
1

RELIABILITY AND ENERGY OPTIMIZATION IN HIGH
LEVEL SYNTHESIS OF INTEGRATED CIRCUITS

RAWAN SMRI

Prof. Dr. SÜLEYMAN TOSUN

Supervisor

Submitted to Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

January 2020

”For my mother and father

Ahlam and Adel SMRI”

ABSTRACT

RELIABILITY AND ENERGY OPTIMIZATION IN HIGH LEVEL
SYNTHESIS OF INTEGRATED CIRCUITS

Rawan SMRI

Master of Science, Computer Engineering Department
Supervisor: Prof. Dr. Süleyman TOSUN

January 2020, 60 pages

Ever-increasing performance demand for the computer applications has resulted in shrinking

the technology sizes of the CMOS circuits over the past 50 years, which made it possible to

increase the number of transistors on a single chip. On the other hand, the increase in circuit

densities makes the design process more challenging. For example, circuits become more

vulnerable to radiation effects due to lower supply and threshold voltage levels; thus, the

number of transient faults in circuits increases. While a reduced technology size makes cir-

cuits more susceptible to transient faults, some energy reduction techniques also negatively

affect their reliability. Traditional high level synthesis (HLS) methods usually consider only

area and latency along with either energy or reliability. To the best of our knowledge, there

is no prior work that takes area and latency as constraints and energy and reliability as op-

timization parameters. Especially, the effect of DVS on reliability is completely ignored by

the previous studies. In this work, we aim to develop new HLS methods for application spe-

cific integrated circuit (ASIC) design under area and timing constraints with the objectives of

low energy consumption and high reliability. For the mapping and scheduling steps of HLS,

we propose genetic algorithm (GA)-based optimization method, and also use a selective du-

plication method. And for comparison purposes we introduced integer linear programming

i

(ILP) method. While the ILP-based method determines the optimum results, the CPU time

exponentially increases with the number of the application nodes. Therefore, we propose a

GA-based metaheuristic that is faster and determines optimum or near-optimum results in

shorter times than ILP. In addition, we characterize a resource library consisting of three

adders and two multipliers with varying area, delay, energy, and reliability parameters under

two voltage levels

Keywords: High-Level Synthesis (HLS), Dynamic Voltage Scaling (DVS), reliability, soft

errors, energy.

ii

ÖZET

ENTEGRE DEVRELERİN YÜKSEK SEVİYESİNDE GÜVENİLİRLİK
VE ENERJİ OPTİMİZASYONU

Rawan SMRI

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr.Süleyman TOSUN

Ocak 2020, 60 sayfa

Bilgisayar uygulamalarına yönelik artan performans talebi, CMOS devrelerinin teknoloji

boyutlarının son 50 yılda azalmasına neden oldu ve bu da tek bir yonga üzerindeki tran-

sistörlerin sayısını artırmayı mümkün kıldı. Öte yandan, devre boyutlarındaki artış tasarım

sürecini daha da zorlaştırmaktadır. Örneğin, devreler, daha düşük besleme ve eşik voltaj

seviyeleri nedeniyle radyasyon etkilerine neden olur; böylece devrelerdeki geçici hataların

sayısı artar. Azalan teknoloji boyutu devreleri geçici arızalara karşı daha hassas hale ge-

tirirken, bazı enerji azaltma teknikleri de güvenilirliklerini olumsuz yönde etkilemektedir.

Geleneksel yüksek seviyeli sentez (HLS) yöntemleri genellikle enerji ve güvenilirliğin yanı

sıra onearea ve gecikmeyi de dikkate alır. Bildiğimiz kadarıyla, alan ve gecikmeyi kısıtlayıcı,

enerji ve güvenilirliği op-enimizasyon parametreleri olarak alan önceki bir çalışma yok-

tur. Özellikle DVS’nin güvenilirlik üzerindeki etkisi önceki çalışmalarda tamamen göz ardı

edilmektedir. Bu çalışmada, düşük enerji tüketimi ve yüksek güvenilirlik hedefleri ile alan

ve zamanlama kısıtlamaları altında özel entegre devre (ASIC) tasarımı uygulaması için yeni

HLS yöntemleri geliştirmeyi hedefliyoruz. HLS’nin haritalama ve çizelgeleme adımları

için genetik algoritma (GA) tabanlı optimizasyon yöntemi öneriyoruz ve ayrıca seçici bir

du-plication yöntemi kullanıyoruz. Karşılaştırma amacıyla tamsayı doğrusal programlama

iii

(ILP) yöntemini tanıttık. ILP tabanlı yöntem optimum sonuçları belirlerken, CPU uygulama

düğümlerinin sayısıyla birlikte katlanarak artar. Bu nedenle, ILP’den daha hızlı ve optimum

veya optimumya yakın sonuçları daha kısa sürede belirleyen aGA tabanlı bir metaheuris-

tic öneriyoruz. Buna ek olarak, üç kademeli ve değişken alan, gecikme, enerji ve güve-

nilirlik parametrelerine sahip iki çarpandan oluşan gerilim seviyelerinin altındaki kaynak

kütüphanesini karakterize ediyoruz.

Anahtar Kelimeler: Yüksek Seviyeli Sentez (HLS), Dinamik Gerilim Ölçekleme (DVS),

güvenilirlik, yumuşak başlıklar, enerji

iv

ACKNOWLEDGEMENTS

First, I would like to sincerely thank my supervisor Prof. Dr. Süleyman TOSUN for his

time, patience and for his valuable guidance in every stage of my research all along this long

way. Additionally, I would like to thank my colleague Ms. Selma DILEK for writing and

implementing the ILP method part and Assist. Prof. Dr. Deniz DAL for his helping in

library characterization of arithmetic circuits.

Finally, I would express the most gratitude to my husband Tariq ASI, the one who did not

hesitate to show his support and compassion to me all the time, to my beloved baby girl

Meryem who had to live an atypical life with a student mom, to Omar for his unlimited

companionship , to my parents Ahlam and Adel, to my brothers Mohammad and Yazeed

and my friend and sister Aseel last but not least ,can not forget my Turkish mother Gülsüm

NALINCI for her help through my staying in Turkey, and lastly for my and mother in low

Jamal and Ibtisam. Because they all truly encouraged , believed in me and taught me what

unconditional love means.

This work was supported by the Scientific and Technological Research Council of Turkey

(TÜBİTAK) under project number 116E095.

v

Contents

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

FIGURES . viii

1. INTRODUCTION. 1

2. RELATED WORK . 4

2.1. Reliability-Aware HLS . 4

2.2. Energy-Aware HLS . 4

2.3. Energy- and Reliability-Aware Design. 5

3. BACKGROUND . 6

3.1. Soft Errors and Reliability . 6

3.2. Dynamic Voltage Scaling . 8

3.3. Effects of DVS on Reliability . 9

4. LIBRARY CHARACTERIZATION AND PROBLEM DEFINITION 11

4.1. Library Characterization . 11

4.2. Problem Definition . 12

5. GA-BASED METHOD . 14

5.1. Population Generation . 14

5.2. Scheduling and Binding . 15

5.3. Genetic Operators . 17

5.4. Energy and objective function . 21

5.5. Duplication-Based Post-processing . 22

6. ILP FORMULATION . 25

6.1. Constraints. 29

7. RESULTS AND ANALYSIS . 30

7.1. Comparison of GA and ILP Methods . 31

vi

7.2. Execution Time Analysis . 33

7.3. Effects of DVS on Reliability . 34

7.4. Effects of Duplication. 38

8. CONCLUSION. 41

REFERENCES . 42

vii

FIGURES

Page

1.1 Predicted Soft Error rates of sequential and combinational logic under differ-

ent technology sizes [1]. 2

3.1 Occurrence of SEs: silicon view (left) and transistor view (right) (adapted

from [2]). 6

4.1 (a) An example design specification, (b) Data flow representation with prece-

dence constraints, and (c) Directed Acyclic Graph (DAG) of the design spec-

ification. 13

5.1 A chromosome symbolization of a solution for the DES benchmark after

resource assignment, with its Area (A), Latency (L), Reliability (R) and En-

ergy (E) values not calculated yet. 14

5.2 ASAP and ALAP scheduling for the chromosome representation given in

Figure 5.1. 16

5.3 Final scheduling of the chromosome in Figure 5.1. 17

5.4 An example of uniform crossover. 19

5.5 The scheduling of first child of the crossover given in Figure 5.4. 20

5.6 The mutation operator applied to the chromosome in Figure 5.1. 20

5.7 The scheduling after the duplication of the solution from Figure 5.5. 24

7.1 Average execution times of ILP and GA methods for varying number of

benchmark nodes. 36

7.2 Changes over different α values for DES benchmark (A = 30, L = 28). 36

7.3 Changes over different α values for FIR benchmark (A = 20, L = 40). 37

7.4 Changes over different α values for AR benchmark (A = 30, L = 50). 37

7.5 Changes over different α values for EWF benchmark (A = 30, L = 40). 37

viii

TABLES

4.1 Resource Library. 12

5.1 Node mobilities for the schedules in Figure 5.2. 16

6.1 ILP Notations. 26

7.1 Summary of Benchmarks. 30

7.2 Results of DES Benchmark. 32

7.3 Results of FIR Benchmark. 33

7.4 Results of AR Benchmark. 34

7.5 Results of EWF Benchmark. 35

7.6 Duplicated GA results of DES compared to the results of GA, ILP and Fully

Duplicated methods . 39

7.7 Duplicated GA results of FIR compared to the results of GA, ILP and Fully

Duplicated methods . 39

7.8 Duplicated GA results of AR compared to the results of GA, ILP and Fully

Duplicated methods . 39

7.9 Duplicated GA results of EWF compared to the results of GA, ILP and Fully

Duplicated methods . 40

ix

1. INTRODUCTION

Ever increasing performance demand for the computer applications has resulted in shrinking

the technology sizes of the complementary metal-oxide-semiconductor (CMOS) circuits ev-

ery 18 months over the past 50 years driven by the Moore’s Law. Shrinking the technology

sizes made it possible to increase the number of transistors on chips, thus allowing the de-

signers to embed more components in their designs than before. While the smaller transistor

sizes reduce the cost of the integrated circuits as a result of having a smaller chip area, the

increase in the circuit densities makes the design process more challenging. Furthermore,

each technology generation also introduces new design problems in digital systems. For

example, when the technology sizes are reduced, circuits become more vulnerable to radi-

ation effects due to lower supply and threshold voltage levels; therefore, the number of the

transient faults in circuits increases [3]. Figure 1.1, adopted from [1], shows how the soft

error rates (SERs) of sequential circuits (SRAM and latches) and combinational logic with

different sizes change with each technology generation. While sequential elements still has

high SER rates by keeping almost the same values, the SER of combinational logic increases

dramatically. Therefore, tackling the soft error (SE) problem of combinational circuits has

also become a major concern. Although combinational circuits can mask the transient er-

rors to some extend, they cannot eliminate them completely without some extra precautions.

Thus, new design methods for mitigating them before they are latched to memory elements

are crucial.

While a reduced technology size makes the circuits more susceptible to transient faults, some

energy reduction techniques also negatively affect their reliability. For example, when dy-

namic voltage scaling (DVS) is applied as an energy reduction method, a circuit consumes

less energy under lower voltage levels; however, lowering the supply voltage also reduces

the reliability of the circuit [4, 5]. Furthermore, when we consider the design of an ap-

plication with large number of components, tackling all system requirements such as area,

performance, energy consumption, and reliability becomes cumbersome. Therefore, a de-

sign automation tool is a must to ease the design process and to determine the best design in

terms of the given objective function and the constraints. Generally, it is much more practi-

cal and efficient to tackle several constraints and optimization parameters at higher levels of

abstraction for designing Application Specific Integrated Circuits (ASICs). High-level syn-

thesis (HLS) process aims to integrate all system requirements on higher level of abstraction

1

FIGURE 1.1: Predicted Soft Error rates of sequential and combinational logic under different
technology sizes [1].

and shields the designer from lower level design burdens [6].

Traditional HLS methods usually consider only area and latency together with either energy

[7] or reliability [8]. To the best of our knowledge, there is no prior work that takes area and

latency as constraints and energy and reliability as optimization parameters. Especially, the

effect of DVS on reliability is completely ignored by the previous studies. In this work, we

aim to develop new HLS methods for ASIC design under area and timing constraints with

objectives of low energy consumption and high reliability. In our work, we use different

versions of the same resources in terms of area, performance, energy, and reliability. For this

purpose, we implemented several adders and multiplier circuits to utilize in the design of the

given application. For our optimization function with two parameters, we blend the energy

and reliability values by assigning weights to each of them in order to be able to handle

our multi-optimization problem. For the mapping and scheduling steps of the HLS, we

use Genetic Algorithm (GA) based optimization methods, and compare it to Integer Linear

Programming (ILP) method. While the ILP-based method determines the optimum results,

it takes too much time for some problems consisting of large number of variables. Therefore,

we propose a GA-based metaheuristic that determines optimum or near-optimum results in

a reasonable amount of time.

We can summarize the contributions of this work as follows:

2

• We characterize a resource library with three adders and two multipliers under varying

area, delay, energy, and reliability parameters. We list the same resource parameters

under two voltage levels. We believe that our resource library will also be useful for

future HLS studies.

• We present a GA-based metaheuristic method for mapping and scheduling steps of our

HLS design flow. Our GA-based method obtains optimal or near-optimal results for

most of the test instances in very short run-times, even for very large-sized applica-

tions. The strength of our GA-based method comes from the intelligent mutation and

cross-over operators that diversify the solution population.

• We show that there is still a room for the reliability improvement after the mapping and

scheduling steps are completed, and use a selective duplication method in this respect.

• We illustrate the effectiveness of GA-based methods on several benchmarks in terms

of energy and reliability by conducting rigorous experimental analysis, and compare it

to integer linear programming (ILP) based method.

The rest of this work are organized as follows. Related work is presented in the next Chapter.

We explain SEs, DVS, and effects of DVS on SEs in Chapter 3. In Chapter 4.0, we introduce

our library characterization and the problem definition. We present our GA-based method in

Chapter 5. In section 5.5.0, we explain the duplication method for further maximization of

the reliability. In Chapter 6.0 we introduced the ILP Formulations for comparing purpose.

We illustrate the effectiveness of the proposed methods by discussing the experimental results

in Chapter 7. We finally conclude this paper in Chapter 8.

3

2. RELATED WORK

There have been several HLS-related studies in the literature [9]. Earlier publications usually

focus on latency and area as constraints and/or objective functions [6]. In this study, we in-

corporate energy and reliability metrics into the HLS process unlike the previous studies that

only focus on one of these metrics along with area and latency. In the following subsections,

the related studies are reviewed according to their field of concern.

2.1. Reliability-Aware HLS

Reliability was treated as a first-class citizen in a very old work under the fault-tolerance cri-

teria for HLS designs in [10]. This work aimed to design circuits under area and performance

constraints to maximize the fault-tolerance by adding extra duplicated resources. Some other

studies took advantage of the fact that the reliability of different implementations of the same

function may be different due to their internal logic and masking capabilities. In addition,

their area and latency values are also different. Optimization of a circuit by using these dif-

ferent resources is known as an NP-hard problem, therefore a heuristic method was proposed

in [2] . There have also been metaheuristic attempts for optimizing the reliability using dif-

ferent versions of a particular resource [11]. Some prior studies also presented HLS methods

to design fault-tolerant data-paths in case of multi-cycle transient faults [12]. Authors of [13]

presented a simulation-based method for combinational circuit synthesis considering soft er-

rors. Reliability-aware resource allocation and binding in HLS is an NP-hard optimization

problem. There have been several HLS-related studies in the literature [9]. Earlier publica-

tions usually focus on latency and area as constraints and/or objective functions [6]. In this

study, we incorporate energy and reliability metrics into the HLS process unlike the previous

studies that only focus on one of these metrics along with area and latency. In the following

subsections, the related studies are reviewed according to their field of concern.

2.2. Energy-Aware HLS

Dynamic voltage scaling (DVS) has been the most commonly used energy consumption

minimization method since it was introduced by [14] and [15]. Since the dynamic energy

consumption decreases proportionally with the square of the voltage level, many commercial

4

CPUs are implemented with this in mind, and new scheduling methods for varying voltage

level assignments have been proposed for these new architectures [16–19]. However, the

target platform for these studies are either homogeneous or heterogeneous multiprocessor

systems unlike our ASIC design platform. There are also prior studies in the context of

HLS focusing on energy or power consumption [20–23]. [20] presents a novel scheduling

algorithm for minimizing energy, while [21] and [22] propose new methods to reduce the

power consumption of circuits. There are even game theoretical scheduling algorithms using

DVS for HLS [23]. The interested readers can find several methods about low power HLS

design for nanoscale CMOS circuits in [24].

2.3. Energy- and Reliability-Aware Design

There has been some prior research that focused on both energy and reliability simultane-

ously [25–28]. However, none of the existing studies incorporate these metrics in the HLS

steps. Additionally, their target platforms are multiprocessor systems rather than ASICs. To

the best of our knowledge, there has not been any previous research in the HLS field that

considered area, performance, reliability, and energy all together in a single study. Most of

the prior research discussed the methods of increasing the system reliability under the area

and latency constraints without considering the energy consumption of a system, or they

suggested approaches to minimize the energy consumption of a system ignoring the effect of

those approaches on the reliability.

5

3. BACKGROUND

In the following subsections, we first discuss soft errors and reliability in digital systems. We

then explain DVS, which is used to minimize the energy consumption. We finally present

the effects of DVS on reliability of the circuits.

3.1. Soft Errors and Reliability

Function values in digital systems are generated as a result of switching in transistors. These

physical elements can be affected by a number of external factors, which can cause undesir-

able switching situations that may lead to wrong results. If these non-persistent errors cause

the data stored in memory to be erroneous even for a short period of time, all operations

using that data will yield erroneous results until the data is updated. These errors in digital

systems are called transient errors or soft errors (SEs).

A soft error is a signal fluctuation or an unexpected bit flip in semiconductor fabrics, which

may occur due to radiation, alpha particles, or high-energy cosmic rays in the environment

of the device containing the digital system. These errors generally do not corrupt the device;

however, they may result in malfunctions. They usually occur when the energy accumulated

in a transistor (Q) exceeds the critical energy (Qcritical). Figure 3.1 shows the occurrence of

transient errors in the silicon view and the transistor view.

FIGURE 3.1: Occurrence of SEs: silicon view (left) and transistor view (right) (adapted
from [2]).

As the technology size decreases and the chip circuit densities increase, SERs increase sig-

nificantly, particularly in combinational circuits as shown in Figure 1.1. This increase in

6

SERs negatively affects the reliability of a running system during its operation. Hence, it has

become inevitable to consider the effects of transient errors during the design process.

The reliability of a system can be calculated with the formula given in Equation (1), where λ

is SER, while t is the running time of the system.

R(t) = e−λt (1)

From the equation it is evident that the higher the SER value the lower the reliability. One

way to improve the reliability of a system is to back up its components (i.e., to create a

replica.) If two different versions of the system produce two different outputs, the result

is incorrect. In such case, the system can be restarted or, alternatively, checkpoints can be

added to the system to avoid the necessity for a complete restart. When a replica of a thread

is created, the increased reliability value is calculated with the formula given in Equation

(2), where Rs represents the total reliability after duplication, while Ri and Ri
′ represent the

reliability values of a system component and its replica, respectively.

Rs = Ri +Ri′ −RiRi′ (2)

There are a lot of studies that focus on using replicas or multiple spare circuit elements to

increase the reliability of the systems with multiple circuit elements. These backups are

usually selected to be the same as the original ones. However, circuit elements implemented

in a different manner exhibit different behavior against transient errors. For instance, an

adder circuit with a larger but faster operating area may have lower reliability values than

a smaller but slower one. A previous study showed that the SER values of circuit elements

implemented in different ways can also be different, and that by taking this into consideration

during the design process the reliability of a system can be affected [2]. Nonetheless, in the

design of integrated circuits, the energy consumption of a circuit is also an important criteria

along with reliability, area, and performance constraints. We also incorporate duplication in

our final design to further increase its reliability without increasing its area, which will be

explained in Section 5.5..

7

3.2. Dynamic Voltage Scaling

Performance (runtime of an application) is the most important requirement that needs to

be achieved for ASICs. Furthermore, while the energy consumption plays a significant role,

especially in battery-powered systems, the reliability comes to the fore in critical applications

such as rocket control circuits, satellites, and nuclear power plant control circuits. Therefore,

when designing such systems, it should be ensured that they meet the given time and energy

constraints, while maximizing the reliability.

DVS was introduced in 1996 by [14], and since then it has become the most popular method

for reducing the energy consumption in digital circuits. The reason behind the widely adop-

tion of this method relies on the fact that when digital circuits operate under a low voltage,

their energy consumption decreases in proportion to the square of the voltage, while the worst

case execution time (WCET) only increases proportionally to the decrease in voltage. If the

operation time requirement for a digital circuit is sufficient for the application of DVS, the

circuit may be operated at a lower voltage to reduce the overall energy consumption. Modern

digital circuits can be designed to operate at multiple voltage levels, allowing for the imple-

mentation of the DVS method. The effect of DVS on a circuit’s energy and performance can

be explained by the power consumption of a CMOS circuit. The dynamic power consump-

tion of CMOS circuits is expressed by the Equation (3), where P is the power consumption,

CL is the load capacitance, Ns is the number of switching cycles per hour, v is the source

voltage, and f is the operating frequency of the circuit.

P = CLNsv
2f (3)

If the source voltage of the circuit is reduced, the execution time of the circuit will also

change proportionally according to the Equation (4), where k and α are constants varying

based on the applied technology dimensions, and vt is the threshold voltage value.

t = CLv/k(v − vt)α (4)

If the WCET of a digital circuit under high voltage (vh) is known, the WCET value under

low voltage (vl) can be calculated from the Equation (5) derived from the Equation (4).

8

tvl = tvh(
vl
vh

)(
vh − vt
vl − vt

)2 (5)

Similarly, if the high-voltage energy consumption (Evh) of the circuit is known, the low-

voltage energy consumption (Evl) can be calculated using the Equation (6).

Evl = Evh(
vl
vh

)2 (6)

Although most of the previous studies have adopted DVS as main energy minimization

method, they have only considered the negative effects of DVS on performance, while ne-

glecting its negative impact on the reliability. One of the most unique contributions of this

study is the analysis of the effect of different voltage levels on the reliability of a system

when employing the DVS.

3.3. Effects of DVS on Reliability

DVS is a very efficient technique when it comes to reducing the energy consumption. On the

other hand, when a digital circuit operates at a low voltage, it becomes more vulnerable to

soft errors sinceQcritical values of the transistors can be more easily exceeded, and as a result,

the total reliability of the system decreases. In other words, when we use the DVS technique

to reduce the energy consumption, lowering the operating voltage of a digital circuit (and

therefore its frequency as well) will lead to both an increase in its execution time and a

decrease in its reliability.

The fault rate of a system at frequency f (voltage v) is expressed by means of the Equation

7, where λ refers to the SER, and λ0 refers to the average error rate at frequency f .

λ(f) = λ0g(f) (7)

Let the operating frequency at the highest operating voltage (vmax) be fmax = 1. Transient

errors generally occur when the critical voltage of the circuit is reached. This critical voltage

is proportional to the system voltage. That is, when the system voltage is reduced, the critical

threshold voltage will also decrease. Thus, at low voltages, the circuit will be more sensitive

9

to soft errors. Error rates according to the voltage changes can be calculated by the Equation

(8).

λ(f) = λ010
d(1−f)

(1−fmin) (8)

Here, the maximum error rate is expressed as λ(fmax) = λ010d, which is the minimum

operating frequency. d > 0 is a constant. The higher the value of d the higher the error rate

in the circuit (i.e., the lower the value of d the more resistant the circuit to faults.)

Using the Equation (8), the new reliability values can be calculated according to the changing

energy levels and the execution time of a digital circuit. In this study, we consider the effect

of DVS on reliability, the energy consumption, and the latency of digital circuits at different

voltage levels.

10

4. LIBRARY CHARACTERIZATION AND PROBLEM DEFINITION

4.1. Library Characterization

A function can be implemented in multiple ways in the hardware using different design

methods, which produce several different versions of the same function. For example, an

adder can be implemented as a ripple-carry adder, carry-lookahead adder, prefix adder etc.

[29]. Different implementations of the same function may have different area, latency, and

energy consumption values. Additionally, they can exhibit diverse behavior in terms of the

error resilience when a soft error hits a part of the circuit. Some circuits can tolerate faults

better than others since their transistor layouts and logic functions are different. This is

due to the fact that each combinational circuit has fault masking capabilities to some extent.

Therefore, different versions of the same function may have different reliability values in

addition to the area, latency, and energy consumption. The HLS methods proposed in this

thesis utilize different versions of the same resource in an attempt to find the optimum energy

and reliability values under given latency and area constraints for a given application. In this

respect, a resource library is characterized to be employed in the proposed methods.

We implemented three adders and two multipliers in Verilog and synthesized them using

Cadence Genus synthesis tool [30]. We obtained the area, latency, and energy values for

each resource under 1.2V supply and 0.5V threshold voltage levels. We then scaled each

parameter. We used the reliability values estimated in [8] for these resources. Finally, we

obtained the new latency, energy, and reliability values for 1.0V supply and 0.5V threshold

voltage levels using the Equations (6), (5), and (8), respectively. The details of the resource

library after the characterization are given in Table 4.1. In this table, A is the area of the

resource measured in mm2. Lh and Ll represent the latency values of the corresponding

resources under high and low voltage respectively, and they are measured in time steps.

Similarly, Rh and Rl represent the reliability values, whereas Eh and El represent the energy

consumption under high and low voltage measured in nanojoules, respectively (nJ).

11

TABLE 4.1: Resource Library.

Type Resource Name A Lh

Ll

Rh

Rl

Eh

El

Adder
(A1)

Ripple Carry 2
5
8

0.999
0.998

12.00
8.33

Adder
(A2)

Brent Kung 3
3
5

0.969
0.938

5.00
3.47

Adder
(A3)

Kogge Stone 5
2
3

0.987
0.976

6.00
4.17

Multiplier
(M1)

Carry Save 8
10
16

0.999
0.998

80.00
55.56

Multiplier
(M2)

Carry Lookahead 12
15
25

0.969
0.938

160.00
111.11

4.2. Problem Definition

The aim of this study is to propose HLS methods for the resource allocation and scheduling

steps to maximize the reliability and minimize the energy consumption of the final design un-

der the given latency and area constraints. HLS is an automated design process that converts

a given behavioral description of an application into a synthesized hardware. A behavioral

description can be written in a high-level language and it is converted to a data flow rep-

resentation in the form of directed acyclic graph (DAG) before the HLS process starts. In

Figure 4.1, we show the behavioral model for the differential equation solver, its data flow

representation with the precedence constraints, and the final DAG adopted from [6]. The first

and last dummy nodes (source and sink nodes) are added to the DAG as reference points to

ease the implementation of the scheduling algorithms.

The goal of the resource allocation is to assign a resource from the resource library to each

node of the DAG while taking the area constraint into consideration whereas a scheduling

algorithm assigns the start times for the each node of the DAG under latency constraints. The

objective here is to minimize the total energy consumption and maximize the reliability of

the final design.

There are several challenges to this problem, which make its optimization a very cumber-

some task. First of all, we have a variety of possible resources (i.e. functional units) with

different reliability, area, latency, and energy values that need to be taken into consideration

simultaneously in the process of resource allocation and scheduling. Additionally, schedul-

ing must take the task dependencies into account, so that dependent tasks will execute in

12

FIGURE 4.1: (a) An example design specification, (b) Data flow representation with prece-
dence constraints, and (c) Directed Acyclic Graph (DAG) of the design specification.

the required order, and no precedence constraint is violated. Finally, different voltage levels

assigned to different resources (DVS) introduces further complication into the model. We

propose GA-based method to solve such a problem and compare it with ILP method in order

to show the accuracy and execution times of different optimization methods.

13

5. GA-BASED METHOD

In the past decade, genetic algorithms have evolved as an optimization technique that is more

practical, time saving and efficient compared to other traditional optimization techniques.

GAs are categorized as metaheuristic methods that obtain optimum or near-optimum solu-

tions in a reasonable amoun of time. They search the whole solution space randomly via the

genetic operators; hence, they reduce the chance of trapping of local minima. In our work,

we propose a GA-based method for finding the most reliable and concurrently the least en-

ergy consuming solution for our HLS problem. The proposed method follows the three main

stages of GAs: population generation, applying genetic operators, and selection based on the

fitness function. These stages are explained in more detail in the following subsections.

5.1. Population Generation

The very first step in a genetic algorithm is to generate an initial population of solutions to

the problem. Individuals of the population could be initialized either totally at random or

heuristically to a certain extent. In our study, the population is created totally at random with

a size of 100 individual. We adopt the chromosome representation to symbolize a solution.

Figure 5.1 shows the chromosome representation of the DES graph given in Figure 4.1, with

the chosen voltage level under each resource (1 represents high while 0 represents the low

voltage level).

FIGURE 5.1: A chromosome symbolization of a solution for the DES benchmark after re-
source assignment, with its Area (A), Latency (L), Reliability (R) and Energy (E) values

not calculated yet.

A chromosome is an array of genes, where each gene’s value represents its randomly as-

signed resource from our resource library in Table 4.1. The Area (A), Latency (L), Reliabil-

ity (R), and Energy (E) of this solution are not calculated before the scheduling and resource

assignment stages. This is denoted by question marks in their related cells.

14

5.2. Scheduling and Binding

The second stage of our GA is the calculation of the fitness value of each solution, with the

goal of keeping the best individuals for the next generation. Consequently, the proposed GA

first applies the HLS step to all solutions, and then calculates their fitness values (i.e. the

reliability of each solution). The well-known List Scheduling (LS) [6] is performed in two

steps: first, the mobility of each node/gene in the chromosome is determined, and then the

resource binding is carried out. The mobility (m) of a node (i) is the time difference between

the earliest and latest time steps that a node can be assigned. The earliest time step (t(i)ASAP)

and the latest time step (t(i)ALAP) are determined using the As Soon As Possible (ASAP)

and As Late As Possible (ALAP) scheduling algorithms based on the resource assignment of

the chromosome. We then use Equation 9 to calculate the mobility of each node.

m(i) = t(i)ALAP − t(i)ASAP (9)

The LS algorithm does not change the nodes with zero mobility (critical path nodes), even

if more than one node on different critical paths need to use the same resource at the same

time, which results in higher area values. We adjusted the LS results to allow the critical path

nodes to share resources with other nodes; hence, the total area is decreased. The change was

made by adding only one extra time step to the critical path. This approach slightly increases

the latency, but at the same time it significantly reduces the area.

ASAP scheduling identifies the minimum latency that can be obtained with the assigned

resources. In ASAP, every node is scheduled at the earliest time step possible. The overall

minimum latency is the time step at which the last node of the chromosome is scheduled.

ALAP scheduling does the opposite of ASAP as it returns the starting time steps for every

node in the solution with the maximum possible latency. This is done by comparing the

latency constraint with the latency returned from ASAP, and then using the higher of both.

The ASAP and ALAP scheduling for the chromosome in Figure 5.1 are shown in Figure 5.2.

In this figure, each dashed horizontal line shows the starting steps of some nodes. We do not

draw each step in our scheduling figures to prevent overcrowding the illustration; instead,

we only show the time steps if there is a node starting its execution in these time steps. To

explain the GA operators on our running example, we assume the area (Ā) and latency (L̄)

15

constraints as 23 units and 30 time steps, respectively. The minimum latency returned from

ASAP is 31, which is calculated by subtracting 1 from the starting step of the sink node

(i.e., Lmin = t(n)ASAP − 1). Then, after applying the ALAP scheduling under L = 31 and

determining the ALAP starting time step of each node, the algorithm calculates the mobility

of each node as shown in Table 5.1.

FIGURE 5.2: ASAP and ALAP scheduling for the chromosome representation given in
Figure 5.1.

After calculating the mobility of the nodes, our algorithm applies the modified list schedul-

ing, and subsequently returns A, L, R, and E values of the solution as shown in Figure

5.3.

TABLE 5.1: Node mobilities for the schedules in Figure 5.2.

Node(i) 1 2 3 4 5 6 7 8 9 10 11

t(i)ASAP 1 1 11 26 29 1 11 1 17 1 3
t(i)ALAP 1 1 11 26 29 7 17 13 29 27 29
mi 0 0 0 0 0 6 6 12 12 26 26

16

FIGURE 5.3: Final scheduling of the chromosome in Figure 5.1.

5.3. Genetic Operators

The third stage of a genetic algorithm is to apply the genetic operators. We use crossover,

mutation, and selection operators, which are the three most common ones.

Crossover

In crossover operation, we select two chromosomes randomly from the population to be

the parent . We then swap part of each parent chromosomes to create two offspring in an

attempt to inherit better parts of each parent to their children. The most commonly used

crossover types are one-point, two-point, and uniform crossover. In order to identify which

one is the most suitable for our problem, we applied all three of them on a study similar

to ours mentioned in [8], and found that uniform crossover gives the best results for such

17

problems. Uniform crossover swaps genes between both parents and makes two new children

chromosomes. It assigns a random number u to every gene, where 0 ≤ u ≤ 1, and compares

that number with the swapping probability ps. We chose ps to be 0.5 in order to give the

equivalent swapping chance for all genes as described in Algorithm 1.

In Figure 5.4, we demonstrate an example of applying the crossover operator on the solution

in Figure 5.1. This chromosome is the first parent for the crossover and the second parent is

randomly chosen by the algorithm. After applying crossover on parents, two new children

chromosomes are produced as demonstrated. It is evident that although the first child meets

both latency and area constraints with better reliability value than both parents, the second

child does not.

Algorithm 1 Uniform Crossover
Data: Xp: Crossover population; ni, i= 0,1,. . . , n: number of nodes; ps: Probability of swapping;

Result: Two new chromosomes: C(t+1), D(t+1)

1 begin
2 Randomly select two chromosomes A(t) and B(t) from Xp. Create two empty chromosomes C(t+1) and

D(t+1) wirh the size n.

3 for 0 ≤ i ≤ n do
4 Choose a random real number u ∈ [0, 1] if u ≤ ps then /* Swap genes */

5

6 C
(t+1)
i = B(t)

i D
(t+1)
i = A(t)

i

7 else /* Don’t Swap genes */

8

9 C
(t+1)
i = A(t)

i

10 D
(t+1)
i = B(t)

i

11 end

12 end
13

14 end

Mutation

Mutation is an important and effective genetic operator to converge to optimum solution.

It modifies the randomly or heuristically selected genes to obtain a new chromosome. The

goal of mutation is to diversify the population so that the chance of escaping from the local

18

FIGURE 5.4: An example of uniform crossover.

minima increases. However, if the mutation ratio becomes very high, then our GA-based

search algorithm behaves like a random search. Thus, we set the mutation ratio to 10% of

the total population in our method.

We followed the random resetting mutation operator. At first it randomly select a chromo-

some from the population. Then, to increase the diversity of the solution space, we directly

pick genes randomly from the chromosome at hand. The number of mutated genes is also

determined randomly so that the number of modified genes is less than N nodes of the cir-

cuits.

In Figure 5.6, we illustrate the aforementioned mutation operation. After choosing the chro-

mosome to be mutated, it picked the number of genes to be mutated to be 3. In reference to

Figure 5.3, the node number 3 has the resource M2 assigned to it, it was randomly chosen

and changed to M1 at high voltage level with the latency of 10 time steps instead of 15, e.g.

reducing the critical path latency by five time steps. Also node 5 was randomly chosen and

assigned the resource A3 (Lh= 2) instead of A2 (Lh= 3) which also reduces the latency by

one step, since it is a critical path node. The last randomly modified node is the seventh

from M2 to M1, which in turn reduced the used resources in the design, and hence the total

area is reduced by 12 units (area of M2). Ultimately, after the mutation process, both design

constraints are met in this example.

19

FIGURE 5.5: The scheduling of first child of the crossover given in Figure 5.4.

While we are applying both crossover and mutation, we make sure the shared resources use

the same voltage level to construct power islands [31]. Although it is possible to switch from

one voltage level to another, this process also takes extra latency and power consumption.

Instead, we simply place the resources running on low voltage level to one power island and

others to high voltage level.

FIGURE 5.6: The mutation operator applied to the chromosome in Figure 5.1.

Selection

Our algorithm selects the parent chromosomes randomly to apply crossover and mutation.

After applying crossover and mutation, the total population doubles because of the newly

20

added individuals. While 90% of the new population comes from the crossover, the remain-

ing 10% comes from the mutation. Since the total population size must be kept fixed, the

algorithm applies a fitness based selection. It adds the new generated chromosomes to the

ones from previous iteration, then order them according to the objective function presented

in section 5.4., the objective function given in Equation (12) attempts to maximize the relia-

bility and minimize the energy consumption for a single chromosome. We use this objective

function in our fitness calculation. We then select the best 100 chromosomes from the or-

dered chromosomes set.

Our three main steps is iterated for fixed number of times. We selected our iteration count

experimentally. We finally return the the chromosome with the best fitness value as our

solution.

5.4. Energy and objective function

The goal is to maximize the overall reliability of the circuit while minimizing its total energy

consumption (formulated as objective functions (10) and (11) respectively).

Maximize Rtotal =
∑

i∈Tasks

ρi (10)

Minimize Etotal =
∑

i∈Tasks

εi (11)

This bi-objective problem is formulated as a single objective function given in Equation (12)

by employing the scalarization technique in which we combine the weighted sum of energy

and reliability values. The parameter α serves for the purpose of assigning weight to both

reliability maximization and energy minimization. That is, through choosing different α

values we can prioritize either objective function to a certain degree, or assign equal weight

to both (by taking α = 0.5).

Minimize obj = α · (1−Rnorm) + (1− α) · (Enorm) (12)

21

Rnorm and Enorm are the values of the total reliability and the total energy consumption

normalized to the range [0,1], calculated as given in (13) and (14) respectively.

Rnorm =
Rtotal −Rmin

Rmax −Rmin

(13)

Enorm =
Etotal − Emin
Emax − Emin

(14)

Rmin and Rmax are the minimum and maximum values the reliability of a given circuit can

have. The minimum (or maximum) achievable reliability of a circuit can be calculated by

assigning the least (or most) reliable resources in the resource library to every task. Similarly,

we can calculateEmin andEmax, which are the minimum and maximum values of the energy

amount a circuit can consume.

5.5. Duplication-Based Post-processing

After the algorithm described in Section 5. returns the final scheduled solution, we take that

solution with its latency, area, reliability and energy as an input to a subsequent process to

enhance its reliability without violating the constraints. We employ a method similar to the

duplication algorithm proposed in [8], which duplicates the nodes as much as it can using

simple heuristic rules: it tests the potential of each node to have a duplicate resource from

other resources that are previously allocated in the design. The nominated nodes are not on

the critical path, so the latency of the solution is maintained. It also checks that the nominated

resource is not scheduled for use at the same time step, so the area will not be increased

either. For cases of multi-duplicable candidates, the precedence is given to the nodes with

lower reliability values. The difference in our approach is that we also incorporate DVS in

the duplication process. That is, when we are selecting a resource for duplication we give

priority to the one with lower voltage level. To calculate the reliability of the duplicated

version, we use Equation (2).

The pseudocode of the duplication process is given in Algorithm 2. The duplication process

applied to the solution given in Figure 5.5 is illustrated in Figure 5.7. The shaded nodes are

the added duplicate nodes. Furthermore, checkers are added at the end of each node and

22

its duplicate to ascertain the similarity of the results. From figure 5.7, it is evident that the

duplication process increased the total system reliability from 0.896 to 0.938 (4.2% higher).

The algorithm simultaneously ensures that the duplicates do not add to the overall area or

latency of the solution. Nevertheless, the overall energy consumption is increased. However,

we try to decrease this energy increase as much as possible. For example, in Figure 5.7, we

have two voltage level options for resource M1 when we duplicate node 8. Although the

version that uses low voltage has longer latency than its high voltage counterpart, we select

M1 with low voltage since it does not violate the latency constraint and results in smaller

energy increase.

Algorithm 2 Selective Duplication
Data: B= br, r= 1,2,. . . ,k: resources library; T= ti, i= 0,1,. . . ,n: nodes’ start times; β: Resources allocation;

Ā, A, L̄, M= mi, i = 0,1,. . . ,n: nodes’ mobilities.

Result: β′, T ′.

15 begin
16 l= 1; T ′= T ; β′= β;

17 while l ≤ L̄ do
18 foreach ni where ti= l do
19 foreach br ∈ β where ntypei = rtype do
20 foreach Time Step tl in mi do
21 Determine number of br operations in step tl (i.e., | brl |)
22 if (| brl | + brl ≤ | br | ∨ br + A ≤ Ā) ∧ (ti + di ≤ tj ; ∀ eij ∈ E) then
23 Duplicate ni by binding to br in step tl: T ′ = T ′ + t′l; β

′ = β′ + bir;

24 Add checker to time step max(ti + di , ti′ + di′);

25 end

26 end

27 end

28 end

29 end

30 end

23

FIGURE 5.7: The scheduling after the duplication of the solution from Figure 5.5.

24

6. ILP FORMULATION

In this section, we present the ILP formulation of the problem, which maximizes the total

reliability while minimizing the total energy consumption, to compare its results with our

GA method. The notations used in the ILP formulation of the problem are defined in Table

6.1.

ζi,j refers to the compatibility of Ti with Rj (e.g. an addition operation can only be assigned

an adder resource) and is formulated in Equation (15).

ζi,j =

1 If TTypei = RTypej

0 otherwise
(15)

Assignedi,j is a Boolean variable which specifies if Rj is assigned to Ti (see Equation (16)).

Assignedi,j,v =

1 if Ti is assigned to Rj

under Vv

0 otherwise

(16)

Only one resource should be assigned to each task under a single voltage level, while taking

the compatibility into consideration. This is formulated in Equation (17).

(17)While ζi,j = 1

∀i ∈ T :
∑

j∈R,v∈V

Assignedi,j,v = 1

Starti,s is a Boolean variable which specifies if Ti started at Csteps (see Equation (18)).

Starti,s =

1 if Ti started at Csteps

0 otherwise
(18)

A task may start at only one control step (see Equation (19)).

25

TABLE 6.1: ILP Notations.

T = {Ti : i = 1, ..., N} A set of N tasks (additions, multiplications, NOPs)
where Ti is the ith task in T

TTypei The type of Ti (addition, multiplication, NOP)
R = {Ri : i = 1, ...,M} A library of M available hardware resources with

different area, latency, reliability, and energy
consumption values (adders, multipliers), where Ri is
the ith resource in R

V = {Vl, Vh} A set of available voltage levels (high voltage
Vh = 1.2V , low voltage Vl = 1.0V)

Vi The voltage at the voltage level i
RTypej The type of Rj

ζi,j The compatibility of the task Ti with the resource Rj

Assignedi,j,v Denotes whether Rj is assigned to Ti under Vv
Csteps A set of control steps
Starti,s Denotes whether Csteps is the start time of the task Ti
StartN The start time of the last sink task
G = (τ, PREC) Precedence graph G where PREC(i, j) means Ti

precedes Tj
Relj,v The reliability of Rj under Vv
Aj The area occupied by Rj

Lj,v The latency of Rj under Vv
Ej,v The energy consumption of Rj under Vv
ρi The reliability of Ti
δi The delay of Ti
εi The energy consumed by Ti

κi,s,r,v

1 If Ti started at Csteps and Rr is assigned to

it under Vv
0 otherwise

NumRj,s,v The total number of instances of Rj used at Csteps
under Vv

Υr,v The total number of instances of Rj used within the
circuit under Vv

Rmin The minimum reliability value of a given circuit
Rmax The maximum reliability value of a given circuit
Emin The minimum energy consumption of a given circuit
Emax The maximum energy consumption of a given circuit
Rtotal The final total reliability of a given circuit
Rnorm The normalized value of the total reliability to the

range [0,1]
Etotal The final total energy consumption of a given circuit
Enorm The normalized value of the total energy consumption

to the range [0,1]
obj The objective function
Λ Area constraint
λ Latency constraint

26

∀i ∈ T :
∑

s∈Csteps

Starti,s = 1 (19)

The delay of a task depends on the latency of the resource assigned to it and the voltage level

(see Equation (20)).

(20)∀i ∈ T :

δi =
∑

r∈R,v∈V

Lr,v · Assignedi,r,v

For dependent tasks, precedence constraints must be considered. The start time of a task that

depends on a completion of another task must be greater than the end time of the precedent

task. This is formulated in Equation (21).

(21)∀(i, j) ∈ T : If PREC(i, j) = 1∑
s ∈Csteps

Startj,s · s ≥
∑

s∈Csteps

Starti,s · s+ δi

The reliability of a task depends on the reliability of its assigned resource under the applied

voltage level. This is formulated in Equation (22).

(22)∀i ∈ T :

ρi =
∑

r∈R,v∈V

Relr,v · Assignedi,r,v

κi,s,r,v is a Boolean variable which specifies if Ti started atCsteps and ifRr has been assigned

to it under Vv (see Equation (23)).

κi,s,r,v =

1 If Ti started at Csteps and Rr is assigned

to it under Vv

0 otherwise

(23)

27

Each task can only start at one control step and only one resource can be assigned to it under

a single voltage level. We ensure this using Equations (24) and (25)).

(24)∀i ∈ T :∑
r ∈R,s∈Csteps,v∈V

κi,s,r,v = 1

(25)∀(i ∈ T, r ∈ R, s ∈ Csteps, v ∈ V) :
κi,s,r,v ≥ Assignedi,r,v + Starti,s − 1

The total amount of energy consumed by a task depends on the energy consumption of its

assigned resource under the applied voltage. This is formulated in Equation (26).

(26)∀i ∈ T :

εi =
∑

r∈R,v∈V

Er,v · Assignedi,r,v

To calculate the number of instances of each available resource used in the overall design,

we have to determine the resources that are assigned to tasks starting at that control step. We

only check the start times for each task at each control step since we assume that pipelined

resources will be used in the design. NumRr,s,v represents the total number of instances of

Rj at Csteps under Vv and is formulated in Equation (27).

(27)∀(r ∈ R, s ∈ Csteps, v ∈ V) :

NumRr,s,v =
∑

i∈Tasks

κi,s,r,v

Υr,v represents the total number of instances of each available resource under each volt-

age level that needs to be used in the overall circuit design, and it is the maximum of all

NumRr,s,v (see Equation (28)).

(28)∀(r ∈ R, v ∈ V) :
Υr,v = max

s∈Csteps
NumRr,s,v

28

6.1. Constraints

The total area should not exceed the given area constraint. This is formulated in Inequality

(29).

∑
r∈R,v∈V

Υr,v · Ar ≤ Λ (29)

Latency constraint will be met if the start time of the last sink task (denoted as StartN and

defined in Equation (30) is less than or equal to the given maximum allowed latency. This is

formulated in Inequality (31).

StartN =
∑

s∈Csteps

StartN,s · s (30)

StartN ≤ λ (31)

29

7. RESULTS AND ANALYSIS

In this chapter, the effectiveness of our proposed methods is investigated through several sets

of experiments. We selected four most commonly used benchmarks in literature: Differential

Equation Solver (DES), Finite Impulse Response (FIR) filter, Auto-Regressive (AR) filter,

and Elliptic Wave Filter (EWF). The benchmark features (the number of nodes and edges

in their respective data flow graphs, as well as addition and multiplication operations) are

briefly summarized in Table 7.1. More detailed specifications and data flow graphs for the

benchmarks we used can be found in [2] and [32].

TABLE 7.1: Summary of Benchmarks.

Benchmark Nodes Edges Additions Multiplications
DES 11 8 5 6
FIR 23 22 15 8
EWF 26 40 26 0
AR 28 30 12 16

We give the resource library we used in our experiments in Table 4.1, where we list area,

latency, reliability, and energy consumption values of each resource under low and high

voltage levels. We measure latency in time steps (e.g., clock cycles), area in mm2, and

energy consumption in nanojoules (nJ). It is worth noting that our proposed methods can be

used with any resource library that has clearly defined area, latency, reliability, and energy

consumption values for each resource under different voltage levels.

The experiments of the proposed methods which attempt to solve the bi-objective problem

formulated in Equation (12) were performed using four benchmarks from Table 7.1 for vary-

ing area and latency constraints, as well as different α values.

The minimum latency constraints for each benchmark were obtained from ASAP scheduling

algorithm by using the fastest resource for each type of the operations. Once the minimum

circuit delay is obtained, the latency constraint can be increased gradually to test for less

delay-sensitive cases, which may allow utilization of slower but more reliable resources in the

design, and/or allow operation of certain resources at the low voltage level, as to reduce the

overall energy consumption of the circuit. The minimum area constraints, on the other hand,

were obtained by assigning a single resource with 38 the smallest area for each different type

of operation within a benchmark. Testing for different area constraints allows the algorithms

to find solutions with lower latency and higher reliability values.

30

Since the objective function combines the weighted sum of energy and reliability values, by

choosing different values of the parameter α (which assigns weight to reliability maximiza-

tion and energy minimization) we can prioritize either objective function to a certain degree,

or assign an equal weight to both. The experiments with varying area and latency constraints

were performed for α values of 0.0, 0.5, and 1.0. The α value of 0.0 means that we give the

maximum priority to the minimization of energy consumption, while disregarding the relia-

bility of the circuit altogether. Similarly, the α value of 1.0 means that we give the maximum

priority to maximizing reliability, without taking energy consumption into consideration at

all. Finally, by taking α = 0.5, we assign an equal weight to both objective functions, making

the problem bi-objective in nature. Furthermore, in Subsection 7.3., we present more detailed

results that demonstrate how reliability and energy consumption values change when the pa-

rameter α varies in steps of 0.1 (assigning varying weights to either reliability maximization

or energy minimization).

The experiments were performed on a computer with the following configurations: Intel

Core(TM)2 Duo CPU E8500, at 3.16 GHz, with 2 cores, 2 logical processors, and a total

physical memory of 5,823 MB.

7.1. Comparison of GA and ILP Methods

Tables 7.2, 7.3, 7.4, and 7.5 show the reliability and energy consumption results of the pro-

posed GA method compared to ILP for DES, FIR, AR, and EWF benchmarks, respectively.

The first column specifies the value of the α. The second column indicates the latency (L)

and area (A) constraints used in that particular test instance. The third and fourth columns

give the reliability values from the solutions obtained by ILP and GA-based methods, re-

spectively. Similarly, the sixth and seventh columns give the energy consumption values.

Delta (∆) represents the percentage change of the GA result relative to the ILP result, and

the percentage changes in reliability and energy consumption results are given in the fifth

and eighth columns respectively. The reliability ∆ is calculated according to the percentage

change increase formula since a higher reliability value means a better solution, whereas the

energy consumption ∆ is calculated according to the percentage change decrease formula as

lower energy consumption is a more desirable outcome.

31

TABLE 7.2: Results of DES Benchmark.

Reliability Energy
Alpha (L , A) ILP GA ∆(%) ILP GA ∆(%)

1.0

(31,10) 0.99 0.99 0 540 540 0
(31,20) 0.99 0.98 -1.2 540 534 1.1
(31,30) 0.99 0.98 -1.2 540 534 1.1
(28,20) 0.98 0.98 0 534 534 0
(28,30) 0.98 0.98 0 534 534 0
(28,40) 0.98 0.97 -1.2 534 528 1.12
(25,20) 0.97 0.97 0 528 528 0
(25,30) 0.97 0.97 0 528 528 0
(25,40) 0.97 0.97 0 528 528 0

Average ∆ (%) -0.4 Average ∆ (%) 0.37

0.5

(31,10) 0.99 0.99 0 540 540 0
(31,20) 0.98 0.99 0.4 480.11 490.4 -2.14
(31,30) 0.96 0.94 -1.81 419.23 430 -2.57
(28,20) 0.97 0.98 0.3 522.99 538 -2.87
(28,30) 0.97 0.95 -1.83 474.11 472.16 0.41
(28,40) 0.97 0.94 -2.95 474.11 450.68 4.94
(25,20) 0.96 0.97 0.3 516.99 528 -2.13
(25,30) 0.96 0.94 -2 492.55 516 -4.76
(25,40) 0.96 0.94 -2 492.55 516 -4.76

Average ∆ (%) -1.06 Average ∆ (%) -1.54

0.0

(31,10) 0.99 0.99 0 540 540 0
(31,20) 0.72 0.74 2.6 448.47 450.44 -0.44
(31,30) 0.80 0.80 0.9 404.65 405.62 -0.24
(28,20) 0.85 0.86 1.9 480.56 481.56 -0.21
(28,30) 0.76 0.75 -1.3 451 452.1 -0.24
(28,40) 0.76 0.77 1.4 451 452.1 -0.24
(25,20) 0.80 0.81 1 502.41 508 -1.11
(25,30) 0.80 0.81 1.1 477.97 481.56 -0.75
(25,40) 0.79 0.81 2.3 476.14 481.56 -1.14

Average ∆ (%) 1.1 Average ∆ (%) -0.41

For α values of 1.0 and 0.0 the GA-based method obtains optimum or near-optimum results

in most of the cases. In these two cases, the solver is trying to either maximize the total

reliability (for α = 1.0) or minimize the overall energy consumption (for α = 0.0). For (α =

0.5) the deference from optimum solutions is a little bit higher than other values of alpha,

which means that when assigning equal weight to the bi-objective problem of maximizing

reliability and minimizing energy GA is not doing as well as ILP,this could be explained by

the randomness of GAs in general. Also, while the number of benchmark nodes increases

the disparity in the obtained values grows as well.

32

TABLE 7.3: Results of FIR Benchmark.

Reliability Energy
Alpha (L , A) ILP GA ∆(%) ILP GA ∆(%)

1.0

(51,10) 0.98 0.98 0 820 820 0
(35,15) 0.91 0.91 0 784 784 0
(40,15) 0.93 0.93 0 796 796 0
(40,20) 0.93 0.93 0 796 796 0
(50,20) 0.98 0.97 -1.2 820 814 0.7
(35,30) 0.92 0.90 -2.4 790 778 1.5
(40,30) 0.93 0.93 0 796 796 0
(45,30) 0.95 0.95 0 808 808 0
(50,30) 0.98 0.97 -1.2 820 814 0.7

Average ∆ (%) -0.53 Average ∆ (%) 0.33

0.5

(51,10) 0.98 0.98 0 820 820 0
(35,15) 0.85 0.84 -2.14 546.13 549 -0.53
(40,15) 0.88 0.86 -2.24 553.12 556.11 -0.54
(40,20) 0.88 0.85 -3.64 553.12 580.64 -4.98
(50,20) 0.90 0.87 -3.45 561.45 562.46 -0.18
(35,30) 0.89 0.87 -2.16 564.13 572 -1.4
(40,30) 0.88 0.84 -4.75 553.12 560.48 -1.33
(45,30) 0.89 0.90 0.91 555.45 568.48 -2.35
(50,30) 0.90 0.90 -0.1 557.78 564.48 -1.2

Average ∆ (%) -1.95 Average ∆ (%) -1.39

0.0

(51,10) 0.98 0.98 0 820 820 0
(35,15) 0.81 0.79 -2.89 534.48 548 -2.53
(40,15) 0.81 0.79 -2.89 534.48 548 -2.53
(40,20) 0.69 0.67 -2.77 508.86 510.83 -0.39
(50,20) 0.44 0.46 3.74 499.33 500.73 -0.28
(35,30) 0.58 0.59 2.06 513.81 528.48 -2.86
(40,30) 0.54 0.52 -3.9 502.83 510.7 -1.57
(45,30) 0.48 0.50 5.21 500.73 517.15 -3.28
(50,30) 0.42 0.43 1.2 498.63 500.03 -0.28

Average ∆ (%) -0.03 Average ∆ (%) -1.52

7.2. Execution Time Analysis

While the ILP-based method determines the optimum results, it takes too much time for

problems with a large number of variables. Resource scheduling and binding under given

constraints are NP-hard problems. Thus, the execution time of an ILP-based solution grows

exponentially as the number of nodes increases, and becomes computationally impractical

for more complex circuits. Therefore, the proposed GA-based method provides a faster

solution with near-optimum results. Figure 7.1 demonstrates the comparison between the

average execution times of ILP and GA methods for varying number of benchmark nodes.

33

TABLE 7.4: Results of AR Benchmark.

Reliability Energy
Alpha (L , A) ILP GA ∆ ILP GA ∆

1.0

(65,15) 0.97 0.96 -1.36 1,424 1,412 0.84
(55,20) 0.93 0.93 0.00 1,400 1,400 0.00
(60,20) 0.97 0.96 -1.36 1,424 1,412 0.84
(65,20) 0.97 0.96 -1.36 1,424 1,412 0.84
(50,30) 0.92 0.90 -1.20 1,394 1,420 -1.87
(55,30) 0.95 0.94 -1.20 1,412 1,406 0.42
(60,30) 0.97 0.97 0.00 1,424 1,424 0.00
(50,40) 0.93 0.93 0.00 1,400 1,400 0.00
(55,40) 0.97 0.96 -1.20 1,424 1,418 0.42

Average ∆ (%) -0.85 Average ∆ (%) 0.17

0.5

(65,15) 0.86 0.88 2.43 978.96 1,012 -3.38
(55,20) 0.92 0.92 -0.43 1,392.66 1,405 -0.89
(60,20) 0.97 0.93 -3.78 1,409.32 1,411 -0.12
(65,20) 0.86 0.90 4.81 971.62 1,106 -13.83
(50,30) 0.85 0.83 -2.51 1,161.14 1,211 -4.29
(55,30) 0.83 0.83 -0.55 1,058.72 1,108 -4.65
(60,30) 0.85 0.89 5.45 965.62 1,024 -6.05
(50,40) 0.88 0.87 -1.09 1,180.48 1,211 -2.59
(55,40) 0.85 0.85 0.11 1,063.38 1,125 -5.79

Average ∆ (%) 0.49 Average ∆ (%) -4.62

0.0

(65,15) 0.83 0.79 -5.10 960.96 1,005 -4.58
(55,20) 0.67 0.71 6.53 1,144.48 1,176 -2.75
(60,20) 0.67 0.64 -4.75 1,071.16 1,140.68 -6.49
(65,20) 0.77 0.76 -1.26 949.98 961.96 -1.26
(50,30) 0.74 0.73 -1.49 1,147.76 1,188 -3.51
(55,30) 0.83 0.75 -9.37 1,058.72 1,075 -1.54
(60,30) 0.75 0.75 0.11 955.9 971.88 -1.67
(50,40) 0.71 0.75 4.62 1,142.27 1,165 -1.99
(55,40) 0.73 0.79 8.91 1,048.17 1,131 -7.90

Average ∆ (%) -0.2 Average ∆ (%) -3.52

As it is evident from the figure, while the execution time of the ILP method starts growing

exponentially for benchmarks that have more than 20 nodes, the average execution time of

the GA-based method remains to be around one second for any benchmark size, making it a

practical method of choice for complex circuits with a large number of nodes.

7.3. Effects of DVS on Reliability

Figures 7.2, 7.3, 7.4, and 7.5 demonstrate the changes in reliability and energy consumption

values for different values of α, for DES, FIR, AR, and EWF benchmarks, respectively.

34

TABLE 7.5: Results of EWF Benchmark.

Reliability Energy
Alpha (L , A) ILP GA ∆ ILP GA ∆

1.0

(30,10) 0.82 0.8 -2.34 228 220 3.51
(30,20) 0.82 0.8 -2.34 228 220 3.51
(40,10) 0.91 0.91 0 276 276 0
(40,20) 0.91 0.9 -1.2 276 270 2.17
(40,30) 0.91 0.91 0 276 276 0
(50,5) 0.89 0.86 -3 291 284 2.41
(50,10) 0.95 0.95 0 300 300 0
(50,20) 0.95 0.95 0 300 300 0
(50,30) 0.95 0.95 0 300 300 0

Average ∆ (%) -0.99 Average ∆ (%) 1.29

0.5

(30,10) 0.57 0.59 4.03 119.4 116 2.85
(30,20) 0.55 0.57 3.95 113.91 119 -4.47
(40,10) 0.53 0.57 7.50 108.42 119 -9.76
(40,20) 0.53 0.56 5.62 108.42 116 -6.99
(40,30) 0.53 0.57 6.47 108.42 106 2.23
(50,5) 0.53 0.56 5.60 108.42 105.55 2.65
(50,10) 0.53 0.56 5.60 108.42 116 -6.99
(50,20) 0.53 0.56 5.60 108.42 116 -6.99
(50,30) 0.53 0.56 5.60 108.42 116 -6.99

Average ∆ (%) 5.55 Average ∆ (%) -3.83

0.0

(30,10) 0.57 0.55 -3.01 119.4 122 -2.18
(30,20) 0.43 0.44 2.34 109.71 115 -4.82
(40,10) 0.30 0.33 8.27 98.62 100.02 -1.42
(40,20) 0.30 0.32 4.05 98.62 99.32 -0.71
(40,30) 0.30 0.32 4.1 98.62 101.42 -2.84
(50,5) 0.53 0.49 -6.98 108.42 111.7 -3.03
(50,10) 0.21 0.22 3.58 92.32 93.72 -1.52
(50,20) 0.21 0.22 3.28 92.32 94.42 -2.27
(50,30) 0.21 0.21 0 92.32 92.32 0

Average ∆ (%) 1.74 Average ∆ (%) -2.09

The figures present more detailed results that demonstrate how reliability and energy con-

sumption values change when the parameter α varies in steps of 0.1 (assigning varying

weights to either reliability maximization or energy minimization) for specific area (A) and

latency (L) constraints. As α increases, we give more and more weight to maximizing the

circuit reliability at the expense of higher energy consumption, and vice versa. Hence, with

growing α, both reliability and energy consumption values should increase.

From the (a) charts in Figures 7.2-7.5 that demonstrate the change in reliability values, we

observe that the proposed GA-based method obtains the optimum or near-optimum results

35

FIGURE 7.1: Average execution times of ILP and GA methods for varying number of bench-
mark nodes.

(a) (b)

FIGURE 7.2: Changes over different α values for DES benchmark (A = 30, L = 28): (a)
Change in reliability; (b)Change in energy consumption

for all test cases. However, the GA solutions appear to result in relatively higher overall

energy consumption.

Overall, we observe that DVS negatively affects the final reliability of a circuit. Giving more

than 50% weight to minimizing energy consumption generally results in unacceptably low

reliability values of the final circuit design. Therefore, one should consider balancing the

gain and loss in terms of the energy and reliability. For example, when we aim to optimize

reliability we can define energy as a constraint or vice versa. Both ILP and GA-based meth-

ods can easily be modified for assigning either reliability or energy as constraints since they

offer very flexible infrastructure to the user to play with the area, latency, reliability, and

energy of the design at the same time.

36

(a) (b)

FIGURE 7.3: Changes over different α values for FIR benchmark (A = 20, L = 40): (a)
Change in reliability; (b)Change in energy consumption

(a) (b)

FIGURE 7.4: Changes over different α values for AR benchmark (A = 30, L = 50): (a)
Change in reliability; (b)Change in energy consumption

(a) (b)

FIGURE 7.5: Changes over different α values for EWF benchmark (A = 30, L = 40): (a)
Change in reliability; (b)Change in energy consumption

37

7.4. Effects of Duplication

Tables 7.6, 7.7, 7.8, and 7.9 show the reliability and energy consumption results of the

duplicated-GA for DES, FIR, AR, and EWF benchmarks, respectively, for α value of 1.0.

The symbols R∆ (reliability change) and E∆ (energy change) represent the percentage

change of the GA, ILP, and Fully Duplicated (FD) results. While we determine FD ver-

sion of the design, we consider that all the resources of the design obtained by GA-based

method are duplicated by the same resource. Therefore, the area and energy consumption

of FD are increased 100%. We compare our duplication method with FD to see if we can

achieve similar reliability improvement with less area and less energy increase.

In the given tables, the first column defines the latency and area constraints for which the

tests were performed. The second and third columns represent the reliability and energy

consumption results of the GA-duplication. The fourth and fifth columns indicate the relia-

bility and energy percentage change of the GA results relative to the results after duplication.

The sixth and seventh columns show the reliability and energy percentage change of the ILP

results relative to the results of the duplicated GA method. In the last two columns, the

results of the duplicated GA method were compared relative to the results of the fully dupli-

cated solutions. In the fully duplicated solutions, the reliability is calculated according to the

Equation (2) using the resources obtained by GA, while the energy consumption and area are

doubled.

From the results we observe that the GA duplication method improves the reliability results

by around 5% on average over the original GA method, while increasing the energy with

an average of 15%. Furthermore, the GA duplication results are better compared to the ILP

results in terms of reliability; however, the energy consumption is increased.

When we compare our GA duplication method against the FD counterpart, we see that our

reliability difference on four benchmark is around 4% on average. On the other hand, FD

method increases the energy consumption by an average of 70% and area 100%. These

results show that our duplication-based post processing is very effective when compared to

FD version since it improves the reliability similar to fully duplication with half area and

much less energy consumption.

38

TABLE 7.6: Duplicated GA results of DES compared to the results of GA, ILP and Fully
Duplicated methods

GA. Duplication Compared to GA Compared to ILP Compared to FD
(L , A) Reliability Energy R∆ (%) E∆ (%) R∆ (%) E∆ (%) R∆ (%) E∆ (%)
(31,10) 0.9948 635 -0.58 14.96 -0.58 14.96 0.51 -70.08
(31,20) 0.9948 635 -1.77 15.91 -0.58 14.96 0.47 -68.19
(31,30) 0.9948 635 -1.77 15.91 -0.58 14.96 0.47 -68.19
(28,20) 0.9829 629 -0.58 15.10 -0.58 15.10 1.69 -69.79
(28,30) 0.9829 629 -0.58 15.10 -0.58 15.10 1.69 -69.79
(28,40) 0.9829 629 -0.76 16.06 0.44 15.10 2.67 -67.89
(25,20) 0.9711 623 -0.58 15.25 -0.58 15.25 2.86 -69.5
(25,30) 0.9711 623 -0.58 15.25 -0.58 15.25 2.86 -69.5
(25,40) 0.9711 623 -0.58 15.25 -0.58 15.25 2.86 -69.5

TABLE 7.7: Duplicated GA results of FIR compared to the results of GA, ILP and Fully
Duplicated methods

GA. Duplication Compared to GA Compared to ILP Compared to FD
(L , A) Reliability Energy R∆ (%) E∆ (%) R∆ (%) E∆ (%) R∆ (%) E∆ (%)
(51,10) 0.99 931 -1.16 11.9 -1.16 11.92 1.09 -76.15
(35,15) 0.94 929 -3.35 15.6 -3.35 15.61 5.45 -68.78
(40,15) 0.96 908 -3.21 12.3 -3.21 12.29 3.45 -75.42
(40,20) 0.97 908 -3.71 12.3 -3.71 12.33 2.92 -75.33
(50,20) 0.98 998 -1.25 18.4 -0.05 17.84 2.15 -63.13
(35,30) 0.94 989 -4.23 21.3 -1.88 20.12 5.54 -57.33
(40,30) 0.96 908 -3.21 12.3 -3.21 12.33 3.45 -75.33
(45,30) 0.98 998 -2.17 19 -2.17 19.04 2.34 -61.92
(50,30) 0.98 998 -1.25 18.4 -0.05 17.84 2.15 -63.13

TABLE 7.8: Duplicated GA results of AR compared to the results of GA, ILP and Fully
Duplicated methods

GA. Duplication Compared to GA Compared to ILP Compared to FD
(L , A) Reliability Energy R∆ (%) E∆ (%) R∆ (%) E∆ (%) R∆ (%) E∆ (%)
(65,15) 0.985 1611 -2.61 12.35 -1.27 11.61 1.37 -75.29
(55,20) 0.964 1610 -3.90 13.04 -3.90 13.04 3.16 -73.91
(60,20) 0.997 1724 -3.83 18.10 -2.51 17.40 0.09 -63.81
(65,20) 0.985 1611 -2.61 12.35 -1.27 11.61 1.37 -75.29
(50,30) 0.944 1534 -4.21 0.00 -3.05 9.13 4.95 -85.14
(55,30) 0.994 1776 -5.67 20.83 -4.53 20.50 0.20 -58.33
(60,30) 0.989 1544 -1.73 7.77 -1.73 7.77 0.98 -84.46
(50,40) 0.977 1730 -5.12 19.08 -5.12 19.08 1.85 -61.85
(55,40) 0.989 1638 -2.87 13.43 -1.69 13.06 0.94 -73.14

39

TABLE 7.9: Duplicated GA results of EWF compared to the results of GA, ILP and Fully
Duplicated methods

GA. Duplication Compared to GA Compared to ILP Compared to FD
(L , A) Reliability Energy R∆ (%) E∆ (%) R∆ (%) E∆ (%) R∆ (%) E∆ (%)
(30,10) 0.83 256 -2.79 14.06 -0.46 10.94 16.32 -71.88
(30,20) 0.83 256 -2.79 14.06 -0.46 10.94 16.32 -71.88
(40,10) 0.97 316 -6.89 12.66 -6.89 12.66 1.85 -74.68
(40,20) 0.95 310 -5.98 12.90 -4.84 10.97 3.86 -74.19
(40,30) 0.97 316 -6.89 12.66 -6.89 12.66 1.85 -74.68
(50,5) 0.88 294 -2.27 3.40 -0.37 1.02 9.93 -93.20

(50,10) 0.98 350 -2.80 14.29 -2.80 14.29 1.96 -71.43
(50,20) 0.98 350 -2.80 14.29 -2.80 14.29 1.96 -71.43
(50,30) 0.98 350 -2.80 14.29 -2.80 14.29 1.96 -71.43

40

8. CONCLUSION

Constantly shrinking technology sizes have allowed for a significant increase in the num-

ber of transistors on chips, resulting in smaller integrated circuit areas and increased circuit

densities. Higher circuit densities, in turn, have introduced new design problems in digital

systems, such as more vulnerability of circuits to radiation effects due to lower supply and

threshold voltage levels. Higher SERs of combinational logic in particular makes reliability-

oriented HLS a priority. Nonetheless, achieving a high reliability of a circuit should not come

at the expense of unlimited energy consumption.

This study incorporates both energy and reliability metrics into the optimization of the HLS

process of ASIC design, unlike the previous studies that only focus on one of these metrics,

while taking area and latency constraints into consideration. Especially, the effect of DVS

on reliability is examined. Our goal was to develop new HLS method for ASIC design under

area and timing constraints with objectives of both low energy consumption and high relia-

bility. We propose GA-based optimization method, as well as a selective duplication method

which further maximizes the reliability and compare it to ILP method. While the ILP-based

method determines the optimum results, it takes too much time for some problems; the exe-

cution time grows exponentially as the number of nodes increases, and it becomes computa-

tionally impractical for problems with a large number of variables. Therefore, we propose a

GA-based method that is faster and yields optimum or near-optimum results.

41

REFERENCES

[1] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger, and L. Alvisi. Modeling

the effect of technology trends on the soft error rate of combinational logic. In

Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International

Conference on, pages 389–398. 2002.

[2] Suleyman Tosun, Nazanin Mansouri, Ercument Arvas, Mahmut Kandemir, and

Yuan Xie. Reliability-centric high-level synthesis. In Proceedings of the con-

ference on Design, Automation and Test in Europe-Volume 2, pages 1258–1263.

IEEE Computer Society, 2005.

[3] A. Dixit and A. Wood. The impact of new technology on soft error rates. In 2011

International Reliability Physics Symposium, pages 5B.4.1–5B.4.7. 2011. ISSN

1541-7026. doi:10.1109/IRPS.2011.5784522.

[4] Vikas Chandra and Robert Aitken. Impact of voltage scaling on nanoscale sram

reliability. In Proceedings of the Conference on Design, Automation and Test in

Europe, pages 387–392. European Design and Automation Association, 2009.

[5] F. Dabiri, N. Amini, M. Rofouei, and M. Sarrafzadeh. Reliability-aware opti-

mization for dvs-enabled real-time embedded systems. In 9th International Sym-

posium on Quality Electronic Design (isqed 2008), pages 780–783. 2008. ISSN

1948-3295. doi:10.1109/ISQED.2008.4479837.

[6] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-

Hill Higher Education, 1994.

[7] Zhiru Zhang, Deming Chen, Steve Dai, and Keith Campbell. High-level synthesis

for low-power design. IPSJ Transactions on System LSI Design Methodology,

8:12–25, 2015.

[8] Suleyman Tosun and Tohid Taghizad Gogjeh Yaran. Genetic algorithm-based

reliability optimization for high-level synthesis. Journal of Circuits, Systems and

Computers, 28(03):1950039, 2019.

[9] Robert A Walker and Raul Camposano. A survey of high-level synthesis systems,

volume 135. Springer Science & Business Media, 2012.

42

[10] Alex Orailoǧlu and Ramesh Karri. A design methodology for the high-level syn-

thesis of fault-tolerant asics. In 6th IEEE Workshop on VLSI Signal Processing,

pages 417–426. Institute of Electrical and Electronics Engineers Inc., 1992.

[11] Michael Glaß, Martin Lukasiewycz, Thilo Streichert, Christian Haubelt, and

Jürgen Teich. Interactive presentation: Reliability-aware system synthesis. In

Proceedings of the conference on Design, automation and test in Europe, pages

409–414. EDA Consortium, 2007.

[12] Tomoo Inoue, Hayato Henmi, Yuki Yoshikawa, and Hideyuki Ichihara. High-

level synthesis for multi-cycle transient fault tolerant datapaths. In 2011 IEEE

17th International On-Line Testing Symposium, pages 13–18. IEEE, 2011.

[13] Aiman H El-Maleh and Khaled AK Daud. Simulation-based method for synthe-

sizing soft error tolerant combinational circuits. IEEE Transactions on Reliabil-

ity, 64(3):935–948, 2015.

[14] Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for

reduced cpu energy. In Mobile Computing, pages 449–471. Springer, 1994.

[15] Kinshuk Govil, Edwin Chan, and Hal Wasserman. Comparing algorithms for

dynamic speed-setting of a low-power cpu. In MobiCom, volume 95, pages 13–

25. Citeseer, 1995.

[16] Yumin Zhang, Xiaobo Sharon Hu, and Danny Z Chen. Task scheduling and

voltage selection for energy minimization. In Proceedings of the 39th annual

Design Automation Conference, pages 183–188. ACM, 2002.

[17] Tohru Ishihara and Hiroto Yasuura. Voltage scheduling problem for dynamically

variable voltage processors. In Proceedings of the 1998 international symposium

on Low power electronics and design, pages 197–202. ACM, 1998.

[18] Yung-Chia Lin, Yi-Ping You, Chung-Wen Huang, Jenq Kuen Lee, Wei-Kuan

Shih, and Ting-Ting Hwang. Energy-aware scheduling and simulation method-

ologies for parallel security processors with multiple voltage domains. The Jour-

nal of Supercomputing, 42(2):201–223, 2007.

43

[19] Ruibin Xu, Daniel Mossé, and Rami Melhem. Minimizing expected energy con-

sumption in real-time systems through dynamic voltage scaling. ACM Transac-

tions on Computer Systems (TOCS), 25(4):9, 2007.

[20] Jinfeng Liu, Pai H Chou, Nader Bagherzadeh, and Fadi Kurdahi. Power-aware

scheduling under timing constraints for mission-critical embedded systems. In

Proceedings of the 38th annual Design Automation Conference, pages 840–845.

ACM, 2001.

[21] Sumit Ahuja. High level power estimation and reduction techniques for power

aware hardware design. Ph.D. thesis, Virginia Tech, 2010.

[22] John Hansen and Montek Singh. An energy and power-aware approach to high-

level synthesis of asynchronous systems. In Proceedings of the International

Conference on Computer-Aided Design, pages 269–276. IEEE Press, 2010.

[23] Ashok K Murugavel and Nagarajan Ranganathan. A game theoretic approach

for power optimization during behavioral synthesis. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 11(6):1031–1043, 2003.

[24] Saraju P Mohanty, Nagarajan Ranganathan, Elias Kougianos, and Priyardarsan

Patra. Low-power high-level synthesis for nanoscale CMOS circuits. Springer

Science & Business Media, 2008.

[25] Shengqi Yang, Wenping Wang, Tiehan Lu, Wayne Wolf, Narayanan Vijaykr-

ishnan, and Yuan Xie. Case study of reliability-aware and low-power design.

IEEE transactions on very large scale integration (VLSI) systems, 16(7):861–

873, 2008.

[26] Farshad Firouzi, Mostafa E Salehi, Fan Wang, Sied Mehdi Fakhraie, and Saeed

Safari. Reliability-aware dynamic voltage and frequency scaling. In 2010 IEEE

Computer Society Annual Symposium on VLSI, pages 304–309. IEEE, 2010.

[27] Farshad Firouzi, Mostafa E Salehi, Fan Wang, and Sied Mehdi Fakhraie. An

accurate model for soft error rate estimation considering dynamic voltage and

frequency scaling effects. Microelectronics Reliability, 51(2):460–467, 2011.

44

[28] Edin Kadric, Kunal Mahajan, and André DeHon. Energy reduction through dif-

ferential reliability and lightweight checking. In 2014 IEEE 22nd Annual Interna-

tional Symposium on Field-Programmable Custom Computing Machines, pages

243–250. IEEE, 2014.

[29] David Harris and Sarah Harris. Digital design and computer architecture. Mor-

gan Kaufmann, 2010.

[30] Cadence genus synthesis solution. https://www.cadence.com/en_

US/home/tools/digital-design-and-signoff/synthesis/

genus-synthesis-solution.html. Accessed: 23.12.2019.

[31] Deniz Dal and Nazanin Mansouri. Power optimization with power islands syn-

thesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 28(7):1025–1037, 2009.

[32] Suleyman Tosun, Ozcan Ozturk, Nazanin Mansouri, Ercument Arvas, Mahmut

Kandemir, Yuan Xie, and W-L Hung. An ilp formulation for reliability-oriented

high-level synthesis. In Sixth international symposium on quality electronic de-

sign (isqed’05), pages 364–369. IEEE, 2005.

45

