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ABSTRACT

ROBUST DATA-DRIVEN FIXED-ORDER H∞ CONTROLLER
SYNTHESIS USING CONVEX OPTIMIZATION

ERSİN DAŞ

Doctor of Philosophy, Department of
Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Selahattin Çağlar BAŞLAMIŞLI

October 2019, 111 pages

The main objective of this thesis study is to develop fixed-order (low-order) structu-

red controller design methods for frequency domain non-parametric uncertain sys-

tems using convex optimization. The majority of the available controller synthesis

methods are based on the mathematical model of the system dynamics. The per-

formance of these model based control methods entirely relies on the accuracy of

the model. Model uncertainty, due to unmodeled system dynamics, nonlinearities

and operating point changes, are almost inevitable and may cause controller perfor-

mance degradation due to the fact that there is always a trade-off between perfor-

mance of the closed loop system and robustness. Therefore, model based methods

may impede desired high performance requirements of today’s industrial complex

dynamical systems.

In this thesis, a novel robust data-driven fixed-order H∞ controller design method

based on convex optimization is proposed for linear single input single output sys-

tems. Linear time-invariant systems represented by non-parametric frequency do-

main data and linearly parameterized controllers are considered. The proposed

approach renders the need for a mathematical model of the controlled plant un-

necessary. First, a semi-definite convex optimization algorithm, which is based on

the concept of the Chebyshev center of a set of points, is proposed to simultaneo-
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usly compute a minimal uncertainty bound and corresponding nominal model from

the experimental data. Thanks to this algorithm, multiple measurements can be con-

sidered in the robust control design method instead of one set of measurement with

minimal uncertainty bound. Then, a new sufficient robust performance condition is

derived using Nyquist stability theorem and µ synthesis methods on the Nyquist plot.

Low-order controllers such as lead-lag compensators and proportional integral deri-

vative (PID) controller are much desired in today’s industrial process due to their en-

gineering advantages. Therefore, a convex optimization method is developed which

optimizes the coefficients of the fixed-order controllers while guaranteeing inter-

nal stability and robustness. Furthermore, the proposed method allows formulating

closed-loop model matching objective and control input constraints by convex func-

tions. An extension of the one degree of freedom controller design algorithm is pro-

posed to synthesise two degree of freedom controllers for reference tracking of the

non-parametric systems. The presented theoretical design approaches are experi-

mentally verified on position control of an electromechanical actuation systems of

an air vehicle.

Keywords: Data-driven control, Robust H∞ control, Convex optimization, Model

matching, 2-DOF control, Laguerre basis function
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ÖZET

KONVEKS OPTİMİZASYON KULLANARAK VERİYE DAYALI SABİT
DERECELİ GÜRBÜZ H∞ KONTROLCÜ SENTEZİ

ERSİN DAŞ

Doktora, Makine Mühendisliği Bölümü

Tez Danışmanı: Doç. Dr. Selahattin Çağlar BAŞLAMIŞLI

Ekim 2019, 111 sayfa

Bu tez çalışmasının temel amacı, frekans düzleminde parametrik olmayan sistem-

ler için sabit dereceli (düşük mertebeli) kontrolcü sentezleme metodu geliştirmektir.

Mevcut kontrolcü sentez yöntemlerinin çoğu, sistem dinamiğinin matematiksel mo-

deline dayanmaktadır. Bu model tabanlı kontrol yöntemlerinin performansı büyük

oranda modelin doğruluğuna bağlıdır. Modellenemeyen sistem dinamikleri, doğru-

salsızlıklar ve çalışma noktası değişiminden kaynaklanan model belirsizlikleri nere-

deyse kaçınılmazdır ve kapalı çevrim sistemin performansı ve gürbüzlüğü arasında

bir denge olduğu için kontrolcü performansının düşmesine neden olabilir. Bu ne-

denle, model tabanlı yöntemler günümüzün karmaşık yapılı endüstriyel dinamik sis-

temlerinin istenen yüksek performans gereksinimlerini sağlamasını engelleyebilir.

Bu tez çalışmasında, tek giriş tek çıkışlı doğrusal sistemler için konveks optimizas-

yon temelli ve veriye dayalı, sabit dereceli yeni bir H∞ kontrolcü tasarım metodu

önerilmiştir. Frekans düzleminde parametrik olmayan doğrusal zamanla değişmeyen

sistemler ve doğrusal olarak parametrelenebilir kontrolcüler ele alınmıştır. Önerilen

yaklaşım, kontrol edilen sistemin matematiksel modeline duyulan ihtiyacı gereksiz

kılmaktadır. İlk olarak, minimum belirsizlik bandı ve ilgili nominal modelin birlikte se-

çimine yönelik, bir noktalar kümesinin Chebyshev merkezi konseptine dayanan yarı

tanımlı konveks optimizasyon algortiması önerilmiştir. Gürbüz kontrolcü tasarımında

çoklu ölçüm verileri, tek bir ölçüm verisi yerine bu algoritma sayesinde minimum be-
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lelirsizlik bandı ile temsil edilerek kullanılabilir. Daha sonra, Nyquist kararlılık teoremi

ve µ sentezi metotları kullanılarak gürbüz performans kriteri için Nyquist grafiği üze-

rinde yeni bir yeterli koşul türetilmiştir.

İleri-geri kompanzatörler ve PID gibi düşük mertebeli kontrolcüler, sahip oldukları

mühendislik avantajlarından dolayı günümüz endüstrisinde daha çok tercih edilir-

ler. Bu nedenle, hem iç kararlılık ve gürbüzlüğü garanti eden hem de sabit dereceli

kontrolcü parametrelerini optimize eden bir konveks optimizasyon algoritması ge-

liştirilmiştir. Bunun yanısıra, kapalı çevrim model eşleme problemi ve kontrol girdisi

kısıtı önerilen yöntemde konveks fonkiyonlar ile uygulanabilmektedir. Tek serbes-

tik dereceli kontrolcü tasarım algoritması, parametrik olmayan sistemlerin referans

takibi için iki serbestlik dereceli kontrolcü sentezine genişletilmiştir. Sunulan teorik

yaklaşımlar bir hava aracının elektromekanik eyletim sistemi üzerinde denyesel ola-

rak doğrulanmıştır.

Anahtar Kelimeler: Veriye dayalı kontrol, Gürbüz H∞ kontrol, Konveks optimizas-

yon, Model eşleme, 2-DOF kontrol, Laguerre temel fonskiyonu
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1. INTRODUCTION

In this chapter, motivations, state of the art, contributions and organization of thesis

are presented.

1.1 Motivation

Although the basic theorems about classical feedback control were introduced by

Nyquist [1] and Bode [2] in the 20th century, the first application of the feedback

control systems is related to flow rate control of a water clock which was invented by

Ctesibius of Alexandria in 3rd century B.C. [3]. Since digital computers have become

easily accessible, it is possible nowadays to implement advanced control algorithms

in daily life and industrial processes. Therefore, researchers follow their studies in

this field to propose new methods for feedback control systems.

It is well known that the principal aim of automatic control systems is to conveniently

shape the feedback loop. Most of the available model based control methods in the

literature such as PID control, H∞ control, adaptive control, optimal control, and

backstepping control require an accurate mathematical description of system dyna-

mics under interest. The performance of these model based control methods entirely

relies on the accuracy of the model. The mathematical models of physical systems

are generally built based on laws of physics and system identification methods. As

these modelling approaches provide mathematical descriptions of the real process;

model uncertainty, due to noise and disturbance inputs, unmodeled dynamics, non-

linearities and operating point changes are almost always present and may cause

controller performance degradation due to the fact that there is always a trade-off

between performance of the closed loop system and robustness. Furthermore, it

may be difficult to build a reliable parametric model from a set of measurements

since this approach requires prior information about the model structure. Therefore,

model based methods may impede desired closed loop performance requirements

of today’s industrial complex process.

Thanks to the developments in information science, alternative control methods cal-

led data-driven control have been proposed [4]. Unlike model based controller de-

1



sign methods, the controller synthesis in data-driven control methods is performed

by using the input-output signals of the system without the need for a plant trans-

fer function. Furthermore, analysis of the control system is also examined using the

measured input-output data only. Thus, the need for a parametric plant model is eli-

minated and the controller structure is independent of the mathematical expression

of the system. Data-driven control methods are more useful than model based cont-

rol methods especially for systems which are difficult to model or have high-order

complex transfer functions.

Three items, namely, a parametric model of the system, user-defined weighting func-

tions and an uncertainty model, are required for model-based robust H∞ control fra-

mework. The order of the resulting full-order robust controller is equal to the order

of the augmented plant, i.e., the sum of the order of the three above mentioned

function. Therefore, as the order of the system model or user-defined weighting

functions increase, the order of the H∞ controller also increases. These unstructu-

red controllers may be as very high-order, which complicates implementation and

readjustment.

Fixed-order (low-order) controllers such as lead-lag compensators and PID control-

ler are preferred in practical industrial control applications because of their easily

adjustable structures, practicality and low processing requirements on embedded

system. The H∞ control problem leads to an NP-hard non-convex problem, which

is difficult to solve, in controller parameter space if a fixed-order controller structure

is considered instead of a full-order controller in state space algorithms which are

formed by two algebraic Ricatti equations [5], or linear matrix inequalities (LMI) [6]

based solution algorithms [7]. Therefore, fixed-order H∞ control problem remains an

open problem in control theory.

The designed controller should be robust to the external disturbances and uncerta-

inties such as changing environmental condition, operating point change, undefined

system dynamics, materiel life and aging. Classical uncertainty modelling approach

in robust control theory is generally calculated from a set of frequency response

data. However, this approach produces a considerably large uncertainty magnitude.

On the other hand, because of the contradictory features of performance and ro-
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bustness, it is desirable that magnitude of the uncertainty models be as small as

possible. Furthermore, the modelling of the uncertainty depends on a nominal mo-

del of the system.

In the feedback-only (1-DOF) control system structure for reference tracking, the

controller acts only on the error signal. There are algebraic limitations on this control

scheme. Since sum of the sensitivity function and complementary sensitivity function

equals to unity, the designed controller cannot achieve required magnitude values

for these dependent functions at frequency points of interest. It is well known that the

tracking error minimization and noise attenuation are related to the complementary

sensitivity function. On the other hand, the sensitivity function determines the effect

of the output disturbance on the measured output of the control system. Therefore;

there is a trade-off between reference tracking accuracy and disturbance rejection

constraints [7]. Above mentioned performance limitations in the feedback-only cont-

rol scheme can be eliminated by using a two degree of freedom (2-DOF) control

system configuration, including a feedforward path [8].

To sum up, the following control challenges are addressed in this study:

• The stabilization and robust control of uncertain non-parametric systems using

data-driven techniques;

• Robust fixed-order H∞ controller synthesis using convex optimization;

• Optimal uncertainty modelling;

• High precision reference tracking.

1.2 State of the Art

In this section, some of the relevant data-driven control methods and fixed-order

controller design approaches are briefly presented.

1.2.1 Data-driven Control Methods

Data-driven control methods have been developed to deal with modelling issues by

synthesizing controllers using only a set of time domain or frequency domain measu-
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rements instead of a parametric model. This advantage has made these methods

a popular research topic within the automatic control community in recent years [9].

The fundamental goal of such methods is to directly synthesize controllers through

experimentally obtained data, particularly for high precision control applications and

high order dynamical systems with unavailable mathematical models.

Data-driven control methods can be divided into three main groups according to the

usage of input-output data as

• Online data-based control methods;

• Off-line data-based control methods;

• hybrid (based on both online and off-line) data-based control methods;

Model-free adaptive control (MFAC) [10] and unfalsified control (UC) [11] methodo-

logies are included in the first group. Iterative feedback tuning (IFT) [12], correlation-

based tuning (CbT) [13], virtual reference feedback tuning (VRFT) [14]) and nonite-

rative data-driven model reference control [15] methods can be examined in the off-

line data-driven group. Iterative learning control (ILC) [16] and lazy learning (LL) [17]

are examples of Hybrid data-driven control method.

1.2.2 Fixed-order H∞ Controller Design Methods

Robust control theory, which includes the H∞ and µ concepts, has been developed

to take into account the dynamic uncertainties in controller design algorithms. In

model based H∞ control method, both plant and uncertainties are represented by

transfer functions. As the order of transfer functions increase to satisfy high accuracy

system modelling, the order of the synthesized full-order robust H∞ controller also

increases. In addition, the total order of user-defined weighting functions increases

the order of the controller. This disadvantage is one of the limitations of robust H∞

control.

Restricting the order of a controller turns the H∞ controller design into an NP-hard

non-convex problem [18]. Recently, nonsmooth optimization [19], meta-heuristic app-

roach [20], Kalman-Yakubovich-Popov (KYP) Lemma [21, 22], inner convex appro-
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ximation [23], convex-concave optimization [24], regional pole assignment [25] and

exact gradient methods [26] have been adopted in fixed-order controller design prob-

lem with H∞ criterion. Furthermore, the results of studies [27, 28] to solve this non-

convex problem by using non-smooth optimization techniques have been incorpora-

ted into hinfstruct function of MATLAB and HIFOO toolbox, respectively. However,

these techniques cannot be used for data-driven controller synthesis (i.e., they are

model based control algorithm), and, hence, they introduce some conservatism into

the designed closed-loop control systems due to uncertainty of the used parametric

model.

1.2.3 Data-driven Fixed-order H∞ Controller Design Methods

To avoid model identification and design fixed-order (structured) controllers from the

input/output set of measurements in the data-driven approach, frequency domain

H∞ control framework can be considered. In such approaches, the controller synt-

hesis problem is generally transformed into an inner constrained convex optimization

problem, where H∞ norm criteria can be used to formulate constrained optimization

problem, to obtain a local solution in the frequency domain.

Quantitative feedback theory (QFT) [29] uses Nichols chart of the plant to synthe-

size fixed-order robust controllers. However, this method is mostly based on trial

and error. In [30], a linear programming approach for linearly parameterized fixed-

order controller synthesis is proposed. Robustness margins such as gain, phase

and modulus margin are imposed as constraints in the Nyquist diagram. Although

the method is also suitable for multiple models, performance requirements are li-

mited to the selection of an interval for crossover frequency. This approach was

later improved to synthesize a data-driven linearly parameterized robust controller

via convex optimization for an uncertain model in [31] by the introduction of a de-

sired loop gain model. However, this method leads to a conservative solution and

narrowing of the solution space of the non-convex control problem due to the con-

vexification approach. Another contribution to frequency domain data-driven synt-

hesis of fixed-order controller for non-parametric systems is presented in [32]. In

their work, the authors used a line to constrain the critical point of the Nyquist di-

agram for nominal stability or nominal performance requirement. The effectiveness

5



of the obtained controller largely depends on the selection of this constraint line. A

non-linear optimization based solution approach for tuning fixed-order controllers is

presented in [33], [34]. This method to necessitates the non-parametric response of

the system that is provided by closed-loop tests. The most important reason limiting

the use of this method is the need for three different initial controllers to obtain the

frequency response of the controlled plant. A convex-concave procedure for robust

PID controller design with a low-pass measurement filter is proposed in [35], but

this study does not consider unstructured uncertainty. In [36], a robust data-driven

digital controller design method for two degree of freedom RST controller is presen-

ted, where only the measurement process based uncertainty is taken into account.

Frequency-domain approaches to suppress vibrations of flexible structures via lower

order controllers are presented in [37, 38] for single input single output (SISO) and

multiple input single output (MISO) systems respectively, where a non-convex H∞

controller synthesis problem is solved for the mixed sensitivity objective. Another

non-convex optimization algorithm based frequency domain data-driven fixed-order

controller synthesis approach is introduced in [39] to solve H∞ control problem for

control signal limited linear time invariant (LTI) systems using non-parametric data.

However, model uncertainties and robust performance constraints are not conside-

red in the optimization problem of this study. In [40], the authors propose a frequency

domain control design for stable multiple input multiple output (MIMO) systems for

structured controllers based on nonsmooth trust-region bundle method. They also

developed a new adaptive frequency gridding method to solve the fixed-order control

problem with a finite number of frequency points.

1.3 Contributions of the Thesis

In this study, a fixed-order H∞ controller synthesis method for non-parametric SISO

systems is introduced by using linearly parameterized Laguerre basis functions in

the frequency domain using convex optimization. In order to make the data-driven

structured H∞ approach more applicable and to reduce the conservatism of the

method, this thesis study addresses the aforementioned limitations of the available

methods. First, unstructured multiplicative model uncertainty bound is minimized

by selecting the nominal model and uncertainty circle via the concept of Chebys-
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hev center of a set of points at the corresponding frequency points on the Nyquist

plot. Therefore, this algorithm reduces the conservatism and improves the robust

performance of the proposed method. Thanks to this approximation, multiple me-

asurements can be considered in the robust control design algorithm instead of one

set of measurement with minimal uncertainty bound. Second, this study applies the

robust data-driven fixed-order H∞ controller synthesis methodology to linear plants

with control input constraints. Physical systems usually have input signal constra-

ints, because the power supplies cannot provide infinitely large control input. Two

inequality constraints are added to the optimization based control design problem to

account for this limit in the convex optimization framework. Third, in this thesis, the

objective function of the convex optimization problem is formulated as a closed-loop

model matching problem. Due to the fact that the model matching does not guaran-

tee internal stability, a novel robust performance condition is derived and conside-

red using an affine constraint on the Nyquist plot. Therefore, designed closed-loop

control system is stable and experimentally obtained dynamical characteristics of

the interested system matches predefined system dynamics in the H∞ norm sense.

Then, an extension of the 1-DOF feedback controller design algorithm is proposed to

synthesize 2-DOF controllers for reference tracking of the non-parametric systems.

Furthermore, another new method to synthesize data-driven structured H∞ control-

ler for SISO LTI plants by using generalized plant dynamics obtained from closed-

loop test and control parameters written in diagonal form is presented. Finally, the

proposed algorithms are verified experimentally with application to the control of

electromechanical systems of an air vehicle.

1.4 Organization of the Thesis

Chapter 2 introduces the notation, frequency response identification methods, class

of controllers, convex optimization method, and other basic definitions which are

used throughout this study.

Chapter 3 proposes a new data-driven fixed-order H∞ controller design method ba-

sed on convex optimization for linear single input single output systems. A semi-

definite convex optimization algorithm is proposed to simultaneously compute a

minimal uncertainty model and an optimal nominal model from the experimental
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data. Then, the H∞ robust performance condition, control input constraints and the

closed-loop model matching objective are described by convex functions with res-

pect to the parameters of the controller. Finally, the usefulness and efficiency of the

proposed approach are verified experimentally with application to the control of a

flexible nozzle type electromechanical thrust vector control (TVC) system. Modelling

of electromechanical actuation systems also given in this chapter.

Chapter 4 presents a novel data-driven controller design approach to synthesize

two degree of freedom robust fixed-order H∞ controllers for reference tracking by

using convex optimization techniques. A structured 2-DOF robust controller synt-

hesis approach based on constrained convex optimization problem is introduced

with closed loop model matching objective and control input constraints for non-

parametric perturbed model in the frequency domain. The theoretical design appro-

ach is experimentally verified on the full-closed loop feedback position control of an

electromechanical control actuation system (CAS).

Chapter 5 suggests a novel method to synthesize data-driven structured H∞ cont-

roller for LTI SISO plants by using the generalized plant obtained from closed-loop

test and control parameters written in diagonal form. Based on the user defined we-

ighting functions, the fixed-order H∞ controller synthesis optimization algorithm is

defined on the Nyquist plot to calculate the parameters of the controller. PD type po-

sition controller synthesis for an electromechanical CAS is realized by the proposed

method.

Chapter 6 concludes the thesis and gives suggestions for future works.
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2. PRELIMINARIES

This chapter introduces the notation, frequency response identification methods,

class of controllers, convex optimization methods and other basic definitions that

are used throughout this study.

2.1 Notation

The set of all real matrices, complex matrices and non-negative real matrices are de-

noted as Rp×q, Cp×q, R+
p×q, respectively. The set of all real and all complex numbers

are represented without the superscript p and q. The notation G(s), G(z) and G(jw)

represent the transfer function of the system G in the Laplace domain, z-domain and

frequency domain, respectively. For the real and imaginary components of the input

argument we use the <(·) and =(·) symbols, respectively. RH∞ consists real rati-

onal proper stable models [41]. The superscript (·)∗ represents the feasible solution

of the optimization problem.

2.2 Norms of Signals and Systems

An LTI system G can be considered as a mapping from input data to output data,

i.e., u(t) ∈ Xnu to y(t) ∈ Xmy by means of the convolution and defined as

G : Xnu 7→ Xmy

u(t) 7→ y(t) =

∞∫
−∞

g(t− τ)u(τ)dτ = g(t) ∗ u(t)
(2.1)

where g(t) is the impulse response of the model. The system G is called single input

single output (SISO) if nu = my = 1 and multiple input multiple output (MIMO) if

nu > 1 or my > 1. The system model g(t) is strictly causal if g(t) = 0 while t ≤ 0. We

consider strictly causal plants throughout this thesis study.

The Laplace transform of the causal g(t) is defined as

L {g(t)} = G(s) =

∞∫
0

g(τ)e−sτdτ (2.2)
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where L {·} is the Laplace transformation operator and s ∈ C is the Laplace variable.

Finally, by means of the Laplace transformation, the output of the Laplace domain

model is given by

Y (s) = G(s)U(s) (2.3)

where U(s) and Y (s) are the Laplace domain representation of the input and output

signals, respectively [42].

In this thesis study, causal LTI SISO systems are considered.

The norms gives strength, length or size of a vector (signal). Therefore, following

definitions for signal norms, system spaces, vector norms and system norms used

in defining fundamental concepts of robust control theory prevail.

Definition 2.1. (2-norm of a signal) The 2-norm of a signal u(t) is the square root

of the integral of its square from −∞ to ∞ and associated with the energy of the

signal:

‖u(t)‖2 :=

( ∞∫
−∞

u(t)2dt

)1/2

. (2.4)

Definition 2.2. (2-norm of a vector) The 2-norm of a vector x gives the Euclidean

distance on Rn:

‖x‖2 :=

(
N∑
i=1

∣∣xi∣∣2)1/2

, i = 1, 2, . . . N. (2.5)

Definition 2.3. (2-norm of a system) The 2-norm of a frequency domain causal

system G(jw) is the total area under its magnitude plot from w = 0 to w =∞:

‖G‖2 :=

(
1

2π

∞∫
0

∣∣G(jw)
∣∣2dw )1/2

. (2.6)

Definition 2.4. (L2 space) The L2 space is Hilbert space of matrix-valued complex
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functions on jR (imaginary axis) such that the 2-norm is finite [43]:

L2 = {G : ‖G‖2 <∞}. (2.7)

Definition 2.5. (∞-norm of a signal) The∞-norm of a signal u(t) is the supremum

(the least upper bound) of its absolute value:

‖u(t)‖∞ := sup
t

∣∣u(t)
∣∣ (2.8)

Definition 2.6. (∞-norm of a vector) The∞-norm of a vector x gives the maximum

of its absolute value:

‖x‖∞ := max
i

∣∣xi∣∣, i = 1, 2, . . . N. (2.9)

Definition 2.7. (∞-norm of a system) The ∞-norm of a causal system G is the

peak value (maximal gain) of its magnitude plot in the frequency domain:

‖G‖∞ := sup
<(s)>0

[G(s)] = sup
w∈R

[G(jw)] (2.10)

and it is submultiplicative such that

‖GH‖∞ ≤ ‖G‖∞‖H‖∞ (2.11)

which is an important property for robust stability analysis by small gain theorem

[41].

Definition 2.8. (L∞ space) The L∞ space is a Banach space of matrix-valued func-

tions, which are bounded on jR such that ‖G‖∞ is finite [43]:

L2 = {G : ‖G‖∞ <∞}. (2.12)

Definition 2.9. (H∞ space) The H∞ space is a closed subspace of L∞ space with

functions that analytic on the right half plane with a finite∞-norm.
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2.3 Robust Controller Synthesis and Analysis

Any interconnected feedback control system can be rearranged as a linear fractional

transformation (LFT). Generalized control system configuration with LFT structure

for robust control system design and analysis is given in Figure. 2.1.

ω∆ z∆

ω

u

z

y

∆

P

K

Figure. 2.1. Generalized control system configuration.

This framework can be obtained by separating controllerK and uncertainty ∆ blocks

from feedback interconnection. In Figure. 2.1; P denotes the generalized plant, ω is

the exogenous input vector comprising of reference command, sensor noise, output

disturbance, z is the performance variable of interest, y denotes the measured out-

puts, (or error signal), u denotes the control signal, ω∆ represents the output of the

perturbation block, and z∆ represents the input of the perturbation block.

P represents the mathematical relations between
[
ω∆ ω u

]T
and

[
z∆ z y

]T
. P

matrix can be partitioned in matrix form as


z∆

z

y

 =

 P11 P12

P21 P22



ω∆

ω

u

 =


P

(11)
11 P

(12)
11 P

(11)
12

P
(21)
11 P

(22)
11 P

(21)
12

P
(11)
21 P

(12)
21 P

(11)
22



ω∆

ω

u

 (2.13)

where ω∆ 7→ z∆ is the uncertainty channel and ω 7→ z is the performance channel.
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The closed loop system transfer function Tzω, which represents the transfer function

from the exogenous inputs to the performance variables, can be written by using

upper and lower LFT on the uncertainty block and controller as

z = (Tzω)ω

z = Fu

(
Fl(P,K),∆

)
ω

z = Fl

(
Fu(P,∆), K

)
ω

(2.14)

where

Fl(P,K) = M = P11 + P12K
(
I − P22K

)−1
P21

Fu(P,∆) = N = P22 + P21∆
(
I − P11∆

)−1
P12.

(2.15)

For the H∞ controller synthesis methods, the generalized control system configura-

tion can be modified into the controller synthesis framework (Figure. 2.2) with ∆ = 0

block (without uncertainty channel) and following generalized plant P :

z
y

 =

 P
(22)
11 P

(21)
12

P
(12)
21 P

(11)
22

ω
u


(2.16)

ω

u

z

y

K

[

P
(22)
11 P

(21)
12

P
(12)
21 P

(11)
22

]

Figure. 2.2. Controller synthesis framework.

All of the transfer functions from exogenous inputs to performance outputs, i.e., Tzω
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can be written by using lower LFT as

z = Fl

(P (22)
11 P

(21)
12

P
(12)
21 P

(11)
22

, K)ω
Tzω = P

(22)
11 + P

(21)
12 K

(
I − P (11)

22 K
)−1

P
(12)
21 .

(2.17)

The model based H∞ control design method aims to find a suboptimal controller K

that minimizes effects of the exogenous inputs ω on performance output z. In other

words, optimal H∞ control problem is: find all admissible, i.e., it internally stabilizes

the system, controller K such that

‖Tzω‖∞ = sup
<(s)>0

[Tzω(s)] = sup
w∈R

[Tzω(jw)] (2.18)

is minimized. However, computing an optimal H∞ controller is not simple [41]. To

overcome this difficulty, a sub-optimal control problem can be considered [5]. This

sub-optimal H∞ control problem is: find all admissible controller K such that

‖Tzω‖∞ < γ (2.19)

where γ > 0. Classical solution techniques of sub-optimal H∞ controller synthesis

problem are based on the state space algorithms which are formed by two algebraic

Ricatti equations [5].

For the robustness analysis methods, the H∞ controller K can be considered as

another known component of generalized system configuration. Therefore, the cont-

roller can be included into the system structure using lower LFT as given in the first

part of the (2.15) and (2.17). Then, the generalized control system configuration can

be modified into the robustness analysis framework, i.e., (M−∆) structure as shown

in Figure. 2.3.
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ω

ω∆

z

z∆

M

∆

Figure. 2.3. Controller analysis framework.

In robust stability or robust performance analysis, the system model is described

with perturbations. Multiplicative uncertainty and additive uncertainty are the most

commonly used methods for uncertain model description. For additive uncertainty

(Figure. 2.4) modelling approach, the nominal (parameter) model is assumed to be

in the set:

M := P + ∆WA, ‖∆‖∞ < 1 (2.20)

Similarly, the nominal (parameter) model is assumed to be in the set

M := P (I + ∆WM), ‖∆‖∞ < 1 (2.21)

for multiplicative uncertainty (Figure. 2.5).

WA ∆

+P

Figure. 2.4. Additive uncertainty.

P

WM ∆

+

Figure. 2.5. Multiplicative uncertainty.

The functionsWA andWM are stable, strictly proper transfer functions, i.e.,WAWM ∆ ∈
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RH∞, which define the magnitude of the uncertainty at each interested frequency

point.

Structured singular value, which is denoted by µ or SSV, is a measure of the destabi-

lizing structured uncertainty matrix ∆. Additionally, a fictitious block ‖∆F‖∞ < 1 can

be used for representation of the performance channel (robust performance analy-

sis). By using the special structure of the ∆ matrix, µ value of a system matrix M is

defined as the inverse of the smallest norm of a perturbation matrix that causes the

instability. This definition can be written as

µ∆(M) =
1

min{σ̄(∆) : det(I −M∆) = 0}
(2.22)

where σ̄ is the maximum singular value of the ∆ ∈ Cn×n matrix. There is no exact

solution for µ∆(M). However, the upper and lower limits of the perturbation matrix

that cause the instability can be approximated [41].

2.4 Linearly Parameterized Controllers

Linearly parameterized fixed-order controllers can be modelled with stable orthogo-

nal basis functions as

K(s, k) = kψ(s) (2.23)

where k =
[
k0 k1 . . . kn

]
∈ R1×n is the gain matrix of the controller and ψ(s)T =[

1 ψ1(s) . . . ψn(s)
]
∈ RH∞ is the matrix of transfer functions. These basis functions

can be formed by using Laguerre functions, Kautz functions or generalized ortho-

normal basis functions [44]. In this thesis, we consider the Laguerre basis functions,

also known as Laguerre filters, given by

ψi(s) =

√
2ξ(s− ξ)i−1

(s+ ξ)i
(2.24)

for i = 1, . . . , n with ξ > 0 which is called the time scaling factor of the Laguerre

functions. The poles of these functions are at the same location ξ. All functions

except ψ1(s), which is a low-pass filter, are formed with all-pass filters in series with

a first order filter [45]. The block diagram of the Laplace domain structure of the
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nth-order Laguerre model based controller is shown in Figure. 2.6.

√

2ξ

s+ξ

s−ξ

s+ξ

s−ξ

s+ξ

k0 k1 k2 kn

+ ++

. . .

. . .

E(s)

U(s)

ψ1(s) ψ2(s) ψn(s)

Figure. 2.6. Structure of the linearly parameterized controllers.

In Figure. 2.6, the controller input signal E(s) is filtered by Laguerre functions. Then,

the control signal of the plant U(s) is obtained by multiplication of each filtered out-

puts by their respective controller parameters ki as

U(s) = [k0 + k1ψ1(s) + · · ·+ knψn(s)]E(s). (2.25)

Time domain representation of the Laguerre functions can be obtained by using

inverse Laplace transform as follows:

ψi(t) = L −1

(√
2ξ(s− ξ)i−1

(s+ ξ)i

)
=
√

2ξ
eξt

(i− 1)!

di−1

dti−1

(
ti−1e−2ξt

)
(2.26)

where ψi(t), i = 1, 2, . . . is an orthonormal set satisfying following properties:

∞∫
0

ψ2
i (t)dt = 1 (2.27)

∞∫
0

ψi(t)ψj(t)dt = 0, i 6= j. (2.28)

Any analytical function g(t) can be written as

g(t) =
N∑
i=1

aiψi(t) (2.29)
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where ai is the coefficient of the Laguerre expansion and given by

ai =

∞∫
0

ψi(t)g(t)dt. (2.30)

Although the Laguerre expansion has an infinite number of ai and ψi(t), one can

approximate the function g(t) with a sufficient number of ai and ψi(t) terms, i.e.,

i = 1, 2, . . . , N .

Example 2.1: Consider the following stable second order stable system model.

G(s) =
2

(2s+ 1)(3s+ 2)
(2.31)

The impulse response of this function can be approximated using Laguerre expan-

sion for i = 1, 2, 3, 4. For the sake of simplicity, the time scaling factor ξ assumed

as ξ = 1. Then, the Laguerre coefficients can be obtained using (2.30) as

a1 = 0.188

a2 = −0.289

a3 = 0.141

a4 = −0.051.

(2.32)

The time domain impulse response of the resulting 1st, 2nd, 3rd, 4th order Laguerre

models and g(t) are given in Figure. 2.7.
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Figure. 2.7. 1st, 2nd, 3rd, 4th order Laguerre expansions of the g(t).

As can be seen from the figure, as the order of the Laguerre model increases, La-

guerre expansion approximates the response of real system model.

2.4.1 PID Controller

The continuous-time PID controller also can be written in linearly parameterized

form as

KPID(s) = kψ(s) =
[
Kp Ki Kd

]
1

1/s

s/(τds+ 1)

 (2.33)

where k =
[
Kp Ki Kd

]
∈ R1×3

+ are the proportional gain, integral gain and deriva-

tive gain, respectively. The τd ∈ R+ parameter of the PID controller is the derivative

time constant, which is assumed to be fixed.

Note that, the basic idea behind using linearly parameterized type controllers is to

represent transfer functions constituting the control objective function as a convex

function with respect to the optimization parameter k.
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2.5 Frequency Response Identification

2.5.1 FRF Estimation From Open-loop Data

The complex value G(jw), which is G(z)
∣∣
z=ejw

, gives full information about the sys-

tem in steady-state case if the system is stable and the input is sinusoidal. Therefore,

G(jw) is called the frequency response function (FRF) of the plant. This approach

may not be feasible for some systems in all situations because one can not sequenti-

ally implement all possible sinusoidal inputs. An extension of the direct FRF method

is the empirical transfer function estimate (ETFE) [46] that estimates FRF from nor-

mal inputs instead of sinusoidal ones. If the system is disturbance free and has zero

boundary conditions, the estimate of G(jw), which is denoted by ĜN(jw), can be

calculated by dividing the periodogram of the system output y[k] to the periodogram

of the input signal u[k] as follows:

ĜN(jw) =

[
1√
N

N∑
t=1

y[t]e−jwt

][
1√
N

N∑
t=1

u[t]e−jwt

]−1

(2.34)

where N is the number of available measurement samples for each experiment, t is

the time instant, w ∈ [0, π/Ts] and Ts is the sampling period.

On the other hand, experimental systems often contain measurement noise. An

experimental test setup could produce an output such as

y[t] = G(z)u[t] + v[t] (2.35)

where v[t] is the random measurement noise, and u[t] and y[t] are uncorrelated.

Since the u[t] signal is not entirely random, y[t] is a quasi-stationary signal. Estima-

tion of the auto-correlation function of u[t] can be defined as

R̂N
u (τ) :=

1

N

N−1∑
k=0

u[k]u[k − τ ], |τ | ≤ N − 1. (2.36)
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Similarly, estimated cross-correlation function between u[k] and y[k] is given by

R̂N
yu(τ) :=

1

N

N−1∑
t=0

y[t]u[t− τ ], |τ | ≤ N − 1. (2.37)

The spectral density of u[t] and the cross spectral density between u[t] and y[t] are

defined by

φ̂u(jw) =
∞∑

τ=−∞

WM(τ)R̂N
u (τ)e−jwτ (2.38)

φ̂yu(jw) =
∞∑

τ=−∞

WM(τ)R̂N
yu(τ)e−jwτ (2.39)

whereWM(τ) is the lag window that is used for smoothing the estimated FRF. Finally,

ĜN(jw) can be estimated from these spectral density functions as

ĜN(jw) =
φ̂yu(jw)

φ̂u(jw)
. (2.40)

2.5.2 FRF Estimation From Closed-loop Data

During the synthesis of data-driven robust controller, the non-parametric spectral

model of system is needed in the frequency domain instead of a well defined transfer

function of the system. The FRF, which consists of a finite number of data points of

the system, can be derived from the parametric model or the spectral analysis of

the input/output data. The stability and performance characteristics of the discussed

system are examined using non-parametric model in what follows.

The FRF data of an LTI system can be obtained by using closed-loop system iden-

tification techniques. Especially for systems that are unstable, motion constrained

or with with high security requirements or unreachable feedback loop; closed-loop

identification is generally preferred [47]. Closed-loop identification methods can be

divided into three main groups: direct, indirect and joint input-output approach [46].

In order to derive the FRF model of the experimental devices of this study, the di-

rect approach is selected. In this method, the input r(t), error e(t), control input u(t),
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output y(t) and the transfer function of the controller K(jw) in the feedback system,

which are shown in Figure. 2.8, are assumed to be known.

Figure. 2.8. Feedback system.

The mathematical relationships between r(t) and y(t), and r(t) and e(t) are given by

y(jw) = T (jw)r(jw) (2.41)

e(jw) = S(jw)r(jw) (2.42)

where S(jw) is the sensitivity function and T (jw) is the complementary sensitivity

function such that S(jw) + T (jw) = I.

The generalized plant P is generated by writing arithmetic relations between the

input and output signals defined in the remainder where the controller K(s) is sepa-

rated from the system as

z = P11ω + P12u (2.43)

e = P21ω + P22u (2.44)

where ω is the exogenous input and z is the performance variable of interest. P

matrix can be partitioned as z
e

 =

P11 P12

P21 P22

ω
u

 (2.45)
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[
P
]

=

P11 P12

P21 P22

 =

0 G

I −G

 (2.46)

where P represents the transfer function from
[
ω u

]T

to
[
z e

]T

and z ∈ Rnz ,

e ∈ Rne, ω ∈ Rnω , u ∈ Rnu. The general control configuration with P is derived by

following the steps given in Figure. 2.9 and Figure. 2.10 for the closed-loop system

in Figure. 2.8, respectively.

Figure. 2.9. Construction of the generalized plant.

Figure. 2.10. Generalized control system configuration.

The transfer function of Tzω, which represents the transfer function from generalized

input to generalized output of the system, can be written as

Tzω =
z

ω
=
P11 − P11KP22 + P12KP21

1−KP22

(2.47)
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for the SISO system in Figure. 2.8, is also given in (2.41). The definition of gene-

ralized plant parameters P11, P12, P21, P22 in the above equations is required for

µ analysis and H∞ controller synthesis. For the SISO system given in Figure. 2.8,

only P12 and P22 are unknown and equal to G and −G, respectively. For this reason,

definition of the FRF data of the open-loop plant G is sufficient for the identification

of P .

In direct closed-loop identification, T (jw) is excited by ω(t) input signal and corres-

ponding outputs u(t), z(t) signals for N time samples are measured. The applied

ω(t) should be a rich signal to be able to continuously excite the system within the

frequency range of interest. Usually, Pseudo Random Binary Sequence (PRBS),

white noise and chirp signals are preferred input signals [48]. Then G(jw) can be

obtained by applying the Blackman-Tukey spectral analysis method [46]. In the first

step of this method, covariance of u(t) and cross-covariance of u(t) and z(t) can be

calculated by using

R̂N
u (τ) =

1

N

N∑
t=1

u(t+ τ)u(t) (2.48)

R̂N
zu(τ) =

1

N

N∑
t=1

z(t+ τ)u(t) (2.49)

equations for N measured samples, respectively. Fourier transforms of these functi-

ons can be calculated using

φ̂u(jw) =
M∑

τ=−M

R̂N
u (τ)WM(τ)e−jwτ (2.50)

φ̂zu(jw) =
M∑

τ=−M

R̂N
zu(τ)WM(τ)e−jwτ (2.51)

equations where WM(τ) is the Hanning window with a width of M. This window is

designed as a function of frequency and is chosen small around the bandwidth and

large of higher frequencies [37]. Finally, FRF of open-loop plant G(jw) is obtained
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by using

G(jw) =
φ̂zu(jw)

φ̂u(jw)
(2.52)

equation and FRF of P matrix can be calculated by using (2.46) with known G(jw).

2.6 Convex Optimization

Optimization is the methodology of computing the feasible solution that minimizes

or maximizes the cost function f(x) with or without constraints. Optimization prob-

lems are mainly divided into two groups as unconstrained optimization problem and

constrained optimization problem.

Definition 2.10. (Unconstrained optimization) An unconstrained optimization prob-

lem can be written as

min
x∈X

f(x) (2.53)

where x =
[
x1 x2 . . . xn

]T
∈ Rn is the vector of optimization variables, the function

f(x) : Rn → R is called the objective or cost function of the optimization problem and

X is an n-dimensional subset.

Definition 2.11. (Constrained optimization) Constrained optimization problem is a

mathematical problem which consists of minimizing a objective function f(x) subject

to equality or inequality constraints. A mathematical optimization problem can be

formulated as

min
x∈X

f(x)

s.t. g(x) ≤ 0

h(x) = 0

(2.54)

Here, g(x) =
[
g1(x) g2(x) . . . gm(x)

]T
is the vector of the inequality constraint functi-

ons. Similarly, h(x) =
[
h1(x) h2(x) . . . hl(x)

]T
is the vector of the equality constraint

functions. The vector x is a feasible solution of the constrained optimization problem

(2.54) if and only if g(x) ≤ 0, h(x) = 0 and x ∈ X.
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Definition 2.12. (Ball) B(x∗, ε) is a ball at point x∗ with radius ε such that

B(x∗, ε) = {x∗
∣∣ ‖x− x∗‖2 ≤ ε}. (2.55)

Note that, the set of points

B(xc, rc) = {x
∣∣ ‖x− xc‖2 ≤ rc} = {xc + rcρ

∣∣ ‖ρ‖2 ≤ 1} (2.56)

constitutes a Chebyshev ball with respect to the Euclidean norm around the Chebys-

hev center xc with radius rc > 0. This ball definition is generally used in the optimi-

zation algorithm to define the bound of the error.

Definition 2.13. (Ellipsoid) Similarly, ellipsoid has the form

Ep = {x
∣∣ (x− xc)TP−1

e (x− xc) ≤ 1} = {xc + Apρ
∣∣ ‖ρ‖2 ≤ 1} (2.57)

where Pe is a symmetric positive definite (SPD) matrix
(
Pe = P T

e � 0
)
, and Ap is a

square nonsingular matrix [49,50].

Definition 2.14. (Positive-semidefinite) An n× symmetric matrixAs is called positive-

semidefinite if

xTAsx ≥ 0, ∀x ∈ Rn (2.58)

and it is denoted as

As � 0 (2.59)

where the special inequality � means positive semidefinite with non-negative eigen-

values.

Definition 2.15. (Local minimum) A vector x∗ ∈ F

is a local minimum of the optimization problem if

∃ε > 0 ⇒ f(x∗) ≤ f(y), ∀y ∈ B(x∗, ε) ∩ F ; (2.60)
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is a strict local minimum of the optimization problem if

∃ε > 0 ⇒ f(x∗) < f(y), ∀y ∈ B(x∗, ε) ∩ F, y 6= x∗; (2.61)

is a global minimum of the optimization problem if

f(x∗) ≤ f(y), ∀y ∈ F ; (2.62)

is a strict global minimum of the optimization problem if

f(x∗) < f(y), ∀y ∈ F, y 6= x∗ (2.63)

where F is the feasible domain, which is a subset of X, and defined as

F = X ∩
{
x ∈ X

∣∣g1(x) ≤ 0 . . . gm(x) ≤ 0, h1(x) = 0 . . . hl(x) = 0
}
. (2.64)

Example 2.2: Consider the following constrained optimization problem in standard

form [51]:

min
x1,x2∈R2

f(x1, x2) = (x1 − 3)2 + (x2 − 2)2

s.t. g1(x1, x2) = x1 + x2 − 7 ≤ 0

g2(x1, x2) = x1 − 0.25x2
2 ≤ 0

h1(x1, x2) = 2x1 + x2 − 8 = 0

h2(x1, x2) = (x1 − 1)2 + (x2 − 4)2 = 0

x ∈ X =
{
x ∈ R2

∣∣ 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 10
}

(2.65)

The feasible domain of x such that the constraints are satisfied is given by F =

X ∩
{
x ∈ X

∣∣g1(x) ≤ 0, g2(x) ≤ 0, h1(x) = 0, h2(x) = 0
}

=
{

(1, 6)∗
}

. Figure. 2.11

shows the graphical representation of this constrained optimization problem with

level curves (countours of the objective function f(x1, x2)).
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Figure. 2.11. Graphical representation of given constrained optimization example.

As can seen from Figure. 2.11, the intersection of two equality constraints defines

two possible solutions to the optimization problem as (x1 = 1, x2 = 6) and (x1 =

2.6, x2 = 2.8). However, the point (2.6, 2.8) does not satisfies the second inequality

constraint, i.e., g2(x1, x2). Therefore, the point (1, 6), which satisfies all constraints,

is a uniquely feasible solution of the given optimization problem.

A convex optimization problem can be defined as a problem of minimizing a convex

function over a convex set. In this framework, the basic definitions and theorems

required for convex optimization method are given below.

Definition 2.16. (Infimum) The infimum or the greatest lower bound of the function

f(x) is denoted as

inf
x∈X

f(x) (2.66)
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and defined by

inf
x∈X

f(x) ≤ f(x), ∀x ∈ X (2.67)

where X is a subset of the feasible decision variables.

Definition 2.17. (Supremum) The supremum or the least upper bound of a function

f(x) is denoted as

sup
x∈S

f(x) (2.68)

and defined by:

sup
x∈S

f(x) ≥ f(x), ∀x ∈ X. (2.69)

Definition 2.18. (Affine set) A set X ⊆ Rn is said to be affine if

λx1 + (1− λ)x2 ∈ X, ∀x1, x2 ∈ X, λ ∈ R (2.70)

where λx1 + (1− λ)x2 constitutes a line segment.

Definition 2.19. (Affine function) A function f(x) : Rn → Rm defined on X is affine,

i.e., linear function plus a constant term (aTx+ b), if it satisfies the following equality:

f(λx1 + (1− λ)x2) = λx1 + (1− λ)x2, ∀x1, x2 ∈ X, λ ∈ R (2.71)

where a ∈ Rn × Rm, b ∈ Rm and dom f = X ⊆ Rn.

Definition 2.20. (Convex set) A set X ⊆ Rn is said to be convex if

λx1 + (1− λ)x2 ∈ X, ∀x1, x2 ∈ X, λ ∈ [0, 1]. (2.72)

In other words, line segment between x1 ∈ X and x2 ∈ X lies in set X.

Definition 2.21. (Convex function) A function f(x) : Rn → R is convex if dom f =

X ⊆ Rn is a convex set and f(x) satisfies the following Jensen’s Inequality [52]:

f(λx1 + (1− λ)x2) ≤ λx1 + (1− λ)x2, ∀x1, x2 ∈ X, λ ∈ [0, 1]. (2.73)
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λf(x1) + (1− λ)f(x2)

λ = 1 λ = 0

Figure. 2.12. A graphical interpretation of the Jensen’s Inequality.

A graphical interpretation of the Jensen’s Inequality, which means that the line seg-

ment between any chosen two points on the f(x) graph lies above the graph of f(x),

is given in Figure. 2.12. Note that, an affine function aTx + b with convex domain,

i.e., domf : convex, satisfies the Jensen’s Inequality as

f(λx1 + (1− λ)x2) = λx1 + (1− λ)x2, ∀x1, x2 ∈ X, λ ∈ [0, 1] (2.74)

Hence, affine functions are convex.

First and second order conditions for convexity of a function are given by following

theorems, respectively.

Theorem 2.1. [49]: Assume that f(x) is differentiable (Of(x) exists ∀x ∈ dom f)

and dom f is convex and open then f(x) is a convex function if and only if first-order

Taylor expansion of f(x) is a global underestimator such that

f(x) ≥ f(x̃) + Of(x̃)T (x− x̃), ∀x, x̃ ∈ dom f (2.75)
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where Of(x̃) is the gradient vector of f(x) at point x̃ and defined as

Of(x̃) =


∂f(x̃)

∂x1...
∂f(x̃)

∂xn


n×1

. (2.76)

Theorem 2.2. [50]: If f(x) is twice differentiable (H(x) exists ∀x ∈ dom f) and dom f

is convex and open then f(x) is a convex function if and only if

H(x) � 0, ∀x ∈ dom f (2.77)

where H(x) is the Hessian (matrix) of f(x) such that

[
H(x)

]
ij

= O2f(x) = O OTf(x) =

[
∂2f(x)

∂xi∂xj

]
n×n

, i, j ∈ 1, . . . n. (2.78)

The most useful characteristic of convex functions can be explained by following

theorem:

Theorem 2.3. [49]: Assume thatX is a convex set, f(x) : X → R is a convex function

with (strict) local minimum x̃. Then, x̃ is a (strict) global minimum of f(x) over X.

Proof. (Proof by contradiction) Suppose x̃ is not a (strict) global minimum, i.e., ∃y ∈

X, f(y) < f(x̃). Let

z(λ) ∼= λx̃+ (1− λ)y, 0 ≤ λ ≤ 1, (2.79)

hence, z ∈ X and

f(z(λ)) = f(λx̃+ (1− λ)y) ≤ λf(x̃) + (1− λ)f(y)

< λf(x̃) + (1− λ)f(x̃) = f(x̃), ∀λ,
(2.80)

meaning that f(z(λ)) < f(x̃), ∀λ ∈ (0, 1).

⇒ x̃ is not a local minimum (contradiction).

Theorem 2.3 gives the main property of convex functions for optimization: Any local

minimum of a convex function is a global minimum.
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Definition 2.22. (Constrained convex optimization problem) Finally, a constra-

ined convex optimization problem can be written as following form:

min
x∈X

f(x)

s.t. g(x) ≤ 0

h(x) = 0

(2.81)

Here, f(x), g(x), h(x) are convex functions and dom f is convex.

Example 2.3: This example is a classical H∞ robust performance problem using

convex optimization method. The main goal of this example is to find a controller

K(s) that minimizes the performance objective, i.e., ‖|W1S| + |W2T |‖∞, for a given

model G and weighting functions W1 and W2, where

S =
1

1 +GK

T =
GK

1 +GK
.

(2.82)

All stabilizing controllers can be approximated by coprime factorization as follows:

G = NeM
−1
e

NeXe +MeYe = 1

K =
Xe +MeQe

Ye +NeQe

.

(2.83)

S and T can be rewritten as

S = Me(Y −NeQe)

T = Ne(X +MeQe)

(2.84)

which are affine with respect to Qe. Hence, robust performance objective can be
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modified as

∣∣W1Me(Y −NeQe)
∣∣+
∣∣W2Ne(X +MeQe)

∣∣ < γ ∀w ∈ R ∪ {∞} (2.85)

Note that, (2.85) is a set of convex constraints. Now, assume that Qe is affine with

respect to optimization variables a1, a2, . . . , an, then (2.85) is also affine with respect

to these variables. A possible choice of Qe can be written as follows:

Qe(s) =
a1s

n + · · ·+ an + b

(s+ c)n
(2.86)

where b and c are constant. The resulting convex optimization problem with an infi-

nite number of constraints can be written as

min
a1, a2, ...,an

γ

s.t.

∣∣W1Me(Y −NeQe)
∣∣+
∣∣W2Ne(X +MeQe)

∣∣− γ < 0

(2.87)

This convex optimization problem can be solved numerically by gridding frequency

points.

2.7 Comments

This section has essentially introduced frequency response identification methods,

class of controllers, convex optimization methods, and other definitions which are

used for the solution of data-driven fixed-order robust control problems. In Chapter

3, Chapter 4 and Chapter 5, the control problems will be solved using these methods

and definitions.
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3. ROBUST DATA-DRIVEN FIXED-ORDER H∞ CONTROLLER
SYNTHESIS: MODEL MATCHING APPROACH

This chapter concerned with the robust fixed-order H∞ controller design problem for

frequency domain non-parametric uncertain SISO systems. The proposed controller

synthesis algorithm consist of two steps: First, a convex optimization method that is

based on the concept of Chebyshev center of a set of points for the computation of

optimal uncertainty models is proposed. In the second step, a sufficient condition is

derived for robust performance constraints using the Nyquist stability theory and µ

synthesis method. Then, a fixed-order H∞ controller design algorithm based on con-

vex optimization is introduced using linearly parameterized Laguerre basis functions

with closed-loop model matching objective and control input constraints for identified

non-parametric perturbed models. For comparison purpose, the performance of the

presented method is compared with the available frequency-domain robust control

toolbox (FDRC) [53] on the experimental test setup. Finally, the usefulness and ef-

ficiency of the proposed approach is verified experimentally with application to the

control of a TVC system.

3.1 Closed-loop transfer functions

The frequency domain system and controller are connected in the one degree-of-

freedom feedback control structure given in Figure. 3.1, defined by following equati-

ons:

e = r − y − v (3.1)

u = K(jw)(r − y − v) (3.2)

y = G(jw)(u+ di) + do (3.3)
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K(jw) G(jw) +++ e u

di do

yr

−

+ v

Figure. 3.1. Classical unity feedback interconnection.

where r is the reference input, e is the error, di is the input disturbance, v is the

measurement noise and do is the output disturbance. The main objective of the H∞

control theory is to synthesize a stabilizing controller that satisfies selected constra-

ints on several closed-loop transfer functions. We will be interested in three sensiti-

vity functions that are defined below:

Sensitivity function: The sensitivity function is the transfer function from the output

disturbance to the plant output and is defined as

S(jw, k) =
y

do
=

1

1 +G(jw)K(jw)
(3.4)

where L(jw) = G(jw)K(jw) is the loop transfer function [7].

Complementary sensitivity function: The complementary sensitivity function is

the transfer function from the reference input to the plant output and is defined as

T (jw, k) =
y

r
=

G(jw)K(jw)

1 +G(jw)K(jw)
(3.5)

also, one have S(jw) + T (jw) = I.

Q-parameter: The Q-parameter function is the transfer function from the reference

input to the control input and is defined as

Q(jw, k) =
u

r
=

K(jw)

1 +G(jw)K(jw)
(3.6)

which is used as an indicator of the actuator effort [24].
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3.2 Computing Optimal Multiplicative Uncertainty Models

In this section, a convex optimization method that is based on the concept of Chebys-

hev center of a set of points for the computation of optimal non-parametric uncerta-

inty models is proposed. This approach simultaneously defines the optimal nominal

frequency domain plant dynamics and minimal, least conservative uncertainty we-

ighting function such that all Gi(jwn) exist within the uncertainty tube around the

nominal model Gnom(jwn). The main objective is to find smallest uncertainty we-

ighting function magnitude, which covers all of the available experimental data, and

optimal nominal model at each frequency point.

In order to account for model uncertainty, we will assume that system dynamics

of plant is represented by a set M of possible models. The number of frequency-

domain models in the set M is m and the number of frequency points is N ; there-

fore, the multiple model set M can be represented with unstructured multiplicative

uncertainty frequency response function W2(jw) or unstructured additive uncerta-

inty frequency response function WA
2 (jw) by

M : G̃(jw) := Gi(jwn)
(
1 +W2i(jwn)∆

)
(3.7)

M : G̃(jw) := Gi(jwn) +WA
2i(jwn)∆ (3.8)

respectively for ∆ ∈ RH∞, ‖∆(jw)‖∞ ≤ 1 ∀w, i = 1, . . . ,m; n = 1, . . . , N . In these

equations, G̃(jw) denotes the perturbed real plant dynamics. The functions W2(jw)

and WA
2 (jw) are stable, strictly proper transfer functions which define the magnitude

of the uncertainty at each interested frequency point.

Modelling of the uncertainties is an essential part of the robust H∞ control theory.

A set of frequency domain data measured from experimental plant at different ope-

rating conditions is used to define the uncertainty model of the system. Because of

the contradictory features of performance and robustness, it is desirable that mag-

nitude of the uncertainty weighing function be as small as possible. A classical way

36



to define W2(jw) is given in [54] as∣∣∣∣Gi(jwn)−Gnom(jwn)

Gnom(jwn)

∣∣∣∣ ≤ W2(jwn) (3.9)

where Gnom(jwn) denotes the nominal model. One simple method for computing

Gnom(jwn) is to calculate the average of the experimental data at each frequency

point as

Gavg
nom(jwn) :=

1

m

m∑
i=1

Gi(jwn) (3.10)

for n = 1, . . . , N .

Multiplicative uncertainty optimization tries to minimize the magnitude of the terms

W2(jwn)Gnom(jwn). For this cost function, the nominal model and multiplicative un-

certainty function appear as products. Hence, this is a non-convex objective function

with respect to W2(jwn) and Gnom(jwn). However, in the additive uncertainty case

the objective function is convex because the optimization algorithm attempts to mini-

mize the magnitude ofWA
2 (jwn) only. Therefore, one way to calculate a multiplicative

uncertainty with minimum amplitude for a SISO system by convex semidefinite prog-

ramming (SDP) is to solve convex optimization problem for additive uncertainty and

then calculate the equivalent multiplicative weighting function using

W2(jwn) =
WA

2 (jwn)

Gnom(jwn)
(3.11)

which is evident from (3.7) and (3.8).

An optimal multiplicative uncertainty modelW opt
2 (jwn), which covers the dataGi(jwn)

at frequency point wn, and the optimal nominal model Gopt
nom(jwn) can be computed

by forming a Chebyshev ball in the complex plane.

Definition 3.1. (Chebyshev ball) The set of points

B(xc, rc) = {x
∣∣ ‖x− xc‖2 ≤ rc} = {xc + rcρ

∣∣ ‖ρ‖2 ≤ 1} (3.12)

forms a Chebyshev ball with respect to the Euclidean norm around Chebyshev cen-
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ter xc with radius rc [49,50].

Proposition 3.1. An optimal multiplicative uncertainty model W opt
2 (jwn) which con-

tains the experimental data around the optimal nominal model Gopt
nom(jwn) can be

calculated by the solution of the following convex optimization problem for optimal

additive uncertainty model at each frequency point of interest:

min
Gnom(jwn), |WA

2 (jwn)|
|WA

2 (jwn)|

s.t.

<(Gi(jwn))

=(Gi(jwn))

 ∈ B

<(Gnom(jwn))

=(Gnom(jwn))

,WA
2 (jwn)

 (3.13)

for i = 1, . . . ,m; n = 1, . . . , N and using (3.11) as

|W opt
2 (jwn)| = |W

Aopt

2 (jwn)|
|Gopt

nom(jwn)|
. (3.14)

Proof. Frequency response of Gi(jwn) can be represented by a complex number as

Gi(jwn) = <
(
Gi(jwn)

)
+ j=

(
Gi(jwn)

)
= x1ni

+ jx2ni
(3.15)

where the vector xni
defined as

[
x1ni

x2ni

]T
. Using the definition of Chebyshev ball,

optimal additive uncertainty modelling problem can be formulated as:

min
xcn, δ

δ

s.t. ‖xni
− xcn‖2 − δ ≤ 0

(3.16)

for i = 1, . . . ,m; n = 1, . . . , N . Solution algorithm of this convex optimization problem

gives:

Gopt
nom(jwn) = <(x∗cn) + j=(x∗cn)

|WAopt

2 (jwn)| = δ∗
(3.17)

which concludes the proof with (3.11).
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Remark 3.1. The optimization (3.13) is a SDP convex optimization problem since

both of the its objective function and its inequality constraint function are convex.

Remark 3.2. We assume that the uncertainty structure is in multiplicative form for

the optimal uncertainty modelling approach in rest of the study. Obviously, the same

convex optimization method can be applied to other uncertainty models (such as

inverse additive uncertainty structure, . . .).

3.3 Model Matching Problem

A closed-loop model matching problem is an objective function based optimal control

problem, i.e., it concerns the synthesis of the controller such that obtained closed-

loop system is stable and matches as closely possible a chosen reference stable

model. This predefined reference model Td(jw) is generally a low-order model that

includes the desired dynamic behaviour of the controlled plant [55]. Using the FRF

of the system and the linearly parameterized controller, the closed-loop model matc-

hing problem can be defined as

min
k
‖Wm (T (jw, k)− Td) ‖∞

= min
k

∥∥∥∥Wm

(
G(jw)K(jw)

1 +G(jw)K(jw)
− Td

)∥∥∥∥
∞

= min
k

∥∥∥∥Wm

(
G(jw)kψ(jw)(1− Td)− Td

1 +G(jw)kψ(jw)

)∥∥∥∥
∞

(3.18)

in the H∞ sense where Wm(jw) is the FRF of a stable penalty function weighting the

frequency domain requirements. A block diagram representation of the closed-loop

model matching problem is given in Figure. 3.2.
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K(jw) G(jw) ++ e u yr

−

Td(jw)

ε

−

Wm(jw)

Figure. 3.2. Block diagram representation of the model matching problem.

The objective function of the optimization problem (3.18) is not a convex function

with respect to the controller parameters k, because the denominator of this func-

tion includes design parameters. In order to approximate this non-convex optimiza-

tion problem to a convex optimization problem, one approach is to replace the term

G(jw)kψ(jw) in the denominator with the desired loop gain Ld(jw) and formulate

the sub-optimal control problem as

min
k

∥∥∥∥Wm

(
G(jw)kψ(jw)(1− Td)− Td

1 + Ld(jw)

)∥∥∥∥
∞

(3.19)

where the desired loop-gain Ld(jw) is given by

Ld(jw) =
Td(jw)

1− Td(jw)
. (3.20)

Note that objective function (3.19) f : R1×n → C is affine with respect to the k that

is, linear function plus a constant term:

f(k) =
WmG(jw)ψ(jw)(1− Td)

1 + Ld(jw)
k − WmTd

1 + Ld(jw)
(3.21)

therefore, it can be considered as convex function.

3.4 Derivation of the Robust Performance Conditions

Due to the fact that the model matching does not guarantee internal stability, a suffi-

cient condition for closed-loop stability can be derived and represented by a convex

constraint on the Nyquist plot. Furthermore, the robust performance (RP) condition
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is identical to robust stability (RS) condition with a fictitious uncertainty block, which

is a full matrix [7].

Robust performance conditions can be derived based on a block diagram represen-

tation of the proposed control system which is shown in Figure. 3.3, where W1(jw) is

the performance weighting function, ω is the exogenous input, z is the performance

variable of interest and ∆p(jw) is a fictitious bock defined through the performance

channel such that ‖∆p(jw)‖∞ ≤ 1. This configuration is similar to the structured sin-

gular value, which is denoted by the µ or SSV, based analysis technique of robust

performance criterion with fictitious block ∆p(jw). Note that, for notation purposes,

the dependence in jw will be omitted throughout the rest of the thesis and it will be

used only if necessary.

K(jw) G(jw)+
e u y

−

W2(jw) ∆

W1(jw)

∆p

+ +
z

ωω∆z∆

Figure. 3.3. Block diagram for robust performance constraints with two complex
blocks.

The augmented plant P is constructed by separating the controller K(jw), ∆p(jw)

and ∆(jw) from the control system in Figure. 3.3. P matrix can be partitioned in

matrix form as


z∆

z

e

 =


P

(11)
11 P

(12)
11 P

(11)
12

P
(21)
11 P

(22)
11 P

(21)
12

P
(11)
21 P

(12)
21 P

(11)
22



ω∆

ω

u



[
P
]

=


0 0 W2

W1G W1 W1G

−G −I −G



(3.22)

where P represents the transfer function from
[
ω∆ ω u

]T

to
[
z∆ z e

]T

. With the
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augmented plant P , the control system given by Figure. 3.3 can be transformed to

an equivalent configuration given in Figure. 3.4.









P
(11)
11 P

(12)
11 P

(11)
12

P
(21)
11 P

(22)
11 P

(21)
12

P
(11)
21 P

(12)
21 P

(11)
22









ω∆ z∆

ω

u

z

e







∆ 0 0

0 ∆p 0

0 0 K







Figure. 3.4. Modification of the control problem for robust performance condition.

Lemma 3.1. The closed-loop SISO system given by Figure. 3.3 and Figure. 3.4

satisfies the robust performance condition for a given internally stable plant G if and

only if Nyquist plot of

QRP (k,∆,∆p, jw) = I −∆pW1 + ∆W2GK +GK (3.23)

function does not encircle the origin of the complex plane for ∀w ∈ R∪{∞}, ∆p,∆ ∈

RH∞, ‖∆p‖∞, ‖∆‖∞ ≤ 1.

Proof. Loop gain of the positive feedback control system shown in Figure. 3.4 is

given by

Lpf =


P

(11)
11 P

(12)
11 P

(11)
12

P
(21)
11 P

(22)
11 P

(21)
12

P
(11)
21 P

(12)
21 P

(11)
22




∆ 0 0

0 ∆p 0

0 0 K

. (3.24)

Generalized Nyquist stability theorem for given positive feedback system with stable
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plant can be written as

det
(
I − Lpf

)
6= 0

⇔ 1− P (11)
11 ∆

+
(
P

(11)
11 P

(22)
11 ∆− P (12)

11 P
(21)
11 ∆− P (22)

11

)
∆p

+
(
P

(11)
11 P

(11)
22 ∆− P (11)

12 P
(11)
21 ∆− P (11)

22

)
K

+
(
P

(22)
11 P

(11)
22 − P (21)

12 P
(12)
21 − P (11)

11 P
(22)
11 P

(11)
22 ∆

+P
(11)
11 P

(21)
12 P

(12)
21 ∆ + P

(12)
11 P

(21)
11 P

(11)
22 ∆

+P
(12)
11 P

(21)
12 P

(11)
21 ∆− P (11)

12 P
(21)
11 P

(12)
21 ∆

+P
(11)
12 P

(22)
11 P

(11)
21 ∆

)
∆∆p 6= 0.

(3.25)

Then, substituting the components of matrix P in (3.22) into the (3.25) we obtain:

I −∆pW1 + ∆W2GK +GK 6= 0 (3.26)

which is the statement of the Lemma.

Perturbed sensitivity function S̃ can be written as

S̃ =
1

1 +GK(1 +W2∆)
(3.27)

with multiplicative uncertainty. The maximum magnitude of the S̃ occurs if ∆ = 1 and

the phase angle of the terms (W2GK) and (1+GK) have opposite signs. Therefore,

S̃ with the possible maximum magnitude is given by

S̃max =
1

|1 +GK| − |W2GK|
. (3.28)

The necessary and sufficient condition for robust performance criterion of the clas-
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sical unity negative feedback system (Figure. 3.3) is given by [54]

∣∣W1S
∣∣+
∣∣W2T

∣∣ < 1

⇔
∣∣∣∣ W1

1 +GK

∣∣∣∣+

∣∣∣∣ W2GK

1 +GK

∣∣∣∣ < 1, ∀w ∈ R ∪ {∞}.
(3.29)

Multiplying both sides of (3.29) by (1 +GK) gives

∣∣W1

∣∣+
∣∣W2GK

∣∣ < ∣∣1 +GK
∣∣

⇔ 1∣∣1 +GK
∣∣− ∣∣W2GK

∣∣ < 1∣∣W1

∣∣ (3.30)

and it is clear that, left hand side of the second part of (3.30) is equal to Smax;

therefore, the robust performance condition holds if and only if

‖S̃max‖∞ <
1

|W1|
, ∀w ∈ R ∪ {∞}. (3.31)

In Figure. 3.4; ω∆ → z∆ is the uncertainty channel and ω → z is the performance

channel. Using these channels, robust stability, nominal performance (NP) and no-

minal stability (NS) conditions can be defined as follows:

Definition 3.2. (Robust stability) Robust stability condition is a special form of

robust performance condition with ∆p = 0 fictitious performance block and depicts

the stability of system for all perturbed models. Therefore, the closed-loop control

system given by Figure. 3.4 with ∆p = 0 block satisfies the RS condition for an

internally stable system if and only if Nyquist plot of

det

I −
 P

(11)
11 P

(11)
12

P
(11)
21 P

(11)
22


 ∆ 0

0 K


 6= 0

⇔ 1− P (11)
11 ∆

+
(
P

(11)
11 P

(11)
22 ∆− P (11)

12 P
(11)
21 ∆− P (11)

22

)
K 6= 0

(3.32)

function does not encircle the origin of the complex plane. Then, substituting the

component of matrix P into the (3.32) we obtain the RS condition for control system
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given by Figure. 3.4 as:

I + ∆W2GK +GK 6= 0; ∀w,∆ ∈ RH∞, ‖∆‖∞ ≤ 1. (3.33)

Definition 3.3. (Nominal performance) Nominal performance condition can be

considered as a special form of robust performance condition with nominal model

(∆ = 0) and defines the performance requirements with no model uncertainty. Then,

NP ⇔ det

I −
 P

(22)
11 P

(21)
12

P
(12)
21 P

(11)
22

 ∆ 0

0 K

 6= 0

⇔ 1− P (11)
11 ∆

+
(
P

(11)
11 P

(11)
22 ∆− P (11)

12 P
(11)
21 ∆− P (11)

22

)
K 6= 0

(3.34)

and the closed-loop control system given by Figure. 3.4 with ∆ = 0 block satisfies

the NP condition for an internally stable system if and only if

I −∆pW1 +GK 6= 0; ∀w,∆p ∈ RH∞, ‖∆p‖∞ ≤ 1. (3.35)

Definition 3.4. (Nominal stability) Nominal stability condition defines the internal

stability of requirement of control system with no model uncertainty. Then,

NS ⇔ det
(
I − P (11)

22

)
6= 0 (3.36)

(3.37)

and the closed-loop control system given by Figure. 3.4 with ∆ = 0, ∆p = 0 blocks

satisfies the NS condition if and only if

I +GK 6= 0; ∀w. (3.38)

Note that, internally stable system requirement for RP, RS and NP conditions can be

satisfied if and only if given control system satisfies the NS condition. Therefore, NS

condition is a prerequisite for RP, RS and NP conditions [7].

Remark 3.3. We consider only the RP condition throughout the rest of this thesis.
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However, in some control applications, synthesis or analysis of the control system

may be required according to the RS, NP or NS conditions. In such cases, the above

definitions may be useful.

Constraint functions of the fixed-order H∞ control problem can be derived using

Nyquist plot based on the robust performance condition given by (3.23). The fact

that frequency dependent QRP (k,∆,∆p, jw) polynomial does not encircle the origin

of the Nyquist plot constitutes the main constraint function of optimization problem.

This robust performance condition inequality can be modified as

∆W2GK +GK 6= −I + ∆pW1 (3.39)

where ∆ and ∆p blocks represent two different balls in complex plane such that

‖∆‖∞, ‖∆p‖∞ ≤ 1. Note that, when ‖∆p‖∞ = 1 (worst-case) right hand side of (3.39)

defines a circle, which is called performance circle, with radius |W1| and center

(−1, j0) in the Nyquist diagram. Similarly, if ∆ block satisfies the worst-case con-

dition (‖∆‖∞ = 1), left hand side of (3.39) defines another circle, which is called

robustness circle, with radius |W2GK| and center
(
<(GK),=(GK)

)
(Figure. 3.5).

Therefore, robust performance condition given by (3.23) is satisfied if and only if the

performance circle and the robustness circle do not intersect each other in complex

plane for all frequencies w. This statement holds if and only if the performance circle

and robustness circle does not have intersection. Hence, robust performance const-

raint can be adapted to the robust H∞ control problem by preventing the intersection

of these circles via a frequency dependent line.
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ℜ

ℑ

(−1, j0)

yn(W1, Ld) = anx+ bn

θn

θn

Cp(jwn)

L(jwn)

Ld(jwn)

L(jw) Ld(jw)

|W1(jwn)|

|W2(jwn)L(jwn)|

Figure. 3.5. Graphical representation of the robust performance constraint.

The robust performance condition given by (3.23) is satisfied if robustness circle lies

below the line yn(W1, Ld) = anx + bn in Nyquist diagram as shown in Figure. 3.5. In

order to represent robust performance condition as a convex constraint in optimiza-

tion problem, parameters of the line can be defined with respect to Ld. Constructed

line tangent to the performance circle and orthogonal to the line from the (−1, j0)

point to Ld as shown in Figure. 3.5. The frequency dependent parameters of this line

can be defined using geometrical relationships in Figure. 3.5 as

an =
1−<(Ld)

=(Ld)
(3.40)

bn =
an
(
sin(θn)− |W1|

)
sin(θn)

(3.41)
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where θn is the slope of the line and given by

θn = tan−1

(
1−<(Ld)

=(Ld)

)
. (3.42)

Now, consider the nearest critical point Cp(jwn) from the robustness circle to the

line yn(W1, Ld) = anx + bn in Figure. 3.5. Then, the robustness circle lies below

the line if and only if Cp(jwn) exists below the line for all frequencies w. Therefore,

the representation of the robust performance constraint in H∞ controller synthesis

problem with a sufficient condition is given by following proposition:

Proposition 3.2. Closed-loop control system given by Figure. 3.3, satisfies the ro-

bust performance condition (3.23) if

=(kψG)− an<(kψG)

+|W2kψG|
(
ansin(θn) + cos(θn)

)
− bn ≤ 0

(3.43)

for ∀w ∈ R ∪ {∞}.

Proof. The point Cp(jwn) lies below the line if

Cp(jwn) ≤ yn = anx+ bn (3.44)

in the Nyquist plot. Real and imaginary parts of the the critical point Cp(jwn) in

Figure. 3.5 can be defined with respect to the origin of the Nyquist plot as

<
(
Cp(jwn)

)
= <(kψG)− |W2kψG|sin(θn)

=
(
Cp(jwn)

)
= =(kψG) + |W2kψG|cos(θn)

(3.45)

respectively. Then, substituting real part of this equation into the (3.44) yields:

=(kψG)− an<(kψG)

+|W2kψG|
(
ansin(θn) + cos(θn)

)
− bn ≤ 0

(3.46)

for ∀w ∈ R ∪ {∞}, which is the statement of the proposition.
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Remark 3.4. Since RS, NP and NS conditions are specific forms of RP condition,

these conditions can be derived by making the necessary arrangements, which are

given by Definition 1, Definition 2, Definition 3 respectively, in (3.43).

3.5 Control Input Constraints

One of the most important obstacles of physical real systems is the saturation cha-

racteristics of the actuators. Real time control systems usually have control input

limits, because the power sources cannot provide infinitely large control input. In

order to take into account available input limits in the convex optimization problem,

in this subsection we derive the control input constraints for fixed-order H∞ control

synthesis scheme.

The block diagram representation of the closed loop control system with control

signal weighting function Wu is shown in Figure. 3.6.

K(jw)+ e ur

−

W2(jw) ∆

y
G(jw)+

Wu(jw)

ũ

Figure. 3.6. Closed-loop control system with control input constraint.

By using this figure, Q-parameter transfer function from the reference input to the

control input with multiplicative type model uncertainty of the plant given by

Q̃ =
u

r
=

kψ

1 +Gkψ(1 +W2∆)
. (3.47)
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Then, control input constraint can be written as

|WuQ̃| − ũmax ≤ 0

⇔
∣∣∣∣ Wukψ

1 +Gkψ(1 +W2∆)

∣∣∣∣ ≤ ũmax

⇔ −ũmax ≤
Wukψ

1 +Gkψ(1 +W2∆)
≤ ũmax

(3.48)

for ∀w ∈ R ∪ {∞}, where ũmax is the upper bound of the weighted control input

signal in frequency domain. The maximum control input occurs at minimum loop-

gain condition; therefore, the worst-case control input generated when ∆ = 1 and

the phase angle of the terms (W2Gkψ) and (1 +Gkψ) have opposite signs. Hence,

|WuQ̃max| − ũmax ≤ 0

⇔ −ũmax ≤
|Wukψ|

|1 +Gkψ| − |W2Gkψ|
≤ ũmax

⇔

−ũmax(|1 +Gkψ| − |W2Gkψ|)− |Wukψ|

−ũmax(|1 +Gkψ| − |W2Gkψ|) + |Wukψ|

 ≤
0

0


(3.49)

which are the control input constraint functions of the fixed-order H∞ control prob-

lem. Notice that these constraint functions are convex (affine) with respect to the

controller parameters k.

3.6 Optimization Problem

In order to satisfy the robust performance condition, the control input constraints

and the closed-loop model matching objective, the fixed-order H∞ controller design

problem can be formulated as constrained convex optimization problem with respect

to the controller parameters. According to the these requirements, a convex optimi-

zation problem is arranged for the optimal synthesis of the fixed-order H∞ controller
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as follows:

min
k

∥∥∥∥∥WmGψ(1− Td)
1 + Ld

k − WmTd
1 + Ld

∥∥∥∥∥
∞

s.t. =(kψG)− an<(kψG)− bn

+|W2kψG|
(
ansin(θn) + cos(θn)

)
≤ 0;

−ũmax(|1 +Gkψ| − |W2Gkψ|)− |Wukψ| ≤ 0;

−ũmax(|1 +Gkψ| − |W2Gkψ|) + |Wukψ| ≤ 0

(3.50)

for ∀w ∈ R ∪ {∞}.

This optimization problem involves an infinite number of constraints; therefore, it is

a convex semi-infinite programming (SIP) problem. In order to transform this SIP

problem into SDP problem, which can be solved numerically using available con-

vex optimization techniques and solvers, finite number of frequency points wn(n =

1, 2, . . . N) are considered. The parameters of the linearly parameterized robust cont-

roller are determined efficiently by solving the above SDP convex optimization prob-

lem in sampled frequency range.

Practically, the number of points in the frequency range of interest should be large

enough. However, ensuring that defined conditions are satisfied at a finite number

of frequency points does not mean that the conditions are also satisfied at all frequ-

encies. A randomized scenario approach [56] can be used to compute the minimum

number of frequency point to guarantee the constraints with a chosen probability

level. According to the scenario approach, if the number of scenarios N satisfies

N ≥ 2

ε

(
dp − 1 + ln

1

β

)
(3.51)

condition for dp number of optimization variables, risk parameter ε ∈ (0, 1), and con-

fidence parameter β ∈ (0, 1), then, constraints hold with a probability level ≥ 1− β.
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3.7 Performance Weighting Function Selection

Deviations from the predefined reference model are inevitable due to the uncertain-

ties in the system dynamics. Therefore, it is useful to determine the performance we-

ighting function with respect to worst-case reference model matching requirement.

Since the objective function of the optimization problem related to the complemen-

tary sensitivity function, the worst-case desired closed-loop transfer function T 1
d can

be considered as

T 1
d =

w2
n

s2 + 2ζwns+ w2
n

(3.52)

where wn is the natural frequency and ζ is the damping ratio. In order to chose

the performance weighting function W1, we consider the loop-gain of a standard

second-order system as

L1
d =

T 1
d

1− T 1
d

=
w2
n

s2 + 2ζwns
(3.53)

then, ideal sensitivity function can be defined as

S1
d =

1

1 + L1
d

=
s2 + 2ζwns

s2 + 2ζwns+ w2
n

. (3.54)

Note that

∣∣S1
d

(
jwn/

√
2
)∣∣ = 1 (3.55)

Ms := ‖S1
d‖∞ =

βs
√
β2
s + 4ζ2√

(1− β2
s )

2 + 4ζ2β2
s

(3.56)

wb ≈
wn√

2
(3.57)

where βs =

√
0.5 + 0.5

√
1 + 8ζ2, wb is the cut-off frequency of S1

d and Ms is the

peak gain of S1
d at wmax = βswn frequency point [41]. Sensitivity function S is a good

indicator of control performance. Therefore, performance weighting function can be
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defined with respect to S. A possible choice of performance weigh W1 is given as

W1 =

(
s/M

1/ν
s + wb

s+ wb%1/ν

)ν
(3.58)

where % bounds the steady-state error for ν ≥ 1 [41].

Note that, predefined reference model in (3.18) can be chosen as given in (3.52) as

well. However, for a feasible choice of performance weighting function W1, the natu-

ral frequency of T 1
d should be smaller than the natural frequency of reference model

Td in (3.18). Otherwise, there will be a contradiction between robust performance

and model matching achievement.

3.8 Experimental Implementation

In this section, proposed controller design methodology is applied to the position

control of an electromechanical TVC system.

3.8.1 Thrust Vector Control System

Several guided air vehicle platforms generally need steering mechanism in order

to direct their course especially during the exoatmospheric flight conditions. TVC

system is used to control the flight of the vehicle by changing the direction of main

thrust vector.

In this study, a flexible joint nozzle type TVC system is used as an experimental test

bench that consists of two electromechanical actuator (EMA) (Figure. 3.7).
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Figure. 3.7. Flexible joint nozzle type TVC system.

The EMA configuration, which is composed of a brushless DC (BLDC) electric motor,

planetary gear train, a ballscrew and a digital position sensor, is presented in this

figure.

3.8.2 Modelling of Electromechanical Actuation Systems

The use of electromechanical-based actuation systems in the defence, aerospace

and robotics industries is becoming increasingly widespread. The main reasons for

this increase are dynamic system behaviour performance, high power density, easy

controllability, simple structure, low cost, low volume requirement and reliability of

electromechanical based actuation systems [57–59].

Motion control systems are mainly composed of actuators, sensors and mechanism.

The sensors measure position or velocity with faster dynamics than the closed-loop

bandwidth of the motion control systems. If the position sensor is located on the

motor side, i.e., non-collocated side, the motion control system is called the semi-

closed loop feedback position control system. On the other hand, if the position

sensor is placed on the load side, i.e., collocated side, the motion control system is

called the full-closed loop feedback position control system. In high precision control

applications, the sensors are generally used on load side [60].
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Several guided air vehicle platforms generally use aerodynamic control surfaces or

steering mechanism to direct their course. The TVC system is used to control the

flight of the vehicle by changing the direction of main thrust vector. Similarly, the CAS

is responsible for the motion that controls the flight of the air vehicle by changing the

direction of these control surfaces.

In this thesis, a flexible joint nozzle type electromechanical TVC system (in Chap-

ter 3) and an electromechanical type CAS (in Chapter 4 and Chapter 5) are used

as an experimental test bench. These systems are consist of EMA. The EMA con-

figurations are composed of a brushless DC (BLDC) electric motor, gear train, a

mechanism and a digital position sensor.

A nominal dynamical equation of the EMA can be obtained based on the BLDC

electric motor dynamics. The separate voltage equations of the q and d axis of the

three-phase, two-pole BLDC motor are given by

vqs = rsiqs + wrλds +
d

dt
λqs (3.59)

vds = rsids − wrλqs +
d

dt
λds (3.60)

in which λqs = Lqsiqs, λds = Ldsids + λm, where λm is the flux linkage amplitude

generated by permanent magnets, rs is the stator resistance, iqs is the q-axis current,

ids is the d-axis current, wr is the electrical angular velocity, λqs is the q-axis flux

linkage, λds is the d-axis flux linkage, Lqs is the q-axis inductance and Lds is the d-

axis inductance. By using these voltage equations, the current equation of the q and

d axis can be derived as

d

dt
iqs =

1

Lqs
(vqs − wrLdsids − wrλm − rsiqs) (3.61)

d

dt
ids =

1

Lds
(vds + wrLqsiqs − rsids) (3.62)

respectively [61].
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The electromagnetic torque equation of the BLDC motor is given by

Te = (
3

2
)(
p

2
)λmiqs = Ktiqs (3.63)

in which p and Kt are the number of poles and torque constant of the motor, res-

pectively. The equation of the motion of the EMA in terms of equivalent moments

of inertia Je, equivalent viscous damping Be, equivalent Coulomb friction Fe, load

torque TL and mechanical reduction ratio Ng can be written as

Jeθ̈ +Beθ̇ + Fesign(θ̇) + TL = KtiqsNg (3.64)

where θ is the deflection angle of the EMA. The main control goal of this sub-system

is to provide required the control surface rotation angle or thrust vector rotation angle

despite disturbances, high frequency flexible dynamics and vibration. Therefore, the

input of the system is iqs and the output is θ.

3.8.3 Experimental Test Setup

An experimental test bench has been built up to obtain FRF’s of real-time plant

and validate the closed-loop control performance of the proposed robust data-driven

fixed-order controller. Signal flows between the TVC system and other items of test

setup are shown in Figure. 3.8.

Figure. 3.8. Signal flows for experimental testing of the TVC system.
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An NI 6221 data acquisition (DAQ) board is used to receive the measurement data

and to send the control signal. NI SCB-68 shielded input/output (I/O) connector block

is used to connect to NI 6221 DAQ cards with 68 screw terminals. The connector

block also has a signal conditioning capability for filtering the signals. The EMAs are

mounted on the nozzle to provide two degree of freedom rotation to TVC system.

These EMA’s are controlled by two separate ESCON 50/5 servo amplifier which is

a commercial product of Maxon company. Real-time implementation of the control

algorithm is provided by using xPC target toolbox of MATLAB software. This toolbox

includes discrete time controller matrix, communication protocols and signal type

converters. The synthesized fixed-order controllers are tested on the real-time har-

dware via xPC target toolbox. A host computer is used for off-line programming of

the closed-loop control algorithm. The transfer function of the obtained controller is

digitalized using bilinear transformation method. Digital closed-loop position control

loop of experimental TVC system is operated at 1 kHz frequency.

3.8.4 Frequency Response Identification of TVC System

The FRF of the TVC system varies depending on the variable environmental condi-

tions, unmodeled system dynamics, non-linear system behaviour, material life and

aging. These uncertainties may cause unpredictable TVC system performance which

may lead, in some cases, to the system instability. It is not always possible to guaran-

tee required system performance under these adverse conditions with a controller

synthesized using a single nominal model [59]. Therefore, in this study, frequency

response identification is carried out under different working conditions in order to

incorporate model uncertainties into the control system design process. Due to the

schedule of environmental testing system and long temperature conditioning pro-

cess, only six open-loop system identification experiment could be performed.

In order to obtain six different FRF’s of the TVC system, multiple tests were carried

out in the temperature range of -20 ◦C to 80 ◦C by increasing the temperature by 20
◦C degrees steps at each test condition. A pseudo-random binary sequence (PRBS)

signal was used as the q-axis current reference of the open-loop TVC system in the

experiments to obtain the time domain response of the plant. The input q-axis cur-

rent and output angle θ signals acquired from the frequency response identification
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experiments are shown in Figure. 3.9.

Figure. 3.9. Applied PRBS signal used for q-axis current iq(t) with the resulting out-
put θ(t) angle.

Frequency domain experimental data was obtained with 400 logarithmically spaced

frequency points, a value which is approximately calculated using (3.51) where ε =

0.05, β = 0.001 and dp = 4, between wl = 1 rad/s and wu = 100 rad/s. FRF’s of the

real-time system, which are obtained with (2.40), are given in Figure. 3.10.

58



Figure. 3.10. Measured multiple FRF’s of the TVC system.

3.8.5 Controller Synthesis for TVC System

The reference model for desired closed-loop control system was selected as

Td =
(2π15)2

s2 + 1.4(2π15)s+ (2π15)2
(3.65)

where ζ = 0.7 and wn = 2π15 rad/s. Similarly, the worst-case reference model T 1
d

for the selection of the performance weight was chosen as

T 1
d =

(2π3)2

s2 + 1.4(2π3)s+ (2π3)2
(3.66)

therefore, performance weighing function W1 used to design robust controller is gi-

ven by

W1 =
0.749s2 + 23.081s+ 177.661

s2 + 4.741s+ 5.619
(3.67)
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which is obtained by using (3.51) with ν = 2, % = 0.001. While designing the robust

controller, ũmax, Wu and Wm were taken as 1 for the sake of simplicity and to make

a fair comparison with FDRC toolbox.

The optimal nominal model (Gopt
nom) and optimal multiplicative uncertainty function

(W opt
2 ) were calculated using the semi-definite convex optimization method given by

Proposition 1. This convex optimization problem was solved using CVX solver [62]

which is a MATLAB-based package for convex optimization problems. For compa-

rison purpose, another nominal model (Gavg
nom) was calculated by average method,

which is given in (3.10). Additionally, corresponding multiplicative uncertainty weig-

hing (W avg
2 ) function was constructed by classical method, which is given in (3.9).

Obtained Nyquist plot of Gopt
nom(jwn) and Gavg

nom(jwn) are shown in Figure. 3.11 with

corresponding uncertainty models.

Figure. 3.11. Nyquist plot of the obtained non-parametric nominal models with opti-
mum multiplicative uncertainty weighting bounds for proposed method
and classical uncertainty bounds for average method.
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The magnitude plots of the corresponding multiplicative uncertainty weighting func-

tions are given in Figure. 3.12 for both methods.

Figure. 3.12. Optimum multiplicative uncertainty weighting function for proposed
method and classical method.

The obtained Chebyshev center and Chebyshev radius of a set of frequency res-

ponse data points to cover all of the data at a sample point w = 4π rad/s are shown

in Figure. 3.13. The classical multiplicative uncertainty weighting function and ave-

rage model also shown in this figure.
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Figure. 3.13. Nyquist plot of the experimental plant response with classical uncerta-
inty bound and optimal uncertainty bound at w = 4π rad/s.

Classical uncertainty modelling approach produces a considerably more conser-

vative weighting function magnitude model than the proposed optimal uncertainty

modelling method as shown in Figure. 3.11, Figure. 3.12 and Figure. 3.13. Since se-

veral data points have relatively large gain at w = 4π rad/s frequency point, classical

method generate larger uncertainty magnitude than the radius of optimal uncertainty

function as shown in Figure. 3.13. These results demonstrate that proposed convex

optimization based algorithm reduces the conservatism of uncertainty; therefore,

improves the robustness of the closed-loop control system.

It is possible to increase controller order such that theH∞ robust performance condi-

tion (3.43) is satisfied. Therefore, a third-order linearly parametrized controller trans-

fer function was constructed for TVC system using the Laguerre basis functions,
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which are given in (2.24), as

K = k0 + k1

√
2ξ

(s+ ξ)
+ k2

√
2ξ(s− ξ)
(s+ ξ)2

+ k3

√
2ξ(s− ξ)2

(s+ ξ)3
(3.68)

where k =
[
k0 k1 k2 k3

]
is the matrix of the controller parameters to be calculated

using convex optimization. The pole of this controller transfer function was chosen

as ξ = 93 by a linear search for ξ between ξ = 1 and ξ = 100. This value provided

the best robust performance achievement in the search space. The controller design

problem (3.50) was implemented for N = 400 logarithmically separated frequency

points between lower frequency point wl = 1 rad/s and upper frequency point wu =

100 rad/s as w =
[
1 . . . 100

]
rad/s. Then SDP convex optimization problem was

solved by using CVX and optimization toolbox of MATLAB.

The coefficients matrix of the fixed-order controller were obtained as

k =
[
71.02 −381.14 −0.01 75.64

]
and the transfer function of the obtained fixed-

order robust H∞ controller is given explicitly by

K(s) =
71.03s3 + 15650s2 + 684300s+ 21100000

s3 + 279s2 + 25950s+ 804400
. (3.69)

The resulting robust controller satisfies the robust performance condition (3.43) such

that ‖S̃max(jwn)‖∞ = 0.96 < 1. This result proves that the worst-case sensitivity

function remains smaller than inverse of the frequency dependent performance we-

ighting function W1(jwn), such that

‖S̃max(jwn)‖∞ <
1

|W1(jwn)|
(3.70)

for n = 1 . . . 400. Moreover, the nominal sensitivity function Snom(jwn, K,Gnom)

matches the desired sensitivity function Sd as shown in Figure. 3.14.

For comparison purposes, the control problem was also solved by using FDRC

toolbox to design another third-order controller. The parameters of the fixed-order

controller were obtained as k =
[
85.02 −669.69 −231.29 −12.5

]
and the transfer
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function of the obtained controller is given as

KF (s) =
84.98s3 + 12104s2 + 539140s+ 15204000

s3 + 279s2 + 25950s+ 804400
. (3.71)

The robust performance achievement of this controller is ‖S̃FDRCmax (jwn)‖∞ = 1.23.

Obtained model matching achievement by the FDRC toolbox is similar to those ob-

tained with the proposed method as shown in Figure. 3.14.

Figure. 3.14. Robust performance and model matching achievements of the desig-
ned fixed-order controllers with optimal uncertainty modelling method.

In order to investigate the robustness improvement of the proposed uncertainty mo-

delling approach, same controller design problem was solved by using proposed

method and FDRC toolbox with average nominal model (3.10) and corresponding

uncertainty model (3.9). The pole of Laguerre basis function was chosen as ξ = 66

by a linear search for ξ between ξ = 1 and ξ = 100. The transfer functions of the

obtained fixed-order robust H∞ controllers are given by

Kavg(s) =
50.79s3 + 11150s2 + 173700s+ 8535000

s3 + 198s2 + 13070s+ 287500
(3.72)
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Kavg
F (s) =

102s3 + 16310s2 + 436300s+ 11860000

s3 + 198s2 + 13070s+ 287500
(3.73)

for proposed method and FDRC toolbox, respectively. The robust performance ac-

hievement of these controllers are ‖S̃max(jwn)‖∞ = 1.21, ‖S̃FDRCmax (jwn)‖∞ = 1.39,

respectively (Figure. 3.15).

Figure. 3.15. Robust performance and model matching achievements of the desig-
ned fixed-order controllers with average method.

Therefore, robust performance achievement of the obtained controller with classical

uncertainty modelling method is worse than the robustness value obtained with pro-

posed data-driven fixed-order controller, which can be observed from Figure. 3.14

and Figure. 3.15. From these figures, it can be observed that the optimal uncertainty

modelling and the optimal choice of the nominal model used for a real time system

can considerably improve the desired robust performance specifications.

The controllers in (3.69) and (3.71) satisfy the control input constraints (3.48), where

ũmax = 1, Wu = 1, as shown in Figure. 3.16. Therefore, obtained worst-case Q̃max-
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parameter transfer function with the FDRC toolbox is similar to those obtained with

the proposed method as shown in Figure. 3.16.

Figure. 3.16. Obtained worst-case Q̃max-parameter transfer functions for control in-
put constraints.

Real-time hardware in the loop tests were carried out to verify the performance of

the synthesized fixed-order H∞ controller. This controller was applied to the experi-

mental system in the real-time hardware in the loop tests. The step response of the

system in time-domain is given in Figure. 3.17. In this test a filtered step function was

applied to the system to prevent sudden current consumption. As can be seen from

this figure, the synthesized data-driven fixed-order H∞ position controller satisfies

the defined model matching objective. As can be seen from the position control of

TVC system, which requires precise positioning, the objective of designing a data-

driven, fixed-order, low-order controller in frequency domain could be achieved via

proposed approach.
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Figure. 3.17. Experimentally obtained output θ(t) angle with applied control input
(current) signal iq(t).

3.9 Comments

This chapter presents a novel data-driven method to synthesize robust fixed-order

H∞ controllers by simultaneously computing minimal uncertainty bound and assig-

ning optimal nominal model from experimental data. The proposed controller design

algorithm consists of two step: First, the non-parametric frequency response of sys-

tem models with minimal unstructured uncertainty model is identified from the mul-

tiple measurement data. Therefore, variations in the system dynamics are represen-

ted by minimal uncertainty circle around the optimal nominal model for the corres-

ponding frequency points on the Nyquist diagram. In the second step, a fixed-order

H∞ controller design algorithm is introduced by using linearly parameterized Lagu-

erre basis functions for identified non-parametric perturbed model in the frequency

domain. In this algorithm, H∞ robust performance condition, control input constra-

ints and closed-loop model matching objective are described by convex functions

with respect to the parameters of the controller. Then the control design problem
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is formulated as a constrained convex optimization problem, which can be solved

efficiently using convex optimization techniques to compute the parameters of the

structured controllers. Moreover, the proposed method can be applied to any line-

arly parameterized controller structure such as PID with any convex objective func-

tion and constraint functions. An experimental flexible nozzle type electromechanical

TVC system is used to validate proposed control design algorithm. The obtained re-

sults show the practicality and efficiency of the approach to synthesize fixed-order

H∞ controllers for non-parametric frequency domain perturbed plants. Furthermore,

the closed-loop measurements confirm that data-driven control method with the op-

timal uncertainty modelling approach considerably reduces the uncertainty bound

and consequently improves the robust performance.
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4. TWO DEGREE OF FREEDOM ROBUST DATA-DRIVEN
FIXED-ORDER H∞ CONTROLLER SYNTHESIS USING CONVEX

OPTIMIZATION

An extension of the one degree of freedom controller design algorithm, which is

presented in Chapter 3, is proposed to synthesize two degree of freedom (2-DOF)

controllers for reference tracking of the non-parametric systems. The theoretical de-

sign approach is experimentally verified on position control of an electromechanical

CAS of an air vehicle. To improve the positioning accuracy of the actuation system,

the full-closed loop feedback structure is considered. Obtained experimental results

verify the usefulness and efficiency of the proposed approach.

4.1 2-DOF Control Framework and Closed-loop Transfer Functions

In the feedback-only control system structure for reference tracking, the controller

acts only on the error signal. There are algebraic limitations on this control scheme.

Since sum of the frequency response of sensitivity function and frequency response

of complementary sensitivity function equal to unity, the designed controller cannot

achieve required values for these dependent functions at frequency points of inte-

rest. The tracking error minimization and noise attenuation are related to the comp-

lementary sensitivity function. On the other hand, the sensitivity function determines

the effect of the output disturbance on the measured output of the control system.

Therefore; there is a trade-off between reference tracking accuracy and disturbance

rejection constraints. Above mentioned performance limitations in the feedback-only

(1-DOF) control scheme can be eliminated by using a 2-DOF control system confi-

guration, including a feedforward path [8,63,64].

The closed loop system in Figure. 4.1, defined by following equations:

e = r − y − v (4.1)

u = Kffr +Kfb(r − y − v) (4.2)

y = G(u+ di) + do (4.3)
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Kfb(jw) G(jw) +++ e u

di do

yr

−

v

Kff (jw)

+

+

Figure. 4.1. 2-DOF feedforward control structure.

where Kff is the feedforward controller, Kfb is the feedback controller, r is the re-

ference input, e is the error, di is the input disturbance, v is the measurement noise

and do is the output disturbance. The main objective of the H∞ control theory is

to synthesize a stabilizing controller that satisfies selected constraints on several

closed-loop transfer functions. We will be interested in several closed-loop transfer

functions that are defined below:

Definition 4.1. (Sensitivity function) The sensitivity function is the transfer function

from the output disturbance to the plant output and is defined as

S =
y

do
=

1

1 +GKfb

(4.4)

where L = GKfb is the loop transfer function.

Definition 4.2. (Complementary sensitivity function) The complementary sensi-

tivity function is the transfer function from the measurement noise to the plant output

and is defined as

T =
y

v
=

GKfb

1 +GKfb

(4.5)

also, one has S + T = I.

Definition 4.3. (Q-parameter) The Q-parameter function is the transfer function
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from the reference input to the control input and is defined as

Q =
u

r
=
Kff +Kfb

1 +GKfb

(4.6)

Additionally, we use the transfer function from the reference input to the measured

output such that

Tyr =
y

r
=
G
(
Kff +Kfb

)
1 +GKfb

. (4.7)

4.2 Model Matching Problem

Using the FRF of the system and the linearly parameterized controller, the closed-

loop model matching problem can be defined as

min
k
‖Wm

(
Tyr − T dyr

)
‖∞

= min
k

∥∥∥∥Wm

(
G
(
Kff +Kfb

)
1 +GKfb

− T dyr

)∥∥∥∥
∞

= min
k

∥∥∥∥Wm

(
G
(
kffψff + kfbψfb

)(
1− T dyr

)
− T dyr

1 +Gkfbψfb

)∥∥∥∥
∞

(4.8)

in the H∞ sense, where kffψff , kfbψfb are the linearly parameterized feedforward

and feedback controller, respectively and Wm(jw) is the FRF of a stable penalty

function weighting the frequency domain requirements. A block diagram represen-

tation of the closed-loop model matching problem is given in Figure. 4.2 for 2-DOF

control framework.

εWm(jw)Kfb(jw) G(jw)+ e u yr

−

Kff (jw)

+ +

T d
yr(jw)

−

Figure. 4.2. Block diagram representation of the model matching problem in 2-DOF
control framework.
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The objective function of the optimization problem (4.8) is not a convex function

with respect to the controller parameters k = [kff kfb], because the denominator of

this function includes design parameters. In order to approximate this non-convex

optimization problem to a convex optimization problem, one approach is to replace

the term GKfb in the denominator with the desired loop gain Ld(jw) and formulate

the sub-optimal control problem as

min
k

∥∥∥∥Wm

(
G
(
kffψff + kfbψfb

)
(1− T dyr)− T dyr

1 + Ld

)∥∥∥∥
∞

(4.9)

where the desired loop gain Ld is given by

Ld =
Td

1− Td
. (4.10)

where Td is the desired complementary sensitivity function. Note that the objective

function (4.9) f : R1×n → C is affine with respect to the k = [kff kfb]; therefore, it can

be considered as convex function.

4.3 Derivation of the Robust Performance Conditions

The controller Kff (jw) can be omitted because it has no effect on the closed-loop

stability of the system when deriving the RP condition. For this reason, the RP con-

ditions can be derived based on rearranged block diagram representation of the

proposed control system which is shown in Figure. 4.3

Kfb(jw) G(jw)+
e u y

−

W2(jw) ∆

W1(jw)

∆p

+ +
z

ωω∆z∆

Figure. 4.3. Block diagram for robust performance constraints with two complex
blocks.

Note that, this representation is the same as the 1-DOF representation given in

Figure. 3.3. Therefore, the representation of the robust performance constraint in 2-

DOF H∞ controller synthesis problem with a sufficient condition is given by following
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proposition:

Proposition 4.1. Closed-loop control system given by Figure. 4.3, satisfies the ro-

bust performance condition if

=(kfbψfbG)− an<(kfbψfbG)

+
∣∣W2kfbψfbG

∣∣(ansin(θn) + cos(θn)
)
− bn ≤ 0; ∀w ∈ R ∪ {∞}.

(4.11)

Proof of this proposition is the same as proof in 1-DOF control framework, i.e., (3.44).

4.4 Control input constraints

The block diagram representation of the closed loop control system with control

signal weighting function Wu is shown in Figure. 4.4.

Kfb(jw)+ e ur

−

W2(jw) ∆

y
G(jw)+

Wu(jw)

ũ

Kff (jw)

+

Figure. 4.4. 2-DOF closed-loop control system with control input constraint.

By using this figure, perturbed Q-parameter transfer function from the reference in-

put to the control input with multiplicative type model uncertainty of the plant given

by

Q̃ =
u

r
=

(
kffψff + kfbψfb

)
1 +Gkfbψfb(1 +W2∆)

. (4.12)
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Then, control input constraint can be written as

∣∣WuQ̃
∣∣− ũmax ≤ 0

⇔
∣∣∣∣ Wu

(
kffψff + kfbψfb

)
1 +Gkfbψfb(1 +W2∆)

∣∣∣∣ ≤ ũmax

⇔ −ũmax ≤
Wu

(
kffψff + kfbψfb

)
1 +Gkfbψfb(1 +W2∆)

≤ ũmax

(4.13)

for ∀w ∈ R ∪ {∞}, where ũmax is the upper bound of the weighted control input

signal in frequency domain. The maximum control input occurs at minimum loop-

gain condition; therefore, the worst-case control input generated when the block

∆ = 1 and the phase angle of the terms (W2Gkfbψfb) and (1+Gkfbψfb) have opposite

signs. Hence,

∣∣WuQ̃max

∣∣− ũmax ≤ 0

⇔ −ũmax ≤
∣∣Wu

(
kffψff + kfbψfb

)∣∣∣∣1 +Gkfbψfb
∣∣− ∣∣W2Gkfbψfb

∣∣ ≤ ũmax

⇔

−ũmax(|1 +Gkfbψfb| − |W2Gkfbψfb|)− |Wu(kffψff + kfbψfb)|

−ũmax(|1 +Gkfbψfb| − |W2Gkfbψfb|) + |Wu(kffψff + kfbψfb)|

 ≤
0

0


(4.14)

which are the control input constraint functions of the fixed-order H∞ control prob-

lem. Notice that these constraint functions are affine with respect to the controller

parameters k = [kff kfb].
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4.5 Optimization Problem

A convex SIP problem is arranged for the optimal synthesis of the 2-DOF data-driven

fixed-order H∞ controller as follows:

min
k

∥∥∥∥Wm

(
G
(
kffψff + kfbψfb

)
(1− T dyr)− T dyr

1 + Ld

)∥∥∥∥
∞

s.t. =(kfbψfbG)− an<(kfbψfbG)

+
∣∣W2kfbψfbG

∣∣(ansin(θn) + cos(θn)
)
− bn ≤ 0;

−ũmax
(∣∣1 +Gkfbψfb

∣∣− ∣∣W2Gkfbψfb
∣∣)− ∣∣Wu

(
kffψff + kfbψfb

)∣∣ ≤ 0;

−ũmax
(∣∣1 +Gkfbψfb

∣∣− ∣∣W2Gkfbψfb
∣∣)+

∣∣Wu

(
kffψff + kfbψfb

)∣∣ ≤ 0

(4.15)

for ∀w ∈ R ∪ {∞}.

Note that, the frequency domain multiple model set M in (3.7) includes the time

delay. Therefore, time-delay systems can be considered without any approximation

in the proposed robust controller synthesis method.

4.6 Experimental Implementation

In this section, the proposed controller design methodology is applied to the position

control of an electromechanical CAS.

4.6.1 Control Actuation System

Several guided air vehicle platforms generally use aerodynamic control surfaces to

direct their course. The CAS is responsible for the motion that controls the flight of

the air vehicle by changing the direction of these control surfaces.

Motion control systems are mainly composed of actuators, sensors and mechanism.

The sensors measure position or velocity with faster dynamics than the closed-loop

bandwidth of the motion control systems. If the position sensor is located on the

motor side, i.e., non-collocated side, the motion control system is called the semi-

closed loop feedback position control system. On the other hand, if the position

sensor is placed on the load side, i.e., collocated side, the motion control system is
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called the full-closed loop feedback position control system. In high precision control

applications, the sensors are generally used on load side.

In this study, an electromechanical type CAS is used as an experimental test bench.

The CAS configuration is composed of a BLDC electric motor, planetary gear train,

a ballscrew, a mechanism and a digital position sensor on load side, i.e., collocated

side. Nominal model of the CAS can be obtained based on the BLDC electric motor

dynamics, which is given in Chapter 3.8.2. Signal flows between the CAS and other

parts of test setup are shown in Figure. 4.5. The other components of the test setup

are the same as those of Figure. 3.8.

Figure. 4.5. Signal flows for experimental testing of the CAS.

4.6.2 Frequency Response Identification of CAS

In order to obtain six different FRF’s of the CAS, multiple tests were carried out in

the temperature range of -20 ◦C to 80 ◦C with intervals of 20 ◦C degrees. A modi-

fied pseudo-random binary sequence (PRBS) signal was used as the q-axis current
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reference of the open-loop CAS in the experiments to obtain the time domain res-

ponse of the plant. This modification was made to provide symmetrical CAS rotation

in positive and negative directions. The input, i.e., q-axis current, and the output, i.e.,

angle θ, signals acquired from the frequency response identification experiments are

shown in Figure. 4.6.

Figure. 4.6. Applied PRBS signal used for q-axis current iq(t) with the resulting out-
put θ(t) angle.

Frequency domain experimental data was obtained with 400 logarithmically spaced

frequency points, a value which is approximately calculated using (3.51) where ε =

0.1, β = 0.001 and dp = 4, between wl = 1 rad/s and wu = 150 rad/s. Obtained FRF’s

of the real-time system, which are obtained with (2.40), are given in Figure. 4.7.
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Figure. 4.7. Measured multiple FRF’s of the CAS.

4.7 2-DOF Controller Synthesis for CAS

The reference model for desired closed-loop control system T dyr and desired nominal

complementary sensitivity function T d were chosen as

T dyr =
(2π16)2

s2 + 1.2(2π16)s+ (2π16)2
(4.16)

T d =
(2π12)2

s2 + 1.2(2π12)s+ (2π12)2
(4.17)

respectively. Similarly, the worst-case complementary sensitivity function T 1
d for the

selection of the performance weight was chosen as

T 1
d =

(2π3)2

s2 + 0.4(2π3)s+ (2π3)2
(4.18)
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therefore, the performance weighing function W1 used to design the robust controller

is given by

W1 =
0.709s2 + 22.46s+ 177.588

s2 + 5.635s+ 7.943
(4.19)

which is obtained by using (3.58) with ν = 2, % = 0.002, ζ = 0.2, wn = 2π3 rad/s.

While designing the robust controller, Wu and Wm were taken as 1 for the sake of

simplicity. Upper bound of the available control input defined as ũmax = 120 A.

The optimal nominal model (Gopt
nom) and optimal multiplicative uncertainty function

(W opt
2 ) were calculated using the semi-definite convex optimization method given by

Proposition 1. For comparison purpose, another nominal model (Gavg
nom) was calcula-

ted by average method, which is given in (3.10). Additionally, corresponding multip-

licative uncertainty weighing (W avg
2 ) function was constructed by classical method,

which is given in (3.9). Obtained Nyquist plot ofGopt
nom(jwn) andGavg

nom(jwn) are shown

in Figure. 4.8 with corresponding uncertainty models. The magnitude plots of the

corresponding multiplicative uncertainty weighting functions are given in Figure. 4.9

for both methods.

Figure. 4.8. Nyquist plot of the obtained non-parametric nominal models with opti-
mum multiplicative uncertainty weighting bounds for proposed method
and classical uncertainty bounds for average method.
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Figure. 4.9. Optimum multiplicative uncertainty weighting function for proposed met-
hod and classical method.

Third-order linearly parametrized feedback and feedforward 2-DOF controller trans-

fer functions were constructed for CAS using the Laguerre basis functions as

Kff = kff0 + kff1

√
2ξ

(s+ ξ)
+ kff2

√
2ξ(s− ξ)
(s+ ξ)2

+ kff3

√
2ξ(s− ξ)2

(s+ ξ)3
(4.20)

Kfb = kfb0 + kfb1

√
2ξ

(s+ ξ)
+ kfb2

√
2ξ(s− ξ)
(s+ ξ)2

+ kfb3

√
2ξ(s− ξ)2

(s+ ξ)3
(4.21)

where k =
[
kff0 kff1 kff2 kff3 kfb0 kfb1 kfb2 kfb3

]
∈ R1×8 is the matrix of the cont-

roller parameters to be calculated using convex optimization. The pole of this control-

ler transfer function was chosen as ξ = 87 by a linear search for ξ between ξ = 1 and

ξ = 100. This value provided the best robust performance achievement in the search

space. The controller design problem (4.15) was implemented for N = 400 logarith-

mically separated frequency points between lower frequency point wl = 1 rad/s and

upper frequency point wu = 150 rad/s as w =
[
1 . . . 150

]
rad/s.

The coefficients matrix of the fixed-order 2-DOF controller were obtained as
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k =
[
3.28 −20.74 19.91 19.29 38.85 −231.21 11.36 61.29

]
. Then, the transfer

functions of the feedforward and feedback parts of the obtained 2-DOF fixed-order

robust H∞ controller is given by

Kff (s) =
3.28s3 + 1102s2 − 17230s+ 33200

s3 + 261s2 + 22710s+ 658500
(4.22)

Kfb(s) =
38.85s3 + 8049s2 + 210900s+ 7485000

s3 + 261s2 + 22710s+ 658500
(4.23)

respectively. The resulting robust controller satisfies the robust performance condi-

tion (4.11) such that ‖S̃max(jwn)‖∞ = 0.99 < 1. This result proves that the worst-case

sensitivity function remains smaller than inverse of the frequency dependent perfor-

mance weighting function W1(jwn), such that

‖S̃max(jwn)‖∞ <
1

|W1(jwn)|
(4.24)

for n = 1 . . . 400.

For comparison purposes, the control problem was also solved by using feedback-

only, i.e., 1-DOF control method
(
Kff (s) = 0

)
to design a third-order controller.

Controller parameters were obtained as k =
[
55.01 384.52 −77.31 17.59

]
. Hence,

the transfer function of the obtained 1-DOF controller is given as

K1−DOF (s) =
55.01s3 + 8498s2 + 326200s+ 7309000

s3 + 261s2 + 22710s+ 658500
. (4.25)

The robust performance achievement of this data-driven fixed-order 1-DOF control-

ler is ‖S̃1−DOF
max (jwn)‖∞ = 0.99. Obtained robust performance achievement by the 1-

DOF controller is similar to those obtained with the proposed method as shown in Fi-

gure. 4.10. The robustness to unstructured uncertainty determined by the S̃max(jwn);

therefore, robust performance condition remain similar for both control system struc-

ture cases.
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Figure. 4.10. Robust performance and model matching achievements of the desig-
ned fixed-order controllers with optimal uncertainty modelling method.

Figure. 4.11 shows the comparison of the obtained frequency domain Tyr function,

which represents the reference tracking achievement, from fixed-order 2-DOF cont-

roller design with fixed-order 1-DOF controller design. As shown in this figure, the

nominal Tyr transfer function, i.e., Tyr(jwn, K,Gnom), matches the desired closed-

loop transfer function T dyr for 2-DOF controller. Moreover, the proposed 2-DOF ro-

bust controller provides about 15% improvement in closed-loop system bandwidth

(bandwidth of 1-DOF controller= 14.8 Hz, bandwidth of 2-DOF controller= 16.8 Hz),

compared to 1-DOF design.
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Figure. 4.11. Comparison of model matching achievement of the 2-DOF fixed-order
controller with 1-DOF controller.

The obtained 2-DOF controller and the 1-DOF controller satisfy the control input

constraints, where ũmax = 120, Wu = 1, as shown in Figure. 4.12. Obtained worst-

case Q̃-parameter transfer function with the 1-DOF controller design approach, i.e.,

Q̃1−DOF
max , is similar to those obtained with the proposed method, i.e., Q̃max, as shown

in Figure. 4.12.
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Figure. 4.12. Obtained worst-case Q̃-parameter transfer functions for control input
constraints.

Real-time hardware in the loop tests were carried out to verify the performance of the

synthesized fixed-order 2-DOF and 1-DOF H∞ controllers. These controllers were

applied to the experimental system in the real-time hardware in the loop tests. An

increasing frequency sinusoidal chirp signal up to 20 Hz was applied as reference

input to the system in order to determine the bandwidth of the closed loop system

and to test the reference tracking performance. The response of the real system

in time-domain is given in Figure. 4.13 with 2-DOF controller and 1-DOF controller.

The response of the reference model T dyr is also shown in this figure. As can be

seen from this figure, the synthesized data-driven fixed-order 2-DOF H∞ position

controller satisfies the defined model matching objective. Therefore, the objective

of designing a data-driven, fixed-order (low-order) controller in frequency domain

for position control of the CAS system, which requires precise positioning, could

be achieved by using proposed approach. Moreover, the designed 2-DOF robust

controller provides improvement in the tracking performance when compared to the

1-DOF design method as shown in Figure. 4.13.
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Figure. 4.13. Experimentally obtained output θ(t) angle with applied control input
(current) signal iq(t).

4.8 Comments

In this chapter, a novel data-driven controller design approach to synthesize two

degree of freedom robust fixed-order H∞ controller for reference tracking based

on convex optimization has been presented. The proposed method combines the

model-free feature of the non-parametric frequency domain data-driven control met-

hods and the practicality of the fixed-order methods within the H∞ control frame-

work for 2-DOF controllers. A fixed-order 2-DOF robust controller design algorithm

based on constrained convex optimization problem has been introduced with clo-

sed loop model matching objective and control input constraints for non-parametric

perturbed model in the frequency domain. The proposed controller synthesis met-

hod can be applied to any affinely parameterized controller structure such as PID

controllers. The theoretical design approach has been experimentally verified on the

full-closed loop feedback position control of an electromechanical control actuation

system. Experimental results reveal that the proposed 2-DOF feedforward controller

design approach improves the reference tracking performance when compared to

data-driven fixed-order 1-DOF (feedback only) H∞ controller design method, under

the same performance requirements.
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5. DATA-DRIVEN FIXED-ORDER H∞ CONTROLLER SYNTHESIS IN
FREQUENCY DOMAIN: CLOSED-LOOP SYSTEM APPROACH

This chapter aims to design a data-driven fixed-order H∞ controller in the frequ-

ency domain and to apply it for the position control of an electromechanical control

actuation system with proportional-derivative (PD) type controller using data obta-

ined from closed loop tests. Coefficients of the fixed-order linearly parametrized H∞

controller are calculated using closed-loop input-output data without the need of a

parametric model of the system. In place of high-order controllers that are obtained

by using the classical H∞ control theory, low-order controllers can be synthesized

with the same design constraints with the proposed method. Closed-loop identifi-

cation of the generalized plant makes our method very useful for systems that are

unstable, motion constrained or system with high safety requirements or unreac-

hable feedback loop. The proposed method has been verified using an experimental

system where the position control of an electromechanical CAS is performed where

a PD type position controller synthesis implemented with the developed method.

5.1 Derivation of the Nominal Performance Conditions

Linearly parameterized fixed-order controllers can also be written as

K(s, k) = kψ(s) (5.1)

with the vector of parameters of structured controller defined as

k = diag([k0, k1, k2, . . . , kn]) ∈ R(n+1)×(n+1) (5.2)

and the vectors of stable orthogonal basis functions defined as

ψ(s) = diag([1, ψ1(s), ψ2(s), . . . , ψn(s)]). (5.3)

The continuous-time PID controller is realized in linearly parameterized form as fol-
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lows:

KPID(s) =


Kp 0 0

0 Ki 0

0 0 Kd




1 0 0

0
1

s
0

0 0
s

1 + τds

, (5.4)

where τd ∈ R+ and assumed to be known. Based on these linear parameterized

controller assumption, the control signal may be defined as follows.

u =


k0 0 . . . 0

0 k1ψ1(s) . . . 0
...

... . . . ...

0 0 . . . knψn(s)

 e (5.5)

The general control configuration can be modified as in Figure. 5.1, with the gene-

ralized plant given in (2.46).

Figure. 5.1. General control configuration with the diagonal control matrix.

Definition 5.1. (Nominal stability) The closed-loop SISO system in Figure. 5.1

with the given set of generalized plant P in (2.46) and the diagonally parameterized

controller K is nominally stable if and only if

Qs(k, jw) = det

I − P22


k0 . . . 0
... . . . ...

0 . . . knψn


 (5.6)
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function does not encircle the origin of the complex plane for ∀w.

Definition 5.2. (Nominal performance) The closed-loop SISO system in Figure. 5.2

with the given set of generalized plant P in (2.46) and the diagonally parameterized

controller K and ‖∆P (jw)‖∞ ≤ 1 satisfies the nominal performance requirement if

and only if

Qp(k,∆P , jw) = det

I −
P11 P12

P21 P22




∆P 0

0

k0 . . . 0
... . . . ...

0 . . . knψn



 (5.7)

function does not encircle the origin of the complex plane for ∀w,∀∆P (jw) ∈ Cnw×nz

[32].

Figure. 5.2. Control configuration with performance channel.

5.2 Optimization Problem

Based on nominal stability and performance requirements, the fixed-order H∞ cont-

rol problem can be formulated on the Nyquist plot to calculate the parameters of

the controller. The fact that polynomials Qs(k, jw) and Qp(k, jw) do not encircle the

origins of the Nyquist plot constitutes the constraint function of the optimization prob-

lem. This constraint function can be adapted to the control problem by preventing the

critical point of the Nyquist curve with a frequency dependent line.
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The closed-loop SISO feedback system in Figure. 2.8 satisfies the nominal stability

condition if Qs(k, jw) lies below the line y = αx+ β on the Nyquist plot, Figure. 5.3.

Figure. 5.3. Nyquist plot for Qs(k, jw).

Parameters of this line may be defined with respect to the requirements of the gain

margin and phase margin [65]. Choosing the α and β parameters affects the stability

and performance characteristics of the system. For example, if α = 1 and β =

−0.1, a gain of approximately 2 dB gain margin and 45 degree phase margin is

guaranteed. Controller design optimization problem with this constraint function is

given by

min
k
‖Tzω(k, jw)‖∞

s.t. =(Qs(k, jw))− αs<(Qs(k, jw))− βs ≤ 0.
(5.8)

Similarly, this system satisfies the nominal performance condition if Qp(k, jw) below

the line y = αx + β in the Nyquist plot. In this case, controller design optimization

problem defined as

min
k
‖Tzω(k, jw)‖∞

s.t. =(Qp(k, jw))− αp<(Qp(k, jw))− βp ≤ 0
(5.9)

where =,< represent the imaginary and real parts of the complex numbers, respec-
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tively.

These optimization problems are non-convex and contain an infinite number constra-

ints which is known as SIP. To convert the data-driven fixed-order H∞ control design

problem, (5.8), (5.9), into SDP problem, which can be solved numerically with ava-

ilable solvers, finite number of frequencies wi(i = 1, 2, . . .m) are considered. Hence,

control design problem may be defined in the following equations for stability and

performance requirements, respectively.

min
k

max
i
|Tzω(k, jwi)|

s.t. =(Qs(k, jwi))− αs<(Qs(k, jwi))− βs ≤ 0
(5.10)

min
k

max
i
|Tzω(k, jwi)|

s.t. =(Qp(k, jwi))− αp<(Qp(k, jwi))− βp ≤ 0
(5.11)

5.3 Experimental implementation

In this section, the position control of an electromechanical CAS is performed in

order to experimentally verify the proposed closed-loop system identification and

control synthesis methods are discussed.

5.3.1 Non-parametric Identification of CAS

In the present study, the initial K controller which is used in closed-loop system iden-

tification studies, is a 4th order model based H∞ controller designed and explained

in [59] with transfer function given by

K(s) =
106(1.11s3 + 25.7s2 + 172s+ 33.4)

s4 + 108(0.2s3 + 114s2 + 182s+ 884)
(5.12)

with H∞ cost γ = 0.95. The experimental test setup is the same as Figure. 3.8.

During the experiments, the width of Hanning window is designed as a function of

frequency and is chosen as 2.4 up to 15 Hz and 3.8 for higher frequencies. Controller

is digitalized by using bilinear transformation method and implemented to the real

time system by operated at 1 kHz frequency. For the closed-loop identification of

90



CAS, a chirp input signal with frequency value between 0.01 Hz and 40 Hz is used.

A time domain portion of the chirp reference input signal and the measured output

signal are presented in Figure. 5.4. The generated control input signal by the initial

H∞ controller in the closed-loop system is also shown in the same figure.

Figure. 5.4. Input, measured output and control signal.

Calculated magnitude and phase plots of G(jw) via direct approach of closed-loop

identification method are shown in Figure Figure. 5.5, respectively.
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Figure. 5.5. Obtained Bode plot of the CAS.

5.3.2 PD Controller Synthesis for CAS

In this subsection, the presented approach in previous sections is applied on the

position control of CAS to calculate PD type controller parameters using the obtained

data from closed-loop tests.

The block diagram of the closed loop system that is used for the data-driven PD

controller synthesis for the CAS is shown in Figure. 5.6. The control objective is to

track the reference position command with admissible error bound and also with

actuator limit constraint.
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Figure. 5.6. Configuration of the control problem for the CAS.

The PD controller is generated using the proportional and derivative parts in (5.4)

as

K(k, jw) =

Kp 0

0 Kd


1 0

0
jw

1 + jwτd

 (5.13)

where Kp and Kd are the controller parameters to be calculated by optimization

methods. The parameter τd, which is in the denominator of the controller equation,

is fixed as 100.

The data-driven fixed-order H∞ control design problem for the CAS is configured

using the block diagram given in Figure. 5.7.
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∆P11
∆P12

0 0
0 0 Kp 0

0 0 0
jwKd

1 + jwτd







G(jw)

We(jw)Wu(jw)

+ +
−

P

ω

u1

u2

u e

z1

z2

e

Figure. 5.7. Modification of the control problem for nominal performance criterion.

In this figure, the generalized plant P represents the transfer function from
[
ω u1 u2

]T

to
[
z1 z2 e e

]T

and can be partitioned as follows,

P (k, jw) =

 P11 P12

P21 P22

 =


We −GWe −GWe

0 Wu Wu

I −G −G

I −G −G

. (5.14)

We(jw) and Wu(jw) shown in these figures are the frequency-dependent weighting

functions representing the performance requirements defined on the error and cont-

rol signal outputs, respectively. A proper selection of these performance weighting

filters are given by

We(jw) =
0.71jw + 50.27

jw + 87.73
(5.15)

Wu(jw) =
0.11jw + 85.96

jw + 175.92
. (5.16)

The K∆(k, jw) matrix consisting of the ∆P components between the inputs and
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outputs in the performance channel and the diagonal control matrix is formed as

follows.

K∆(k, jw) =


∆P11 ∆P12 0 0

0 0 Kp 0

0 0 0
jwKd

1 + jwτd

 (5.17)

The transfer function of Tzω that represents the transfer function from reference input

[ω] to performance outputs
[
z1 z2

]T

of the system, can be calculated with the LFT

of P (k, jw) and K(k, jw) matrices and using (2.47) as

Tzω(k, jw) =

We

0

+

−GWe −GWe

Wu Wu


Kp 0

0
jwKd

1 + jwτd


I2×2 −

−G −G

−G −G


Kp 0

0
jwKd

1 + jwτd



−1 I

I


(5.18)

and given by

Tzω(k, jw) =

 WeS

WuKS

 (5.19)

where

S = 1/(1 +GKp +G
jwKd

1 + jwτd
)

KS = (Kp +
jwKd

1 + jwτd
)

(5.20)

The frequency-dependent expression of the closed-loop performance constrain func-

tion Qp(k,∆P , jw) for two controller parameters, an exogenous input and two perfor-
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mance outputs can be obtained by using (5.7) as follows.

Qp(k,∆P , jw) = 1 +GKp +G
jwKd

1 + jwτd

−∆P11We −∆P12WuKp −∆P12Wu
jwKd

1 + jwτd

(5.21)

During the controller synthesis, the Nyquist plot of Qp(k,∆P , jw) is forced to lie be-

neath by the line y = αx + β, where α = 1, β = −0.1. Controller design optimization

problem with this constraint is formulated as

min
k

max
i
|Tzw(k, jwi)|

s.t. =(Qp(k, jw))−<(Qp(k, jw)) + 0.1 ≤ 0
(5.22)

for a finite number of logarithmically separated frequencies wi =
[
0.1 200

]
rad/s

where i = 1, 2, . . . 200. In this optimization problem, the performance part ofK∆(k, jw)

is realized by np = 40 samples for each iteration of wi with

∥∥∥[∆P11 ∆P12

]∥∥∥
∞

= 1. (5.23)

The optimization problem is solved by using the fminimax function of MATLAB and

coefficients of PD controller are obtained as Kp = 0.0278, Kd = 0.0041. The transfer

function of the controller is given explicitly by

K(k, jw) = 0.0278 + 0.0041
jw

1 + jw100
. (5.24)

Transfer function of the Tzw(k, jw) is calculated for each frequency point using (5.19)

together with controller parameters. The Nyquist plot of the Qp(k, jw) function with

obtained PD controller that is verify the nominal performance H∞ cost with γ =

0.82, is shown in Figure. 5.8. As seen in this figure, the Qp(k, jw) function does

not encircle the origin of the Nyquist plot. The γ = 0.82 value indicates that the

closed-loop system together with the controller provides the nominal stability and

performance requirements determined by the weighting functions.
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Figure. 5.8. Obtained Nyquist plot of Qp(k, jw) (green) and Qs(k, jw) (red).

Real-time hardware in the loop tests have been performed to verify the performance

of the synthesized fixed-order H∞ controller. This controller is applied to the experi-

mental system in the real-time hardware in the loop tests. The step response of the

system in time-domain is given in Figure. 5.9. As can be seen from this figure, the

synthesized data-driven fixed-order PD type position controller provides the require-

ments specified by the weighting functions. In these tests the filtered step function is

applied to the system to prevent sudden current consumption. As can be seen that

the CAS position control, which requires precise positioning, indeed be designed in

the frequency domain using a model-free, fixed-order, low-order PD controller.
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Figure. 5.9. Experimentally obtained CAS fin angle and applied control input (cur-
rent) signal.

In order to determine the bandwidth of the closed loop system and to test the re-

ference tracking performance, an increasing frequency sinusoidal chirp signal up to

20 Hz is applied as reference input to the system. The response of the system and

applied control signal for this input with the synthesized PD controller is given in

Figure. 5.10. As seen in this figure, the output position of the fin value is reaches

0.707 times the position command after about 3 seconds later. The bandwidth of

the system is calculated as 15 Hz since each second interval corresponds to 5 Hz.
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Figure. 5.10. Reference input, measured output and control input signal.

5.4 Comments

A new method to design data-driven fixed-order H∞ controller for SISO systems

with generalized plant obtained from closed-loop test and control parameters writ-

ten in diagonal form is presented. In this method, the system to be controlled is

represented with FRF data of the plant in the operating range of interest instead of

a transfer function. The nominal stability and nominal performance conditions are

derived together with the identified generalized plant and the linearly parameteri-

zed fixed-order controller structure. These design requirements are described on

the Nyquist plot. Based on the user defined weighting functions, the fixed-order H∞

controller design optimization problem is formulated on the Nyquist plot to calculate

the parameters of the controller. The objective and constraint functions of this non-

convex optimization problem are reduced to SDP form. Since adverse factors such

as modelling errors, time delay are contained within the frequency-dependent data,

the system representation is more accurate than the model-based approach. The ef-

fectiveness of the proposed method is verified using real-time hardware in the loop

99



test set-up where the position control of an electromechanical CAS is performed.

PD type position controller synthesis for this system is realized by the developed

method.
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6. CONCLUSIONS AND FUTURE WORK SUGGESTIONS

In this section, the results obtained in the thesis, the main topics covered by the

study and the future works are explained.

6.1 Conclusions

This thesis combines the model-free feature of the non-parametric frequency do-

main data-driven control methods and the practicality of the fixed-order methods

within the convex optimization based H∞ control problem for the design of linearly

parameterized 1-DOF and 2-DOF controllers. Within the framework of data-driven

control systems, robust fixed-order H∞ controller synthesis problems have been

addressed in this thesis. Convex optimization has been chosen as the optimization

method and has been summarized in the second chapter of the thesis.

As already mentioned, classical unstructured uncertainty models are generally cal-

culated from a set of frequency response data and resulting models may be con-

siderably conservative. In order to represent the variations in the system dynamics

by minimal uncertainty circle around the optimal nominal model for the correspon-

ding frequency points, an SDP algorithm has been proposed. Since the modelling of

unstructured uncertainty depends on a nominal model, this algorithm simultaneously

computes a minimal uncertainty model while finding an optimal nominal model from

the frequency domain experimental data. Therefore, variations in the system dyna-

mics can be represented by minimal uncertainty circle around the optimal nominal

model for the corresponding frequency points on the Nyquist diagram. Furthermore,

since the frequency domain multiple model set includes the time delay, time-delay

systems can be considered without any approximation in the proposed robust cont-

roller synthesis method by this algorithm.

The optimal nominal model and optimal multiplicative uncertainty function have been

calculated using a semi-definite convex optimization method for electromechanical

systems. This convex optimization problem has been solved using CVX solver. For

comparison purposes, another nominal model has been calculated by the classical

method. The classical uncertainty modelling approach has produced a considerably
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more conservative weighting function model than the proposed optimal uncertainty

modelling method. The obtained experimental results demonstrate that the propo-

sed convex optimization based algorithm reduces the conservatism of uncertainty

bound and consequently improves the robustness and performance of the closed-

loop control system.

In this thesis, the cost function of the convex optimization problem has been formu-

lated as a closed-loop model matching objective. The closed-loop model matching

cost function has been approximated to a convex function using the FRF of the sys-

tem and the linearly parameterized controllers. Therefore, experimental closed-loop

frequency response matches a frequency response of the predefined reference mo-

del in the H∞ norm sense. The linearly parameterized controllers for fixed-order

controller structure have been modelled with stable orthogonal Laguerre basis func-

tions. Thus, closed-loop transfer functions such as sensitivity function, complemen-

tary sensitivity function, Q-parameter transfer function have been modified as affine

functions with respect to the Laguerre coefficients.

In this study, the saturation characteristics of the actuators have been included

mathematically in the controller design algorithm. Therefore, the robust data-driven

fixed-order H∞ control design methodologies have been applied for linear systems

with weighted control input constraints. Two inequality constraints have been added

to the optimization based control design problem to account for actuator constraints

in the convex optimization framework.

Since the model matching does not guarantee internal stability, a novel sufficient

condition for robust performance constraints of 1-DOF and 2-DOF control systems

using Nyquist stability theorem and µ synthesis methods has been derived and has

been represented by a convex constraint on the Nyquist plot. The robust perfor-

mance constraint has been adapted to the data-driven robust H∞ control problem

by preventing the intersection of performance and uncertainty circles via a frequ-

ency dependent line. In order to represent the robust performance condition as a

convex constraint in the optimization problem, parameters of this line have been

defined with respect to the desired loop gain model. The robust stability, nominal

performance and nominal stability conditions have also been modified using this
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approximation. This approach is the most important contribution of this thesis study

to the literature.

The choice of a predefined reference model for closed-loop model matching objec-

tive and performance weighting function is a crucial step of the proposed controller

design algorithm. Therefore, a practical approximation to a feasible choice of this

user-defined functions has been suggested. The formulated optimization problem

has involved an infinite number of constraints, i.e., SIP problem. In order to trans-

form this SIP problem into SDP problem, a finite number of frequency points have

been considered. Moreover, a randomized scenario approach has been adapted to

compute the minimum number of frequency point to guarantee the constraints with

a chosen probability level.

In the third chapter of this thesis, a path has been charted out on how to implement

data-driven control method and controller design problem has been turned into an

algorithm step by step. In this context, a 1-DOF robust data-driven fixed-order H∞

controller synthesis method based on convex optimization has been presented. This

method has consisted of two main steps. First, the non-parametric frequency res-

ponse identification of system with minimal unstructured uncertainty model has been

obtained from multiple measurement data. Second, the formulation of a fixed-order

H∞ controller design algorithm by using linearly parameterized controller structure

have been given. Proposed controller design methodology has been applied to the

position control of an electromechanical TVC system. The resulting robust control-

ler has been shown to satisfy the robust performance condition and control input

constraints. For comparison purpose, the performance of the presented method is

compared with the available FDRC toolbox on the experimental TVC system test

setup. The robust performance achievement of the controller obtained by this to-

olbox has been worse than the robust performance achievement of the proposed

data-driven controller.

An extension of the 1-DOF controller design algorithm has been proposed in Chap-

ter 4 to synthesize 2-DOF controllers for reference tracking of the non-parametric

systems. A fixed-order 2-DOF robust controller design framework based on const-

rained convex optimization problem has been introduced with a closed-loop model
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matching objective and control input constraints for the non-parametric perturbed

model in the frequency domain. The theoretical design approach has been experi-

mentally verified on the full-closed loop feedback position control of an electromec-

hanical CAS system. The synthesized data-driven fixed-order position controllers

for CAS has achieved the required model matching objective. Experimental results

have revealed that the goal of designing a robust 2-DOF data-driven fixed-order

controller in the frequency domain for precise positioning systems can be achieved

by using the proposed approach, under the same performance requirements. More-

over, the designed 2-DOF robust controller has improved the tracking performance

and closed-loop system bandwidth of the TVC system when compared to the 1-

DOF design method. The obtained 2-DOF controller has also satisfied the weighted

control input constraints.

In Chapter 5, a new non-convex optimization based method to design data-driven

fixed-order H∞ controller for non-parametric SISO systems has been presented.

This method does not depend on any approximation of objective function and the

generalized plant is identified by using experimental data obtained from closed-loop

tests which are not treated in other data-driven controller synthesis methods. The co-

efficients of the linearly parametrized controller have been written in diagonal form.

Multiple desired performance specifications such as weighted error shaping and we-

ighted control input constraints have been considered as constraint functions in the

optimization problem. In order to satisfy the stability and performance requirements,

an SDP non-convex optimization problem has been formulated. The proposed al-

gorithm has been verified experimentally with application to the control of electro-

mechanical TVC system and CAS. A closed-loop system identification technique

has been applied to FRF estimation of the experimental CAS. This identified model

has been used to synthesize a data-driven PD controller using proposed fixed-order

H∞ controller design approach. The obtained PD controller has been implemented

on the position control of electromechanical CAS. This controller has achieved the

requirements specified by the weighting functions. The obtained test results have

shown that the position control of the CAS, which requires precise positioning, can

be designed in the frequency domain using a model-free PD controller.

104



6.2 Future Works

There are future research work directions that can be proposed as extensions to the

presented controller synthesis approach:

• In this thesis, a fixed-orderH∞ controller synthesis algorithm for non-parametric

SISO systems is introduced by using linearly parameterized controllers. To

make the data-driven structured H∞ approach more applicable, the presented

methods can be extended to rational controllers, i.e., numerator and denomi-

nators having coefficients as decision variables. Moreover, the development

of a new necessary and sufficient conditions for robust performance criteria

would be useful.

• In this study, the pole of the Laguerre basis function is chosen by a linear

search. Therefore, the optimal choice of this basis functions is an important

extension of presented controller synthesis approaches.

• The defined optimization problems involve an infinite number of constraints

which constitute an SIP problem. To transform this SIP problem into and SDP

problem, which can be solved numerically using available convex optimiza-

tion techniques and solvers, another frequency gridding method solving the

fixed-order control problem with a finite number of frequency points can be

considered as an alternative method to scenario approach.

• All of the proposed data-driven controller synthesis methods in this thesis are

based on frequency domain data. Thus, an extension of these methods to

time-domain data-driven fixed-order robust controller design methods would

be useful.

• In order to reduce conservatism of the H∞ controller, data-driven fixed-order

H∞ controller with gain scheduling can be considered as future work.

• In this study, we assume that the systems are stable. Therefore, the develop-

ment of the proposed methods that can be useful for unstable systems would

be a prospective study.
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• Additionally, the presented approach can be extended to MIMO systems. Es-

pecially, the proposed approach in Chapter 5 can be applied to MIMO systems

with some modifications.
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