconstructed automatically with our framework by analyzing lots of related travel photo

albums. The main contributions of our work are as follows:

� We develop a collaborative summarization approach which exploits visual and textual

data as well as geospatial and timestamp information to automatically extract a visual

story graph for a large collection of photo albums. Our formulation enforces maximum
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Figure 1.2. A visual story graph generated automatically by our approach for the city of Istanbul.

On the left, we show the density map of the geo-tagged images collected from trips to

the city of Istanbul. In the middle, we provide some sample story lines which cover co-

herent and distinct stories. On the right, we draw the story graph on the city map. For

illustrative purposes, here we only show four story lines.

degrees of coherency, coverage and connectivity over the extracted story lines, and as

it depends on sub-modularity, it is efficient and scalable.

� We introduce YFCC100M-CITIES dataset which includes images of six different cities,

annotated with GPS, timestamp tags and textual keywords. It contains in total 132,346

images over 1566 photo albums from 323 users for 6 popular travel destinations in the

world.

� We utilize the story graphs generated with our approach as structured abstractions of

important concepts, landmarks and events within the photo collections, and demon-

strate that they can be employed as a prior in photo album summarization to obtain

state-of-the-art results.

� We further demonstrate the effectiveness of our framework with two user studies on

next image prediction and tag coverage tasks. Our experimental results show that our

model provides better results than the state-of-the-art.

� We analyzed intrinsic properties and their effects on our story graph construction

framework. Specifically we showed that utilizing aesthetics and memorability of im-

ages further improves the quality of story graphs. Additionally, we proposed an attention-

driven framework for memorability prediction of photos.
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2. Related Work

We can group the related work on mining large photo collections into three different cate-

gories. First group of works focuses on data visualization aspect to allow a user to quickly

explore large photo albums [13–19]. Second group addresses summarization of large photo

collections by selecting a relatively small set of images based on some desired proper-

ties [3, 11, 20–22]. Last group of works, on the other hand, summarizes big visual data

in a structured manner by means of story graphs [1, 12]. Instead of selecting a representative

set of images, these works aim at reconstructing a narrative where each story line in the graph

reflects a major story arc in the image collections.

Additionally, due to the personal nature of story graph characteristics where touristic places

and popular locations are tend to take part, intrinsic properties of photos would be a consider-

able concept. The rest of the works are about this type of intrinsic characteristics. Specifically

these works study on the modeling and prediction of memorability scores of photos [4, 6, 23–

38] and similarly modeling and prediction of aesthetic scores of photos [39–44].

2.1. Exploratory Data Analysis and Visualization

Recently, there has been much interest in exploratory analysis of big visual data using visu-

alization techniques. Platt et al. proposed a method to automatically create an overview of

a collection based on clustering and then selecting the representative images from each clus-

ter [13]. Cooper et al. suggested a similar framework that depends on clustering of photo

collections based on similarities over appearance and temporal characteristics [14]. Kim et

al. introduced a data-driven method to model and analyze the temporal evolution of the topics

of the web images by constructing a large similarity graph of these images through a sequen-

tial Monte Carlo based method [16]. Berg and Berg developed an object-centric model to

identify canonical images in a set of images collected for a specific object category [15].

Doersch et al. proposed a discriminative clustering approach to learn common and distinc-

tive visual elements from large number of photos from a city [17]. Zhu et al. introduced
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a method which employs average images to let the users browse a large photo collection at

ease [18]. More recently, Kleiman et al. suggested an approach to search, find and browse

similar images on massively large image datasets by projecting their nearest neighbors in a

high-dimensional feature space into a 2D layout [19].

2.2. Summarization of Visual Data

A large body of works aims at analyzing big visual data by selecting the most representa-

tive images among a given set of images by eliminating the redundant ones. The selection

process amounts to capturing the most salient or interesting visual information depending on

the task or motivation at hand. For instance, Simon et al. developed a photo collection sum-

marization technique which extract the most interesting images over the collection by using

a SIFT co-occurrences based clustering framework with a RANSAC loop [20]. Obrador et

al. approached the summarization process from a supervised learning perspective in which

the information from users’ online social networks are used as cues [21]. Lu and Grauman

proposed a summarization method for egocentric video which relies on segmenting the video

into shots and identifying important objects in each shot and then extracts the summary by

enforcing coherency based on common objects shared in consecutive shots [11]. Sadeghi et

al. suggested a method for automatically creating a photo album from a large, unordered

collection images, which can be also regarded as an unstructured summarization [22]. The

authors, in particular, employ a discriminative structured model to capture compelling visual

narratives through features encoding faces, scene context and certain visual attributes. More

recently, Sigurdsson et al. have used recurrent neural networks to model long-term temporal

relations among photo albums to extract visual story lines and summaries [3].

2.3. Visual Story Graphs

Compared to the previous line of works, visual story graphs have been one of the least in-

vestigated topics in the computer vision literature. They serve as means for discovering

hidden patterns and structures in large sets of images or videos while summarizing events
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and activities in the visual data. In their pioneering work [1], Kim and Xing formulated

generating visual story graphs as inferring a sparse time-varying directed graph from multi-

ple photo albums which are collected on a single topic. Tapaswi et al. developed a similar

graph based summary of videos over the interactions among different characters [12]. Like

the aforementioned studies, our approach also differs from the conventional summarization

techniques in the sense that it outputs a structured summary depicting different aspects of

the photo collections in the form of a story graph. In that regard, the most similar related

work to our approach is the method of Kim and Xing [1]. However, our method is funda-

mentally different from this work in several aspects. Most notably that the approach in [1]

does not explicitly try to maximize coverage and connectivity of the story graphs, whereas

the approach presented here actually enforces this together with a coherency measure. Here,

while the coverage leads to diversity of the images in the story graph, connectivity allows to

extract the common aspects which are essential for photo album summarization. Moreover,

while the story graphs in [1] are constructed with the nodes as the visual elements, the nodes

of our story graphs correspond to individual images.

The story graphs generated from large photo collections can be also interpreted as a prior

graph collaboratively constructed for a particular interest. This property makes the proposed

approach a convenient tool for photo album summarization since the generated story graphs

both provide diverse information regarding the image collections but also encode particular

aspects of the visual data that are shared among many users.

2.4. Intrinsic Properties

There had been high interest on predicting intrinsic properties of images such as popularity,

aesthetics and memorability. [23] predicted the popularity of an image in terms of how many

views it can take on a social site by using both hand crafted features and social cues of the

owner of the photo. Similarly by using user information from a social site as features, on

[24] authors predicted the popularity based on the relations of other photos in their temporal
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neighborhood. Same authors proposed a deep network architecture [25] incorporating both

temporal and attention mechanisms to predict popularity.

[26] worked on predicting the popularity of a photo from social websites with a cold start

scenario where there is no or limited metadata. They predicted the popularity in terms of

number of views and comments. Another work [27] similarly studied on social media photo

popularity prediction, utilizing visual sentiment features. They analysed which sentiments

has effect on the popularity of a photo. More recently deep neural networks are being pro-

posed for popularity prediction. [28] proposed a multi-modal deep network model with an

attention mechanism by utilizing both textual and visual features.

When we look at memorability works, before today’s deep learning paradigm dominance

which shifted out hand-crafted representation extraction, all the existing image memorability

models in the literature followed the general framework of [4]. In the training step, some

low and high-level visual features are extracted from the images and they are used together

with the corresponding ground-truth memorability scores to train a support vector regression

(SVR) machine, which can then be used to predict the memorability score of a given test

image. In [4], the authors suggested representing images by means of some low-level image

features such as SIFT [45], HOG [46], SSIM [47], GIST [29] and color histograms, and/or

some semantic features which can be extracted from object and scene annotations. Their

proposed model predicts image memorability significantly better than chance, illustrating

that such image memorability models can be developed. Then, a number of models [6, 30–

32] have been proposed to improve the results of [4]. In general, these studies examine the

prediction problem by investigating new hand-crafted features that the authors consider to be

relevant to intrinsic memorability of images.

More recently image memorability works are generally focused on training complex deep

learning architectures on large scale data sets. Khosla et al. [33] collected a large scale data

set for image memorability and greatly improved memorability prediction by fine-tuning a

Convolutional Neural Network (CNNs). Similarly Baveye et al. [34] fine-tuned a different

CNN model and achieved better performance on memorability prediction. They showed that
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the architecture of the CNN model is also important on the task. Following the same direc-

tion, Zarezadeh et al. [35] utilized 3 different CNN models as feature extractors and used

their fully connected layers as features. They showed that different layers of the CNN net-

works have distinct performances on memorability prediction. In [36], Fajtl et al. created a 4

layer network combining a convolution layer with an attention mechanism and then a recur-

rent layer. They improved memorability prediction accuracy with their mixed architecture

on two major memorability photo sets. Sidorov O. [37] used pre-calculated memorability

scores of photos on a Generative Adversarial Network (GAN) to generate human faces and

analysed what characteristics of faces are changing with respect to memorability. [38] car-

ried out an analysis of current works on memorability and aggregated which properties of

photos are effective on memorability prediction.

Similarly when we look at the works on visual aesthetics prediction, formerly hand-crafted

features were being used. [39] used basic light, colorfulness, hue, saturation and object

information to predict aesthetics of the photo. From a different perspective, [40] made use

of edge and color distribution together with hue and blurriness for the same task. More

recently, after deep learning paradigm became popular, visual aesthetic research shifted to

that direction. [41] proposed a deep network utilizing a multi-patch aggregation method

and by adding some novel layers they increased the effectiveness. Similarly [42] used a

convolutional neural network model extended with a multi-scale adaptive spatial pooling

layer and achieved improved visual asthetic prediction accuracy. Another multi-patch based

novel convolutional neural network model [43] combined with another layout-aware network

for to form hybrid presentation for aesthetic prediction. Finally [44] used again a multi-patch

aggregation approach on an end-to-end deep model together with an attention mechanism,

achieving state-of-art performance for visual aesthetic prediction. They showed attention is

also correlated with aesthetics.

One of our goals in this work is to explore the function of visual attention in predicting

intrinsic memorability of images. In that respect, our work shares some motivating factors

with the models suggested in [30, 32]. In [30], the authors presented a probabilistic model to

measure memorability of image regions, which can be used to predict image memorability
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as well as the regions that are more likely to be remembered. Within their framework, they

suggested to use saliency maps of images as features along with some other visual features.

In [32], the authors performed an eye-tracking experiment on a subset of the images in order

to observe which parts of those images attract subjects’ attention. They have observed that

there is a strong correlation between fixation durations and the memorability scores. In

addition, the authors proposed two attention-guided (saliency-oriented) features which are

shown to be useful in predicting image memorability.

Beyond visual attention-based features, we specifically aim to investigate the use of atten-

tional mechanisms for selecting relevant features to image memorability. Previous mod-

els [30, 32] employ saliency maps or saliency-oriented features as additional images fea-

tures. In contrast, our key insight is that the visual content in the regions that attract attention

is as important as or even more valuable than the whole image content in predicting intrinsic

memorability of an image. Thus, whereas prior work [4, 30, 32] employs a fixed pooling

layout for feature pooling, we propose to consider a pooling scheme that focuses on salient

regions within images. We expect this additional feature selection mechanism will allow us

to capture characteristics of images relevant to memorability and accordingly improve the

prediction performances of dense image features. The details of our feature pooling scheme

will be given in Section 6.1.1..

In this work, we also consider ways to boost the success of memorability predictions by em-

ploying high-level descriptors that encode the semantic content of images. Similar to [4, 6,

30, 31], we make use of information regarding to objects in images, scene knowledge and/or

attributes. In [6], Isola et al. investigated the use of annotated visual attributes to estimate

memorability of images. Their study revealed that exploiting available human-describable at-

tributes greatly increases the quality of the predictions. To deeply understand which attribute

is a better indicator of memorability, they investigated a greedy feature selection approach

to select the best set of relevant attributes. In another study [31], the authors proposed two

novel spatial features which can be extracted from the object annotations exist in the dataset.

While the first feature measures the importance of the object in terms of how close it is to

the image center and how large it is, the second feature is related to how much unusual the
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coverage of the object is among all other objects from the same visual category. Their results

show that both of these features improve the memorability prediction accuracy.

As compared to [6, 31], however, the semantic features that we employ, which encode meta-

level object categories [48], scene attributes [7], and invoked feelings [8], have quite a num-

ber of distinct benefits. While the semantic features used in the previous models are based

on manual image annotations collected from human subjects, these features can be automat-

ically extracted from the images. This allows us to develop a prediction model which can

work in the absence of this sort of high-level annotations. Our approach, thus, requires no

supervision and has dramatically less complexity in the training and testing. Notably, among

the previous studies, only [30] employed such an automatically extracted semantic feature

which is composed of the responses of many pre-trained generic object detectors from Ob-

jectBank [49]. However, these ObjectBank features can be considered as limited as compared

to our features, specifically the meta-level object categories [48] which represent an image by

means of abstract classes of objects in a hierarchical structure obtained by grouping similar

object classes and putting forward higher level common features. The details of our semantic

features will be given in Section 6.1.2..

To our knowledge, no previous work attempted to improve image memorability prediction

based on an attention-guided feature selection mechanism. In this chapter, we will give de-

tails of our proposed attention-driven pooling strategy on visual memorability prediction.

We experimented on the MIT Memorability dataset, and perform a thorough experimental

analysis to validate that selecting features from the salient image regions via our proposed

attention-driven pooling strategy can indeed make more accurate predictions of memorability

scores. In addition, we study a group of semantic features related to meta-level object cat-

egories [48], scene attributes [7], and invoked feelings [8] that can automatically extracted

from images (Section 6.1.2.), and analyze their roles in predicting memorability of images.

Thus, we provide additional discussion of the results and related work, and include new

quantitative comparisons of our combined framework against the state-of-the-art.
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3. Background

In this chapter, we will give brief summaries and descriptions of the works that we benefited

from in our framework and experimental analysis. These works are:

� Particular Object Retrieval With Integral Max-Pooling of CNN Activations: We uti-

lized the RMAC representation of Tolieas etal. [2] where it extracts visual patches

from the convolution output of the Convolutional Neural Network and form the repre-

sentation vectors based on these patches.

� Dissimilarity-based Sparse Subset Selection: We used the D3S method [50] in our

visual summarization experiments where we selected the summary subset of photos

using our story graphs as a prior knowledge.

� AMNet: Memorability Estimation with Attention: While we extract our memorable

story graphs, we make use of the state-of-art visual memorability prediction framework

AMNet [36] in order to extract memorability prediction scores of the photos.

� Attention-based Multi-patch Aggregation for Image Aesthetic Assessment: Similar to

the memorable ones, to construct our aesthetic story graphs we utilized the current

state-of-art multi-patch aggregation framework for visual aesthetic prediction of Sheng

etal. [44].

For the rest of this chapter, we will explain the key points of these works.

3.1. Regional Maximum Activations of Convolutions

The Regional Maximum Activations of Convolutions (RMAC) [2] is an compact image rep-

resentation based on the convolution layer output which are the activation maps from a con-

volutional neural network (CNN).
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The convolution layer output from a trained convolutional neural network has the dimensions

of WxHxK where W and H represents the width and height of the activation maps of the

last convolution layer. K is the number of filters or feature channels. From the WxH

sized 2D maps, 40% overlapping multi-scaled square regions are extracted. The sizes of

the squares are formed from L different scales where each scale dimension is calculated by

min(W,H)/(li + 1) where (l0..lL) = 1..L shows the scale dimension indexes. Totally R

regions are obtained.

For each region ri from R = r0..rR the max-pool is performed and the output of each region

from the corresponding filter map is combined, resulting with a K dimensional represen-

tation vector for that region ri. Finally L2 normalization followed by PCA-whitening and

again L2 normalization is applied to the vector as the post-processing. For the image repre-

sentation, each K dimensional region vector is summed and L2 normalized to achieve the

final feature vector.

The authors showed by experiments on Oxford Buildings dataset [51] and Paris dataset [52]

that the RMAC representation improves the performance on image retrieval and image re-

ranking tasks and provides efficient object localization.

3.2. Dissimilarity-based Sparse Subset Selection

Dissimilarity-based Sparse Subset Selection [50] method is a subset selection algorithm that

finds the representative photos from a large image collection using dissimilarities of the im-

ages.

The algorithm takes two sets of images: the source set X and the target set Y. The idea is

to find a representative set from X which encodes the elements of Y based on their dissimi-

larities. Here constructing the dissimilarity matrix is the crucial step that the representatives

will be determined based on it. The dissimilarity matrix is given in Equation 1.
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D �

⎡
⎢⎢⎢⎢⎣

dT
1

...

dT
M

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣
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...

...
...

dM1 dM2 ... dMN

⎤
⎥⎥⎥⎥⎦
∈ R

MxN (1)

Here di ∈ R
N corresponds to the ith photo’s dissimilarity vector with respect to other pho-

tos. The goal is to find a small subset that will represent the elements of Y. The method

allows to use any dissimilarity metric such as KL divergence, Hamming, Euclidean etc. As

dissimilarity is the opposite of similarity, both can be utilized with this algorithm.

After the construction step of dissimilarity matrix D, next step is to find the subset which

corresponds to the representative photos of X. In order to achieve this, the algorithm uses

an optimization program to find some binary variables zij . These variables are associated

with dij and are indicator for xi representing yi. Equation for binary zij matrix is shown in

Equation 2.

Z �

⎡
⎢⎢⎢⎢⎣

zT1
...

zTM

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

z11 z12 ... z1N
...

...
...

zM1 zM2 ... zMN

⎤
⎥⎥⎥⎥⎦
∈ R

MxN (2)

On this equation
N∑
i=1

zij = 1 should be satisfied to ensure that each yi ∈ Y is represented.

The optimization problem to select the subset from X is defined as a row-sparsity regularized

trace minimization as formalized in Eq 3.

min
{zij}

λ
M∑
i=1

I(‖ zi ‖p) +
N∑
j=1

M∑
i=1

dijzij

s.t.
M∑
i=1

zij = 1, ∀j; zij ∈ {0, 1}, ∀i, j
(3)
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Here I is the indicator function where We want to select as few representative photos as pos-

sible, so it is 0 if the lp norm of zi is zero, 1 otherwise. The second term corresponds to the

cost of encoding Y with X which is
N∑
j=1

M∑
i=1

dijzij . Finally the regularization parameter λ ad-

justs the number of representative photos that we want to select. Because the formalization is

NP-hard, the authors used convex programming and provided an efficient and parallelizable

implementation. Furthermore, they showed the method can be used for scene categorization

and deals effectively with outliers.

3.3. AMNet: Memorability Estimation with Attention

AMNet: Memorability Estimation with Attention [36] proposes an end-to-end trainable deep

neural network together with a visual attention mechanism for visual memorability estima-

tion. The network consists of 4 layers:

1. Convolutional Network layer

2. Soft Attention Network layer

3. Long-Short Term Memory (Recurrent Network) layer

4. Fully Connected layer

For the first convolutional network layer, authors preferred to use transfer learning on ResNet50 [53]

trained on ImageNet which achieves high prediction accuracy on image classification tasks.

So, given a single image X the first CNN layer outputs a tensor having dimensions (W,H,D).

Here W and H correspond to output resolution of feature maps and D shows the number of

filters or length of the feature vectors. For AMNet, these dimensions are (14, 14, 1024).

For the second layer, they used a soft attention mechanism which consists of a network to

learn probabilities of discrete elements on the image and a gating function to weight the data

based on those probabilities.
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The third layer is a L = 3 step LSTM network where at each step the corresponding state is

calculated with the Equation 4.

ht = φ(ht−1, zt) t = [0, T ), h ∈ R
B (4)

Here each state ht is calculated with a function φ which uses the previous state ht−1 and the

transition image features zt calculated as a weighted sum using the image itself X and αt

which is the probability of calculated attention weights given the image X and the previous

LSTM state ht−1, as shown in Equation 5.

zt =
L∑
i=1

αt,ixi zt ∈ R
D

αt ∼ p(αt|x, ht−1) αt ∈ R
L

(5)

At the end of each step of LSTM, the produced output ht is converted to a memorability

score mt with the Equation 6.

mt = fm(ht) (6)

Here fm is the function that converts the output of corresponding LSTM state ht to the

memorability score mt. Basically it is a two-layered network with a single output.

Finally the memorability score y of image X is simply the sum of these memorability score

at each step, as shown in Equation 7.

y =
T∑
t

mt (7)
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AMNet achives average Spearman’s rank correlation score of 0.649 and mean squared error

(MSE) of 0.011 on SUN Memorability dataset [54]. Similarly 0.677 average Spearman’s

rank correlation and 0.0082 MSE scores on LaMem dataset [33]. These scores show the

state-of-art performance on image memorability prediction in the literature. It should be

noted that the human performance from memorability prediction experiments has 0.68 aver-

age Spearman’s rank correlation score. AMNet closes the gap between human and machine

predictions.

3.4. Attention-based Multi-patch Aggregation for Image Aesthetic As-

sessment

The visual aesthetic prediction framework of Sheng etal. [44] is a multi-patch aggregation

method for image aesthetic prediction. The framework basically consists of a convolutional

neural network and then an attention mechanism. Here the attention mechanism plays an

important role that after the prediction, during the back-propagation phase it increases the

weights of the object patches that are predicted incorrectly resulting in a boosting in accuracy.

The method bases on an energy maximization function as shown in Equation 8.

argmin
x

=
1

|P|
∑
p∈P

Pr(ỹ = ŷ|p, θ) (8)

Here P is the set of patches extracted from photos of the dataset, ỹ shows the predicted

aesthetic score and θ is the network parameters that maximizes the probability of correct

label prediction. Based on this optimization function, authors devised 3 multi-patch weight

method for testing where each method uses different weighting schemes for the patches.

MPavg which corresponds to average weighting takes all patches into the consideration and

optimizes based on the average prediction scores. MPmin takes only patches with lowest

prediction confidence into consideration from an image and ignores others. MPada which

corresponds to adaptive-weighting scheme gives adaptively changing weights to incorrectly

predicted patches to increase their prediction accuracies.
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For training, authors preferred tuning the 18-layer ResNet architecture trained on the Ima-

geNet ILSVRC2012 dataset. They used AVA dataset which is the largest open photo set for

visual aesthetic assessment consisting of 250.000 photos together with their aesthetic scores.

During training they did not change the aspect ratio of photos where for aesthetic predic-

tion it plays an important role. Instead they resized photos by keeping aspect ratio fixed and

cropped 224 x 224 sized patches from them. They also applied random horizontal flipping

for data augmentation.

Their proposed MPada weighting scheme achieves the state-of-art prediction accuracy of

83.03 for visual aesthetic prediction. Other two schemes which are MPavg and MPmin

similarly achieve 81.76 and 80.50 scores respectively.

Additionally, authors emphasized the effectiveness of their proposed method by further mak-

ing experiments using different network architectures (VGG16), measuring correlations be-

tween pre-trained (ImageNet) and fine-tuned networks and investigating the effects of image

resizing.
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4. Visual Storygraph Generation

In this section we give the formal definitions of story graphs and introduce our framework

with details of the steps to extract visual story graphs from large image collections. We start

with constructing dictionaries for visual and textual elements from the given sets of images.

These elements serve as fundamental building blocks in finding coherent and intersecting

story lines. Then we explain the construction steps of the story graphs in detail.

4.1. Definition of a Story Graph

A story graph is a pair S = (G,P) where G = (V,E) represents a directed graph, P de-

notes a set of chains (paths) which includes the story lines in G, the nodes of G correspond

to the representative images from a large photo collection and its edges symbolize the con-

nections among them. In an ideal case, a story graph, as a whole, should provide a visual

collaborative summary of the photo collection from which it is extracted. This goal can be

achieved by constructing it by considering three key properties, namely coherence, coverage

and connectivity [55].

4.1.1. Coherence

Intuitively, we want our story graphs to tell coherent stories. Hence, we need a mechanism

to measure the consistency across each story line of our story graph. We employ visual

and textual elements as means for forming coherent visual stories through these story lines.

Specifically, we connect the images with the visual and textual elements shared among them.

We define the overall coherence gained by a story line Pi = (p1, ..., pn) ∈ P by the following

equation:

Coherence(Pi) = min
k=1..n−1

∑
e

�(e is active in pk and pk+1) (9)
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where {e} denotes the set of elements, pk represents the kth photo in the story line. We

consider an element e as active if its importance is above a certain pre-defined threshold for

both pk and pk+1.

In particular, here, we ensure that all the consecutive pairs of photos on the story line share

at least an element e which can either be a visual or a textual element. The function � is an

indicator function which enforces that the element should be active among the photos pk and

pk+1. The final coherence value is then determined by the weakest pair among the whole

story line. Hence, for a coherent chain, the behavior of all of the elements should provide a

transition as smooth as possible throughout the story line. Refer to 4.2.1. and Section 4.2.2.

for the details of how we construct the visual and textual elements and decide whether an

element is active or not for an image.

In Fig. 4.1., we show some sample coherent and incoherent chains based on visual and textual

elements shared among the images in the chain and plots. As can be seen, the characteristics

of the images change rapidly in an incoherent chain without producing consistent stories,

which is valid for both visual and textual domains.

4.1.2. Coverage

Coverage property ensures that the photos among the story line cover a diverse set of ele-

ments. That is, if a story line sufficiently covers an element, there is no need to add it to

the story graph. This brings the so-called diminishing return property that tells as new story

lines are added to the graph, if the new story line covers an element that has already been

covered, it should contribute very little to the total coverage. With this property in mind,

each element’s coverage through a story graph S is given by the following equation:

CoverageS(e) = 1−
∏

p∈photos(S)
(1− Coveragep(e)) (10)

where Coveragep(e) ∈ [0, 1] denotes how important that element is for describing the photo

p, defined differently for visual and textual elements. If the story graph S has photos covering
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(a)

(b)

Figure 4.1. Coherent and incoherent chain examples in terms of (a) visual elements and (b) textual

elements. For each case, we show a number of images composing a story. The bars in-

dicate the elements that are active on the images. The coherent chain given on the left

tells a consistent story through smooth transitions over the active elements. On the other

hand, within the incoherent chain shown on the right, the active elements change very

rapidly over the images, which result in inconsistencies in the story told.

the element e well, the coverage of the whole map on element e, CoverageS(e), will be close

to 1 which means there is no need to select any other photos covering the same element e.

If a new story line has been added to the graph, it should cover different elements, resulting

in a more diverse chains of photos. In our framework, visual elements connects photos via

visual patches whereas textual ones creates semantic connections through textual keywords.

However, of course, not all elements are equally important. Some visual elements such as

the sky regions are so common among the images that it is not feasible to use them to form

story lines. Similarly, specific textual keywords such as White House which shows a singular

location should have higher importance than generic location names like garden or museum.
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Total coverage of a story graph is then computed as the summation of the coverage of both

visual and textual elements as given below:

Coverage(S) = α
∑
v∈V

CoverageS(v) + (1− α)
∑
t∈T

CoverageS(t) (11)

where v ∈ V denotes a visual element, t ∈ T represents a textual element, and α ∈ (0, 1) is

a scalar representing relative significance of textual and visual elements. In our experiments,

we empirically set the value of α to 0.1.

4.1.3. Connectivity

Connectivity enforces that the story lines should share some photos which amounts to the

crossing points between the chains. This is a unique property that gives a story graph a

nonlinear story structure as compared to the simple linear story model. The story graph is

more informative when it shows hidden connections between diverse paths. In other words,

without connectivity, the output will be linear summaries of individual photo collections.

Although it seems contradicting with the coverage property, we look for minor connections

between story lines after selecting a diverse set, preserving diversity together with a few

individual photo similarities. Formally, the connectivity of a graph can be defined in terms

of a value denoting the sum of the number of lines that intersect in story graph S:

Connectivity(S) =
∑
i<j

�(Pi ∩ Pj �= ∅) (12)

with Pi and Pj denoting the ith and jth story lines in the story graph S .

4.2. Constructing the Story Graph

We cast the story graph construction as an optimization task defined over extracted coherent

story lines S = (Pi, ..,Pn). That is, we compute the optimal story graph S∗ by first extracting

most coherent story lines and then selecting a diverse set of important ones which intersect
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Algorithm 1 Steps of finding the optimal story graph S∗ from a large collection of images

denoted by I
1: for each image pi in the input photo collection I do
2: Estimate the importance weights for the visual elements (Section 4.2.1.)

3: Estimate the importance weights for the textual elements (Section 4.2.2.)

4: Compute the coherence graph G based on the transitions over elements (Section 4.2.3.)

5: Extract a set of high coverage chains from G (Section 4.2.4.)

6: Perform a local search to improve the connectivity (Section 4.2.5.)

with each other to a certain extent by considering the following equation that is built upon

Coverage, and Connectivity characteristics:

S∗ = argmaxS Connectivity(S)

s.t. Coverage(S) ≥ C (13)

where C denotes a coverage score that is smaller than the highest coverage score that can be

obtained without considering the connectivity property.

An optimum approach to find S∗ is not trivial, hence, instead, we use a greedy approach

by exploiting the sub-modular structure that exist in our problem. That is, we first maximize

coverage and then try to maximize connectivity over story lines by allowing some decrease in

the maximum possible coverage score (please refer to Section 4.2.4. for the details about how

the maximal coverage can be defined. The whole algorithm is summarized in Algorithm 1.

4.2.1. Visual representation

Our visual representations are based on bag of visual elements. In particular, we approach the

extraction of the visual elements from a dictionary learning perspective. In particular, we em-

ploy a recently proposed deep feature called Regional Maximum Activation of Convolutions

(RMAC) [2] which achieves the state-of-the-art performance for the image retrieval task.

Specifically, the RMAC representation that we use in our work depends on the VGG16 [56]

model pre-trained on ImageNet. It is extracted from the last pooling layer, resulting in a 3D

tensor having W×H×K dimensions where K denotes the number of filters. Then, for these
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Figure 4.2. Sample visual elements from the visual dictionary constructed from the Paris vacation

photo albums. These elements are visualized by finding the image patches having the

closest RMAC representations [2]. While some of them captures the details from touris-

tic attractions (left), some correspond to very ordinary regions such as trees, clouds, and

sky (right).

W ×H response maps they sample R uniform square regions at L different scales with 40%

overlap. For each region r ∈ R max-pooling is performed on each channel and obtained a

feature vector of K dimensions as shown in Eq. 14. The last step is the L2-normalization to

get a single region vector.

fr∈R = [fr,1 . . . fr,i . . . fr,K ]
T (14)

In our work, we cluster these region features with K-Means clustering algorithm and form

the visual dictionary for a city accordingly. We set the size of this dictionary as 1024. This

approach captures various structures that persistently exist in the image collections, reflecting

the visual characteristics of a city and the popular landmarks within. In Fig. 4.2., we demon-

strate sample image regions which are close to some of the visual elements from the Paris

dataset. As can be seen, some of these regions correspond to the details from the touristic at-

tractions such as Eiffel Tower, Arc de Triomphe, Notre Dame and Louvre Museum as given on

the left. However, since our dictionary learning procedure does not use any prior knowledge

about the cities, some of the extracted visual elements might correspond to very common im-

age regions such as sky, trees, etc. as shown on the right. Hence, for each image pi we assign

a certain importance weight to each visual element v, which is defined inversely proportional

to the number of occurrences of this visual element in the whole image collection.

Each image is decomposed into a set of local image regions, each encoded via a RMAC

feature. Then, Locality-constrained Linear Coding (LLC) [57] is applied over these regions
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to obtain the final representation by max pooling of each region’s code vector over the ex-

tracted visual elements. LLC encoding yields a sparse representation where only the most

prominent visual elements are considered in the final representation. Importances of visual

elements are then defined in terms of this LLC encoding scheme.

In Eqn. 9, the coherence score is estimated through the active visual elements over a story

line. The decision about whether a visual element is active or not is made by inspecting the

weights of this visual element within the LLC encodings of the image pairs. If they are above

a certain threshold, we assume the element is shared between the images and considered as

active.

4.2.2. Textual Representation

In our work, we represent the images in the photo-collections in a multi-modal manner. As

we mentioned earlier, representing images visually is carried out by first learning a visual

dictionary from the training images and then by extracting visual elements from each image.

Apart from this, we also consider a semantic representation of images that depends on textual

information. In particular, each image can be tagged by a list of words by employing a pre-

trained set of image classifiers that identify the visual characteristics of the image. In our

work, we alternatively assume that each image has been already associated with a set of

keywords. By this way, we can utilize a dictionary of words extracted from all of the images

in the collections and then represent each image in terms of these keywords. To determine

the importance of textual elements, we employ a tf-idf weighting scheme.

Similar to the visual elements, the coherence score due from the textual elements is computed

by taking into account the textual elements that are shared over a story line. While deciding

these shared textual elements, we utilize their importance scores of indicated by their tf-

idf weights. We assume that a textual element is active if its score is above a pre-defined

threshold value.
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4.2.3. Finding Coherent Story Lines

We start with modeling story lines by the transitions of the extracted visual and textual el-

ements. The brute-force solution to optimize the energy function in Eqn. 13 inspects every

pair of images for the occurrence of all elements, and thus it takes time proportional to

N2 × D where N is the number of images and D is the total number of elements. Since

this is intractable for large image collections, we use a divide-and-conquer approach to build

story lines. First, we extract short chains of images with smooth transitions being observed

over some visual and/or textual elements. Then, we combine these short chains which over-

lap through some common images to obtain longer story lines that constitute our coherence

graph G.

Our algorithm starts with a RANSAC [58] loop where at each iteration we randomly choose

two images from the collection, which share at least a visual or textual element to satisfy

the coherence property and which correspond to the end points of a short chain. Hence, to

determine the images in between these two, for each shared element we search for images

that also share the same element. Specifically, we enforce a smooth transition across the

story line as in [1]. For each shared visual element of the end point images, we fit a line over

the activation scores coming from the LLC encoding [57] and validate the consistency of a

candidate image by analyzing how well it fits to this linear activation transition function [55]

by its corresponding element. For each shared textual element of the end point images, we

check whether the element is active in the candidate image or not.

In our framework, we also utilize additional meta-data about the photos, namely the time-

stamps and GPS location information to enforce additional constraints to improve the quality

of the transitions. First, each image over a story line should be captured after the time the

photo preceding it is taken. This eliminates the possibility of ambiguous ordering of images

such that a night time image follows a day time. Second, an image should be close to its

previous image in geospatial terms. This enhances both the structure and the overall visual

appearance of the story line in that nearby locations are more likely to share similar visual
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structures. In our experiments, we empirically set the length of the short chains as 3. Larger

values, in general, fail to find sufficient number of high quality chains.

Once we extract the coherent short chains, the next step is to construct a coherence graph

G. We combine the shorter chains by the common images that they share and accordingly

obtain longer chains, each of which denotes a coherent story line.

4.2.4. Finding Story Lines with High Coverage

In the previous subsection, we show how to extract all coherent story lines on a coherence

graph G we build based on short chains. Finding story lines with high coverage corresponds

to selecting a subset of those from G that maximize the coverage as Eqn. 10 indicates. This

can be formulated as an orienteering problem, aka prize-collecting TSP [55, 59], in which the

goal is to maximize rewards collected while walking on the graph subject to a budget on the

tour length and given two endpoints. The reward function is given by f : 2V → R
+, which

returns a non-negative value to every subset of nodes. Exhaustively searching for an optimum

solution is infeasible but we can exploit the submodularity of our coverage function (Eqn. ??)

where greedy algorithms with good approximation guarantees exist in the literature [59].

A set function f : 2V → R is submodular if f(A ∪ a) − f(A) ≥ f(B ∪ a) − f(B) and for

all A ⊆ B ⊆ V . This property is referred to as the diminishing returns, meaning that adding

a new item to a smaller set provides a larger gain than adding it to a larger set.

After we extract our coherent story lines, we define the following incremental coverage no-

tion to measure the gain in the coverage score when we add the story line to our story graph

S for each story line Pi as follows:

IncCoverage(Pi|S) = Coverage(Pi ∪ S)− Coverage(S) (15)

To sum up, in order to find the set of story lines that have the highest coverage over the visual

elements, we follow an incremental search strategy. Starting with the story line having the
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highest coverage value, we gradually enlarge the story graph by analyze each not included

story line by its contribution to the current coverage (Eqn. 15) and add the one that contributes

the most. This procedure is repeated until there is no additional gain.

4.2.5. Increasing Connectivity

Increasing the connectivity is important to discover nonlinear story structures. We perform a

local search operation on the extracted coherence graph G by using the story graph S+ with

the highest coverage as an initial point. In particular, we fix the story line having the highest

individual coverage and perform a search among all of the other story lines forming the co-

herence graph G. Our aim is to find story lines alternative to the ones in S+, which increases

the connectivity by allowing a reasonable amount of degradation in the total coverage value.

Of course, the key question here is how much coverage drop can be tolerated. Allowing too

much drop in the coverage results in story graphs with low coverage whereas limiting it to

a low value prevents finding an appropriate chains for the replacements. In our work, we

empirically observe that a 7% drop in the total coverage score generally gives satisfactory

results. In Figures. 4.3., 4.4. and 4.5., we provide the story graphs for the cities of Amster-

dam, Istanbul, New York, Paris, Tokyo and Venice which are automatically constructed by

our approach from large sets of travel photo albums collected from the web.

In the story graph figures, each story line is shown in a different colored line. Each story

line consists of photos with similar but as many diverse visual characteristics as possible.

Together with this property and multiple distinct story lines, a story graph forms an excellent

prior information about the specific city, which we will make use of in a visual summarization

application in the next chapter.

4.3. Summary

In this chapter, we proposed an approach to automatically extract story graphs from large

collections of photo albums, which serves as a collaborative and structured summary of these
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(a)

(b)

Figure 4.3. The story graphs of (a) Istanbul and (b) Paris, which are based on travel photo albums

collected from the web. The nodes (images) of the graphs are arranged based on the

available timestamp information.

albums. We treated this task as a sub-modular optimization problem and formulated a greedy

approach to find a graph that maximizes the degrees of coherence, coverage and connectivity

of the story lines. Next we will describe an application where the generated story graphs can
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(a)

(b)

Figure 4.4. The story graphs of (a) Amsterdam and (b) Tokyo, which are based on travel photo al-

bums collected from the web. The nodes (images) of the graphs are arranged based on

the available timestamp information.
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(a)

(b)

Figure 4.5. The story graphs of (a) New York and (b) Venice, which are based on travel photo al-

bums collected from the web. The nodes (images) of the graphs are arranged based on

the available timestamp information.
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be utilized.
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5. Application: Visual Summarization Using Story

Graphs

In the previous section, we develop a method to generate visual story graphs from a large

collection for photo albums. These story graphs are collaborative structured summaries con-

taining coherent visual story lines and providing a comprehensive overview of specific topics

of interest. With these characteristics, story graphs can be interpreted as prior graphs repre-

senting important concepts, landmarks and events within the photo collections.

An extensive application that make use of a story graph is photo album summarization task.

In that regard, in this section, we demonstrate a way to obtain more effective summaries of

photo albums and albums that cover the topics encoded in the story graphs generated by our

approach.

5.1. Story-Graph Guided Photo Album Summarization

Given a photo album X, our goal is to extract a small number of images from X that represents

the whole set. We additionally assume that another set of images are given in the form of a

story graph Y. Here, we formulate the summarization task as a subset selection task. For this

purpose, we particularly employ the D3S algorithm [50] which formulates subset selection as

a row-sparsity regularized trace minimization problem which can be easily solved via convex

optimization.

In short, the D3S algorithm solves a special subset selection problem when side information

is available in the form of dissimilarities between the source set X and a target set Y, defined

as:

min
{zij}

λ
∑M

i=1 ‖zi‖p +
∑N

j=1

∑M
i=1 dijzij (16)

s.t.
∑M

i=1 zij = 1, ∀j; zij ≥ 0, ∀i, j
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where zij is the indicator of the source item xi ∈ X representing the target item yj ∈ Y

and dij denotes the dissimilarity between xi and yj . In our experiments, we use the KL-

divergence as our dissimilarity measure. The parameter λ provides a trade-off between the

number of representative samples and the encoding quality with smaller values of λ causing

more number of samples selected as representative. Here, the first term penalizes the size of

the representative subset and the second term is the encoding cost. In [50], the authors show

that an optimal solution can be found using an Alternating Direction Method of Multipliers

(ADMM) approach in an effective manner.

Notice that here we suggest to let Y denote the set of images available in the input story

graph. Hence, while extracting a summary from the given photo album denoted by X, the

representative samples of X in the generated summary cover the themes available in Y. Al-

ternatively, we can let Y = X by selecting the target set same as the source set. If this is the

case, it becomes a self-summarization problem [50].

5.2. YFCC100M-CITIES Dataset

To evaluate our proposed story graph generation approach, we curated a new dataset by

selecting and annotating images from the publicly available YFCC100M dataset [60]. In

short, YFCC100M dataset [60] which contains 99.2M photos and associated metadata such

as time stamps, geolocation information and keywords from Flickr. However, most of the

time, the user generated keywords are noisy, since the users are from different countries, they

use different languages while providing them.

In our work, we particularly collected vacation photographs from 6 different cities, namely

Amsterdam, Istanbul, New York, Paris, Tokyo, Venice which are among the most visited

cities around the world. We eliminated the photo albums that consist of only close-up pictures

of humans or cover just one topic such as flowers in a garden. For user generated keywords,

we filtered out highly generic words or words that are unrelated to the topic of interest. We

then grouped similar and synonym words into common concepts by taking into account non-

English words as well. In total, we have collected 132K geotagged images from 323 users
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Amsterdam Istanbul New York Paris Tokyo Venice

Figure 5.1. The distribution of photos in our YFCC100M-CITIES dataset. The area of a circle is

proportional to the density of the photos in that location.

Table 5.1. Statistics of YFCC100M-CITIES.

City Number of Number of Number of Number of
Albums Users Photo Sets Photos Unique Words

Amsterdam 39 100 9,923 1,460

Istanbul 58 167 13,645 979

New York 54 428 30,443 18,538

Paris 39 178 21,819 1,521

Tokyo 71 514 36,787 4,007

Venice 62 179 19,729 2,032

Total 323 1,566 132,346 25,118

and 1.5K photo albums. Fig. 5.1. and Table 5.1. show the basic statistics of our dataset,

which we named as YFCC100M-CITIES dataset.

5.3. Experiments

We performed an extrinsic evaluation of our story graphs in which we leverage them as a

prior to guide photo album summarization (Section 5.3.2.). Another common approach to

the visual evaluation task is performing user studies. Based on our formalism, a good story

graph must first meet two criteria. It must be composed of coherent chains and these chains

should all together should cover most of the important aspects. However, it is difficult to

quantitatively evaluate these two notions so we decided to perform controlled user studies,

on which we compare against the previous work by Kim and Xing [1]. To assess coherence,

we employ the next image prediction task proposed in [1] (Section 5.3.3.), but to evaluate

coverage we devised a new experiment (Section 5.3.4.) since there has been no particular

attention to this essential property.
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Table 5.2. Statistics of additional photo set for summarization experiments.

City Number of Number of
Albums Photos

Amsterdam Trip 2 200

Istanbul Trip 1 100

New York Trip 1 100

Paris Trip 5 500

Tokyo Trip 2 200

Venice Trip 2 200

Total 13 1300

5.3.1. Evaluation Dataset

For summarization experiments, additional to the YFCC100M-CITIES dataset we collected,

we need another unseen photos to perform a fair comparison. Thus, we use another photo

set of our work [61] where we collected distinct photo collections having different photos

than YFCC100M-CITIES. Both sets consist of user vacation photos and are collected from

the same touristic cities which are Amsterdam, Istanbul, Paris, New York, Tokyo and Venice.

The dataset consists of 13 albums each having 100 photos, totally 1300 photos as we give

the statistics on Table 5.2.

5.3.2. Photo Album Summarization

As we have mentioned earlier, story graphs provide a collaborative summary of photo albums

on specific themes, which can be used as priors. As for our first experiment, we conduct an

extrinsic evaluation of our proposed summarization framework by utilizing story graphs as

priors in photo album summarization. For this task together with YFCC100M-CITIES, we

used the additional evaluation dataset as we mentioned in Section 5.3.1. We collected 20 hu-

man generated summaries for each city for comparison of automatic and human summaries.

For comparison, we test two simple baselines, which are uniform sampling (Uniform) and

K-Means clustering (K-Means), the skipping recurrent neural network model (S-RNN) by
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Sigurdsson et al. [3], two subset selection based summarization methods by Iyer et al. [62],

which respectively employ simple color histograms of hue and saturation channels (DSS-S),

and deep features from the last fully connected layer of the VGG network (DSS-D)1 and the

DS3 model performing self-summarization with Y = X. In addition to those, we constructed

three story graphs using our framework by taking into account (1) only visual features (SV ),

(2) visual features along with GPS information (SV G), and (3) both visual, GPS and textual

information (SV GT ).

We quantitatively evaluate the results using V-ROUGE [63] which is an extension of the

ROUGE metric used for document summarization and F-measure [64] metric. V-ROUGE

simply measures how the automatic summaries correlate with the human generated ones

based on occurrence-counts of visual elements. F-measure similarly measures the accuracy

of automatic summaries considering both precision and recall with respect to human gener-

ated summaries.

In Table 5.3. and Table 5.4. we report the V-ROUGE and F-measure scores, respectively.

As can be seen, the quality of summaries obtained with the simple baselines, Uniform and

K-means, is lower than other approaches. S-RNN also gives unsatisfactory results although

its formulation is based on modeling how a story evolves within a photo album. DSS method

with simple features (DSS-S) produces slightly better summaries than S-RNN, but it is beaten

by DSS-D, which is somewhat expected as deep features provide better semantic represen-

tations. The summaries obtained by different versions of our proposed framework, SV , SV G

and S
V GT , are far better than the competing methods, including the deep approaches deep

learning based models S-RNN [3] and DSS-D [62]. Moreover, we observe that our fully fea-

tured story graph S
V GT which employs both visual, GPS and textual information, in general,

achieves the best summarization performance. For some cities our story graphs without addi-

tional meta-data which are SV and S
V G give better results which also show that generally our

1Here, we intentionally use VGG model for a fair comparison with our approach, which employs features

from the same base network.
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Figure 5.2. Summarization results of city Istanbul. Top: Input photo album. Bottom: Visual sum-

maries done by a human, the baselines approaches Uniform Sampling, K-Means cluster-

ing, and S-RNN [3] along with the ones obtained via the DS3 method using self summa-

rization (Y = X), the story graphs constructed with visual features (Y = S
V ), both vi-

sual and GPS features (Y = S
V G) and all visual, GPS and textual features (Y = S

V GT ).

framework produces better scores than the simple baselines even without additional meta-

data. Similarly, the quantitative results show that the summaries obtained by our approach

are far better than the ones obtained by the state-of-the-art S-RNN model [3].

Figures 5.2.-5.7. show sample summarization results from the YFCC100M-CITIES dataset.

Uniform baseline gives a low quality summary in that it includes similar and semantically

uninteresting images. K-means baseline generates a summary that lacks a coherent story
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Figure 5.3. Summarization results of city Amsterdam. Top: Input photo album. Bottom: Visual

summaries done by a human, the baselines approaches Uniform Sampling, K-Means

clustering, and S-RNN [3] along with the ones obtained via the DS3 method using self

summarization (Y = X), the story graphs constructed with visual features (Y = S
V ),

both visual and GPS features (Y = S
V G) and all visual, GPS and textual features (Y =

S
V GT ).

considering the content of the input photo album. Other approaches provide more diverse

summaries, but SV GT seems to provide the best result as the images selected for the summary

cover the main events depicted in the input photo album, and they appear to be semantically

more close the summary by a human. Overall, both of our qualitative and quantitative results

show that photo album summarization can benefit from exploiting visual story graphs as a

prior to encourage producing more coherent summaries.
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Figure 5.4. Summarization results of city New York. Top: Input photo album. Bottom: Visual sum-

maries done by a human, the baselines approaches Uniform Sampling, K-Means cluster-

ing, and S-RNN [3] along with the ones obtained via the DS3 method using self summa-

rization (Y = X), the story graphs constructed with visual features (Y = S
V ), both vi-

sual and GPS features (Y = S
V G) and all visual, GPS and textual features (Y = S

V GT ).

Table 5.3. V-ROUGE scores for the summarization experiments.

Photo Album Amsterdam Istanbul New York Paris Tokyo Venice
Trip Trip Trip Trip Trip Trip

Uniform 0.31 0.38 0.48 0.33 0.45 0.45

K-means 0.45 0.26 0.39 0.37 0.39 0.29

S-RNN 0.30 0.39 0.41 0.35 0.42 0.33

DSS-S 0.38 0.41 0.39 0.38 0.39 0.24

DSS-D 0.40 0.44 0.49 0.39 0.52 0.27

DS3 (Y = X) 0.48 0.47 0.56 0.52 0.49 0.54

DS3 (Y = S
V ) 0.48 0.53 0.61 0.44 0.52 0.57

DS3 (Y = S
V G) 0.46 0.42 0.50 0.47 0.53 0.58

DS3 (Y = S
V GT ) 0.56 0.49 0.67 0.56 0.63 0.66
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Figure 5.5. Summarization results of city Paris. Top: Input photo album. Bottom: Visual summaries

done by a human, the baselines approaches Uniform Sampling, K-Means clustering, and

S-RNN [3] along with the ones obtained via the DS3 method using self summarization

(Y = X), the story graphs constructed with visual features (Y = S
V ), both visual and

GPS features (Y = S
V G) and all visual, GPS and textual features (Y = S

V GT ).

Table 5.4. F-measure scores for the summarization experiments.

Photo Album Amsterdam Istanbul New York Paris Tokyo Venice
Trip Trip Trip Trip Trip Trip

Uniform 0.02 0.10 0.17 0.05 0.11 0.13

K-means 0.12 0.05 0.06 0.09 0.12 0.05

S-RNN 0.05 0.10 0.11 0.07 0.08 0.08

DSS-S 0.07 0.07 0.09 0.16 0.08 0.16

DSS-D 0.12 0.11 0.17 0.15 0.13 0.18

DS3 (Y = X) 0.16 0.08 0.12 0.13 0.08 0.20

DS3 (Y = S
V ) 0.25 0.10 0.14 0.17 0.04 0.17

DS3 (Y = S
V G) 0.15 0.12 0.16 0.19 0.15 0.21

DS3 (Y = S
V GT ) 0.14 0.10 0.19 0.21 0.11 0.23
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Figure 5.6. Summarization results of city Tokyo. Top: Input photo album. Bottom: Visual sum-

maries done by a human, the baselines approaches Uniform Sampling, K-Means cluster-

ing, and S-RNN [3] along with the ones obtained via the DS3 method using self summa-

rization (Y = X), the story graphs constructed with visual features (Y = S
V ), both vi-

sual and GPS features (Y = S
V G) and all visual, GPS and textual features (Y = S

V GT ).

5.3.3. Next Image Prediction

In our second experiment, we focus on the next image prediction task suggested in [1], which

captures a story graph’s ability in predicting what happens next given an input image. This

task is related to evaluating coherence aspect of story graphs as the purpose is to identify

how related the output image is to the query in terms of spatio-temporal continuity. We first

select a small subset of canonical images for each city by simply clustering the entire set of

photos into 50 clusters and retrieving the most photos that are close to the cluster centers.

Given a query image, we localize the most similar photo in the reconstructed story graph and

retrieve its next image in the corresponding chain. In the user study, subjects are presented
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Figure 5.7. Summarization results of city Venice. Top: Input photo album. Bottom: Visual sum-

maries done by a human, the baselines approaches Uniform Sampling, K-Means cluster-

ing, and S-RNN [3] along with the ones obtained via the DS3 method using self summa-

rization (Y = X), the story graphs constructed with visual features (Y = S
V ), both vi-

sual and GPS features (Y = S
V G) and all visual, GPS and textual features (Y = S

V GT ).

with results obtained with our approach and with those by Kim and Xing’s method [1] and

are asked to choose the one which is the most likely sequence (Fig. 5.8.(a)). We perform the

user study on Figure Eight platform2 in which a total of 331 workers have participated. For

each test question, we obtain responses from at least 10 users. Fig. 5.8.(b) shows examples of

the next likely images predicted by our approach and the competing method. The results of

the pairwise preference tests are given in Table 5.5.. On average, our predictions are favored

61% of the time.

2Figure Eight is a web-based data annotation company which can be accessed from https://www.figure-

eight.com
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(a) (b)

Figure 5.8. Next image prediction. (a) Screenshot of the user interface used in our experiments on

the next image prediction task. (b) Example images predicted by our algorithm and the

method of Kim and Xing [1].

Table 5.5. User study results for the next image prediction task. The preference rate denotes the per-

centage of comparisons in which the users favor one method over the other. On average,

our predictions are preferred 61% of the time against the state-of-the-art method in [1].

Amsterdam Istanbul New York Paris Tokyo Venice Average

Kim and Xing [1] 43.1 48.6 12.3 45.3 42.4 44.9 39.4

Ours (SV GT ) 56.9 51.4 87.7 54.7 57.6 55.1 60.6
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5.3.4. Coverage

In our last set of experiments, we compare the coverage of the story graphs generated by our

approach and the method of Kim and Xing [1]. For each city, we first identified a diverse set

of tags about the points of interest and attractions in that city via inspecting the user tags from

YFCC100M dataset and additionally using the Google search engine. Table 5.6. shows these

tags. For each tag we also provide an illustrative image just to give the workers an opinion

about what that tag is about. In the user study, we then show the photos compiled from the

reconstructed story graphs and ask users to select the tags that they think are relevant to one

or more images displayed to them (Fig. 5.9.). For each tag we estimate the percentage of

workers who selected the tag for that particular story graph. Then, we calculate the average

selection rate through all the tags to get the final coverage rate of the story graph with respect

to all the tags of that city. We perform the user study on Figure Eight platform in which a

total of 238 workers have participated. For each test question, we obtain responses from at

least 10 users. For each city, our story graph achieves a higher coverage rate than that of

Kim and Xing [1]. On average, our proposed approach covers 46.3% of the tags whereas

the method of Kim and Xing covers 34.8% (Table 5.7.). This demonstrates that the photos

in the story graphs extracted by our method include points of interests and more interesting

locations for a city, resulting in a more inclusive and covering visual narrative of a city.

5.4. Summary

In this chapter, We demonstrate that story graphs obtained with our approach we proposed in

previous chapter 4. can be utilized for photo album summarization. In particular, our story

graphs can be interpreted as a kind of prior that represent important concepts, landmarks

and events depicted in the large photo collections, and hence, the images in the story graphs

can serve as a measure of representativeness while extracting summary of a photo album

of similar theme. Our experimental analysis reveals that the story graphs obtained by our

approach allow to obtain better performances than the previous approaches for three different

tasks including photo album summarization, next image prediction, tag coverage.
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Table 5.6. Tags used in coverage experiments.

City Tags

Amsterdam Anne Frank House, Canals, Church, Cycling, Dam Square, Fine arts, Food, NEMO Science Museum, Night

life, Parks, Port of Amsterdam, Rijksmuseum, Royal Palace Amsterdam, Van Gogh Museum, Windmills

Istanbul Basilica Cistern, Bath houses, Beyoglu Street, Bosphorus Bridge, City Walls, Galata Tower, Grand Bazaar,

Maiden’s Tower, Mosques, Museums, Obelisk of Theodosius, Palace, Sea tour, Turkish food

New York Broadway, Brooklyn Bridge, Cathedral, Chinatown, Coney Island, Grand Terminal, Museums, NYC Subway,

Parks, Public Library, Skyscrappers, Statue of Liberty, Times Square, Wall Street

Paris Arc De Triomphe, Art, Cafes, Champs Élysées, Eiffel Tower, Fountains, Louvre Museum, Montmartre, Moulin

Rouge, Musée d’Orsay, Notre-Dame de Paris, Pantheon, Parks and gardens, Versailles

Tokyo Disneyland, Edo-Tokyo, Fish Market, Ginza Crossing, Japanese food, Kabuki Theatre, Mount Fuji, Museums,

Parks, Rainbow Bridge, Roppongi, Sanrio Puroland, Skytree, Subway and trains, Temples, Tokyo Imperial

Palace, Traditional clothes

Venice Bridge of Sighs, Carnival Masks, Fine Arts, Glassworks, Gondola, Grand Canal, Venetian Lagoon, Lido,

Museums, Palazzo Ducale, Rialto, San Marco, St Mark’s Campanile, Venetian Churches

Figure 5.9. A screenshot of the user interface used in our experiments on the coverage task.

6. Intrinsic Properties

Until now, we made use of apparent or more concrete properties of photos when we are con-

structing our story graph generation framework. These properties generally come together
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Table 5.7. User study results for the coverage task. The scores denote the average percentage of the

tags selected by the workers for images included in the story graphs. On average, our

story graphs cover 46% of the tags, providing a significantly higher rate than that of the

state-of-the-art method in [1].

Amsterdam Istanbul New York Paris Tokyo Venice Average

Kim and Xing [1] 34.7 24.3 30.0 41.9 26.7 50.9 34.8

Ours (SV GT ) 45.3 50.1 38.6 43.0 43.4 57.1 46.3

with the photo in terms of metadata (timestamp, geological location, etc) or are straightfor-

ward to extract from the photo itself (visual patches). However, photos intrinsically shelter

more abstract properties hidden beneath the apparent pixels which are more related with hu-

man sentiments, emotions or indirect perception. Some examples of this kind of intangible

properties are interestingness, aesthetics - at which level people find an image interesting

or aesthetically attractive, popularity - how popular an image is among human preference

- or memorability - generally how easy people can retrieve the image from their memories

when they see it again. Even though these properties seem to be more subjective due to their

personal nature, scientific studies show that people statistically remember and/or forget par-

ticular kinds of photos and there is consensus on the photos they select if that photo seems

attractive or dull.

We incorporated these intrinsic properties into our story graph generation framework to anal-

yse their contribution to the quality and/or usability of the story graphs. However, first we

will give the details of our work on image memorability, which we will utilize in our story

graph generation in the next chapter.

6.1. Attention Related Memorability With Semantics

We humans have an astonishing ability to rapidly perceive and understand complex visual

scenes. When exploring parts of a city that we have never visited before, glancing at the

pages of a magazine or a newspaper, watching a film on television, or the like, we are con-

stantly bombarded with a vast amount of visual information, yet we are able to process this

information and identify certain aspects of the scenes almost effortlessly [65, 66]. We also
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have an exceptional visual memory [67, 68] that we can remember particular characteristics

of a scene with ease even if we look at it only a few seconds [69]. Here, what is being re-

membered is considered nothing like an identical representation of the scene itself but the

gist of it [70, 71]. Although there is no general agreement in the literature about the contents

of this “gist”, the most common definitions include statistical properties of the scene such as

the distributions of basic features like color and orientation, the structural information about

the scene layout like the spatial envelope of Torralba and Oliva [29], and the image semantics

such as existing objects and their spatial relationships.

Interestingly, we can recall some images surprisingly well while some are lost in our minds.

Put simply, not all images are equally memorable. Isola et al. [4] were the first to carry out a

computational study about this phenomenon, the so-called intrinsic memorability of images.

They devised a Visual Memory Game experiment and utilized Amazon’s Mechanical Turk

service to quantify the memorability of 2222 natural images (see Figure 6.1.). In the course

of these experiments, a total of 665 participants were shown a sequence of images, each of

which was displayed for 1 second with a short gap in between image presentations. These

subjects were then asked to provide a feedback any time whenever he/she thinks an identical

image is displayed. By this setup, a memorability score for each image is calculated by

the rate at which the subjects detect a repeated presentation of it. The authors showed that

the memorability of an image is pretty consistent across subjects and under a wide range of

contexts, which indicates that image memorability is in fact an intrinsic property of images.

In addition, the authors explored the use of different visual features and interestingly showed

that the intrinsic memorability of an image can indeed be estimated reasonably well by a

machine. Since that seminal work, there has been only a few works that explore this difficult

and interesting problem [6, 30–32, 72].

Our first goal in this part is to explore the role of visual attention in understanding image

memorability. We humans use attentional mechanisms to efficiently perform higher level

cognitive tasks by focusing on a small and relevant bits of the visual stimuli. Figure 6.2.

illustrates this function of visual attention in selecting important features from images. Sup-

pose that we are exposed to these three natural images, each having different visual contents,
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Figure 6.1. Sample images from the MIT memorability dataset [4]. The images are sorted from

more memorable (top left) to less memorable (bottom right).

i.e. different objects, scene characteristics. Intuitively, our visual system focuses on certain

regions that attract our attention as modeled here by a bottom-up saliency model. In this work

we propose a visual attention-driven spatial pooling strategy to select important features from

images. Our approach makes use of two complementary feature pooling schemes related to

visual attention. First, we investigate selecting features from the most salient regions of the

images determined according to a recently proposed bottom-up visual saliency model [5].

Our second scheme, on the other hand, considers a top-down definition of visual attention

and employs an object-centric spatial pooling scheme. To our interest, a body of research in

cognitive sciences promotes that attention plays an important role in understanding natural

scenes and enhancing visual memory [71, 73–76]. However, none of the previously pro-

posed memorability models make use of any attentional mechanisms for feature selection,

and only [30, 32] use saliency maps but as additional image features.

Apart from the global dense image features, some previous studies on image memorabil-

ity [4, 6, 30, 31] have also investigated the use of high-level semantic information about

images. They consider objects-related features [4, 31], presence of certain object and scene
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Figure 6.2. Top: Examples for the most memorable (left), typically memorable (middle), least mem-

orable (right) images in the MIT memorability dataset. Bottom: Salient regions of the

images extracted by the method in [5]. The color coding shows the strength of saliency

with yellow, green and blue regions corresponding to top 10%, 20%, %30 most salient

parts, respectively.

categories [4, 6, 30], and their attributes [6], which are all based on manual annotations pro-

duced by humans. Figure 6.3. illustrates some sample images from the MIT memorability

dataset along with the semantic features that are manually collected from the human sub-

jects [6]. As illustrated here, an image can be semantically represented in terms of objects,

scene information and related attributes.

In addition to our attention-driven feature selection strategy, our second focus in this part is

to investigate the use of a diverse set of recently proposed semantic features which encode

meta-level object categories [48], scene attributes [7], and invoked feelings [8] for predicting

image memorability. Compared to the features considered in the former studies [4, 6, 31],

these semantic features can be directly extracted from the images, eliminating the need for

manual annotations. Using these features thus decreases the complexity of the prediction

process and makes the prediction model to work in a fully automatic manner. Moreover,
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Object: person, seat, bottle,
chair, floor

Object: person, wall,
chandelier, ceiling lamp

Object: mountain, sky, tree,
natural elevation

Scene: indoor, casino, sports
and leisure

Scene: indoor, shopping and
dining, bakery/shop

Scene: outdoor natural,
mountains hills desert sky

Attribute: has person,
attractive, pleasant, individual,
routine, sitting, clear glasses, ...

Attribute: has person,
standing, people go,
is interesting, group, routine, ...

Attribute: peaceful,
is interesting, hang on wall,
exciting, famous, ...

Figure 6.3. Top: Examples for the most memorable (left), typically memorable (middle), least mem-

orable (right) images in the MIT memorability dataset. Bottom: Sample human anno-

tated attributes as collected in [6].

compared to prior work, these features encode semantic properties of images from a per-

spective or scale that has not been investigated before. The Meta-class descriptor [48] en-

codes image semantics based on a hierarchical structure of object categories (concepts) by

capturing the relationships among them. The SUN Scene Attributes [7] represents an image

by means of responses of a comprehensive list of attribute classifiers that relates to different

scene characteristics such as affordances, materials and surface properties. The SentiBank

features [8] are the responses of a set of classifiers trained to detect adjective-noun pairs

(attributes - objects), and used to associate certain sentiments with images.

In order to validate our approach, we performed a series of experiments on the MIT memo-

rability dataset. To show the effectiveness of the attention-driven pooling strategy, we used

the dense global features employed in [4], namely SIFT [45], HOG [46], SSIM [47] and we

analyzed the gain when the features pooled over the salient regions are concatenated to the

feature vectors obtained with spatial pyramid pooling [77]. Moreover, regarding our second

goal, we performed experiments with the high-level semantic features [7, 8, 48] and tested

their performances on predicting image memorability. Lastly, we compared our combined
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model, which uses both semantic features and dense global features pooled over salient re-

gions and spatial pyramids, to the state-of-the-art models in the literature.

Our main contributions are: (1) an attention-driven pooling approach to put special empha-

sis on the interesting parts of the images in the computations, (2) a systematic analysis of

a diverse set of semantic features on predicting image memorability, and (3) experiments

demonstrating that the combination of these ideas provides significant improvement over the

existing fully-automatic models.

6.1.1. Attention-driven Spatial Pooling

The memorability model by Isola et al. [4] and the follow-up studies [30, 32] all employ

spatial pyramid (SP) based pooling [77] for dense global features (Section 6.1.1.). In this

study, we propose a complementary visual attention-driven spatial pooling scheme for image

memorability, which allows us to select features from the salient image regions. In particular,

these regions are estimated by considering two different saliency maps. While one of them is

estimated via a bottom-up saliency model , the second one is derived from a complementary

object-level saliency map which captures information about foreground objects in the images

. We will give the details of our proposed attention-driven pooling strategy in the remaining

part of this section.

The common pipeline of modern visual recognition tasks uses spatial pooling in order to

construct compact representations and achieve robustness to noise and clutter. After extract-

ing local or global low level features from images, feature vectors are encoded to codewords

using a descriptive vocabulary. Then, histograms of these codewords are computed in order

to get the fixed-length exemplar vectors of the predefined subregions of the image. Final rep-

resentation is formed by simple concatenation of all histogram vectors obtained in this way.

Boureau et al. [78] showed various factors that affect the performance of pooling strategies

and demonstrated the importance of the step. For example, Isola et al. [4] used simple 2-

level spatial pyramid pooling strategy in their work. However, in this study, we approach the
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pooling step by further incorporating visual attention mechanisms with the inspiration that

visual attention is considered highly related with memorability [71, 73–76].

Visual Saliency: In recent years, there has been an increasing interest in computational

models of visual saliency estimation and their use for several computer vision tasks. Starting

from the seminal work by Itti, Koch, and Niebur [79], most of the existing models consider

a bottom-up strategy. First, center-surround differences of various features at multiple scales

are computed for each feature channel. Then the final saliency map is formed by linearly

combining feature maps after a normalization step. For a recent survey, please refer to [80].

In our experiments, we employed the publicly available implementation of a recently pro-

posed saliency model [5]3, which examines the first and second-order statistics of simple

visual features such as color, edge and spatial information.

Consider Figure 6.4.(a) where we present the result of the bottom-up saliency estimation for

a sample image. From the saliency map given in the second column, we randomly sample

a number of image patches (rightmost four columns). Those sampled within the top 10%

salient locations are given in the top two rows whereas the bottom two rows show sample

patches from the bottom 20% salient locations. As can be seen, the saliency values are the

strongly correlated with the interestingness of the regions [81, 82] in the sense that while

the most salient patches captures the children, the least salient ones mostly correspond to

background or those regions which have little importance in terms of image content.

Objectness Measure: In [83], Alexe et al. introduced a generic (category-independent)

objectness measure4 to quantify how likely an image window contains an object. In more

detail, the authors first analyzed several image cues, namely multi-scale saliency, color con-

trast, edge density (near window borders) and superpixel straddling, each of which were

shown to be an indicator of objectness, but to a certain degree. Then they proposed a learn-

ing framework to combine these four cues to distinguish object windows from background.

It was demonstrated that the approach is very general and can detect objects of novel classes

3The source code is available at http://web.cs.hacettepe.edu.tr/˜erkut/projects/
CovSal/

4The code is publicly available at http://groups.inf.ed.ac.uk/calvin/objectness/
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(a) Bottom-up saliency

(b) Object-level saliency

Figure 6.4. Interesting and uninteresting patches extracted from two natural images based on visual

attention. From the images, 8 image patches are sampled randomly from the top 10%

salient locations (top 2 rows) and 8 others from the bottom 20% salient locations (bot-

tom 2 rows) according to (a) a bottom-up visual saliency map and (b) an object-level

saliency map, respectively.

not seen during training. As compared to the visual saliency model reviewed in the previous

section which solely depends on bottom-up visual cues, the generic objectness measure can

be used to estimate object-level saliency of images and provide top-down high-level infor-

mation.

Figure 6.4.(b) shows some sample patches sampled from the object-level saliency map as we

did for the bottom-up saliency. Similarly, the rightmost top two rows of patches taken from

salient regions mostly correspond to the mill in the image, which is the most salient object.

Other non-salient patches correspond to unimportant areas such as the sky or the field.

Instead of using a fixed pooling layout like the spatial pyramid structure used in [4], we

propose an image-driven pooling strategy by considering salient regions of the images. For

this purpose, we both utilize the bottom-up and object-level saliency maps described in the

previous subsections. In this way, our pooling method adaptively focuses solely on the image

regions that attract attention, ignoring not important, non-attractive parts of the images.
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Figure 6.5. The proposed visual attention-driven spatial pooling pipeline for image memorability.

The system diagram of the proposed pooling approach is given in Figure 6.5.. First, dense

visual features are extracted from the input image. Low level dense features are then encoded

into higher dimensions through vector quantization using a bag of features approach. In the

meantime, bottom-up and object-level saliency maps are estimated from the image and then

thresholded to obtain both the salient regions and those regions possibly containing important

foreground objects. Next, to form histogram-based visual descriptors, the encoded vectors

are pooled together over the extracted attention-driven spatial layouts.

For the prediction pipeline for spatial pooling, we used the following steps:

(1) Feature Extraction. For an image I, we obtain a global description of I by extracting

D-dimensional local features such as SIFT [45], HOG [46], SSIM [47] at N differ-

ent locations, denoted with X = [x1, . . . ,xN ]
T ∈ R

N×D. The SIFT descriptor gives

the local image structural information whereas the HOG descriptor provides rich local

orientation information that can be related to the receptive fields found in early hu-

man vision areas. Lastly, the SSIM descriptor captures the local layout of geometric

patterns.

(2) Coding. Assuming that we have a learned codebook of K visual words, denoted with

B = [b1,b2, . . . ,bK ] ∈ R
D×K , each local feature xi ∈ X is encoded into a code

vector ci = [ci1, c
i
2, . . . , c

i
K ]

T by applying vector quantization. After the coding step, I

is represented by a set of codes C = [c1, c2, . . . , cN ] ∈ R
N×K .
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(3) Bottom-up and object-level saliency maps. To obtain the attention-driven spatial lay-

outs for the proposed feature pooling scheme, we make use of bottom-up and object-

level saliency maps. The bottom-up visual saliency map of image I is computed by

a recently proposed model [5], which was shown to provide state-of-the-art perfor-

mance in predicting eye fixations. For the object-level saliency map, we randomly

sample many windows from I and measure the objectness of these image windows by

using the generic objectness measure proposed in [83]. Then we compute an object-

ness score for each pixel by averaging over all the scores of the windows which contain

that pixel to obtain the generic objectness map of I.

(4) Pooling. In the pooling step, instead of considering a fixed image-independent set of

spatial regions, as employed in [4], here we propose to use image-specific spatial re-

gions for feature pooling. Specifically, we locate the regions of interest by respectively

segmenting the bottom-up and object-level saliency maps into salient/non-salient and

object/non-object regions by thresholding. In our experiments, we varied the thresh-

old value to find the optimum thresholds to determine salient and object regions in the

images for spatial pooling of features. We found out that the mean works well for the

bottom-up saliency maps whereas the best performance for the object-level saliency

maps is achieved when the threshold is set to 0.25 times the maximum objectness

value. Figure 6.6. shows some examples of these attention-driven regions. For each

region of interest R, we then perform average-pooling, i.e. compute a histogram (or

take the average) of the codes over the region R:

f(R) =
1

|R|
∑

i∈R
ci (17)

where |R| denote the number of dense features in R. Moreover, the final feature vector

f(R) is renormalized to have L1-norm of 1.

56



Figure 6.6. Visual attention-driven feature pooling scheme. For a given image a bottom-up saliency

map and (b) an object-level saliency map are estimated and then the feature vectors are

pooled over the salient regions of the images (depicted as bright areas in the images.

6.1.2. Semantic Features

[4] showed that memorability of an image is highly correlated with the semantic content

of the image. For instance, only making use of manual annotation of object and scene la-

bels is shown to give pretty good results. In a follow-up work [6], the authors collected

attributes that humans used to describe images and explored their role in determining the

intrinsic memorability of images. Motivated from these findings, here, our goal is to extend

our framework to include automatically extracted semantic attributes. For that purpose, we

propose to use three recently proposed semantic descriptors: The Meta-class descriptor [48]

provides object-specific high-level information about image content (Section 6.1.2.). The

SUN Scene Attributes [7], on the other hand, characterize the images by means of a set

of hand-picked functional, material, surface and spatial properties (Section 6.1.2.). Finally,
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the SentiBank features [8] are used to include feelings that are invoked in a viewer into the

computations (Section 6.1.2.).

Meta-class Features: In computer vision, attributes typically denote properties that hu-

mans use to verbally describe the visual content such as individual objects, object classes,

scenes. Besides, they can also indicate properties shared among different object classes. The

Meta-class descriptor [48] falls under this category that it captures common visual proper-

ties of different sets of object classes and represents an image in terms of them. In essence,

these abstract categories are linear combinations of multiple non-linear classifiers trained on

different low-level features. The authors trained a tree of classifiers using a subset of Im-

ageNet [84] dataset and with the help of predefined object classes from ILSVRC2010 and

Caltech256 datasets. Each node in the tree correspond to a meta-class obtained by combining

two previously determined meta-classes (i.e. a set of object classes) which makes them easy

to distinguish from other sets of object classes. They demonstrate that this descriptor gives

state-of-the-art results for object categorization against similar semantic representations such

as Object-Bank [85] and PiCoDes [86].

In our work, we use Meta-class features, i.e. the responses of the learned tree of classifiers,

to obtain a semantic representation of image content by means of the presence or absence of

the meta-classes. Figure 6.7. demonstrates the importance of certain object classes in deter-

mining the memorability of an image on some sample images from the MIT memorability

dataset. It can be easily observed that the most memorable images generally are those that

contain close-up human faces. Interestingly, typical memorable images generally do have

humans and/or human-made structures or objects at a distance. The least memorable images

are mostly the images of natural scenes.

SUN Scene Attributes In [7], Patterson and Hays carried out a large scale experiment to

form a scene attribute dataset by crowdsourcing. They collected 102 discriminative attributes

related to different visual properties of a scene, namely affordance, material, surface and spa-

tial envelope properties. Using these collected attributes as ground truth, they also trained a

binary classifier for each attribute and proposed to use responses of these classifiers to obtain
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Figure 6.7. Sample images from memorability database. Top row shows samples from most mem-

orable images which mostly contain close-up human faces. Middle row shows samples

from typically memorable images which generally have humans and/or human-made

structures or objects at a distance. Bottom row shows least memorable samples which

are mainly the images of natural scenes.

an attribute based scene representation. They showed that this intermediate level represen-

tation captures scene content information remarkably well and can be effectively used for

different computer vision tasks including scene classification, automatic image captioning,

semantic image retrieval.

In our framework, we use the confidence scores of the scene attribute classifiers as comple-

mentary semantic features for learning image memorability. Figure 6.8. illustrates some of

the most confident scene attributes [7] that are extracted from some sample images having

different memorability scores. We observe that the most memorable images are typically as-

sociated with the “no-horizon”, “enclosed-area”, “cloth” and “man-made” attributes whereas
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cloth, enclosed area, no-horizon,
electric/indoor lighting

man-made, no-horizon, enclosed
area, natural light

far-away horizon, natural light,
open area, grass, natural,
vegetation

Figure 6.8. Sample images from memorability database for most memorable (left), typically mem-

orable (middle) and least memorable (right) with their most confident scene attributes

predicted by [7].

the least memorable ones mainly have “open-area”, “grass”, “vegetation” and “natural” at-

tributes. These observations are in accordance with the findings reported in [4, 6] suggesting

that the images of people and enclosed spaces are more memorable images than those of

natural images.

SentiBank Borth et al. [8] recently proposed a large scale visual sentiment ontology based on

the psychological theory of Plutchick’s Wheel of Emotions [87]. To construct this ontology,

the authors followed a data-driven approach and used a large set of tagged images and videos

from the web to gather a list of adjectives and nouns based on their co-occurrences with each

of the 24 emotions defined in [87]. They assigned certain sentiment values to these tags

and employed them to form Adjective-Noun Pairs (ANPs) which reflect strong emotions and

frequently appear together. Then, they trained a classifier for each ANP using some low

and high-level visual features. They finally selected 1200 of those trained ANP classifiers

that have a reasonable classification performance to build their visual sentiment analysis

framework known as the SentiBank.

In our approach, we use the visual sentiment classifiers from the SentiBank to include

emotion-based semantic features to our image representations. Figure 6.9. demonstrates

some sample images with different memorability scores with the associated ANPs as pre-

dicted by the SentiBank classifiers. As can be observed, in each case, the classifiers accu-

rately capture the feelings invoked in the viewers. Although there is no common pattern for
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shy smile, traditional dress,
innocent smile

warm creek, smooth water, calm
pond

beautiful garden, sunny trees,
pretty scene

Figure 6.9. Sample images from memorability database for most memorable (left), typically memo-

rable (middle) and least memorable (right) with their most confident sentiment ANPs as

predicted by [8].

ANPs associated with images from different memorability levels, we observe that in general,

the most memorable images are linked with the emotions that can relate to humans (e.g.,

shy smile). Moreover, the typically memorable images invoke feelings related to man-made

structures (e.g., calm pond) whereas the least memorable ones are associated with ANPs

related to natural scenes (e.g., beautiful garden).

6.1.3. Experiments

In this section, we first give brief details about our experimental setup and then demonstrate

the effectiveness of the proposed approach through a series of experiments.

Experimental Setup For the quantitative analysis we used Spearman’s rank correlation mea-

sure (ρ). The performance was evaluated over 25 different splits of the dataset containing

1111 training and 1111 testing images (the same splits used in [4]). These train and test

splits were scored by different halves of the participants, showing a human consistency of

ρ = 0.75. Thus, the effectiveness of a computational image memorability model can be as-

sessed by measuring how close the model’s Spearman’s rank correlation to this score. In

addition, the performance of a model can be analyzed at different memorability levels by

ranking the test images according to their predicted memorability scores and then computing

the cumulative average of empirical memorability scores at different quantiles. For instance,

a good image memorability model should have cumulative averages close to 1 for the top
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most memorable images predicted by a model and close to 0 for the bottom least memorable

images.

Results and Discussions In the first part of the experiments, we analyzed the performance of

our proposed attention-driven pooling scheme in detail. We conducted our experiments on

three global dense features, SIFT [45], HOG [46] and SSIM [47], which were used in [4].

Specifically, we analyzed the performance when features obtained with our attention-driven

pooling strategy are concatenated to those derived by the standard spatial pyramid pooling.

We examined the prediction accuracy of each dense feature separately. We also provided the

results for the combination of these features. We separately trained different SVRs to map

from the features pooled over these maps to memorability scores.

A summary of our results is given in Table 6.1.. As can be seen, the attention-driven pool-

ing alone performs poorly as compared to the 1-level spatial pyramid (SP) based pooling.

However, for each dense feature, there is a notable improvement with the inclusion of our

attention-driven pooling scheme to the SP based baseline. More specifically, the SSIM fea-

ture has the most significant gain where the correlation moves from ρ = 0.436 to ρ = 0.454.

Furthermore, we observed that the result of the combined features can be also improved when

our pooling strategy is used. However, the amount of gain, from ρ = 0.458 to ρ = 0.472,

is relatively smaller than those of single features. When the average memorability scores of

the models are examined at top 20/100 and bottom 20/100 quantiles, we have similar obser-

vations. In conclusion, the combined pooling framework performs especially much better

by assigning less memorable images lower scores. These results support our claim that the

image regions which retain in human memory are correlated with the areas that attract our

attention.

In our second experiment, we included the semantic features, namely the Meta-class fea-

tures [48], the SUN scene attributes [7] and the SentiBank features [8] to the original fea-

ture pool (pixels, GIST, SIFT, SSIM, HOG-based image features), and performed a thorough

analysis of the framework with all possible combinations of these features and pooling strate-

gies.
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Table 6.1. Comparison of pooling schemes (Spatial Pyramid pooling (SP Level-1) and Attention-

based Pooling (AP Level-1)) using dense global features SIFT, HOG and SSIM. Results

are given as the average empirical memorability scores reported for the top 20, top 100

highest and bottom 20, bottom 100 lowest predicted memorability scores and the Spear-

man’s Rank Correlation (ρ) values.

SIFT HOG SSIM SIFT+HOG+SSIM

SP(L1) Top 20 83.8% 83.3% 83.2% 85.0%

Top 100 82.3% 81.9% 80.7% 80.5%

Bottom 100 54.9% 56.0% 56.7% 54.6%

Bottom 20 50.3% 47.9% 54.0% 50.1%

ρ 0.430 0.431 0.436 0.458

AP Top 20 87.6% 87.8% 84.9% 87.4%

Top 100 81.8% 83.0% 83.4% 83.7%

Bottom 100 56.6% 55.9% 56.7% 55.6%

Bottom 20 58.2% 48.4% 56.4% 51.8%

ρ 0.390 0.420 0.427 0.438

SP(L1) + AP Top 20 86.0% 86.9% 86.8% 86.9%

Top 100 83.3% 82.9% 81.0% 82.6%

Bottom 100 55.7% 54.8% 53.6% 53.4%

Bottom 20 49.9% 47.4% 48.5% 53.2%

ρ 0.435 0.448 0.454 0.472

Table 6.2. demonstrates the results obtained by SSIM (best performing low-level image

feature), our semantic features and their combination. One key observation is that the Meta-

class features and the Scene Attributes provide fairly good predictions as compared to the

SentiBank or any other low-level cues. In particular, the Meta-class descriptor alone achieves

approximately ρ = 0.49 correlation value, which shows us that memorability of images are

not only related to single object properties but also to inherent and shared characteristics of

different object classes. Similarly, the Scene Attributes alone give nearly ρ = 0.48, illustrat-

ing the importance of scene properties over objects in the images for image memorability.

We achieved the best performance when we combined all semantic features and SSIM with

a combination of our proposed attention-driven pooling and 2-level spatial pyramid pooling

for the dense features. With this model of ours, the Spearman’s rank correlation between the

ground-truth ranking and the predictions is estimated as ρ = 0.515. This correlation value
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Table 6.2. Comparison of the best local dense feature (SSIM) and all semantic features. Results are

given as the average empirical memorability scores reported for the top 20, top 100 high-

est and bottom 20, bottom 100 lowest predicted memorability scores and the Spearman’s

Rank Correlation (ρ) values.

SSIM Scene Attributes Meta-class SentiBank All

Top 20 86.8% 86.4% 86.8% 85.7% 85.0%

Top 100 81.0% 83.7% 81.5% 82.5% 83.3%

Bottom 100 53.6% 54.2% 53.3% 54.8% 52.2%

Bottom 20 48.5% 51.3% 46.7% 47.1% 47.4%

ρ 0.454 0.477 0.487 0.449 0.515

is smaller than the correlation among humans (ρ = 0.75) but it is the best result reported in

the literature so far by a fully automatic scheme that does not use any manual object, scene

or attribute annotations. It also demonstrates the importance of high-level semantic features

as incorporating them increases the rank correlation score from ρ = 0.472 (SP(L1)+AP) to

ρ = 0.515 (All). Moreover, the increases in the top 20 and top 100 average memorability

predictions support the hypothesis that the semantic content of images is highly correlated

with their intrinsic memorability.

In Table 6.3., we compare the result of our proposed method with the methods of Isola et

al. [4], Khosla et al. [30], Mancas and Le Meur [32] and more recent works which utilized

deep learning models [34–36]. Our method has the best performance among pre-deep learn-

ing studies which makes use of hand-crafted features for memorability prediction. While

Khosla et al. [30] achieved ρ = 0.50 with their global model which additionally considers

memorability characteristics of the local image regions, our model achieves slightly better

results with far less complexity. Moreover, another key observation from Table 6.3. is that

most of the memorability prediction schemes predict top memorable images with high pre-

cision. For the top 20 and top 100 images, the models have obtained nearly the same average

empirical memorability values, which are very close to the scores of human subjects. How-

ever, predicting whether an image is less memorable is a more difficult problem. In that

respect, our model provides better predictions for the bottom 20 and bottom 100 images as
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Table 6.3. The first four rows indicate average empirical memorability scores over different memo-

rability levels. (ρ) is the Spearman’s rank correlation between predictions of existing fully

automatic models and the empirical results.

Isola Khosla Khosla Mancas & Our Human

et al. [4] global [30] local+global [30] Le Meur [32] Approach subjects

Top 20 83% 84% 85% – 85% 86%

Top 100 80% 80% 81% – 83% 84%

Bottom 100 56% 56% 55% – 52% 47%

Bottom 20 54% 53% 52% – 47% 40%

ρ 0.46 0.48 0.50 0.48 0.52 0.75

compared to the previous models.

In order to demonstrate the effectiveness of our proposed combined model, we compare

our result with those of the human annotations reported in [72]. For object semantics, the

authors in [72] achieved ρ = 0.47 whereas we obtained a correlation value of ρ = 0.49

with the Meta-class descriptor that describes abstract object classes. This shows that fully

automatic approaches can also capture object semantics to some extent to improve memora-

bility predictions. On the other hand, the model based on the attribute annotations, gives a

better correlation value of ρ = 0.52 as compared to those of SUN Scene Attributes and Sen-

tiBank features respectively corresponding to ρ = 0.48 and ρ = 0.45. Moreover, the model

which considers the combined overall semantics (objects + scenes + attributes) has a corre-

lation value of ρ = 0.54, which is higher than that of our proposed combined model having

ρ = 0.52. However, we observe that our model provides better predictions especially for the

least memorable images. For the bottom 100 and 20 images while the average ground-truth

memorability scores are %55, and %51 for object, scene and attribute annotations, respec-

tively, ours are %52, and %47 which are much closer to the human subjects. Overall, human

annotations still have advantage over automatic attributes, however the gap is small. Con-

sidering the cost of gathering annotations from human subjects, our approach gives similar

performance with much less computational effort.

In Figure 6.10., we additionally show sample images for different memorability levels pre-

dicted by the proposed framework. Figure 6.11. shows some images on which the memora-

bility predictions based on our approach are incorrect as compared to the empirical results.
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Predicted most memorable (85%) Predicted typical memorable (68%) Predicted least memorable (40%)

Figure 6.10. Memorability predictions by the proposed strategy. Out of all test images, the 8 images

in (a) are found to be the most memorable, the ones in (b) are predicted as typically

memorable and the other 8 images in (c) are guessed as the least memorable. The num-

bers denote the average prediction scores of the given image sets. The images predicted

as highly memorable contains highly distinctive visually salient elements as compared

to other groups of images.

The reasons for this could lie in the inaccurate predictions of the semantic content or focused

regions of images. In Figure 6.12.(a)-(b), for example, we provide the bottom-up and object-

level saliency maps of two of the images from Figure 6.11. together with their memorability

maps as computed by the protocol used in [4, 30]. In the memorability maps, the red re-

gions illustrate the objects that contribute positively to the predicted memorability and the

blue regions show the objects that contribute negatively to the predicted memorability. In an

ideal case, the predicted salient regions need to correspond to the image regions that affect

the memorability scores positively or negatively. For the image in Figure 6.12.(a) whose

memorability rank is overshot by the proposed prediction scheme, our pooling method can

not correctly identify the object regions that correlate with the image memorability. For the

image in Figure 6.12.(b) whose memorability rank is undershot by the proposed scheme we

observe a similar behavior for the detection of important object regions that affects the mem-

orability predictions negatively. These imperfect predictions of the important image regions

make the features collected via our attention driven pooling scheme cover the image content

in an inaccurate way, affecting the estimated memorability scores.

Finally, it is important to note that at that time there was still a large gap between our result

and that of human subjects in predicting the less memorable images. In Table 6.4. we show

the more recent approaches utilizing deep neural networks on visual memorability prediction

after our work. It is clear that they brought noticeable improvement over our approach.

However, these studies trained their models using LaMem dataset [33] which is a larger set
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Predicted too high (+793/1111)

Predicted too low (-873/1111)

Figure 6.11. Sample images on which our proposed scheme failed to capture the memorability. The

memorability ranks are predicted too high for the images in (a) and too low for the

ones in (b), as compared to their empirical memorability ranks. The numbers in the

parentheses show the mean rank error between the predicted and the empirical ranks

across each group.

specifically collected for memorability task and tested on the SUN dataset [54] which is

the set that all previous non-deep learning memorability prediction works used. The most

recent work of Fajtl et al. [36] achieved ρ = 0.65 the closest performance to human subjects.

Although deep neural networks closed the gap between human and machine predictions, the

results show that there is still room for improvement on the visual memorability prediction

task.
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(a) Predicted too high

(b) Predicted too low

Figure 6.12. Memorability maps versus bottom-up saliency and object-level saliency maps of two of

the images from Figure 6.11..

Table 6.4. Memorability scores of our framework and more recent methods using deep learning

approaches. (ρ) is the Spearman’s rank correlation between predictions of existing fully

automatic models and the empirical results.

Our Khosla Baveye Zarezadeh Fajtl Human

Approach LaMem [33] et al. [34] et al. [35] et al. [36] subjects

ρ 0.52 0.63 0.64 0.62 0.65 0.75

6.2. Summary

In this chapter, we describe our efforts to develop a new fully automatic model for esti-

mating image memorability, which benefits from a novel feature pooling strategy based on

visual attention and a set of semantic features that encode meta-level object categories, scene

attributes, and invoked feelings.

Our proposed feature pooling strategy is derived from the observation that main memorable

areas of an image are the ones that attract the most attention. Different from the fixed pyrami-

dal structure as in [4, 30, 32], our regression model learns memorability scores of images by

additionally taking into account the features pooled over the saliency maps. In our pooling

scheme, we employed two saliency maps, one obtained by a bottom-up saliency model [5]
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and the other by a generic objectness model [83], respectively modeling bottom-up and top-

down attentional influences on image memorability. Our experiments demonstrated that for

the global dense features the combination of classical SP based pooling with the proposed

pooling scheme improves the prediction quality.

Moreover, we investigate the use of three recently proposed semantic features, namely the

Meta-class [48], the SUN Scene Attributes [7] and SentiBank [8] features, all of which can

be automatically extracted from the images. These high-level features are used to describe

the presence of certain abstract object categories, attributes related to functional, material,

surface properties of scenes, and the emotions induced by the images as captured by the

specific adjective-noun pairs. The inclusion of these semantic features into the computations

greatly improves the prediction performance that we obtained superior results on the MIT

Memorability dataset than those of the fully automatic pre-deep learning studies.

For highly memorable images, the existing approaches to predict image memorability can

yield estimates close to the ground-truth scores from human subjects. However, their per-

formances on determining whether an image is unmemorable is currently far from empirical

scores. Even though our model provide the best results reported in the literature for pre-

dicting the memorability of less memorable images, it is not as accurate as desired. This

opens up possibilities to design or learn new types of features to especially understand less

memorable images.
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7. Story Graphs with Intrinsic Properties

7.1. Memorable Story Graphs

As we explained in Section 6.1., after we achieved state-of-art performance on memorabil-

ity prediction by utilizing visual attention mechanism, deep learning studies improved the

performance by large margin. Because of this, in order to have better memorability scores

we used the current state-of-art memorability prediction framework which is the work of

Fajtl et al. [36] and is called Attention based Memorability estimation Network (AMNet).

Similar to our work, authors predicted the memorability scores of photos together with uti-

lizing an attention mechanism. However, due to the neural network’s improved prediction

accuracy, they are able to achieve improved results. Compared with the other neural net-

work based memorability prediction studies, they obtained the state-of-art visual memora-

bility predictions. This shows that their work is on the same manner with ours in terms of

attention-based memorability prediction and we can use their proposed prediction scheme

for our experiments.

We calculated the memorability scores of photos of our YFCC100M-CITIES dataset (Sec-

tion 5.2.) with AMNet model. In our story graph framework we described in Section 4.,

we extended the Coverage Equation (Equation 11) by adding a memorability factor as it is

shown in Equation 18.

Coverage(S) = α
∑
v∈V

CoverageS(v) + (1− α)
∑
t∈T

CoverageS(t) +Memorability(S)

(18)

Here, we calculated the Memorability of the storyline S as the average memorability scores

of each image in the story line. This way, when we are selecting story lines for the story

graph by their incremental coverages as we described in Section 4.2.4., we encouraged the

selection of more memorable images among high coverage story lines. We give sample
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memorable story graphs of cities Istanbul and Paris on Figure 7.1.. When we compare with

the story graphs without intrinsic properties (Figure 4.3.) because only the coverage part of

the framework is slightly modified, we can see generally same photos are chosen. The most

obvious difference is that there are less number of story lines on memorable story graphs.

So together with the addition of memorable photos, less number of low memorable ones are

elected for the story graph.

7.2. Aesthetic Story Graphs

Similar to the memorable story graphs, we used aesthetic scores of photos in our story graph

generation framework and constructed aesthetic story graphs. In order to calculate aesthetic

scores for all images of our YFCC100M-CITIES dataset we used the state-of-art visual aes-

thetic predictor model of Sheng et al. [44]. In their work they trained a deep model using

aesthetic labels of Aesthetic Visual Analysis (AVA) dataset and utilized an attention mech-

anism to achieved state-of-art aesthetic prediction. We extracted the aesthetic scores of the

photos of our dataset using their model. Then, similar to the memorable story graphs, we

extended the Coverage Equation (Equation 11) by adding the aesthetics factor as shown in

Equation 19. We give the aesthetic story graphs of cities Istanbul and Paris in Figure 7.2..

After the construction of the story graphs with intrinsic properties which are memorability

and aesthetics, to have a solid quality measurements, we carried out the visual summarization

experiments (Sec 5.3. on both memorable and aesthetic story graphs, which we will give the

details on next section.

Coverage(S) = α
∑
v∈V

CoverageS(v) + (1− α)
∑
t∈T

CoverageS(t) + Aesthetic(S) (19)
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(a)

(b)

Figure 7.1. The memorable story graphs of (a) Istanbul and (b) Paris, which are based on travel

photo albums collected from the web. The nodes (images) of the graphs are arranged

based on the available timestamp information.
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(a)

(b)

Figure 7.2. The aesthetic story graphs of (a) Istanbul and (b) Paris, which are based on travel photo

albums collected from the web. The nodes (images) of the graphs are arranged based on

the available timestamp information.

7.3. Summarization Experiments

After constructing memorable and aesthetic story graphs, we want to compare them with our

previous story graphs without intrinsic properties. For this purpose and in order to make a
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Table 7.1. V-ROUGE scores for the summarization experiments for aesthetic and memorable story

graphs. Y = S
V GTM denotes story graphs with the addition of memorability scores.

Y = S
V GTA denotes story graphs with the addition of aesthetic scores.

DS3 DS3 DS3
Photo Album (Y = S

V GT ) (Y = S
V GTM ) (Y = S

V GTA)

Amsterdam Trip 0.56 0.57 0.54

Istanbul Trip 0.49 0.47 0.48

New York Trip 0.67 0.63 0.68
Paris Trip 0.56 0.55 0.53

Tokyo Trip 0.63 0.62 0.60

Venice Trip 0.66 0.61 0.59

fair comparison and evaluation, we used the same summarization experiments we carried out

in Section 5.3..

We give the V-Rouge and F-Measure scores of the summarization experiments in Table 7.1.

and Table 7.2.. When we look at the V-Rouge scores, memorability and aesthetic properties

seem to have a negative effect on story graphs on behalf of the summarization task. How-

ever, V-Rouge metric only measures the recall between human summaries and the ones we

produced with our method. The F-Measure takes both recall and precision into account and

provides a more stable metric against the outliers that the machine generated summaries may

carry. For the 5 cities out of 6, aesthetic story graphs produced better summaries than the

graphs without intrinsic properties. Similarly 4 cities out of 6 have better summarization

scores on behalf of memorable story graphs. These results clearly indicates that intrinsic

properties have positive impact on the construction of story graphs and increase the useful-

ness of the graphs for visual summarization tasks. We give the composed summary results

of memorable and aesthetic story graphs together with the ones without intrinsic properties

for comparison in Figures 7.3.-7.8..

7.4. Summary

In this chapter, we describe our efforts to extend our story graph generation framework by

incorporating memorability and aesthetic properties of photos to generate memorable and
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Table 7.2. F-Measure scores for the summarization experiments for aesthetic and memorable story

graphs. Y = S
V GTM denotes story graphs with the addition of memorability scores.

Y = S
V GTA denotes story graphs with the addition of aesthetic scores.

DS3 DS3 DS3
Photo Album (Y = S

V GT ) (Y = S
V GTM ) (Y = S

V GTA)

Amsterdam Trip 0.14 0.17 0.20
Istanbul Trip 0.10 0.16 0.18
New York Trip 0.19 0.18 0.17

Paris Trip 0.21 0.20 0.21
Tokyo Trip 0.11 0.18 0.18
Venice Trip 0.23 0.25 0.29

Figure 7.3. Summarization with aesthetic and memorable story graph results of city Istanbul. Top:

Visual summaries using story graph constructed with visual, GPS and textual features.

Middle: Visual summaries using memorable story graph. Bottom: Visual summaries

using aesthetic story graph.

aesthetic story graphs. We created the story graphs by the extended method and carried out

the same visual summarization experiments as we have described in Section 5.3.2.. We show

that including the two intrinsic properties of photos which are memorability and aesthetics

into story graphs positively effects the usability of the story graphs for visual summarization

tasks. This further indicates that due to it’s subjective nature, summarization encourages the

utilization of personalization. Usage of more intrinsic properties of images together with

interactivity with the user during the construction phase of story graphs opens opportunities

for further research.
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Figure 7.4. Summarization with aesthetic and memorable story graph results of city Amsterdam.

Top: Visual summaries using story graph constructed with visual, GPS and textual fea-

tures. Middle: Visual summaries using memorable story graph. Bottom: Visual sum-

maries using aesthetic story graph.

Figure 7.5. Summarization with aesthetic and memorable story graph results of city Newyork. Top:

Visual summaries using story graph constructed with visual, GPS and textual features.

Middle: Visual summaries using memorable story graph. Bottom: Visual summaries

using aesthetic story graph.

Figure 7.6. Summarization with aesthetic and memorable story graph results of city Paris. Top: Vi-

sual summaries using story graph constructed with visual, GPS and textual features.

Middle: Visual summaries using memorable story graph. Bottom: Visual summaries

using aesthetic story graph.
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Figure 7.7. Summarization with aesthetic and memorable story graph results of city Tokyo. Top:

Visual summaries using story graph constructed with visual, GPS and textual features.

Middle: Visual summaries using memorable story graph. Bottom: Visual summaries

using aesthetic story graph.

Figure 7.8. Summarization with aesthetic and memorable story graph results of city Venice. Top:

Visual summaries using story graph constructed with visual, GPS and textual features.

Middle: Visual summaries using memorable story graph. Bottom: Visual summaries

using aesthetic story graph.

8. Conclusion and Further Directions

Today, handling and making use of the huge and continuously accumulating visual data is a

challenging problem. Several approaches are developed and constructing informative visual

story graphs is one of the effective but least explored one.

We believe that story graph is a useful and effective tool to capture and summarize the main

concepts of a data collection. However constructing an ideal story graph is not an easy task

and require detailed and carefully designed process.

In this work, we created an automated graph-based framework utilizing deep features of

images to create visual story graphs. The automated approach makes it further convenient for

updating the story graph as new data becomes available. The work grounds on the following

statement:
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“We create visual information maps to enhance user experience over handling collabo-

rative and massive photo collections.”

Our main contributions in this work as follows:

� Formalizing the properties of a good story graph. We identified and formalized the

characteristics of a good story graph and combined them on an optimization function

which determines the quality of the graph.

We want the story lines in our story graph to have a theme and tells a story. So we

formulated the coherence property around this intuition and used visual and textual

elements as the connection points between photos. Second, we want our story graph to

cover diverse and important concepts. Coverage property satisfies this feature by forc-

ing to add visually and textually different photos from the data set to the story graph,

encouraging diversity. Instead of having distinct story lines that are unrelated with

each other, we want to identify common locations among different stories to capture

more outstanding locations and to acquire the notion of a map.

� Collecting a new vacation data set. Story graphs are best for summarizing a photo

collection specific for a topic. Vacation to touristic cities around the world is a proper

theme for this kind of problem. We collected a new photo set called ”YFCC100M-

CITIES” which consists of 132K photos from 6 touristic cities which are Amsterdam,

Istanbul, New York, Paris, Tokyo and Venice.

� Utilizing the story graphs for visual summarization task. The constructed story

graphs captures important concepts from the data set. Because of this, they are con-

venient priors to be used on summarization tasks. We devised a visual summarization

task and showed that they are capable to be used as a prior knowledge base for this

kind of tasks.

� Implementation of user studies. Due to the personal nature of vacation photos which

are collected from multiple users, it is not easy to measure the quality of the story
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graphs that are made up of those photos. We applied the general approach in the liter-

ature for this kind of problems which are user studies. We conducted two user studies

”next image prediction” and ”coverage measure” and compared with the similar ap-

proaches in the literature.

� Analyzing the effects of intrinsic properties of photos on story graphs. As we

previously mentioned, the personal nature of vacation photos points out that utilizing

intrinsic and personal properties of photos intuitively affects the quality of story graphs.

We incorporated aesthetics and memorability properties of photos in our story graph

construction framework and evaluated the results. Additionally we proposed a novel

unsupervised attention-driven memorability prediction scheme.

We first identified the formal properties of story graphs which are coherence, coverage and

connectivity. Then after extracting the visual and textual elements from photos, we created

a coherence graph based on the transitions over these elements. This graph is the structure

where we analyze and extract the visually and semantically coherent short chain of photos.

Grounding on a divide-and-conquer approach, by overlapping the coherent short chains, we

obtained longer story lines which will form the routes of the story graph. Finally among those

story lines we selected the ones that provide highest coverage of visual and textual elements

together with connection points which emphasize prevailing locations. Some devised user

studies showed that these story graphs are better than similar works in terms of coherency

and coverage.

We devised a visual summarization experiment where the story graphs serve as a useful prior.

For this purpose we built a novel travel dataset named YFC100M-CITIES consisting of six

touristic locations among the world cities by querying the YFCC100M dataset. We created

visual summaries with the story graphs we constructed and evaluated by comparing with

baseline methods and a recent work utilizing neural networks. We showed that the story

graphs are useful basis for this task by achieving higher scores than these methods in terms

of V-Rouge and F-Measure metrics.
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We worked on visual memorability which is an intrinsic property of photos. We proposed

memorability prediction framework utilizing an attention-driven feature selection method.

We achieved state-of-art results on memorability prediction showing that attention is closely

related with visual memorability. Furthermore, we merged visual properties with semantic

ones which are meta-class, Scene Attributes and Sentibank. These features further improved

the memorability prediction accuracy showing that semantic attributes are also related with

visual memorability.

Due to the subjective nature of story graphs, incorporating intrinsic features of photos to our

story graph construction framework is promising. Thus, we integrated intrinsic image prop-

erties which are memorability and aesthetics into our story graph construction framework to

improve the quality of story graphs. We constructed memorable and aesthetic story graphs.

The results of the same visual summarization experiments on these story graphs showed that

incorporating intrinsic properties further improves the quality of the story graphs.

Experimenting on a single dataset can be seen as an open section for this work. More exper-

iments on similar diverse data sets different from YFCC100M-CITIES together with refer-

encing works on similar subject would further evaluates the effectiveness of the story graphs.

For future directions we outline some promising directions:

� As deep learning approaches achieving improved performance on many application

areas, incorporating deep learning mechanisms into the framework would be a conve-

nient approach.

� It would also be interesting to include some kind of personalization to allow the users

to enforce some preferences while constructing the story graphs. This opens a direction

to generate personal story graphs where individual preferences are taken into account

and can be utilized on diverse application areas.

� We used hand-crafted formalization on coherence, coverage and connectivity. Further

our optimization function is also a hand-crafted formula utilizing those story graph
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features. Instead, learning an objective function further automatizes the construction

of story graphs.
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