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Bayes Ağları (BA) belirsizlik altında karar destek problemleri için uygun bir modelleme 

yaklaşımı sunan olasılıksal grafiksel modellerdir. BA’nın hem grafiksel yapısı hem de 

koşullu olasılık tabloları verilerden öğrenilebilir. Bu çalışma verilerin sınırlı miktarda 

olduğu durumlarda BA’nın koşullu olasılıklarını öğrenmeye odaklanmaktadır. 

Sıralı düğümler yöntemi, değerleri arasında sıralı ilişki bulunan değişkenlerin koşullu 

olasılık tablolarını tanımlamak için gereken parametre sayısını azaltmak için önerilmiştir. 

Bu yöntem sıralı BA değişkenlerini Kesilmiş Normal dağılım ile yakınsayarak, koşullu 

olasılık dağılımlarını tabloların gerektirdiğinden daha az parametre ile tanımlar. Bu 

avantaja karşın, önceki çalışmalarda sıralı düğümler yöntemi yalnızca BA’nı uzman 

bilgisi ile tanımlamak için kullanılmış, sıralı düğümleri veriden öğrenmeye yönelik 

yöntemler incelenmemiştir.  
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Bu çalışma sıralı düğümleri veriden öğrenmek için bir yaklaşım önermektedir. Bu 

yaklaşım sıralı düğümlerin sürekli dağılımları arasındaki ilişkiyi öğrenmek için kesilmiş 

normal regresyon, beta regresyon ve lineer regresyon yöntemlerini kullanmakta ve sonra 

bunları BA için koşullu olasılık tablolarına dönüştürmektedir. Önerilen yöntemin 

performansı farklı veri boyutları ve BA yapılarına sahip deneyler ile değerlendirilmiştir. 

 

 

Anahtar Kelimeler: Karar Destek Sistemleri, Bayes Ağları, Sıralı Düğümler Yöntemi, 

Veriden Öğrenme, Yapay Zeka, Dereceli Azalma Algoritması 
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ABSTRACT 

 

 

LEARNING BAYESIAN NETWORK PARAMETERS FROM 

SMALL DATA SETS BY USING RANKED NODES METHOD 
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Bayesian Networks (BNs) are graphical probabilistic models that offer a suitable 

modeling approach for decision support problems under uncertainty. Both the graphical 

structure and conditional probability tables of BNs can be learned from data. This study 

focuses on learning conditional probability of BNs in cases where data are in limited 

amounts.  

The ranked nodes method has been proposed to reduce the number of parameters required 

to define conditional probability tables of variables with ordinal states. This method 

assigns an underlying Truncated Normal distribution to ordinal BN variables, and it 

defines the conditional probability distribution with equations with fewer parameters than 

those required by tables. Despite this advantage, in the previous studies, the method of 
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ranked nodes was used only to elicit BNs from expert knowledge, and methods for 

learning ranked nodes from data were not examined.  

This study proposes an approach to learn ranked nodes from data. This approach uses 

Truncated Normal regression, Beta regression and linear regression to learn the relations 

between the underlying continuous distributions of ranked nodes, and then it transforms 

these to conditional probability tables for BNs. The performance of the proposed method 

has been evaluated using experiments with different data sizes and BN structures. 

 

 

Keywords: Decision Support Systems, Bayesian Networks, Ranked Nodes Method, 

Learning from Data, Artificial Intelligence, Gradient Descent Algorithm  
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1. INTRODUCTION  

 

It is often inevitable to deal with uncertainty when modeling the domains of real-world 

applications. All models are a simplified representation of reality, and the uncertainty 

stems from the impossibility of modeling all the different conditions and exceptions in 

the models (Wiegerinck et al. 2013). Most of real-world decision support models require 

modeling uncertain domains and reasoning under that uncertainty. 

 

Bayesian Networks (BNs) is one of the decision support methods using probabilistic 

reasoning method. It is widely used to develop solutions to large-scale decision support 

problems in the fields of medical diagnostics, software reliability, law, and military 

practice. These graphic models can be used for example for medical diagnosis and 

diagnostics, modeling genetic inheritance of diseases, segmenting and describing images, 

encrypting messages sent through a noisy channel, and localizing and mapping the robot 

(Koller & Friedman, 2009).   

 

The BNs are formed of nodes and directional arcs. The nodes of BN represent the 

variables of it and directional arcs model the causality between these nodes. The graphical 

representation of BN visualizes the causal relationships between its variables and BN’s 

parameters represent the conditional dependencies of it. In addition, BNs model the 

quantitative power of the connections between variables, allowing automatic updating of 

probabilistic beliefs about themselves as new information is inserted into the BN model 

(Korb & Nicholson, 2011). 

 

Modeling an uncertain domain with BN requires two steps as building the model’s 

structure and learning the model’s parameters. The graphical structure of BN is created 

by representing the causal relationships between dependent nodes. After determining the 

graphical structure, the conditional probability distributions are defined which represent 

the strength of these causal relationships. As the number of conditional probabilities of 
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BN structure increase, the amounts of parameters that must be learned increase, and a lot 

of data is needed to learn these parameters. In most real-world decision support problems, 

there is not enough data to learn parameters (Yet et al. 2014). 

 

Ranked nodes method is proposed by Fenton et al. (2007) for the cases where the data is 

insufficient. Ranked Nodes are nodes which are ordered in a continuous and monotonic 

manner. Ranked Nodes have an underlying continuous probability distribution which will 

require fewer parameters. But up to now, that method is used to determine conditional 

probability distributions from expert knowledge; a method for learning the parameters of 

ranked nodes from data is not yet available in the reviewed literature.  

 

The purpose of this thesis study is to develop methods for learning BN parameters from 

limited data. The proposed method uses regression and machine-learning based 

approaches on the underlying continuous distribution of ranked nodes and transforms 

these learned nodes to typical discrete BN nodes so that they can be used with standard 

BN software and inference algorithms. The method is implemented in R programming 

language. The applicability of the developed parameter learning method in different sizes 

and structures are tested with experiments. 

 

In the remainder of this study, Chapter 2 gives information about BNs. Chapter 3 

summarizes the BN structure and parameter learning methods. Chapter 4 covers 

information about the ranked nodes method and Chapter 5 covers the ranked nodes 

learning approach from data that are improved in this study. In Chapter 6 some BN 

models learned by the improved algorithms are given and Chapter 7 summarizes the 

results.
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2. BAYESIAN NETWORKS  

 

2.1. Bayes Theorem 

Bayes theorem shows how the conditional probability 𝑃(𝐴	|	𝐵) is related to its inverse 

conditional probability 𝑃(𝐵	|	𝐴)	as shown below:  

 

𝑃(𝐴	|	𝐵) =
𝑃(𝐵	|	𝐴) × 𝑃(𝐵)

𝑃(𝐴)
 (1) 

 

Bayes theorem enables us to update our prior belief based on observed evidence when A 

is interpreted as our belief about an uncertain event and B as the observed data. 

Computation of Bayes theorem for large and interdependent uncertain events is 

challenging. In this case, BNs offer a suitable modeling approach for representing and 

computing joint probability distributions of such events.  

 

2.2. Bayesian Networks 

BNs are probabilistic graphical models in which the causal relationships between 

variables are expressed by a graphical structure and the conditional probability 

distributions underlying it. Efficient algorithms are available to make complex Bayesian 

inference calculations on the BN structure (S. L. Lauritzen & Spiegelhalter, 1988). A BN 

structure with two nodes A and B is given in Figure 2.1. There is an edge that comes from 

node A to node B; it means there is a direct dependence between A and B. In other words, 

the probability distribution of B is affected by the probability distribution of A. In that 

position node A is called as the parent node and node B is called as the child node.  
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Figure 2.1 Simple BN structure 

 

Conditional Probability Tables (CPTs) of BNs include the parameters of the variables’ 

probability distributions. If a variable has no parent nodes its CPT contains only the 

probabilities of its states, but if it has parent nodes it contains the probabilities of 

combinations of its states with its parent variables’ states.  

 

Consider the BN in Figure 2.1 with two variables A and B. Each one has binary values: A 

has a1 and a2 and B has b1 and b2. Their joint probability distribution P(A, B) is given 

below: 

 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏!) = 	0.70 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏") = 	0.10 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏!) = 0.15 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏") = 	0.05 

 

That probability distribution is denoted with a factorization as below. Here, distribution 

of A is a prior distribution, and distribution of B is a conditional distribution.  

 

𝑃(𝐴, 𝐵) = 𝑃(𝐴) × 𝑃(𝐵	|	𝐴) 

 

a1 a2 

0.8 0.2 
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 a1 a2 

b1 0.875 0.750 

b2 0.125 0.250 

 

 

Figure 2.2 BN structure with two child nodes 

 

If the BN consists of more variables, its joint probability distribution becomes more 

complex (Figure 2.2). For example, if a variable C with three values c1, c2, and c3 is added 

as a child of A and B, the joint distribution will have 12 parameters. 

 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏!, 𝐶 = 𝑐!) = 	0.10 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏!, 𝐶 = 𝑐") = 	0.02 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏!, 𝐶 = 𝑐#) = 	0.04 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏", 𝐶 = 𝑐!) = 	0.02 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏", 𝐶 = 𝑐") = 	0.03 

𝑃(𝐴 = 𝑎!, 𝐵 = 𝑏", 𝐶 = 𝑐#) = 	0.05 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏!, 𝐶 = 𝑐!	) = 0.03 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏!, 𝐶 = 𝑐") = 	0.07 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏!, 𝐶 = 𝑐#) = 	0.05 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏", 𝐶 = 𝑐!	) = 0.01 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏", 𝐶 = 𝑐") = 	0.03 

𝑃(𝐴 = 𝑎", 𝐵 = 𝑏", 𝐶 = 𝑐#) = 	0.01 

  

In that case, the equation given below expresses the joint probability distribution. 

 

𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐴) × 𝑃(𝐵	|	𝐴) × 𝑃(𝐶	|	𝐴) 
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a1 a2 

0.8 0.2 

 

 a1 a2 

b1 0.875 0.750 

b2 0.125 0.250 

 

 a1 a2 

c1 0.150 0.2 

c2 0.288 0.5 

c3 0.562 0.3 

 

As the distribution gets more complex the number of independent parameters contained 

in that distribution becomes larger. In the first model, 3 independent values are needed to 

represent the joint distribution and BN. But as the joint distribution gets larger the number 

of independent parameters increases to 12 for that distribution and 7 for BN. 

 

BNs are graphical tools that represent joint distributions more compactly. Knowing causal 

interactions and dependencies or independencies in BNs allows the representation of joint 

distribution more compactly. For example, in a BN with 4 variables, if there is no chance 

of knowing the independence of conditionality between the variables, the structure will 

have arcs between all pair of nodes. Figure 2.3 shows the distribution of A, B, C, and D. 

In that situation, BN do not encode any conditional independence assertion on the joint 

probability distribution. 
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Figure 2.3 BN structure without independences 

 

The joint probability function of variables given in Figure 2.3 can be expressed as below.  

 

𝑃(𝐴, 𝐵, 𝐶, 𝐷) = 𝑃(𝐴) × 𝑃(𝐵	|	𝐴) × 𝑃(	𝐶	|	𝐴, 𝐵, 𝐷) × 𝑃(𝐷	|	𝐴, 𝐵) 

 

On the other hand, if, for example, it is known that B and D are independent of A, and C 

is independent of D, this reduces the arcs between these variables and allows the joint 

probability function of A, B, C and D to be expressed more compactly as in Figure 2.4. 

 

 

Figure 2.4 BN structure with independences 

 

The joint probability function of variables given in Figure 2.4 can be expressed as below.  

 

𝑃(𝐴, 𝐵, 𝐶, 𝐷) = 𝑃(𝐴) × 𝑃(𝐵) × 𝑃(𝐶	|	𝐴, 𝐵) × 𝑃(𝐷	|	𝐵) 
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BNs can denote the joint probability distributions by factorization. Another way of 

representing the joint probability is showing the independencies of the model (Koller & 

Friedman, 2009). 

 

Calculating the marginal probability of some nodes in BN that has complex structure is a 

very challenging task. To do that a variable elimination algorithm can be used. This 

algorithm eliminates a variable from joint probability distribution by multiplying its 

marginal probability with the joint probability and adds up the result and goes on to 

eliminate all variables. Variable elimination algorithm computes the marginal probability 

of any node at once, and if another marginal probability is needed another process of 

calculation will be needed for that variable. In situations like that junction tree algorithm 

will be more effective because it computes whole marginal probabilities in BN at once 

(S. L. Lauritzen & Spiegelhalter, 1988).   

 

Entering an evidence to any variable means instantiating (or knowing the possibility of) 

the state of that variable to some outcome. Knowing the outcome of any variable is called 

hard evidence. In other words, if it is exactly known that the state of node A is a1, i.e. 

P(A=a1) = 1, it is defined as ‘a hard evidence (observation) entered to A (or A is 

instantiated to a1)’.   

 

But if the state of A is known not certainly but its likelihood function is known, it is called 

uncertain evidence. For example, if the state of node A is equal to a1 with %80 probability 

and equal to a2 with %20 probability (0.8, 0.2) there is an uncertain evidence about A. 

 

In BNs if we call parent nodes as causes and child nodes as effects; 

• If an evidence is entered to cause node, that evidence will update the CPT of the 

effect node and it is called causal inference. 

• If an evidence is entered to effect node, that evidence will update the CPT of the 

cause node and it is called diagnostic inference. 
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A set of three nodes in a BN can connect to each other in 3 different ways; i.e. serial, 

diverging and converging connection.  

 

Serial Connection 

Accordance with the definition of causal inference, if an is evidence entered to A in serial 

connection it will update B and then C (Figure 2.5). Similarly, if an evidence is entered 

to C it will update respectively B and then A by diagnostic connection. But if an evidence 

is entered to B, then any evidence entered to A cannot transform to C because B blocks 

that transformation. 

 

The information flow from A to B or from B to C is called forward (or causal) inference. 

Inversely the information flow from C to B or from B to A is called backward (or 

diagnostic) inference.   

 

 

Figure 2.5 Serial connection 

 

A and C are conditionally independent given B. 

 

Diverging Connection 

Diverging connection has a structure like Figure 2.6. An evidence entered to B is 

transmitted relevantly to A and then to C in diverging connection. But after entering an 

observation to A, if another evidence is entered to B, it cannot update C. 
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Figure 2.6 Diverging connection 

 

A and C are conditionally independent given B. 

 

Converging Connection 

Converging connection’s structure is given in Figure 2.7. Entering an evidence to A will 

affect B but it cannot affect C. After entering an evidence to B, entering another evidence 

to A will update C. It is called explaining away behavior of BNs. Observing the child 

evidence of BN provides some predictions about its parents in BNs that have converging 

connections. 

 

 

Figure 2.7 Converging connection 

 

A and C are conditionally independent given B. 

 

D-separation: D-separation occurs in 2 conditions.  

When there are two different variables A and B in a BN that are not connected to each 

other but, they connected to a middle variable V between them: 
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• if the connection is serial or diverging and the middle variable V is observed these 

two different variables A and B will be d-separated. 

• if the connection is converging and the middle variable V and its descendants are 

not observed these two different variables A and B will be d-separated. 

If these two conditions are not provided A and B will be d-connected. 

 

A Markov Blanket of a node contains a set of variables which makes that node 

independent of other nodes when they are observed. Markov blanket of any node contains 

in its: 

• Parents, 

• Children and 

• Other parents of its children.   
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3. CONSTRUCTION OF BAYESIAN NETWORKS  

 

The dependencies in BNs are represented by CPTs in an uncertain domain and shown by 

edges when the variables are represented by nodes. The following steps are used to model 

and evaluate an uncertain domain using a BN: 

1. Define the variables and create them as nodes. 

2. Determine the type of node as discrete or continuous. 

3. Determine the states of each node. 

4. Identify the relational variables in the problem or identify the unrelated variables 

which are independent. 

5. Connect the variables which are dependent to each other by adding an arc from 

cause to reason variable. 

6. Create the CPTs of each node. 

7. Validate and test the model. 

 

Figure 3.1 represents a BN model about predicting the risk of flood levels. Firstly, the 

probable causes of flood may be defined as rainfall, river water level, and quality of flood 

barrier. Then the node types of flood, rainfall, river water level, and quality of flood 

barrier can be determined as discrete, discrete, continuous, and continuous respectively. 

Then the relationship between variables is determined. Since flood causes are rainfall, 

river water level, and quality of flood barriers, these nodes are defined as parents of flood 

node and three arcs are added from these nodes to flood node. Then CPT of flood is 

created which is conditioned to its parent nodes (N. Fenton & Neil, 2012). 
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Figure 3.1 A flood risk example of BN 

 

The BNs are used to reasoning between variables so, they should represent all 

dependencies and independencies between variables in the most correct way. And also, 

they should not contain redundant or missing links between variables. Because of these 

reasons building a structure of a BN is a challenging task. The first task of building BNs 

is determining the dependencies and building the BN structure according to reasoning 

mechanism. In the remainder of this section, previous studies about defining structure and 

parameters are shown respectively in Sections 3.1 and 3.2. 

 

3.1. Learning Structure of Bayesian Networks 

3.1.1. Learning BN Structure by Knowledge Engineering Methods 

Building the graphical structure of BNs is a challenging task especially for BNs which 

have large structures (Neil et al. 2000). In the study just cited, they mentioned about two 

different challenges of building large scale BNs which are building the correct graphical 

structure that represents all reasoning mechanisms and eliciting parameters of those BNs 

from domain experts. Their interest was on building the right structure for BNs and as 

there is no reasoning methodology in BNs they came with an approach of “building 

blocks” which called idioms.  

 

Building BN structure is handled in three steps in that paper. Firstly, they improved a 

process flow to manage the process of building BN and risks encountered. This process 

flow begins with identifying the problem and continues with matching the problem to 
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statements, integrating statements with objects, creating CPTs, and validating BNs. Then 

they combined the idioms approach with object-oriented BN approach (Koller & Pfeffer, 

1997) which is based on representing BNs by dividing it into manageable and reusable 

fragments in order to simplify the building process of large structured BNs.  

 

Neil et al. (2000) defined 5 types of idioms as given below: 

1. Definitional/Synthesis Idiom models the definitional relations with input nodes 

that define the synthetic node.  

2. Cause-Consequence Idiom models the cause nodes as input nodes and 

consequences of that cause nodes as output nodes. 

3. Measurement Idiom models the reasons affecting the calculation precision and the 

estimated value of a measurement. 

4. Induction Idiom models the statistical reasoning between nodes; for example, a 

parameter node can be estimated by observation nodes. 

5. Reconciliation Idiom reconciles the results created by different methods as a 

single entity.  

 

3.1.2. Learning BN Structure from Data 

 

3.1.2.1. Constraint-based algorithms 

BN structures can be learned with constraint-based algorithms according to their 

conditional dependencies. Firstly, these algorithms build a skeleton of BN according to 

the conditional independencies in the BN. Afterward, edge directions are defined. Here 

according to conditional dependencies, the converging connections are determined, then 

the remaining edges are joined so that they do not create a new converging relation, and 

finally, the remaining edges are joined so that they do not create a cycle (Spirtes et al. 

2000). 
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3.1.2.2. Score-based algorithms 

Score-based learning requires a score function for comparing BN structures and a search 

algorithm to construct a BN structure that has a better score. Score functions typically 

reward higher likelihood function values and penalize the complexity of the model to 

avoid overfitting. Firstly, a starting BN structure is determined. The score function for 

that BN structure is calculated and an edge operation (deletion, insertion or inversion of 

an edge) is made and the score function is calculated again. Edge operation continues 

until a stopping rule defined for the algorithm is satisfied. 

 

3.1.3. Learning BN Structure by Hybrid Learning Methods 

There are some studies about learning BN structures by hybrid learning methods; for 

example, studies that use both constraint-based algorithms and score-based algorithms. A 

hybrid learning algorithm can build a skeleton of BN by a constraint-based algorithm and 

then it can determine the directions of edges by a score based algorithm (Tsamardinos et 

al. 2006). 

 

3.2. Learning Parameters of Bayesian Networks 

3.2.1. Exponential Growth 

The CPT in BN includes the probabilities of each state if a node has no parent. But if it 

has any parent it contains the probabilities of combination of its states with its parent 

nodes’ states. Those parameters can be elicited from an expert or data or both.  

 

In BNs, increasing the number of parent nodes of any node, gets the size of its CPT larger. 

For example, a node that has 5 states and one parent node which has 5 states has 20 

parameters needed to be elicited to build its CPT. When one more parent node which 

again has 5 states is added to that node, CPT will have 100 parameters and so on. 

Similarly, increasing the number of states of that node or of its parents increases its CPT. 

A node that has 6 states and 2 parents with 6 states will have 180 parameters. 
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For a node that has 5 states, the number of parameters needed to be learned according to 

its number of parents which have the same number of states are shown in Table 3.1 given 

below. 

 

Table 3.1 Exponential growth of CPTs according to number of parents 

Parents Number of Parameters  

0 4 

1 4x5 = 20 

2 4x5x5 = 100 

3 4x5x5x5 = 500 

4 4x5x5x5x5 = 2500 

5 4x5x5x5x5 = 12500 

 

If a node with binary states has n parent nodes that have binary states, its CPT will have 

2n parameters. This is called the exponential growth of CPT. 

 

3.2.2. Learning BN Parameters by Knowledge Engineering Methods 

The step of learning parameters of CPTs is difficult because of the exponential growth of 

CPTs. In large BN structures, eliciting the parameters of CPT from experts is time-

consuming and infeasible as the CPTs get large. Pearl (1988) suggested Canonical 

methods to reduce the parameters need for elicitation. One of these methods is Noisy-OR 

gate that represents n cause nodes’ effects on one effect node. Noisy-OR gate requires the 

following conditions to be implemented: 

• The probability of a cause node occurring in the absence of other cause nodes is 
known. 

• The probability of an effect node occurring is known when no cause node has 
occurred. 

• Occurring of a cause node is independent of occurring probability of other cause 
nodes. 
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If there are n cause nodes as xi (i=1, 2, …, n) with occurring probabilities of pi and a 

binary-valued effect node y, the probability of node Y occurring given a subset of X will 

be as in equation (2).  

 

𝑃(𝑌	|		𝑋) = 1 −	 9 (1 − 𝑝𝑖)
$:&$	∈	)

 (2) 

  

The number of parameters needed for producing CPT reduces from 2n parameters to n 

parameters in Noisy-OR approach. 

 

The Noisy-OR method can be used to decrease the parameters elicited from an expert. 

There are some studies about learning Noisy-OR parameters from data. Oniśko et. al. 

(2001) used Noisy-OR gate to learn the parameters of CPT from data. The Noisy-OR 

method was tested with the HEPAR II model with a small clinical data set collected from 

patients for the diagnosis of liver disorders. The single-disorder model structured by using 

expert opinion and medical literature was developed by the assumption that the disorders 

were independent of each other. The multiple-disorder model was developed by applying 

some changes to the single-disorder model. While there was no data for half of the CPT 

parameters in the single-disorder model, the percentage of the parameters without data in 

the multi-disorder model decreased to 0.1%. The greatest diagnostic accuracy is achieved 

as 48% for multiple-disorder Noisy-OR CPT learned from the data, 46% for multiple-

disorder Noisy-OR CPT learned from the specialist, and 45% for normal CPT. Finally, it 

was found that Noisy-OR multiple-disorder model parameters had 6.7% better diagnostic 

accuracy than normal multiple-disorder model parameters and 14.3% better diagnostic 

accuracy than single-disorder model Noisy-OR parameters. 

 

Díez (1993) and Srinivas (1993) improved the Noisy-MAX method which is a general 

version of the Noisy-OR method for n-level nodes. Noisy-MAX methods allow the 

building of multi-leveled cause and effect nodes distinctly from the Noisy-OR gate. 
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Zagorecki & Druzdzel (2013) tested the Noisy-OR and Noisy-MAX methods used to 

solve the exponential increase of parameters of CPT by comparing them with existing 

CPT. They tested Noisy-OR, Noisy-MAX, and existing CPTs in 3 cases (ALARM, 

HAILFINDER, HEPAR 2). The fact that causal effects are independent in BN makes it 

possible to use the Noisy-OR and Noisy-MAX methods. In this article, the Noisy-OR 

method was not mentioned in detail, but the parameters and building of CPTs of the 

Noisy-MAX method was explained. The distance between the CPTs was measured by 

Euclidean distance and Kullback-Leibler (KL) distance in order to compare the CPTs 

produced by the Noisy-MAX method and the original CPTs. It has been proved that the 

Euclidean distance between the CPTs produced by Noisy-MAX and the original CPTs is 

only a minimum value; using this feature, it is concluded that the most appropriate Noisy-

MAX distribution can be found for a given CPT. In their article, the Noisy-MAX 

algorithm was tested on 3 cases to test the compatibility of the CPTs. The average distance 

and maximum distance values of the CPT nodes produced with Noisy-MAX were 

measured separately with the original CPT nodes for cases with and without weighting of 

the parent nodes. In two of the three cases, the maximum distance was less than 0.1 for 

50% of the nodes in between. This shows that the Noisy-MAX method provides a good 

fit for a significant percentage distribution. In order to see that the results were not 

coincidental, random CPTs were produced by the Noisy-OR method. It was observed that 

the CPTs found by Noisy-MAX method did not show good agreement with these CPTs. 

In addition, it was stated that goodness of fit is not related to the number of parameters of 

the CPT and that the Noisy-MAX method is as good as the small CPTs in the big CPT. 

 

The ranked nodes method was proposed by Fenton et al. (2007) in order to reduce the 

number of parameters required to build CPTs. The ranked nodes method is another 

approximation to simplify CPTs of ordinal nodes by using an underlying bounded 

continuous scale. Ranked nodes can use a variety of functions for modelling the 

relationship between a node and its parents. Ranked nodes have been primarily used for 

parameter elicitation from experts. Detailed description of the ranked nodes method will 

be provided in Chapter 4. 
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3.2.3. Learning BN Parameters from Data 

The parameters of BN can be learned from data. Let M(G, Q) be a BN model that has a 

graphical structure G, parameters Q, cluster of parameters U and data set D. The 

likelihood of M according to every data in the dataset D is defined by probability P(d/M).   

 

𝐿(𝑀 ∕ 𝐷) = 	9𝑃(𝑑	|	𝑀
*∈+

)	 (3) 

 

The log of likelihood which called loglikelihood of M is calculated.  

 

𝐿𝐿(𝑀 ∕ 𝐷) = 	9log	(𝑃(𝑑	|	𝑀
*∈+

)) (4) 

  

The maximum likelihood approach learns the parameters Q by maximizing the likelihood 

or loglikelihood function for a known structure G and dataset D. The likelihood method 

calculates the model that gives maximum likelihood according to data set. 

 

𝑄 =	𝑎𝑟𝑔𝑚𝑎𝑥,𝐿I𝑀, ∕ 𝐷J = 	𝑎𝑟𝑔𝑚𝑎𝑥,𝐿𝐿I𝑀, ∕ 𝐷J (5) 

  

To implement likelihood method, the parameters should be independent of each other and 

the uncertainty between different parameters should be independent. In the situation of 

missing data an expectation maximization algorithm (Steffen L. Lauritzen, 1995) can be 

used.   
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4. RANKED NODES METHOD 

 

4.1. Overview 

Fenton et al. (2007) proposed ranked nodes to simplify the parameter space of BN nodes 

by approximating their CPT by an underlying continuous variable. This enables 

probability distribution of the ranked nodes to be defined with fewer parameters. 

 

Ranked nodes have ordinal states that are corresponding to a continuous numerical scale 

that is bounded between 0 and 1. The CPT of the ordinal states is generated by discretizing 

the continuous scale with equal intervals for each ordinal state. Users interact with the 

ordinal states when they enter evidence or calculate the BN, the underlying continuous 

scale is invisible to the user and only used for generating the CPTs when the BN is 

calculated.  

 

 

Figure 4.1 An example of BN structure which has ranked nodes 

 

An example of BN which has ranked nodes is given in Figure 4.1. The nodes X1, X2 and 

Y respectively have 5, 3 and 5 states that can be measured on subjective ordinal scales. 

For example, the states of node X1 are “Very Low” “Low” “Medium”, “High” and “Very 

High”. The underlying continuous scale of X1 is divided into 5 equal intervals where the 

state “Very Low” is corresponding to the interval [0-0.2), the state “Low” is 

corresponding to [0.2-0.4) and so on. To calculate the CPT of child node Y the “central 

tendency” approach is used. The underlying continuous scale of Y is defined by a function 

of X1 and X2, and its CPT is calculated based on this function. 
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Fenton et al. (2007) used Truncated Normal (TNormal) distribution bounded between 0 

and 1 to define the underlying continuous scale of ranked nodes. The Normal distribution 

that is truncated between [0, 1] is called TNormal distribution. It is defined by ignoring 

the probability mass function out of [0, 1] and normalizing the remaining Normal 

distribution and denoted as TNormal (µ, σ2, 0, 1). 

 

Since the ranked nodes have an underlying continuous scale that is TNormal distribution, 

less parameter require to model the CPTs. Parent nodes are defined by two parameters 

mean and variance and the child nodes are measured by weighted average function of its 

parent nodes.  

 

The cause node is denoted as a central tendency of effect nodes so an analogy with 

regression is made such that effect of each parent node Xi (i=1,2,…,n) to the child node Y 

is written as the linear regression function. Here the contribution of each cause node is 

denoted by weights wi and an	𝜀  is added as an error factor. Here the error factor is 

distributed normally with mean 0 and variance σ2. The variance is calculated as the 

inverse of the sum of weights.  

 

𝑦$ =L𝑤$𝑋$ + 𝑒
-

$.!

 (6) 

 

𝜎" =	
1

∑ 𝑤$-
$.!

 (7) 

 

Finally, the child node Y is normalized. The expected value of Y will be ∑ 𝑤#𝑋#$
#%!  and 

the variance of Y will be !
∑ '!"
!#$

.  

 

𝑃I𝑌𝐼𝑋J = 𝑇𝑁𝑜𝑟𝑚𝑎𝑙 W
∑ 𝑤$𝑋$-
$.! 	
∑ 𝑤$-
$.! 	

,
1

∑ 𝑤$-
$.! 	

, 0,1X (8) 
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𝑃I𝑋, 𝑌J = 𝑃(𝑌	|	𝑋)9𝑃(𝑋$)
-

$.!

 (9) 

  

Fenton et al. (2007) proposed four weighted functions to define the probability 

distribution of ranked nodes with parents. These are weighted mean (WMEAN), weighted 

maximum (WMAX), weighted minimum (WMIN) and a mixture of minimum and 

maximum (MIXMINMAX) functions as shown in (10), (11), (12), and (13). 

 

𝑊𝑀𝐸𝐴𝑁 =
∑ 𝑤$𝑋$-
$.!
∑ 𝑤$-
$.!

 (10) 

 

WMIN = min
∀$.!…-

W
𝑤$𝑋$ + ∑ 𝑋1-

$21

𝑤$ + (𝑛 − 1)
X 	𝑤ℎ𝑒𝑟𝑒	𝑤$ ≥ 0 (11) 

 

WMAX = 	max
∀$.!…-

W
𝑤$𝑋$ +∑ 𝑋1-

$21

𝑤$ + (𝑛 − 1)
X 	𝑤ℎ𝑒𝑟𝑒	𝑤$ 	≥ 0 (12) 

 

𝑀𝐼𝑋𝑀𝐼𝑁𝑀𝐴𝑋 =	
𝑤3$-𝑀𝐼𝑁I𝑋J +	𝑤34&𝑀𝐴𝑋I𝑋J	

𝑤3$- +	𝑤34&
 (13) 

 

Here wi and Xi are the weight and underlying numerical value of the parent i, respectively, 

and X is the set of all parents. Fenton et al. (2007) proposed ranked nodes primarily to 

improve parameter elicitation from domain experts. These functions and their 

interpretation are found to be suitable for expert elicitation as they can model a variety of 

shapes and their weights can be elicited in a relatively easier way than eliciting a full CPT.  

 

Currently, ranked nodes are only implemented in the AgenaRisk BN software, the next 

section describes this implementation. 
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4.2. AgenaRisk Implementation of Ranked Nodes 

The current AgenaRisk implementation of ranked nodes focuses on eliciting the 

parameters of ranked nodes (mean and variance for parent nodes and mean, variance and 

weights for child nodes) from domain experts. In other words, no approach is provided to 

learn ranked nodes from data. The CPTs of variables without parents are defined based 

on the TNormal distributions of those nodes. Figure 4.2 shows the TNormal distribution 

of ranked nodes given in Figure 4.1. The mean of node X1 is 0.8 and the variance of X1 is 

0.05. The mean of node X2 is 0.3 and the variance of X2 is 0.1. AgenaRisk calculates the 

CDF of that TNormal distributions and discretizes these CDFs by using the associated 

intervals of node X1 and X2. The resulting CPTs are given in Figure 4.3.  

 

For child nodes, the combination of samples is used to create CPTs. Suppose that node Y 

has m parent nodes X1, X2, …, Xm. AgenaRisk generates s number of samples for each 

interval corresponding to states of parent nodes. Then it uses those samples to calculate 

the expected value of node Y. For example, for the part of the CPT regarding P(Y | X1 = 

x1, …, Xm = xm) the algorithm generates s number of samples from the intervals that 

correspond to states x1, x2, ..., xm. Then the expected value of node Y is created by 

implementing the weighted function to that sm combinations of samples. It then calculates 

the CDF of the TNormal distribution for all sm expected values, discretizes these CDFs 

by using the associated intervals of Y, and averages these discretized probabilities (details 

of this approach is shown by Fenton et al., (2007)). In Figure 4.3 the CPT of Y is calculated 

by implementing a weighted function µ( = 2𝑋! + 𝑋" and 𝜎(" = 0.01.  

 

 

Figure 4.2 TNormal distributions of ranked nodes 
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Figure 4.3 CPTs of Ranked Nodes 

 

Rather than using sm combinations of equidistant samples, Nunes et al. (2017) generated 

n random samples for the regression model for each state combination of the parents and 

generates a CPT based on these samples. Nunes et al. (2017) showed that their results and 

CPT generation times are close to the AgenaRisk implementation.  

 

Virtanen (2018) mentioned the ranked nodes method in their paper and then they 

mentioned the lack of studies made about generating CPTs with RNM. The lack of 

knowledge about practical usage of ranked nodes method led them to make some 

experiments about the application of ranked nodes method. They studied the effect of 

sample size s on CPTs of ranked nodes and found that as the sample size increases, the 

elements of CPT generated with ranked nodes method converge toward probabilities 

obtained from the regression model. But unfortunately, the computational load increases 

also as the sample size increases. They studied some other factors i.e. sample size 

parameter’s value, the feasible range of the weights, etc. They showed that the use of 

partitioned weight expressions and the elementary RNM-compatibility of nodes are the 

factors that affect the accuracy of fit the most.  

 

Laitila & Virtanen (2016) mentioned the steps of ranked nodes method required to build 

the CPTs of BN with interval scales. But some challenges may be encountered when 

applying it to nodes with interval scales. They mentioned the difficulty of representing 

expert judgments on ranked nodes that have interval scales. They proposed an effective 
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approach which represents expert judgments in those situations. The first step of the three 

steps of that approach is the discretization of interval scales iteratively up to most 

preferable discretization. Then weight expressions and weights of ranked nodes are 

determined, and finally, the CPTs are refined. 

 

Fenton et al. (2019) pointed to a problem encountered because of the conditional Inter-

Causal Independence (CII) property of leaky Noisy-OR. If the cause variables are defined 

by x1, …, xn and effect variable is defined by y, the CII property of Noisy-OR causes the 

failure of explaining away behavior of BN when the effect variable of Noisy-OR is false 

(y=0). In this situation, the cause variables will be independent of each other and the 

explaining away behavior of Noisy-OR will fail. Fenton et al. (2019) tried to solve that 

deficiency of explaining away behavior in Noisy-OR by eliminating the CII property of 

it. They provided the conditional dependence between cause nodes by taking into 

consideration the three forms of causal inference which are synergy, interference, and 

inhibition. They built an extension of Noisy-OR by adding an explaining away parameter 

to the Noisy-OR function. After proofing the extended version of Noisy-Or they pointed 

out the importance of choosing the optimal explaining away parameter to avoid the 

undesired properties that can occur. 

 

Noguchi et al. (2019) made another study about the explaining away problem of Noisy-

OR when the effect node is observed as false. In that study, they stated the similarity 

between Noisy-OR and ranked nodes as both of those approaches contain several effect 

variables that lead to a cause variable. One difference is the Noisy-OR has binary states 

when the ranked nodes can have multiple and ordered states. They propose the use of 

ranked nodes instead of Noisy-OR because of the anti-correlation property of ranked 

nodes when the causes are conditioned on effect. That property means that the states of 

two effect nodes of a cause node are not likely to be the same. So, the Noisy-OR problems 

can be modeled by ranked nodes by transforming its states to ordinal states and using the 

weighted sum function. At the same time, this enables the child to have multiple states 

whereas Noisy-OR variables can have two states.   
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Despite these capabilities, the use of ranked nodes for data-driven parameter learning has 

not been investigated in the reviewed studies. In the following section, we present a 

method to learn ranked nodes CPTs from data.  
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5. LEARNING RANKED NODES PARAMETERS FROM DATA 

 

Ranked nodes have an underlying TNormal distribution and the underlying continuous 

distribution of ranked nodes with parents are defined by a TNormal regression model 

where parents are independent variables and the child is the dependent variable as defined 

in the previous chapter. In this study, our process aims to learn the CPTs of ranked nodes 

from data by several algorithms. 

 

The algorithm is able to work with complete and ordinal, and known BN structures 

(Figure 5.1). We implemented the algorithm in the R environment. The implementation 

takes the BN structure and ordinal data as input and returns CPTs of ranked nodes as 

outputs.  

 

 

Figure 5.1 The inputs and outputs of the proposed Regression algorithms 

 

In the remainder of this section, the transformation of the data step of the algorithm is 

given in Section 5.1. Then the approach to learn the nodes with no parent nodes is given 

in Section 5.2, and the methods to learn the parameters of nodes with parents are given in 

Section 5.3.  

 

5.1. Transforming the Categorical Data to Numerical Data 

Our algorithm uses regression to estimate the parameters of the ranked nodes. Therefore, 

firstly the categorical data of ordinal variables are transformed into numerical data by 

using the median point of the associated interval. For example, Table 5.1 shows an ordinal 
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variable with five states. Ranked nodes map each state to intervals with equal width in its 

underlying continuous scale. We use the median point of the associated intervals when 

we transform the categorical data to numerical data for our approach. 

 

Table 5.1 The states and corresponding intervals of Ranked Nodes 

State Associated Intervals Median Value 
Very Low 0.0 – 0.2 0.1 
Low 0.2 – 0.4 0.3 
Medium 0.4 – 0.6 0.5 
High 0.6 – 0.8 0.7 
Very High 0.8 – 1.0 0.9 

 

After transforming the data, the parameters of TNormal distribution is estimated for the 

nodes without parents and a TNormal regression model is set for the nodes with parents. 

Then, a sampling-based approach is run to generate CPTs based on that regression model.  

 

The categorical data and BN structure are inserted to the R code firstly, and the R code 

transforms the categorical data to numerical data by calculating the median of the 

intervals. A BN that has ranked nodes X1, X2, X3 and Y is given in Table 5.2. Nodes X1, 

X2 and X3 are parents of node Y and they have the data shown below. Their corresponding 

numerical data is given in Table 5.3.  

 

Table 5.2 An example of ranked nodes categorical data 

X1 X2 X3 Y 
Low Very Low Medium Low 
High High High High 
Low Very Low Medium Medium 
Low Medium Medium Medium 
Very Low Very Low Medium Very Low 
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Table 5.3 Corresponding numeric data of categorical data in Table 5.2 

X1 X2 X3 Y 
0.3 0.1 0.5 0.3 
0.7 0.7 0.7 0.7 
0.3 0.1 0.5 0.5 
0.3 0.5 0.5 0.5 
0.1 0.1 0.5 0.1 

 

5.2. Nodes with No Parent Nodes 

In a BN, marginal distribution of the associated random variable needs to be defined for 

nodes that have no parents. CPTs of those nodes are created by calculating the mean and 

variance of the underlying distribution based on data. After transforming categorical data 

to numeric data, its mean and standard deviation are calculated. Since the underlying 

distribution used for ranked nodes is the TNormal distribution, the mean and variance of 

TNormal distribution are calculated in the following section. 

 

5.2.1. Deriving TNormal Distribution from Normal Distribution 

The TNormal(µ, σ, a, b) distribution is defined by specifying parameters of general 

normal distribution µ and σ, then a truncation range [a, b]. Its probability density function 

(PDF) is represented by ψ(µ, σ, a, b; x) and its cumulative distribution function (CDF) is 

represented by y(µ, σ, a, b; x). The TNormal PDF is defined by modifying the Normal 

PDF ϕ(µ, σ; x) for the truncation interval where Φ(µ, σ; x) is the CDF of the Normal 

distribution. The values outside the truncation range are set to zero, and the values inside 

are uniformly scaled. 

 

𝜓(µ, 𝜎, 𝑎, 𝑏; 𝑥) =

⎩
⎨

⎧
0 𝑖𝑓		𝑥 < 𝑎

𝜙(µ, 𝜎"; 𝑥)
Φ(µ, 𝜎"; 𝑏) − Φ(µ, 𝜎"; 𝑎) 𝑎 ≤ 𝑥 ≤ 𝑏

0 𝑖𝑓		𝑥 > 𝑏

 (14) 

 

The mean µ   and variance 𝜎" of the TNormal distribution can be determined as in 

equations (15), (16) and (17). 
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𝛼 =
𝑎 − 𝜇
𝜎  

𝛽 =
𝑏 − 𝜇
𝜎  

(15) 

 

�̅� = 𝜇 − 𝜎
𝜙(0,1, 𝛽) − 𝜙(0,1, α)	
Φ(0,1, 𝛽) − Φ(0,1, α)

 (16) 

 

𝜎y" = 𝜎" z1 −	
𝛽𝜙(0,1, 𝛽) − 𝛼𝜙(0,1, 𝛼)	
𝛷(0,1, 𝛽) − 	𝛷(0,1, 𝛼)

− }
𝜙(0,1, 𝛽) − 𝜙(0,1, 𝛼)	
𝛷(0,1, 𝛽) − 	𝛷(0,1, 𝛼)

~
"

�	 (17) 

  

The CPT of ranked nodes that have no parent nodes is built by calculating the CDF of 

TNormal distribution of each state interval. Suppose that a random variable Xi which has 

no parent nodes has n (n=0,1,2, …, n) number of states. Let xi, which denotes the state of 

variable Xi, has [li, ui] state interval (li corresponds to lower bound and ui correspond to 

upper bound of state xi). The probability of state i of node Xi is determined by the CDF of 

TNormal distribution that lies between the intervals of [li, ui].  

 

𝑃(𝑋$ = 𝑥$) = 	𝜓(�̅�& , 𝜎y& , 𝑎, 𝑏; 𝑥𝑖) = 	
Φ(�̅�, 𝜎y; 𝑢𝑖) − Φ(�̅�, 𝜎y; 𝑙𝑖)
Φ(�̅�, 𝜎y; 1) − Φ(�̅�, 𝜎y; 0)

 (18) 

 

Then the CPT is built by placing these probabilities to each state interval as in Table 5.4. 

 

Table 5.4 CPT of nodes with no parent nodes 

X1 X2 … Xn 

𝑃(𝑋# = 𝑥!) 𝑃(𝑋# = 𝑥") … 𝑃(𝑋# = 𝑥)) 

 

5.3. Nodes with Parent Nodes 

The conditional probability distribution of nodes with parents needs to be defined in a 

BN. In this section we presented TNormal, Beta and Linear regression methods for 

learning the conditional probability distribution of ranked nodes from data.  
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5.3.1. TNormal Regression Method 

The algorithm improved to apply TNormal Regression method to ranked nodes is 

summarized below. 

 

Transform Ordinal Data to Numerical Data 

for each node in the BN 

if the node has no parents 

Estimate the parameters of the TNormal distribution. 

Discretize the TNormal distribution with equal intervals for each state of the 

node. 

else 

Apply TNormal regression using gradient descent. 

for each state combination of the parent nodes 

Generate n uniform samples for the TNormal regression for the parent 

combination. 

Count the samples for each child interval to define the CPT of the parent 

combination. 

end for 

end if 

end for 

 

TNormal regression model defines the dependent node Y with a TNormal distribution 

where µ is defined by a linear regression function equation (19) where Xi and wi are 

respectively the independent variable i and its coefficient, w0 is the constant term and m 

is the number of independent variables. 
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𝑌 = 𝑤5 +L𝑤$𝑋$

3

$.!

 (19) 

  

Suppose that, A random variable Y has n parent nodes X1, X2, …, Xn. The states of random 

variable Xi are denoted by xi and the states of Y are denoted by yi for child node. So, the 

state intervals are denoted by [li, ui]. The probabilities of state i of node Y given X1, X2, 

…, Xn is calculated by sampling approach using TNormal regression parameters.  

 

Firstly, categorical data are transformed into numerical data. Then a regression is applied 

to numerical data and the weights of that regression are determined by gradient descent 

algorithm. Finally, n number of samples for each state interval of each parent node are 

generated, and for different combinations of that state intervals the child node is 

calculated by putting these weights and samples into the regression equation by the 

optimal weights calculated. The number of samples falling to each state interval of the 

child node is counted. The result is divided by the total number of samples generated. The 

result is written to CPT as the probability of that state interval of the child node. That 

approach is mentioned in detail in next sections.  

 

5.3.1.1. Determining TNormal Regression Coefficients by Gradient Descent 

A linear regression method is used to build CPTs of child nodes. In that method, the linear 

regression coefficients of numerical data are calculated by the help of the gradient descent 

algorithm.  

 

Gradient descent algorithm is an iterative optimization algorithm. It can be used as a 

supervised learning algorithm by minimizing the error of a predictive model. If x is a 

feature or input variable and y is a target or output variable in the training set the 

hypothesis function h can be created as a linear regression function maps from x’s to y’s. 

So, the hypothesis or linear regression function tries to estimate the real values of the 

output variable y. 
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ℎ6(𝑥) = 𝑤5 +𝑤!𝑥 (20) 

  

The purpose is to find the best regression coefficients w’s that predict the output values 

(y’s). To do that, a minimization approach is used such as minimizing the squared 

difference between the value predicted by the regression function and the real value. If 

the size of the training set is m, the sum of mean squared errors of the training examples 

i=1 to m is tried to be minimized.   

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒6!6"L(ℎ6I𝑥($)J − 𝑦($))"
3

$.!

 (21) 

  

The cost function is written as the square difference between the value predicted by the 

regression function and the actual value in the minimization approach. The gradient 

descent algorithm aims to minimize the cost function that depends on the regression 

coefficient to provide the perfect regression function that fits the data. Note that gradient 

descent is used for finding the optimum of different types of cost functions, not only the 

linear regression function. 

 

𝐽(𝑤5, 𝑤!) =L(ℎ6I𝑥($)J − 𝑦($))"
3

$.!

 (22) 

 

𝐽(𝑤5, 𝑤!) =L((𝑤5 +𝑤!I𝑥($)J) − 𝑦($))"
3

$.!

 (23) 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒6!6"𝐽(𝑤5, 𝑤!) (24) 

  

The algorithm is started with initial values to try to find the minimum of that cost function 

by changing the unknown parameters iteratively with a learning rate. The algorithm 

decreases the value of the cost function by moving it to the decreasing direction. So, the 

gradient of the cost function is calculated, and the parameters are updated by learning rate 
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times that gradient. It is important to update all parameters simultaneously at each 

iteration.  

 

𝑤5 =:𝑤5 − 	𝛼
𝜕
𝜕𝑤5

𝐽(𝑤5, 𝑤!) 

 

𝑤! =:𝑤! − 	𝛼
𝜕
𝜕𝑤!

𝐽(𝑤5, 𝑤!) 

 

(25) 

The algorithm repeatedly updates all parameters until it finds the local or global optimum 

or reaches a stopping rule such as the value of cost function being less than a small number 

as in (26). 

 

𝑅𝑒𝑝𝑒𝑎𝑡	𝑢𝑛𝑡𝑖𝑙	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	{𝑤1 =:𝑤1 − 	𝛼
𝜕
𝜕𝑤1

𝐽(𝑤5, 𝑤!, … , 𝑤-)	𝑓𝑜𝑟	𝑗

= 0,1, … , 𝑛} 
(26) 

  

When Normal regression function estimates the dependent or child variable by equation 

𝑌 = 𝑤* + ∑ 𝑤#𝑋#$
#%! , TNormal regression function estimates the dependent variable as in 

Equation (27). According to the estimation of the dependent or child variable Y, the cost 

function is given in (28). 

 

ℎ6(𝑥) = 𝑤5 +L𝑤$𝑋$

3

$.!

− 𝜎
𝜙(0,1, β) − 𝜙(0,1, α)	
Φ(0,1, β) − Φ(0,1, α)

 (27) 

 

𝐽(𝑤5, … , 𝑤3, 𝜎) = 𝑌 − z𝑤5 +L𝑤$𝑋$

3

$.!

− 𝜎
𝜙(0,1, β) − 𝜙(0,1, α)	
Φ(0,1, β) − Φ(0,1, α)

� (28) 

  



 

 35 

5.3.1.2. Applying Gradient Descent to Matrix Notation of Cost Function 

The regression function can estimate the dependent variable based on more than one 

independent variable. That case of multiple variables is called multivariate regression. 

The multiplication rule of matrix simplifies the notation of regression.  By taking 

advantage of matrix multiplication rule, the hypothesis can be written as equation (29) 

and the continuing formulas are represented by matrix notation. In addition to hypothesis 

function, the cost function is represented by matrix and the gradient descent is applied to 

that cost function by taking derivative of that cost function according to parameters and 

variance. The data have m number of training examples and n features. The parent 

variables are an m × n dimensional matrix X and child variable w is a vector which is n 

dimensional. The hypothesis is given in formula (29). From now on, the multiplication of 

the parent matrix and child vector will be used in the cost function.  

 

ℎ6(𝑥) = [𝑤5 𝑤! … 𝑤-] �

𝑥5
𝑥!
…
𝑥-

� = 𝒘9𝑿 (29) 

 

ℎ6(𝑥) =

⎣
⎢
⎢
⎢
⎡ 𝑥!

(!) 𝑥"
(!) … 𝑥-

(!)

𝑥!
(") 𝑥"

(") … 𝑥-
(")

… … … …
𝑥!
(3) 𝑥"

(3) … 𝑥-
(3)⎦

⎥
⎥
⎥
⎤
× �

𝑤!
𝑤"
…
𝑤-

� = 𝑿𝒘 (30) 

 

𝐽(𝑤, 𝜎) = 𝑦 − z𝜇 − 𝜎 }
𝜑(𝜇, 𝜎", 𝑏) − 𝜑(𝜇, 𝜎", 𝑎)
𝜙(𝜇, 𝜎", 𝑏) − 𝜙(𝜇, 𝜎", 𝑎)

~� (31) 

 

𝐽(𝑤, 𝜎) = y − �𝑿𝒘− 𝜎�
𝜑 �1 − 𝑿𝒘𝜎 � − 𝜑 �0 − 𝑿𝒘𝜎 �

𝜙 �1 − 𝑿𝒘𝜎 � − 𝜙 �0 − 𝑿𝒘𝜎 �
�  (32) 

  

A gradient descent algorithm is applied to that cost function to find the best parameters 

that fit the regression formula. The partial derivative of the cost function according to 

parameter vector w and the standard deviation s is calculated. The parameter vector w 
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and the standard deviation s are updated up to find the parameters that made the 

derivative of cost function smaller than a defined threshold value (stopping rule). The 

partial derivative of cost function according to w is given in equation (35) and according 

to standard deviation is given in (36). 

 

𝑅𝑒𝑝𝑒𝑎𝑡	𝑢𝑛𝑡𝑖𝑙	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	{𝑤 =:𝑤 − 	𝛼
𝜕
𝜕𝑤

𝐽(𝑤, 𝜎)} (33) 

 

𝑅𝑒𝑝𝑒𝑎𝑡	𝑢𝑛𝑡𝑖𝑙	𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒	{𝜎 =: 𝜎 − 	𝛼
𝜕
𝜕𝜎

𝐽(𝑤, 𝜎)} (34) 

 

𝐴 =
1 − 𝑿𝒘
𝜎  

 

𝐵 =
0 − 𝑿𝒘
𝜎  

 

𝑑
𝑑𝑤 𝐽 =

⎝

⎜
⎛−𝑋(𝜑(A)A) − (𝜑(B)B) −

;𝜑(A) − 𝜑(B)<;𝜑(A) − 𝜑(B)<
𝜙(A) − 𝜙(B)

;𝜙(A) − 𝜙(B)<
+ 1

⎠

⎟
⎞
B𝑦

− D𝜎
𝜑(A) − 𝜑(B)
𝜙(A) − 𝜙(B) + 𝑿𝒘EF 

(35) 

 

 

𝑑
𝑑𝜎 𝐽 =

⎝

⎜⎜
⎜
⎛
G;𝜑(A)	(1 − 𝑿𝒘)< − ;𝜑(B)	(0 − 𝑿𝒘)<I ;𝜑(A) − 𝜑(B)<

;𝜙(A) − 𝜙(B)<
+ J(𝜑(A)	(1 − 𝑿𝒘)

%) − (𝜑(B)	(𝑿𝒘)%)
𝜎 K

𝜎

+ 𝜑(A) − 𝜑(𝐵)

⎠

⎟⎟
⎟
⎞

⎝

⎜
⎛
𝑦 − L𝜎M

;𝜑(A) − 𝜑(B)<
;𝜙(A) − 𝜙(B)<

+ (−𝑿𝒘)NO

⎠

⎟
⎞

 

(36) 
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Then the optimal parameters of TNormal regression founded by the gradient descent 

algorithm are used to generate CPTs of ranked nodes. 

 

5.3.2. Beta Regression Method 

Fenton et al. (2007) described the dependent variable in ranked nodes method with 

TNormal distribution rather than Normal distribution because the dependent variable in 

ranked nodes is distributed in the [0,1] interval. Beta regression is also a suitable 

underlying distribution for ranked nodes as they are bounded between the [0,1] interval. 

 

The Beta probability density function (PDF) of dependent variable y is represented by 

p(y; p, q) and it is given in (37) where p > 0 and q > 0 are parameters that provide different 

shapes to distribution and G(.) is the gamma function. 

 

p(𝑦; 𝑝, 𝑞) =
Γ(𝑝 + 𝑞)
Γ(𝑝)Γ(𝑞)

𝑦:;!(1 − 𝑦)<;!, 0 < 𝑦 < 1 (37) 

  

The mean 𝜇  and variance 𝜎" of the Beta distribution are given in equations (38) and (39). 

 

𝜇 =
𝑝

(𝑝 + 𝑞)
 (38) 

  

𝜎" =
𝑝𝑞

(𝑝 + 𝑞)2(𝑝 + 𝑞 + 1)
 (39) 

  

It is possible to define the Beta distribution with the mean (µ) and precision parameter 

(f). If the mean of distribution is presented by 𝜇 = 𝑝 (𝑝 + 𝑞)⁄  and precision parameter is 

presented by f = p + q, then the parameters can be replaced by p = µf  and q = (1 - µ)f 

and PDF of Beta distribution can be as (40) where 0 < µ < 1 and f > 0.  
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p(𝑦;µ, ϕ) =
Γ(ϕ)

Γ(µϕ)Γ((1 − µ)ϕ)
𝑦µ=;!(1 − 𝑦)(!;µ)=;!, 0 < 𝑦 < 1 (40) 

  

If it is assumed that variables y1, …, yn are independent variables which have Beta 

distribution and each yt (t=1,…,n) is dependent on k variables xt1, …, xtk, the mean of yt is 

µt  and defined by a link function g(.) where b = (b1, …, bk) is a vector of regression 

parameters. 

 

𝑔(𝜇>) =L𝑥>$𝛽$ = 𝑛>

?

$.!

 (41) 

  

Some of link functions can be used for defining the mean of the dependent variable. If 

the logit specification function  𝑔(𝜇) = log{ 𝜇 (1 − 𝜇)}⁄  is used the mean will be as in 

(41) where xtT = (xt1, ..., xtk) for t= 1,…,n. 

 

𝜇> =
𝑒&#$@

1 + 𝑒&#$@
 (42) 

  

To provide the positiveness of precision parameter another logit function 𝑔(𝜙) =

log{−𝑤#𝛿} can be used. 

 

These formulas will be useful when the Beta regression is used to learn the parameters of 

CPTs. After drawing a Beta regression between the parents and child node data, the Beta 

regression parameters b = (b1, …, bk) and precision parameters are found by using the 

maximum likelihood approach implemented in the betaReg package of R. Then by the 

logit link function the mean and precision of Beta regression are calculated. Then using 

these mean and precision parameters the p and q shape parameters can be calculated by p 

= µf  and q = (1 - µ)f and these shape parameters are used for generating Beta distributed 

samples for our dependent variable y. The steps of Beta regression algorithm are given 

below. 
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Transform Ordinal Data to Numerical Data 

for each node in the BN 

if the node has no parents 

Estimate the parameters of the TNormal distribution. 

Discretize the TNormal distribution with equal intervals for each state of the 

node. 

else 

Apply Beta regression. 

for each state combination of the parent nodes 

Generate n uniform samples for each state combination of each 

parent node. 

Insert the n uniform samples to Beta regression equation. 

Apply inverse link function to Beta regression outputs and find the 

mean and precision parameters of Beta distribution. 

Calculate the shape parameters by using mean and precision 

parameters. 

Generate n Beta distributed samples by shape parameters. 

Count the samples for each child interval to define the CPT of the 

variable. 

end for 

end if 

end for 

 

5.3.3. Linear Regression Method 

Ranked Nodes are defined in truncated interval, so the linear regression method is not 

appropriate for them. But, in order to make a comparison between the TNormal and Beta 

regression methods, the linear regression method is added to R code.  
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The main difference between linear regression algorithm and TNormal regression is that, 

in TNormal regression the Normal distribution of ranked nodes are truncated. But 

basically, in linear regression method, a linear regression is applied to data and the 

coefficients are inserted to linear regression equation (19) without any truncation. The 

outputs are counted for each state of child node and the CPT is built. 

 

5.4. Sampling and Building CPTs 

Once the regression models for nodes with parents are defined by using the approaches 

described in Section 5.3, we built discrete CPTs based on these for the BN. We followed 

a similar approach with Nunes et al. (2017) to generate the CPTs of the nodes with 

parents. Once we define the TNormal regression models for these nodes, we generated n 

samples for each state combination of the parents X1 = x1, X2 = x2, …, Xm = xm, and use 

these samples on the TNormal regression model. We counted the number of samples 

associated with each interval of Y to compute the P(Y | X1 = x1, …, Xm = xm).In order to 

generate the CPT of a node, we generated n samples for each combination of state interval 

of parent nodes from the regression model associated with that node. Afterward, we 

founded the ratio of samples associated with each state interval of the child node to 

calculate the conditional probability of that state.  

 

TNormal regression method is applied to the BN in Figure 4.1 which has 2 parent nodes 

with 3 states each. The TNormal regression parameters of the BN is obtained. For each 

combination of state interval of parent nodes, n samples are generated through gradient 

descent algorithm. For variable Y, the weighted function is found as 𝑌 = 0.13 +

0.44𝑋! − 0.14𝑋" . The n random samples are inserted to that equation and for each 

combination of parent nodes, n outputs are reached. 

 

For example, when X1=Low, 100 samples are generated between 0 and 0.33. Likewise, 

for X2=Low, 100 samples are generated between 0 and 0.33. These samples are inserted 

to the regression formula and n outputs are generated for variable Y.  Because variable Y 

has 3 states, the outputs that are between 0 and 0.33 are counted for Y=Low, the outputs 



 

 41 

that are between 0.33 and 0.66 are counted for state Y=Medium and the remaining outputs 

are counted for state Y=High as given in Table 5.5. These numbers of outputs are divided 

to n (the total number of samples) and the resulting probabilities are equal to CPT of 

variable Y in Table 5.6. 

 

Table 5.5 The number of outputs falls between each state interval of child node Y 
 X1 0 – .33 0 - .33 0 – .33 .33 – .67 .33 – .67 .33 – .67 .67 - 1 .67 - 1 .67 - 1 
 X2 0 – .33 .33 - .67 .67 - 1 0 - .67 .33 - .67 .67 - 1 0 – .33 .33 –.67 .67 - 1 

Y 
0 - .33 97 95 96 48 67 80 2 16 31 

.33 - .66 3 5 4 52 33 20 93 82 69 
.66 – 1 0 0 0 0 0 0 5 2 0 

 
Table 5.6 The resulting CPT of child node Y 

 X1 LOW LOW LOW MEDIUM MEDIUM MEDIUM HIGH HIGH HIGH 

 X2 LOW MEDIUM HIGH LOW MEDIUM HIGH LOW MEDIUM HIGH 
Y LOW 0.97 0.95 0.96 0.48 0.67 0.8 0.02 0.16 0.31 

MEDIUM 0.03 0.05 0.04 0.52 0.33 0.2 0.93 0.82 0.69 
HIGH 0 0 0 0 0 0 0.05 0.02 0 
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6. EXPERIMENTS 

 

The proposed ranked nodes algorithms described in the previous chapter are tested with 

different BN models. The R implementation has 3 alternative algorithms to learn the 

ranked nodes. The algorithms started to work by inserting a BN structure and BN data 

into the model. Then they converted categorical data to numeric data and ask what the 

learning algorithm will be used for. The BN models are learned by these different 

algorithms as flowchart given in Figure 6.1. 

 

 

Figure 6.1 The algorithm of R code 
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For different algorithms of the developed R code, the models are learned, and the results 

are given in the next section. 

 

6.1. The Results of Experiments 

The TNormal regression algorithm, Beta regression algorithm and linear regression 

algorithm are tested in R with several BN models that are available in BN repository 

(bnlearn.com). The bnlearn package is the most widely used R package for learning the 

BN structure and parameters. It comprises constraint-based, data-based and hybrid 

structure learning algorithms. Also, it comprises maximum likelihood estimation (MLE) 

and Bayesian parameter learning functions which are used for comparing the proposed 

regression algorithms developed in this study. Note that there is no data-based ranked 

learning algorithm available for ranked nodes, and because of that the current MLE 

algorithm used for discrete data is used in this study for comparison.  

 

Bn.fit is one of the functions of bnlearn package that learn the BN parameters if the 

structure and the data of BN are inserted to R. It uses MLE method to fit the parameters 

of BN.  We compared the 3 proposed algorithms with MLE method implemented in the 

bnlearn package. The distance between each parameter of CPTs learned by MLE and true 

CPTs are calculated. The same calculation for CPTs learned by the proposed algorithms 

(TNormal regression algorithm, Beta regression algorithm and linear regression 

algorithm) and true CPTs are made. We used Hellinger distance to assess the similarity 

of the learned and true probability distributions. Other scores and distance measures such 

as Bhattacharyya distance or Kullback-Leibler divergence can also be used. Hellinger 

distance is closely related with the Bhattacharyya distance and it offers a symmetric 

distance measure unlike Kullback-Leibler divergence. The Hellinger distance decrease as 

the similarity between the distributions increase, hence lower scores are favorable. The 

Hellinger distance to assess the similarity of learned and true models are used for this 

calculation. The Hellinger distance of two discrete probability distributions P = {p1, … 

pk} and Q = {qi, …, qk} can be calculated as follows: 
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𝐻(𝑃, 𝑄) =
1
√2

OP QR𝑝# −	R𝑞#S
"+

#%!
 (43) 

  

The comparison of the performance of the TNormal Regression, Beta regression and 

linear regression learning with MLE was made by using the BN models from the BN 

repository. These models are selected because 1) most nodes in these BNs have ordinal 

states, 2) their sizes and number of parents differ, 3) they are widely used for evaluating 

performance. Table 6.1 includes the size and complexity of these BNs. The experiments 

learned the BNs by using datasets with 50, 100, 200, 300, 500, 1000, 5000, 10000, 20000 

and 50000 sample sizes for each of these BNs. 

 

Table 6.1 Properties of BN Models 

BN Nodes Arcs Parameters Max. Number of Parents 
Child 20 25 230 2 
Insurance 27 52 984 3 
Mildew 35 46 540150 3 
Barley 48 84 114005 4 

 

The steps of the experiments are summarized below: 

1. The 50, 100, 200, 300, 500, 1000, 5000, 10000, 20000 and 50000 sized samples 

are taken randomly from data. 

2. The data and structure of these models are inserted into the R code. The models 

are learned with MLE method and proposed regression algorithms. Then by 

calculating Hellinger distances between the true CPTs and learned CPTs by MLE, 

TNormal regression, Beta regression and Linear regression, the comparisons are 

made. 

3. For all sample sizes selected randomly, the BN CPTs are generated 10 times and 

the mean distance of these 10 models’ CPTs are calculated. Finally, the mean of 

these distances is shown as the final distance between true CPTs and learned 

CPTs. The standard deviation and 95% credible intervals of these distances are 

shown in the Appendix. 
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6.1.1. Child Model 

The Child Model given in Figure 6.2 is the simplest BN model used. It has 20 nodes; 230 

parameters and its maximum number of parents is 2.  

 

 

Figure 6.2 The structure of Child BN Model 

 

The Child BN model was learned with TNormal regression algorithm, Beta regression 

algorithm and Linear regression algorithm. Then the Child BN model was learned by 

MLE algorithm. The graphs in Figure 6.3 are separated according to the variables’ 

number of parents. For variables with one parent, the graphs of distances between learned 

CPTs and true CPTs are drawn as a) and for two parents, they are drawn as b). The 

distances between true CPTs and TNormal regression’s CPTs learned by 50, 100, 200, 

500, 1000, 5000, 10000 and 50000 size of data are shown by blue line, the distance 

between true CPTs and Beta regression’s CPTs are shown by the green line, the distance 

between true CPTs and linear regression’s CPTs are shown by the orange line and, the 

distances between true CPTs and CPTs learned by MLE are shown by the red line.  

 

The performances of TNormal regression, Beta regression and linear regression 

algorithms was close to each other. The performances of these algorithms did not change 
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by increasing the data size for both variables that have one parent and two parents. The 

performance of MLE algorithm increased as the data size increases. And the overall 

performance of MLE was better than proposed algorithm for the Child model. 

a) 

 

b) 

 

Figure 6.3 The Hellinger distances between learned CPTs and true CPTs for Child Model with 
a)1 parent, b)2 parents 
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6.1.2. Insurance Model 

The Insurance BN model provided from BN repository is a discrete model. Its structure 

is given in Figure 6.4. Insurance model is generated for risk estimation of car insurance. 

It has 27 nodes and 1400 parameters. The maximum number of parents in Insurance 

model is 3. It is learned by algorithms proposed in this study and then the Hellinger 

distances between learned CPTs and true CPTs are calculated. 

 

 

Figure 6.4 The structure of Insurance BN model 

 

The performances of the algorithms for Insurance BN model are given in the graphs in 

Figure 6.5. Here the performance of TNormal regression and Beta regression algorithms 

was better than MLE for all number of parents only when the CPTs learned with a data 

size of 50. As the data size increases to 100, MLE algorithm performed better than all the 

proposed algorithms. The performance of proposed algorithms was close to each other, 

but Beta regression algorithm was the best performance among them. The proposed 

approaches performed good but as the model is not too complex and the data is enough 
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for MLE algorithm, the proposed algorithm could not reach the performance of MLE 

algorithm.   

 

a) 

 

b) 
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c) 

 

Figure 6.5 The Hellinger distances between learned CPTs and true CPTs for Insurance Model 
with a)1 parent, b)2 parents, c)3 parents 

 

6.1.3. Mildew Model 

Mildew BN in Figure 6.6 is a medium sized BN that has 35 nodes and 540150 parameters. 

The maximum number of parents is 3 in Mildew BN. 
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Figure 6.6 The structure of Mildew BN model 

 

In the Mildew BN, the TNormal regression algorithm and linear regression algorithm 

provided better performances than MLE algorithm for all sample sizes for nodes with 1 

parent and 2 parents (Figure 6.7). For nodes that have 3 parents, they performed better 

than MLE algorithm where the sample size is smaller than 1000. The MLE algorithm 

caught the performance of the TNormal Regression algorithm with sample sizes of 1000 

for nodes with 3 parents. 

 

Beta regression algorithm performed better than MLE algorithm only when the sample 

size is 50 for nodes with 1 parent. For 2 parents, it performed better than MLE algorithm 

but worse than TNormal and linear regression. When the sample size is smaller than 1000 

it performed better than MLE for 3 parents. 
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a)  

 

b) 
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c) 

 

Figure 6.7 The Hellinger distances between learned CPTs and true CPTs for Mildew Model 
with a)1 parent, b)2 parents, c)3 parents 

 

6.1.4. Barley Model 

Barley model given in Figure 6.8 is the largest BN model used in this study. It has 48 

nodes and 114005 parameters. Maximum number of parents in this model is 4.  
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Figure 6.8 The structure of Barley BN model 

 

In the Barley BN, TNormal regression and Beta regression algorithms provided better 

performance for all numbers of parents in a small sample size (Figure 6.9). MLE was able 

to catch the performance of the TNormal regression and Beta regression algorithms with 

100 and 300 sizes for nodes with 1 and 2 parents respectively. The proposed algorithms 

had better performance in all sample sizes for nodes with 3 and 4 parents. The 

performance of MLE become better when the sample size increases, but for 3 parent and 

4 parents MLE could not catch the performance of TNormal and Beta regression.  
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a)

 

b) 

 



 

 55 

c)

 

d) 

 

Figure 6.9 The Hellinger distances between learned CPTs and true CPTs for Barley Model with 
a)1 parent, b)2 parents, c)3 parents and d)4 parents 
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Three proposed parameter learning algorithms for ranked nodes are tested with several 

BNs and are compared with the existing MLE learning algorithm. The results showed 

that the MLE learning algorithm needs more data as the parent number of variables is 

increased. For complex BN models like Barley model, even the data size of 50000 was 

not enough for MLE to learn the parameters of CPTs of variables which have 4 parents. 

On the other hand, the proposed algorithms presented good performance for BNs with 

complex structures. They learned the CPTs of variables with several parents even with 

the small data size as 50. Also, the performance of proposed algorithms did not change 

with data size. The proposed algorithms modeled the linear relationship between 

variables, and because of this property they could perform good when the data size is 

small.  
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7. CONCLUSION 

 

This thesis proposed 3 methods to learn ranked nodes from data. The TNormal, Beta and 

linear regression algorithms estimated the parameters of ranked nodes without parents 

and fit a regression model to ranked nodes with parents. Then they generated CPTs from 

these distributions and regression models using a sampling-based approach. The 

performances of the methods are evaluated using four BN models with different sizes and 

complexities.  

 

The proposed TNormal, Beta and linear regression algorithms gave similar performance 

for most of the models. Also, they gave better results when the models get complicated. 

The small-sized and less complicated BNs can be learned by MLE method better than 

regression algorithms so there is no need for an algorithm that learns from small data 

sizes. But as the model gets complex and the dependencies in a BN increase, it gets 

difficult to learn the BN with small data size because there is not enough data that 

represent all of the possible dependencies in BNs. In those situations, algorithms that 

learn from small data size such as regression algorithms can be a solution. In complex 

BN models tested, when the data size is small the performance of regression algorithms 

was better than MLE for all number of parents. 

 

The performances of proposed regression algorithms were better than MLE algorithm 

when the number of parents of variables increases. By the same reason given previously 

with small data size, there was not enough data to learn the parameters by MLE for 

different state combinations of parent nodes. Mildew and Barley BN models learned 

better with TNormal than MLE method when the number of parents gets larger. 

 

Increasing the data size increased the performance of MLE algorithm but the performance 

of TNormal regression algorithm did not change much when the data size increased. In 

all BN models tested, the MLE method tended to perform better when the data size is 

increased; on the other hand, the performance of regression methods did not change. 
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The proposed methods performed better than MLE in these experiments when the size of 

the CPT was large or when the sample size was small. In future studies, developing a 

hybrid approach that uses the proposed method interchangeably with the conventional 

learning technique depending on the size of the available data can be studied. For 

example, the small-sized CPTs of BN model can be learned by MLE method and large 

sized CPTs can be learned by TNormal regression model. This study can be expanded for 

other weighed functions defined for ranked nodes i.e. weighted minimum and weighted 

maximum functions. Also, there may be models which has uncompleted or missing data. 

The expanding algorithm that handle missing data problem can be improved also.   
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APPENDIX 

Appendix 1 – Summary Tables of Child Model 

CHILD MODEL (1 PARENT) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE 

 µ s CI µ s CI µ s CI µ s CI 

50 0.239 0.006 [0.231, 

0.251] 

0.233 0.008 [0.220, 

0.246] 

0.240 0.010 [0.230, 

0.261] 

0.154 0.011 [0.140, 

0.171] 

100 0.242 0.008 [0.229, 

0.256] 

0.224 0.005 [0.216, 

0.230] 

0.233 0.005 [0.226, 

0.242] 

0.120 0.013 [0.099, 

0.140] 

200 0.234 0.006 [0.228, 

0.243] 

0.225 0.005 [0.217, 

0.229] 

0.234 0.004 [0.228, 

0.239] 

0.085 0.006 [0.077, 

0.094] 

300 0.234 0.004 [0.230, 

0.240] 

0.221 0.004 [0.216, 

0.229] 

0.230 0.003 [0.225, 

0.234] 

0.072 0.007 [0.061, 

0.080] 

500 0.233 0.002 [0.229, 

0.235] 

0.221 0.003 [0.216, 

0.223] 

0.228 0.003 [0.224, 

0.232] 

0.052 0.005 [0.044, 

0.061] 

1000 0.233 0.001 [0.230, 

0.234] 

0.220 0.001 [0.218, 

0.222] 

0.229 0.002 [0.224, 

0.231] 

0.038 0.003 [0.034, 

0.043] 

5000 0.229 0.001 [0.228, 

0.231] 

0.220 0.001 [0.216, 

0.222] 

0.229 0.001 [0.227, 

0.230] 

0.017 0.001 [0.014, 

0.019] 

10000 0.231 0.002 [0.228, 

0.233] 

0.220 0.002 [0.217, 

0.222] 

0.229 0.002 [0.225, 

0.231] 

0.012 0.001 [0.011, 

0.013] 

20000 0.231 0.001 [0.230, 

0.233] 

0.220 0.001 [0.218, 

0.222] 

0.228 0.001 [0.226, 

0.231] 

0.009 0.001 [0.008, 

0.010] 

50000 0.231 0.002 [0.228, 

0.233] 

0.219 0.001 [0.217, 

0.223] 

0.228 0.001 [0.225, 

0.230] 

0.007 0.000 [0.007, 

0.008] 
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CHILD MODEL (2 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.204 0.014 [0.187, 

0.229] 

0.193 0.013 [0.176, 

0.209] 

0.207 0.011 [0.191, 

0.224] 

0.229 0.017 [0.197, 

0.247] 

100 0.202 0.011 [0.184, 

0.216] 

0.184 0.008 [0.174, 

0.197] 

0.195 0.006 [0.186, 

0.205] 

0.189 0.011 [0.176, 

0.209] 

200 0.194 0.005 [0.189, 

0.202] 

0.178 0.003 [0.173, 

0.182] 

0.187 0.004 [0.182, 

0.193] 

0.142 0.013 [0.128, 

0.163] 

300 0.187 0.002 [0.185, 

0.190] 

0.175 0.002 [0.171, 

0.178] 

0.188 0.005 [0.182, 

0.193] 

0.120 0.009 [0.107, 

0.132] 

500 0.191 0.003 [0.187, 

0.197] 

0.176 0.04 [0.173, 

0.183] 

0.187 0.003 [0.183, 

0.192] 

0.096 0.05 [0.088, 

0.102] 

1000 0.187 0.003 [0.184, 

0.191] 

0.174 0.003 [0.169, 

0.178] 

0.185 0.002 [0.181, 

0.189] 

0.069 0.004 [0.064, 

0.074] 

5000 0.188 0.001 [0.185, 

0.189] 

0.172 0.001 [0.170, 

0.173] 

0.185 0.001 [0.183, 

0.187] 

0.029 0.002 [0.026, 

0.034] 

10000 0.187 0.002 [0.184, 

0.191] 

0.173 0.001 [0.171, 

0.174] 

0.185 0.002 [0.182, 

0.188] 

0.021 0.001 [0.018, 

0.022] 

20000 0.187 0.001 [0.185, 

0.189] 

0.172 0.001 [0.171, 

0.173] 

0.183 0.002 [0.180, 

0.187] 

0.015 0.001 [0.013, 

0.018] 

50000 0.187 0.001 [0.186, 

0.189] 

0.171 0.002 [0.169, 

0.174] 

0.183 0.001 [0.181, 

0.186] 

0.012 0.000 [0.011, 

0.014] 

 

 

 

 



 

 64 

Appendix 2- Summary Tables of Insurance Model 

INSURANCE MODEL (1 PARENT) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.138 0.020 [0.117, 

0.176] 

0.112 0.016 [0.096, 

0.140] 

0.137 0.012 [0.120, 

0.159] 

0.128 0.034 [0.091, 

0.188] 

100 0.123 0.021 [0.104, 

0.166] 

0.108 0.019 [0.087, 

0.146] 

0.131 0.027 [0.110, 

0.185] 

0.109 0.023 [0.076, 

0.143] 

200 0.123 0.014 [0.104, 

0.145] 

0.101 0.010 [0.088, 

0.118] 

0.125 0.026 [0.104, 

0.176] 

0.084 0.018 [0.066, 

0.118] 

300 0.116 0.012 [0.103, 

0.138] 

0.097 0.004 [0.093, 

0.104] 

0.118 0.006 [0.110, 

0.128] 

0.069 0.009 [0.052, 

0.084] 

500 0.119 0.011 [0.105, 

0.135] 

0.096 0.003 [0.092, 

0.101] 

0.119 0.014 [0.103, 

0.148] 

0.062 0.010 [0.052, 

0.080] 

1000 0.113 0.006 [0.105, 

0.124] 

0.099 0.005 [0.089, 

0.103] 

0.117 0.008 [0.106, 

0.132] 

0.054 0.007 [0.042, 

0.062] 

5000 0.114 0.004 [0.109, 

0.117] 

0.096 0.002 [0.094, 

0.099] 

0.117 0.004 [0.112, 

0.125] 

0.049 0.004 [0.042, 

0.054] 

10000 0.114 0.005 [0.107, 

0.121] 

0.096 0.004 [0.092, 

0.103] 

0.116 0.003 [0.111, 

0.120] 

0.048 0.001 [0.045, 

0.050] 

20000 0.113 0.003 [0.108, 

0.118] 

0.096 0.002 [0.091, 

0.100] 

0.115 0.003 [0.112, 

0.119] 

0.048 0.002 [0.046, 

0.051] 

50000 0.116 0.004 [0.111, 

0.123] 

0.098 0.003 [0.092, 

0.100] 

0.115 0.002 [0.112, 

0.119] 

0.048 0.001 [0.047, 

0.049] 
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INSURANCE MODEL (2 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.231 0.008 [0.222, 

0.247] 

0.222 0.005 [0.217, 

0.230] 

0.237 0.005 [0.228, 

0.244] 

0.246 0.006 [0.240, 

0.254] 

100 0.221 0.007 [0.214, 

0.234] 

0.216 0.003 [0.210, 

0.221] 

0.229 0.004 [0.224

0.234] 

0.207 0.007 [0.196, 

0.216] 

200 0.219 0.004 [0.214, 

0.225] 

0.215 0.004 [0.210, 

0.221] 

0.228 0.005 [0.224, 

0.237] 

0.171 0.006 [0.160, 

0.177] 

300 0.219 0.002 [0.215, 

0.221] 

0.211 0.003 [0.208, 

0.216] 

0.225 0.002 [0.221, 

0.227] 

0.152 0.009 [0.146, 

0.159] 

500 0.217 0.002 [0.214, 

0.220] 

0.323 0.004 [0.316, 

0.328] 

0.225 0.001 [0.222, 

0.227] 

0.132 0.006 [0.121, 

0.141] 

1000 0.217 0.001 [0.215, 

0.219] 

0.210 0.001 [0.209, 

0.213] 

0.224 0.001 [0.220, 

0.225] 

0.116 0.007 [0.108, 

0.130] 

5000 0.216 0.001 [0.214, 

0.217] 

0.210 0.001 [0.209, 

0.211] 

0.223 0.001 [0.222, 

0.224] 

0.092 0.002 [0.089, 

0.093] 

10000 0.215 0.001 [0.214, 

0.216] 

0.210 0.001 [0.209, 

0.212] 

0.223 0.001 [0.222, 

0.224] 

0.090 0.001 [0.089, 

0.091] 

20000 0.216 0.001 [0.215, 

0.218] 

0.210 0.001 [0.209, 

0.211] 

0.223 0.001 [0.222, 

0.224] 

0089 0.001 [0.088, 

0.090] 

50000 0.216 0.001 [0.215, 

0.217] 

0.210 0.001 [0.209, 

0.212] 

0.223 0.001 [0.221, 

0.224] 

0.088 0.000 [0.087, 

0.088] 
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INSURANCE MODEL (3 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.349 0.020 [0.328, 

0.386] 

0.316 0.010 [0.304, 

0.331] 

0.351 0.012 [0.332, 

0.367] 

0.370 0.013 [0.350, 

0.386] 

100 0.340 0.020 [0.319, 

0.375] 

0.316 0.015 [0.299, 

0.337] 

0.339 0.016 [0.319, 

0.361] 

0.313 0.014 [0.297, 

0.336] 

200 0.352 0.010 [0.334, 

0.366] 

0.320 0.005 [0.313, 

0.326] 

0.339 0.009 [0.325, 

0.348] 

0.278 0.014 [0.252, 

0.293] 

300 0.348 0.008 [0.335, 

0.361] 

0.325 0.006 [0.314, 

0.331] 

0.342 0.007 [0.333, 

0.354] 

0.251 0.008 [0.241, 

0.262] 

500 0.353 0.005 [0.346, 

0.361] 

0.322 0.004 [0.316, 

0.329] 

0.344 0.005 [0.335, 

0.350] 

0.231 0.010 [0.217, 

0.243] 

1000 0.350 0.002 [0.345, 

0.352] 

0.317 0.004 [0.209, 

0.322] 

0.344 0.005 [0.334, 

0.351] 

0.209 0.005 [0.201, 

0.216] 

5000 0.352 0.003 [0.346, 

0.356] 

0.320 0.002 [0.317, 

0.322] 

0.344 0.002 [0.342, 

0.346] 

0.193 0.002 [0.190, 

0.197] 

10000 0.351 0.002 [0.349, 

0.354] 

0.320 0.001 [0.319, 

0.322] 

0.344 0.001 [0.342, 

0.345] 

0.192 0.001 [0.191, 

0.193] 

20000 0.351 0.002 [0.347, 

0.353] 

0.320 0.001 [0.319, 

0.321] 

0.344 0.001 [0.342, 

0.345] 

0.192 0.001 [0.190, 

0.192] 

50000 0.351 0.001 [0.350, 

0.353] 

0.320 0.001 [0.319, 

0.321] 

0.344 0.001 [0.343, 

0.346] 

0.192 0.000 [0.192, 

0.193] 
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Appendix 3 - Summary Tables of Mildew Model 

MILDEW MODEL (1PARENT) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.227 0.044 [0.168, 

0.298] 

0.578 0.029 [0.525, 

0.610] 

0.243 0.027 [0.196, 

0.286] 

0.667 0.012 [0.652, 

0.687] 

100 0.208 0.032 [0.159, 

0.258] 

0.588 0.011 [0.565, 

0.598] 

0.222 0.021 [0.192, 

0.253] 

0.548 0.020 [0.509, 

0.570] 

200 0.218 0.022 [0.184, 

0.241] 

0.589 0.009 [0.578, 

0.602] 

0.235 0.012 [0.217, 

0.251] 

0.445 0.029 [0.402, 

0.482] 

300 0.207 0.017 [0.188, 

0.238] 

0.591 0.006 [0.581, 

0.595] 

0.231 0.012 [0.215, 

0.248] 

0.399 0.019 [0.376, 

0.428] 

500 0.208 0.017 [0.179, 

0.225] 

0.588 0.004 [0.578, 

0.592] 

0.223 0.009 [0.210, 

0.235] 

0.338 0.016 [0.319, 

0.366] 

1000 0.208 0.010 [0.193, 

0.221] 

0.594 0.003 [0.588, 

0.597] 

0.223 0.008 [0.211, 

0.236] 

0.280 0.014 [0.261, 

0.303] 

5000 0.208 0.006 [0.199, 

0.217] 

0.591 0.002 [0.588, 

0.595] 

0.223 0.005 [0.215, 

0.230] 

0.235 0.001 [0.233, 

0.237] 

10000 0.208 0.003 [0.202, 

0.213] 

0.591 0.002 [0.589, 

0.594] 

0.224 0.002 [0.220, 

0.229] 

0.231 0.002 [0.227, 

0.234] 

20000 0.208 0.002 [0.204, 

0.210] 

0.591 0.001 [0.589, 

0.593] 

0.225 0.002 [0.221, 

0.228] 

0.229 0.001 [0.227, 

0.231] 

50000 0.208 0.002 [0.205, 

0.210] 

0.591 0.001 [0.590, 

0.593] 

0.225 0.002 [0.222, 

0.228] 

0.227 0.000 [0.226, 

0.229] 
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MILDEW MODEL (2 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.280 0.015 [0.260, 

0.301] 

0.436 0.040 [0.374, 

0.483] 

0.311 0.016 [0.290, 

0.338] 

0.711 0.005 [0.705, 

0.720] 

100 0.279 0.015 [0.261, 

0.305] 

0.451 0.034 [0.392, 

0.491] 

0.296 0.012 [0.280, 

0.317] 

0.672 0.005 [0.666, 

0.682] 

200 0.272 0.013 [0.251, 

0.291] 

0.456 0.016 [0.427, 

0.470] 

0.285 0.009 [0.272, 

0.298] 

0.624 0.006 [0.613, 

0.631] 

300 0.270 0.008 [0.258, 

0.283] 

0.459 0.010 [0.445, 

0.473] 

0.283 0.009 [0.274, 

0.296] 

0.600 0.006 [0.593, 

0.607] 

500 0.263 0.008 [0.250, 

0.273] 

0.458 0.008 [0.444, 

0.468] 

0.284 0.006 [0.277, 

0.295] 

0.562 0.006 [0.556, 

0.572] 

1000 0.261 0.006 [0.255, 

0.270] 

0.464 0.005 [0.458, 

0.473] 

0.280 0.004 [0.276, 

0.286] 

0.524 0.005 [0.520, 

0.533] 

5000 0.265 0.004 [0.260, 

0.270] 

0.461 0.004 [0.456, 

0.467] 

0.278 0.003 [0.274, 

0.283] 

0.490 0.001 [0.488, 

491] 

10000 0.265 0.002 [0.263, 

0.268] 

0.463 0.002 [0.458, 

0.465] 

0.279 0.002 [0.276, 

0.282] 

0.488 0.001 [0.487, 

0.489] 

20000 0.264 0.001 [0.262, 

0.266] 

0.463 0.002 [0.460, 

0.465] 

0.278 0.001 [0.277, 

0.279] 

0.487 0.001 [0.487, 

0.487] 

50000 0.264 0.000 [0.263, 

0.265] 

0.462 0.001 [0.461, 

0.464] 

0.278 0.001 [0.277, 

0.278] 

0.486 0.000 [0.485, 

0.486] 
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MILDEW MODEL (3 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.440 0.008 [0.428, 

0.454] 

0.409 0.013 [0.386, 

0.428] 

0.428 0.007 [0.418, 

0.439] 

0.579 0.004 [0.575, 

0,585] 

100 0.435 0.006 [0.428, 

0.445] 

0.406 0.010 [0.387, 

0.415] 

0.420 0.004 [0.414, 

0.426] 

0.554 0.002 [0.550, 

0.558] 

200 0.430 0.003 [0.424, 

0.435] 

0.407 0.008 [0.397, 

0.421] 

0.417 0.004 [0.409, 

0.421] 

0.512 0.004 [0.506, 

0.517] 

300 0.430 0.002 [0.427, 

0.433] 

0.406 0.06 [0.398, 

0.414] 

0.414 0.002 [0.411, 

0.418] 

0.483 0.005 [0.475, 

0.488] 

500 0.430 0.003 [0.425, 

0.434] 

0.404 0.003 [0.399, 

0.408] 

0.416 0.002 [0.413, 

0.420] 

0.445 0.005 [0.438, 

0.452 

1000 0.427 0.001 [0.425, 

0.430] 

0.406 0.003 [0.401, 

0.409] 

0.415 0.002 [0.412, 

0.419] 

0.401 0.003 [0.396, 

0.406] 

5000 0.429 0.001 [0.426, 

0.431] 

0.405 0.002 [0.402, 

0.407] 

0.415 0.001 [0.413, 

0.415] 

0.358 0.001 [0.356, 

0.360] 

10000 0.429 0.001 [0.428, 

0.431] 

0.405 0.001 [0.404, 

0.406] 

0.413 0.001 [0.412, 

0.414] 

0.355 0.000 [0.354, 

0.355] 

20000 0.429 0.001 [0.427, 

0.429] 

0.406 0.001 [0.405, 

0.407] 

0.414 0.001 [0.413, 

0.415] 

0.354 0.000 [0.354, 

0.355] 

50000 0.429 0.000 [0.428, 

0.429] 

0.406 0.001 [0.405, 

0.407] 

0.413 0.000 [0.413, 

0.414] 

0.353 0.000 [0.353, 

0.354] 
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Appendix 4 - Summary Tables of Barley Model 

BARLEY MODEL (1 PARENT) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.314 0.006 [0.304, 

0.323] 

0.267 0.008 [0.251, 

0.274] 

0.302 0.010 [0.287, 

0.315] 

0.380 0.001 [0.364, 

0.393] 

100 0.306 0.005 [0.299, 

0.315] 

0.263 0.005 [0.258, 

0.271] 

0.299 0.004 [0.294, 

0.307] 

0.305 0.010 [0.289, 

0.323] 

200 0.305 0.004 [0.298, 

0.311] 

0.259 0.005 [0.253, 

0.266] 

0.296 0.003 [0.292, 

0.301] 

0.238 0.009 [0.227, 

0.254] 

300 0.303 0.002 [0.300, 

0.306] 

0.258 0.002 [0.255, 

0.262] 

0.298 0.003 [0.294, 

0.301] 

0.202 0.004 [0.197, 

0.208] 

500 0.305 0.002 [0.303, 

0.308] 

0.257 0.003 [0.252, 

0.261] 

0.296 0.002 [0.292, 

0.299] 

0.165 0.006 [0.153, 

0.172] 

1000 0.303 0.002 [0.300, 

0.305] 

0.258 0.002 [0.253, 

0.260] 

0.297 0.002 [0.293, 

0.299] 

0.131 0.004 [0.124, 

0.138] 

5000 0.303 0.01 [0.301, 

0.304] 

0.255 0.002 [0.253, 

0.258] 

0.295 0.002 [0.293, 

0.298] 

0.096 0.002 [0.095, 

0.100] 

10000 0.303 0.002 [0.299, 

0.306] 

0.255 0.001 [0.253, 

0.257] 

0.295 0.001 [0.293, 

0.297] 

0.094 0.001 [0.093, 

0.095] 

20000 0.302 0.002 [0.301, 

0.305] 

0.255 0.002 [0.252, 

0.258] 

0.296 0.001 [0.294, 

0.298] 

0.092 0.001 [0.092, 

0.093] 

50000 0.255 0.002 [0.252, 

0.256] 

0.255 0.002 [0.252, 

0.257] 

0.296 0.001 [0.294, 

0.298] 

0.091 0.000 [0.091, 

0.092] 
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BARLEY MODEL (2 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.362 0.007 [0.354, 

0.374] 

0.360 0.007 [0.352, 

0.371] 

0.396 0.007 [0.387, 

0.407] 

0.516 0.008 [0.505, 

0.529] 

100 0.358 0.008 [0.351, 

0.357] 

0.355 0.005 [0.348, 

0.364] 

0.394 0.005 [0.387, 

0.401] 

0.451 0.009 [0.436, 

0.467] 

200 0.357 0.003 [0.352, 

0.363] 

0.349 0.003 [0.346, 

0.354] 

0.389 0.003 [0.385, 

0.394] 

0.378 0.007 [0.369, 

0.392] 

300 0.356 0.004 [0.351, 

0.360] 

0.351 0.002 [0.348, 

0.354] 

0.389 0.002 [0.385, 

0.392] 

0.336 0.005 [0.325, 

0.341] 

500 0.355 0.003 [0.369, 

0.378] 

0.349 0.004 [0.342, 

0.352] 

0.388 0.002 [0.385, 

0.393] 

0.294 0.004 [0.289, 

0.302] 

1000 0.355 0.002 [0.350, 

0.357] 

0.348 0.003 [0.341, 

0.351] 

0.387 0.002 [0.384, 

0.390] 

0.258 0.000 [0.255, 

0.261] 

5000 0.353 0.003 [0.346, 

0.357] 

0.346 0.004 [0.339, 

0.350] 

0.387 0.001 [0.386, 

0.388] 

0.228 0.000 [0.227, 

0.229] 

10000 0.352 0.005 [0.346, 

0.382] 

0.344 0.005 [0.337, 

0.349] 

0.387 0.001 [0.387, 

0.388] 

0.227 0.000 [0.226, 

0.228] 

20000 0.345 0.005 [0.342, 

0.355] 

0.343 0.004 [0.339, 

0.350] 

0.387 0.000 [0.386, 

0.387] 

0.227 0.000 [0.226, 

0.227] 

50000 0.339 0.004 [0.337, 

0.342] 

0.339 0.002 [0.337, 

0.342] 

0.387 0.001 [0.387, 

0.388] 

0.227 0.000 [0.226, 

0.228] 
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BARLEY MODEL (3 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.382 0.011 [0.360, 

0.392] 

0.348 0.009 [0.337, 

0.365] 

0.412 0.007 [0.402, 

0.420] 

0.615 002 [0.612, 

0.619] 

100 0.373 0.009 [0.360, 

0.384] 

0.339 0.005 [0.332, 

0.346] 

0.409 0.004 [0.403, 

0.416] 

0.578 0.003 [0.573, 

0.583] 

200 0.372 0.010 [0.359, 

0.385] 

0.340 0.004 [0.336, 

0.347] 

0.404 0.003 [0.400, 

0.408] 

0.530 0.005 [0.521, 

0.536] 

300 0.372 0.002 [0.369, 

0.375] 

0.341 0.004 [0.335, 

0.345] 

0.403 0.002 [0.399, 

0.407] 

0.500 0.004 [0.492, 

0.503] 

500 0.373 0.003 [0.369, 

0.378] 

0.340 0.004 [0.334, 

0.347] 

0.403 0.002 [0.400, 

0.405] 

0.460 0.004 [0.453, 

0.467] 

1000 0.371 0.004 [0.366, 

0.380] 

0.338 0.002 [0.335, 

0.342] 

0.403 0.001 [0.401, 

0.405] 

0.416 0.004 [0.410, 

0.422] 

5000 0.372 0.004 [0.367, 

0.378] 

0.339 0.003 [0.336, 

0.346] 

0.402 0.000 [0.402, 

0.403] 

0.375 0.001 [0.374, 

0.376] 

10000 0.372 0.005 [0.369, 

0.382] 

0.339 0.004 [0.335, 

0.346] 

0.402 0.001 [0.401, 

0.403] 

0.374 0.000 [0.374, 

0.375] 

20000 0.372 0.005 [0.367, 

0.381] 

0.344 0.007 [0.337, 

0.355] 

0.402 0.000 [0.401, 

0.402] 

0.375 0.000 [0.375, 

0.375] 

50000 0.339 0.004 [0.335, 

0.345] 

0.339 0.004 [0.335, 

0.345] 

0.402 0.000 [0.401, 

0.402] 

0.375 0.000 [0.375, 

0.375] 
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BARLEY MODEL (4 PARENTS) 

 TNORMAL REG. BETA REG. LINEAR REG. MLE  

 µ s CI µ s CI µ s CI µ s CI 

50 0.256 0.018 [0.228, 

0.278] 

0.211 0.035 [0.175, 

0.277] 

0.265 0.019 [0.244, 

0.420] 

0.485 0.000 [0.484, 

0.485] 

100 0.228 0.014 [0.209, 

0.252] 

0.194 0.006 [0.182, 

0.202] 

0.240 0.012 [0.221, 

0.260] 

0.489 0.000 [0.488, 

0.490] 

200 0.223 0.008 [0.213, 

0.235] 

0.188 0.007 [0.179, 

0.199] 

0.226 0.008 [0.217, 

0.238] 

0.494 0.000 [0.493, 

0.494] 

300 0.216 0.004 [0.212, 

0.224] 

0.186 0.010 [0.171, 

0.201] 

0.220 0.005 [0.214, 

0.228] 

0.498 0.001 [0.498, 

0.499] 

500 0.215 0.005 [0.210, 

0.222] 

0.178 0.003 [0.174, 

0.182] 

0.218 0.005 [0.213, 

0.227] 

0.503 0.000 [0.502, 

0.504] 

1000 0.211 0.003 [0.207, 

0.215] 

0.175 0.003 [0.171, 

0.180] 

0.214 0.002 [0.211, 

0.218] 

0.509 0.001 [0.508, 

0.510] 

5000 0.210 0.002 [0.207, 

0.212] 

0.171 0.002 [0.169, 

0.174] 

0.212 0.001 [0.212, 

0.213] 

0.514 0.000 [0.514, 

0.515] 

10000 0.209 0.001 [0.208, 

0.211] 

0.171 0.001 [0.170, 

0.172] 

0.212 0.001 [0.212, 

0.213] 

0.514 0.000 [0.514, 

0.514] 

20000 0.209 0.000 [0.208, 

0.209] 

0.171 0.001 [0.169, 

0.172] 

0.212 0.000 [0.211, 

0.212] 

0.514 0.000 [0.514, 

0.515] 

50000 0.171 0.000 [0.170, 

0.171] 

0.171 0.000 [0.170, 

0.171] 

0.212 0.000 [0.211, 

0.212] 

0.514 0.000 [0.514, 

0.515] 

 

 

 


