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Abstract: GPS (Global Positioning System) devices can be used in many applications 

which require accurate point positioning in geosciences. Accuracy of GPS decreases due to 

outliers resulted from the errors inherent in GPS observations. Several approaches have 

been developed to detect outliers in geodetic observations. It is important to determine 

which method is most effective at distinguishing outliers from normal observations. This 

paper investigates the behavior of conventional statistical test methods (Data Snooping 

(DS), Tau and t tests), some robust methods (Andrews’s M-Estimation, Huber’s M-

Estimation, Tukey’s M-Estimation, Danish Method, Yang-I M-Estimation, Yang-II M-

Estimation, and fuzzy logic method in detection of outliers for three GPS networks having 

different characteristics. Test results are evaluated and the performances of different 

methods are presented quantitatively. 

 

Keywords: Robust estimation; Fuzzy logic; GPS, Statistical test; Data Snooping; 

Membership value. 
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1. Introduction  

 

Geoscience applications such as determination of crustal movements, deformations and landslides 

require accurate point positioning. GPS can be used as a tool in these applications due to its accurate 

point positioning ability. The 3-D coordinates of the GPS satellites are known precisely with respect to 

an Earth fixed coordinate system. GPS receivers measure code and phase to every satellite. For 

accurate positioning, absolute positioning is not used in GPS. Instead, baselines connecting control 

points are determined. This is also called relative positioning. In relative positioning (at millimeter 

level), at least two GPS receivers are occupied at two control points (position of one control point is 

known) and the code and phase observations to at least four GPS satellites are measured 

simultaneously. These measurements are repeated for a certain period of time which leads to redundant 

observations. If coordinates of one of the control points are known, the coordinates of the second point 

are determined using the baseline components. For example, let A is a control point whose coordinates 

are known, and B is the point whose coordinates are to be determined. The baseline components of 

these two points are measured using GPS receivers and the X, Y, Z coordinates of point B are  

obtained as: 

BAAB
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BAAB

ZZZ

YYY

XXX




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



 (1)

 

Figure 1. First, second and third GPS networks.  
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GPS networks are made up of baselines (see Figure 1), their baseline components ΔX, ΔY, and ΔZ 

are taken as observations, and estimated coordinates are obtained by Least Squares (LS) adjustment. 

However, some observations can be outliers and they may reduce the accuracy of the network; 

therefore, outliers should be detected and eliminated from the adjustment not to affect the rest of  

the observations. 

In geodetic observations, errors can be in different magnitudes and have different characteristics 

depending on the surveyor, surveying equipment and environmental conditions. These errors yield 

differences in the magnitudes of the observations and are categorized as systematic, gross, and random 

errors. The effects of systematic and gross errors on the observations must be eliminated; however, it 

is not possible to remove random errors. Random errors are assumed to follow a normal distribution 

and are always present in the observations. Observations having random errors that deviate from 

normal distribution are called ‘outliers’. 

The preliminary studies were implemented using two models. In the ‘mean-shift’ model, which is 

used by conventional methods, the outliers are detected step-by-step using statistical tests. In every 

step an observation is detected as an outlier and removed from the observation set. In the conventional 

methods of Data Snooping (DS), Tau, and t tests, there is a disadvantage since these methods remove 

outlying baselines which in turn deteriorate the shape of the network. A normal observation may be 

detected as an outlier or an outlying observation may be perceived as a normal observation because of 

the existing outliers in the observation set. Another model to detect outliers is ‘variance-inflation’ 

model which is used in robust estimations [1]. This model was developed to eliminate the effects of the 

outliers in the adjustment model. Any outlier is not removed from the network; however, the weights 

of the observations are changed after iterations. The weights of the outliers are reduced even to zero 

while the weights of the normal observations are kept unchanged during the iterations. The most 

important point in robust methods is defining the most acceptable critical value for weight functions. 

This critical value can be computed or selected as a constant value. In other works [2] this scheme of 

computing the robust estimator by iteratively reweighting has been replaced by the solution of a global 

optimization problem in the space of unknowns. The fuzzy logic approach uses both the fuzzy set and 

the statistical test theory to determine outliers. Contrary to the conventional methods, no observation is 

removed from the observation set. In addition, a more accurate decision is given for the observations 

close to the critical value. 

In this paper, outliers in GPS networks are detected using different outlier detection and robust 

estimation methods, and the performances of these methods are investigated to evaluate their 

behaviors and similarities in detection of existing outliers. 

 

2. Methods 

 

2.1 Conventional Statistical Test Methods 

 

These methods are based on the assumption that only one observation can be detected as an outlier 

in each iteration step of the adjustment. Outlying observation is identified using statistical test theory. 

In conventional methods, the Least Squares Estimation (LSE) is used. LSE has some advantages such 
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as simplicity of the calculation algorithm. In addition, the properties of the stochastic and functional 

models do not change from beginning to the end. 

 

2.1.1. Data Snooping  

 

Data Snooping (DS) and other conventional methods use the mean-shift model. In the DS method, 

it is assumed that only one outlier is present in the observation set. In practice, this method allows 

detection of more than one outlier and estimation of their locations [3]. DS is performed when the a 

priori variance of the observation of unit weight is known. The standard deviations of the residuals are 

calculated using this a priori value. The residuals normalized by this method are normally  

distributed [4, 5]. 

 

2.1.2. Tau Test 

 

If the a priori variance is not known or a value cannot be assigned to it before adjustment, the a 
posteriori variance 2

0m  produced after adjustment is used for outlier detection. 

 

2.1.3. The t Test 

 
If an observation il  includes a gross error iΔ , using the standard deviation obtained from the invalid 

adjustment model is not appropriate. In this situation, it is a more accurate approach to compute the 
2
0m  value from the residuals that are free from the model errors. 
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1  (2)

where f is the degree of freedom, v is the vector of residuals, and Qvv is the cofactor matrix of the 

residuals. 

 

Table 1. Test statistic and critical values [6]. 

Test Test Statistic Critical Value 
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In Table 1, P is the weight matrix of the observations, s0 is a priori standard deviation of unit 

weight, f is the degree of freedom, α0 is the significance level, N represents the normal distribution, F 

represents the Fischer statistic, χ2 represents the Chi-Square statistic, t represents the Student (t) 
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statistic, and τ represents the Tau statistic. If the correlation among residuals is neglected, the 

significance level α0 is computed as: 
  n/αα11α 1/n

0   (3)

where n is the number of observations, and α  is usually chosen as 5% [7]. 

 

2.2. Some Robust Estimations 

 

Estimation methods based on LSE are sensitive to the deviations from the normal distribution of 

observation errors; therefore, LSE is not distributionally robust. We cannot determine that a unique 

robust method is better than other methods since there is no unique criterion related to the robustness. 

The most commonly used estimators in the literature are M-, L-, and R-Estimators [8-9]. M-Estimators 

stand out as the most flexible estimators and considered by many as the most favorable estimator 

group [8]. M-Estimation is the most convenient technique for debugging observations that include 

gross errors. It can be applied for heavy tailed normal distribution. It is assumed that the geodetic data 

follow a normal distribution.  

LSE is a special case of M-Estimation, whose score function is   .



n

1i

2
ii minvPvρ  The 

computational algorithm may follow an iteratively reweighted scheme as mentioned in [10-11] 

although there are other approaches in the literature. 
While  vρ  is a continuous and convex function,     v/vρvψ   is the influence function and 

    v/vψvw   is the robust weight factor which decreases when the absolute of the residual increases. 

The estimation procedure is as follows: 

1-ii wPP   (4)

0vPAT   (5)

  lPAAPAx i
T1

i
T

i


  (6)

lxAv ii   (7)

where P  is the equivalent weight matrix, P is the first weight matrix, w is the robust weight factor, A 

is the design matrix, v is the vector of residuals, x is the vector of the unknown parameters,   is the 

vector of reduced observations, i is the iteration number. In the first iteration, w is taken as the  

unit matrix. 

nn0 Iw   (8)

where n is the number of observations. The iterations are executed until the difference between the 
parameters 1ix   and ix  are negligible. At the end of the sequence of iterations, it is observed that the 

equivalent weights of the outliers become smaller, even reduced to zero. The weights of the normal 

observations either do not change during the iterations or show little change. 

As shown above, the equivalent weight matrix is used to give a decision about whether 

observations are normal or outlying. In obtaining the equivalent weight matrix, a robust weight factor 

is used. The robust weight factors are obtained by comparing the residuals with critical values derived 
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from calculations or given constant values. In order to calculate the critical value, a procedure can be 

applied as follows: 

/2α-1,fiiii0i 0
tPQvvsc   (9)

Here c represents the critical value, 0s  is the a priori standard deviation, Qvv  is the cofactor matrix of 

the residuals, P is the weight matrix of the observations, f is the degree of freedom, 0  is the 

significance level, and t represents the Student distribution. 

The associate critical value is calculated by averaging the critical values calculated for each 

observation as: 

n

c
c

n

1i
i

   (10)

In this study, some of the critical values of the estimations have been calculated and others taken as 
constant values. The weight functions of the M-Estimations used are listed in Table 2. 0s  in Table 2 is 

the a priori standard deviation of the unit weight, and 0i
'
i /svv  , iv~  is the normalized residual which is 

equal to vii /sv . 

 

2.3. Fuzzy Logic Method 

 

In the fuzzy logic approach, the fuzzy set and the statistical test theory are used together. There are 

two important properties of the fuzzy sets used to identify outliers. These are the complementation and 

the intersection properties. At the beginning, a statistical test is applied to the residuals and the 

residuals are classified as ‘normal’ and ‘abnormal’ residuals according to their test statistic [12]. From 

now on, a test will be called “the first test” when the results are presented:  

 
  qtsubsetresidualsNormal:vP

qtsubsetresidualsAbnormal:vF

ii

ii




 

Here ti shows the test statistic and q is the critical value. The membership functions are used to clarify 

the vagueness concerning the residuals having test statistic very close to the critical value. 
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Here  iF vμ  is the membership function related to the subset F, d is the standardization component that 

shows the meaningful deviation magnitude of the test statistic from the critical value [7]. It is 

impossible to state a definite value for d. Therefore, several values have been assigned to this 

component.  

After the definition of the membership values of the residuals, the fuzzy membership relations 

between the observation errors are determined. The membership values of the residuals and the 

redundancy matrix are used to realize this goal. The relation between the residuals and the errors is 

given as follows: 
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ΔPQvvv   (12)
Here, the multiplication PQvv  is equal to the redundancy matrix R, and the equation represents the 

transformation between the residuals and observation errors. In order to obtain the effects of all 

observation errors on a residual, the relative redundancy matrix R
~

 is used. The elements of this matrix 

are obtained as follows: 

   n,1,2,ji,
rmax

r
r

ij
j

ij

ij ~  
(13)

 

Table 2. The weight functions of the M-estimations. 

M-Estimation Weight Function Critical Value 

Andrews 

[13] 

   





0

/cv//cvsin
w ii

i       
cπv

cπv

i

i




 01.5s  - 0s2  

Huber 

[10, 14,15] 











i

i

v

c

1

w        

cv

cv

i

i





 01.5s  - 0s2  

Tukey 

[15] 


























0

c

v
1w

22

i

i        

cv

cv

i

i




 01.5s  - 0s2  

Danish 

[3, 16] 




















1

c

v
exp

w
2

2
i

i         

cv

cv

i

i





 01.5s  - 0s2  

Yang-I 

[17] 




































0

cc

vc

v

c

1

w

2

01

'
i1

'
i

0

i

1

10

0

cv

cvc

cv

'
i

'
i

'
i







 

 

1.5~1.0c0   

3.0~2.5c1   

 

Yang-II 

[18] 



















0

v

c

1

w i

0

i
~       

1i

1i0

0i

cv

cvc

cv







~

~

~

 

 

3.0~2.0c0   

8.5~4.5c1   

 



Sensors 2008, 8  

 

 

7351

where n is the number of observations, ijr  are the elements of the redundancy matrix, and subscript j 

in the lower position is the column number of the element with maximum value of the ith row. The 

rows of the relative redundancy matrix indicate the relative contributions of all observation errors to an 

individual residual, and the columns indicate the relative contribution of an individual error to all 

residuals. 


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
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
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21

22221

11211
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(14)

The set of the gross errors H is defined as the intersection of the set of the errors having the greatest 

effect on the residuals that are most likely abnormal A and the set of the errors having the least effect 

on the residuals that are most likely normal B. The membership value of an observation error in the set 

H is defined as follows: 

μH(Δi)=min (μA(Δi), μB(Δi))          (i = 1, 2, ..., n)  (15)

In order to obtain the membership values of the observation errors in the set A and B, the maximum 

relative contribution of the ith observation error to the residuals that have membership values equal or 

greater than 0.5 in the subset F and P is searched, respectively. Then, this relative value and its 

complementary value are multiplied by the membership value of the corresponding residual as 

follows: 
 ki

wv,...,u,k
ji rmaxr ~~


  (16)

   jFjiiA vμrΔμ  ~  (17)

 ki
zy,...,x,k

mi rmaxr ~~


 (18)

     mPmiiB vμr1.0Δμ  ~  (19)

The membership values of the observation errors in the intersection set H are compared with a 

critical value. This value can be calculated using an arithmetic or weighted mean [7]. 

Let the number of the elements belonging to set H with membership values different from zero be k. 

Now, the critical value CμH can be calculated with an arithmetic mean as: 
    

k

Δμ

k

Δμ
Cμ iHiH

H 


          0Δμ iH     (20)

In the weighted mean method, weights are given to the membership values taking into consideration 

the relative effect of the observation errors in their own set as follows: 
   
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p
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


      

(21)

(22)

After obtaining the observation errors that have membership values greater than the critical value 

CμH, the a priori knowledge about the location of these errors is also obtained. In order to verify this 

determination, a procedure is proposed by [12] as follows: 
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  PHAPAAPAHPHHPss T1TTT 
         (24)

vPHPsss T1         (25)
where mnH   is the location matrix of the gross errors, mmPss   is the weight matrix of the gross errors, 

nnP   is the weight matrix of the observations, unA   is the design matrix, 1nxv  is the vector of the 

residuals, 1ms   is the vector of the gross errors. Here, the indices n and m are the number of all 

observations and the number of the observations that exceed the critical value CμH, respectively. In the 

H matrix, the column element that corresponds to the observation with gross error is taken as 1. 

Consequently, the significance of the estimated gross errors is tested using one of the statistical tests. 

When presenting the results, this will be the last test. 

 

3. Results and Discussion 

 

3.1. Experiments and Analyses 

 

In this study, three GPS networks (see Figure 1) have been evaluated to examine outliers using 

different methods. In order to focus only on the networks and not on the external constraints a free 

adjustment strategy has been applied. The properties of the networks are listed in Table 3. Various 
calculation techniques can be used to compute the a priori standard deviation of the unit weight ( 0s ).  

 

Table 3. Properties of the GPS networks. 

Information about networks 1st Network     2nd Network     3rd Network

Number of the points 8 11 39 

Number of the baselines 15 24 148 

Number of the observations (n) 45315   72324   4443148 
Number of the unknowns (u) 2438   33311   117339   

Datum defect (d) 3 3 3 

Redundant observations (f = n-u+d) 24 42 330 
Number of the triangles ( tn ) 9 20 214 
A priori standard deviation ( 0s ) mm 0.51 0.35 4.36 

 

For instance, one of these techniques uses the loop closures. But, this is not correct in some 

situations. In GPS networks, loop closures are not independent since the same variables are used in 

neighboring closures, and the weights of the loop closures are not equivalent which are not like those 

in triangle closures. GPS baseline components are correlated, i.e. every baseline has a 3x3 block of the 
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weight matrix as given in equation (4). Therefore, a gross error affects all components since weight 

matrix is non-diagonal. At any rate, the fact that GPS baseline components are correlated makes the 

detection of possible outliers a question of further research so as to determine whether the 

corresponding 3D-baseline determination is an outlier as a whole or not. Besides, statistical tests such 

as the -test are not rigorously valid (though widely applied) for the case of correlated observations 
[19]. Since it is crucial to determine 0s , the formula using the median of the absolute values of the 

residuals with weights is more convenient [18]: 

  0.6745/vPmeds ii0          (26)

where “med” denotes median, Pi and vi are the weight and residual of the observation i , respectively. 

After 0s  is obtained, it should not be changed in the iteration steps of the robust estimation.  

Conventional methods have been applied to the three networks with two different significance 

levels of: 0.01, and 0.001. When the significance levels are calculated using equation (3), a value 

smaller than 0.001 is obtained for each network. The smaller the significance level, the less sensitive 

the statistical test to the outliers. In other words, few or no outlier can be determined at small 

significance levels. Therefore, the smallest significance level is taken as 0.001 for all three networks. 

 

3.2. Statistical Tests and Fuzzy Logic Approach for Outlier Detection 

 

In the conventional methods, no outlier has been detected at a significance level of 0.01 for the first 

and second GPS network (Table 4). Hence, the statistical tests have not been applied at a significance 

level of 0.001.  

 

Table 4. Results of the conventional methods for the first and second GPS network. 

 
Statistical 

Test 

Significance 

Level 

Maximum 

Test Statistic 

Critical 

Value 
Outlier 

First GPS 

Network 

Tau 0.01 2.2395 2.4749 - 

DS 0.01 2.0629 2.5808 - 

t 0.01 2.4675 2.8073 - 

Second GPS 

Network 

Tau 0.01 2.3791 2.5190 - 

DS 0.01 1.5319 2.5808 - 

t 0.01 2.3977 2.7012 - 

 

As shown in Table 4, the greatest test statistic of the residuals is smaller than the critical value. As a 

consequence, it is not possible to determine any outlier using the fuzzy logic method since no residual 

has been named an ‘abnormal’ residual in the first test. 

In the conventional methods at a significance level of 0.01, 13 identical observations have been 

determined as outliers with Tau and the t test for the third GPS network. In DS, there are only two 
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outlying observations as shown in Table 5. In addition, at a significance level of 0.001, DS detected 

only one observation. The Tau and t tests indicate two outliers that are the same as the results of DS at 

a significance level of 0.01. 

 

Table 5 Results of the conventional methods for the third GPS network. 

Statistical Test / Significance Level Iteration Maximum Test Statistic Critical Value Outlier Number Outlier

Tau 1 4.0925 2.5687 330 ΔZ33-21 
(0.01) 2 3.9428 2.5687 139 ΔX21-7 

 3 3.0511 2.5686 360 ΔZ35-17 

 4 3.0559 2.5685 80 ΔY17-12 

 5 3.3140 2.5684 41 ΔY12-11 

 6 3.1411 2.5684 7 ΔX4-3 

 7 3.0854 2.5683 128 ΔY20-6 

 8 3.3530 2.5682 290 ΔY31-20 

 9 3.3194 2.5682 146 ΔY21-20 

 10 3.0014 2.5681 123 ΔZ20-8 

 11 2.6804 2.5680 265 ΔX30-3 

 12 2.6504 2.5679 89 ΔY17-15 

 13 2.8887 2.5678 83 ΔY17-13 

 14 2.5481 2.5678 - - 

DS 1 4.5172 2.5808 330 ΔZ33-21 

(0.01) 2 2.8159 2.5808 139 ΔX21-7 

 3 2.1159 2.5808 - - 

t 1 4.2327 2.5909 330 ΔZ33-21 

(0.01) 2 3.9380 2.5910 139 ΔX21-7 

 3 3.1355 2.5911 360 ΔZ35-17 

 4 3.0966 2.5913 7 ΔX4-3 

 5 3.1360 2.5914 80 ΔY17-12 

 6 3.4402 2.5916 41 ΔY12-11 

 7 3.1186 2.5917 128 ΔY20-6 

 8 3.4185 2.5919 290 ΔY31-20 

 9 3.3846 2.5920 146 ΔY21-20 

 10 3.0328 2.5922 123 ΔZ20-8 

 11 2.7204 2.5924 265 ΔX30-3 

 12 2.6503 2.5925 89 ΔY17-15 

 13 2.8863 2.5927 83 ΔY17-13 

 14 2.5693 2.5929 - - 

Tau 1 4.0925 3.2710 330 ΔZ33-21 

(0.001) 2 3.9428 3.2709 139 ΔX21-7 

 3 3.0511 3.2707 - - 

DS 1 4.5172 3.3003 330 ΔZ33-21 

(0.001) 2 2.8159 3.3003 - - 

t 1 4.2327 3.3203 330 ΔZ33-21 

(0.001) 2 3.9380 3.3206 139 ΔX21-7 

 3 3.1355 3.3209 - - 
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In order to see the changes in the results of the fuzzy logic method, the components of this method 

have been used alternately. The different applications of the fuzzy logic method are shown in Table 6. 

Here, the Tau test was applied to the observations at the beginning and at the end. Unlike the first two 

GPS networks, it was possible to separate the residuals as ‘normal’ and ‘abnormal’ in the third GPS 

network. So it has been possible to execute the fuzzy logic method. When attention is paid to the 

results, it can be seen that they are quite compatible with the results of the conventional methods.  

 

Table 6. Results of the fuzzy logic method for the third GPS network. 

FT/ SL SC CM and CV Initial Outliers LT/ SL Outliers 

Tau 0.1 AM  0.6893 ΔY17-12, ΔY20-6, ΔX21-7, ΔZ21-7, ΔX33-21, ΔZ33-21 Tau ΔY17-12, ΔY20-6, ΔZ33-21 

(0.01) 0.1 WM  0.6762 ΔY17-12, ΔY20-6, ΔX21-7, ΔZ21-7, ΔX33-21, ΔZ33-21 (0.01) ΔY17-12, ΔY20-6, ΔZ33-21 

 0.05 AM  0.7073 ΔY17-12, ΔY20-6, ΔX21-7, ΔZ21-7, ΔZ33-21  ΔY17-12, ΔY20-6, ΔZ33-21 

 0.05 WM  0.6913 ΔY17-12, ΔY20-6, ΔX21-7, ΔZ21-7, ΔX33-21, ΔZ33-21  ΔY17-12, ΔY20-6, ΔZ33-21 

 0.01 AM  0.6893 ΔY17-12, ΔY20-6, ΔX21-7, ΔZ21-7, ΔX33-21, ΔZ33-21  ΔY17-12, ΔY20-6, ΔZ33-21 

 0.01 WM 0.6649 ΔY17-12, ΔY20-6, ΔX21-7, ΔZ21-7, ΔX33-21, ΔZ33-21  ΔY17-12, ΔY20-6, ΔZ33-21 

      

Tau 0.1 AM  0.7346 ΔZ33-21 Tau ΔZ33-21 

(0.001) 0.1 WM  0.7346 ΔZ33-21 (0.001) ΔZ33-21 

 0.05 AM  0.7346 ΔZ33-21  ΔZ33-21 

 0.05 WM  0.7346 ΔZ33-21  ΔZ33-21 

 0.01 AM  0.7451 ΔX21-7  ΔX21-7 

 0.01 WM 0.7449 ΔX21-7  ΔX21-7 

  

The abbreviations used in Table 6 are as follows: 

FT : First test 

SL : Significance level 

SC : Standardization component of the membership function 

CM : Calculation method of the critical value (CμH) 

CV : Critical value 

AM : Arithmetic mean 

WM : Weighted mean 

LT : Last test 
 

3.3. Comparison of Some Robust Estimators 

 

We followed only the iteratively reweighted least squares scheme. In robust methods, the critical 
value has been calculated from equations (9) and (10), and the constant value given is 0s2  except for 

Yang-I and Yang-II M-Estimations. As shown in Table 2, the weight functions of Yang-I and Yang-II 

M-Estimation methods are derived differently. The robust methods with constant critical values are 

denoted with a superscript star in Table 7. 
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After applying the robust estimators to the three GPS networks, it has been seen that Danish and 

Huber methods yield similar results reducing the weights of the suspicious observations during the 

iterations. Tukey, Andrews, and Yang-I M-Estimations resemble each other reducing the weights to 

zero. On the other hand, the Yang-II M-Estimation is the method yielding the results that best fit with 

the statistical test methods and fuzzy logic approach. The methods except for Yang-II M-Estimation 

produce much more outlying observations when compared with the statistical tests. 

 

Table 7. Results of the Robust Estimators for the First GPS Network. 

O
b

se
rv

at
io

n
 

Robust Estimations 

c=1.89 mm (calculated)            c*=1.02 mm (constant) 

Danish Huber Tukey Andrews Yang-I Yang-II Danish* Huber* Tukey* Andrews* 

ΔZ3-2           

ΔX3-1           

ΔY3-1           

ΔX4-3           

ΔY4-3           

ΔZ4-3           

ΔZ5-4           

ΔY6-5           

ΔZ6-5           

ΔX6-3           

ΔY6-3           

ΔZ6-3           

ΔY7-1           

ΔX7-6           

ΔY7-6           

ΔZ7-6           

ΔY8-7           

ΔZ8-7           

 

Table 7 has been arranged to compare the results of the robust estimations. The performances of 

different robust estimations in the first GPS network coincide with those in the second and the third 

GPS networks; therefore, as a representative, Table 7 contains only the results for the first GPS 

network. In Table 7, the constant and calculated critical values, and the observations whose weights 

change in iterations are given in Table 7. 
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4. Conclusions 

 

In this study, it has been seen that it is appropriate to apply conventional detection tests at a 

significance level of 0.001 in GPS networks. Using equation (3), a value was obtained that was smaller 

than 0.001 for the three networks. But if the conventional methods are used at very small significance 

levels, these methods tend to mask the outliers. On the other hand, at greater significance level such as 

0.01, more outliers appear to exist in the networks. So, the significance level can be selected as 0.001 

in GPS networks that have too many observations. In the first and second GPS networks, there 

appeared no outliers at any significance level. The opportunity to compare various conventional 

methods has been taken within the third GPS network. The t and Tau tests indicate the same results at 

different significance levels. One can be substituted for the other one. DS is different from these two 

tests and denotes few outliers. This behavior of DS is related to the a priori variance of the networks. If 

this a priori value is calculated from equation (26), it is more appropriate to apply DS to the networks 

instead of other conventional methods. 

 In the fuzzy logic method, statistical tests have an important effect on the results. When compared 

with the conventional methods, few outliers are visible with the fuzzy logic method since outliers 

maintain their effects on the adjustment model throughout the iterations in the conventional methods. 

Unlike the conventional methods, no observation is removed from the network and the shape of the 

network is kept to the end in the fuzzy logic method. This characteristic can be seen as an advantage. 

However, the abundance of the parameters used in this method makes it difficult to use this method as 

commonly as the conventional methods. In this study, it has been seen that if appropriate values can be 

given to these parameters, the results are more reliable than the conventional methods. Even if the 

statistical tests are applied at greater significance level, a more reliable decision can be given about the 

outliers than the conventional methods. 

 In robust estimation computed as the iteratively reweighted least squares scheme, it is crucial to 

determine the critical value that is used by the weight functions. In this study, this critical value is both 

taken as constant and calculated in applying the robust estimators to the GPS networks. Danish method 

and Huber M-Estimation usually reduce the weights of the suspicious observations, whereas Tukey, 

Andrews, and Yang-I M-Estimations tend to make the weights zero. These methods may show similar 

results with the conventional methods that have great significance levels. But, it has been observed in 

this study that it is not appropriate to choose great significance levels in the GPS networks with many 

redundant observations. All the robust methods except for Yang-II M-Estimation produce more 

outlying observations than determined by the conventional statistical test methods. The Yang-II M-

Estimation is compatible with the conventional methods that have small significance levels and the 

fuzzy logic method. 

Since GPS baseline components are correlated, a gross error in one component also affects the other 

components. Therefore, the detection of possible outliers is a question of further research so as to 

determine whether the corresponding 3D-baseline determination is an outlier as a whole or not. 

Besides, statistical tests such as the -test are not rigorously valid for the case of correlated 

observations. 
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