
Research Article

Advances in Mechanical Engineering
2018, Vol. 10(1) 1–12
� The Author(s) 2018
DOI: 10.1177/1687814017753912
journals.sagepub.com/home/ade

A mathematical model and simulated
annealing algorithm for solving the
cyclic scheduling problem of a flexible
robotic cell

Mazyar Ghadiri Nejad1, Hüseyin Güden1, Béla Vizvári1 and Reza
Vatankhah Barenji2

Abstract
Flexible robotic cells are used to produce standardized items at a high production speed. In this study, the scheduling
problem of a flexible robotic cell is considered. Machines are identical and parallel. In the cell, there is an input and an
output buffer, wherein the unprocessed and the finished items are kept, respectively. There is a robot performing the
loading/unloading operations of the machines and transporting the items. The system repeats a cycle in its long run. It is
assumed that each machine processes one part in each cycle. The cycle time depends on the order of the actions.
Therefore, determining the order of the actions to minimize the cycle time is an optimization problem. A new mathe-
matical model is presented to solve the problem, and as an alternative, a simulated annealing algorithm is developed for
large-size problems. In the simulated annealing algorithm, the objective function value of a given solution is computed by
solving a linear programming model which is the first case in the literature to the best of our knowledge. Several numeri-
cal examples are solved using the proposed methods, and their performances are evaluated.

Keywords
Flexible manufacturing, robotic cell, cyclic scheduling, meta-heuristics

Date received: 31 July 2017; accepted: 14 December 2017

Handling Editor: Chenguang Yang

Introduction

Cell manufacturing indicates a connective system
among product-oriented and process-oriented systems.
Using a robot in such cells helps to produce standar-
dized items at a high production speed.1 A cell with a
number of computer numerical control (CNC) machines
and a robot is called flexible robotic cell (FRC).2 In
FRCs, the CNC machines perform manufacturing pro-
cesses, and the robot transports the items from the
input buffer to the machines, loads/unloads the CNC
machines, and transports the items to the output buf-
fer.3 The same group of processes is performed on all
the CNC machines. Hence, each item is processed only
on one machine. The considered system repeats a cycle

in its long run. If the system is in a specific state at the
beginning of a cycle, it reaches the same state at the end
of the cycle and then repeats the same actions in the
same order in the subsequent cycles. The duration of a
cycle is called cycle time. Each machine processes one

1Department of Industrial Engineering, Eastern Mediterranean University,

Famagusta, Turkey
2Department of Industrial Engineering, Hacettepe University, Ankara,

Turkey

Corresponding author:

Mazyar Ghadiri Nejad, Department of Industrial Engineering, Eastern

Mediterranean University, Famagusta, Mersin 10, TRNC, 99628, Turkey.

Email: Mazyar.nejad@emu.edu.tr

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).

https://doi.dox.org/10.1177/1687814017753912
https://journals.sagepub.com/home/ade
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1687814017753912&domain=pdf&date_stamp=2018-01-22


part in each cycle. Decreasing the cycle time in such a
system means increasing the production rate. The cycle
time depends on the order of the actions. Thus, deter-
mining the order of the actions to minimize the cycle
time is an optimization problem.

A thorough review of inflexiable robotic cell sche-
duling problem with single and multiple robots includ-
ing a single and dual gripper can be found in the survey
by Dawande et al.4 Gultekin et al.5 suggested a new
cycle for FRC that performs better in comparison to
the classical robot move cycles for two-machine cells.
Moreover, they showed that a robot-centered layout
reduces the cycle time compared to an in-line layout
and found an optimal number of machines to minimize
the cycle time of m-machine cells. In another study,
Gultekin et al.6 presented a mathematical formulation
to determine the minimum cycle time for a parallel
machine cell. Jolai et al.7 studied an FRC scheduling
problem with identical part types, machines are flexible
and able to swap. They determined all one-unit cycle
times and proposed a new sequence of robot move-
ments that dominates all robot move cycles. Yildiz
et al.8 proposed two pure cycles and showed that these
two cycles jointly dominate all other pure cycles for a
broad range of the process times. They also presented
the worst case for minimizing the cycle time. Foumani
and Jenab9 developed one-unit cycles for line layout
robotic cells and presented a robot move sequence that
minimizes the cycle time. They also introduced the
optimality regions when all parts met the first machine
twice and determined the optimality conditions for dif-
ferent cycles when each part meets both machines twice.
They carried out the sensitivity analysis for both cases
and suggested the best and the worst cycles mathemati-
cally. Foumani and Jenab10 extended their research to
m-unit pure cycles when the robot is able to swap. They
presented a lower bound and introduced a pure cycle
that always dominates the others. Jiang et al.11 applied
two heuristics to minimize the makespan of a job sche-
duling problem. They considered a two-machine system
where the machines are parallel and identical, and the
machines are loaded/unloaded by a server. Gultekin
et al.12 studied on an FRC in which a dual-gripper
robot serves the machines. They considered a two-
machine FRC and found five feasible pure cycles to
maximize the throughput rate. Foumani et al.13 focused
on maximizing the throughput rate of FRC problems
including multi-function robotic cells, and in another
study, they considered the scheduling problem of n-unit
production in the FRC and found that one-unit cycles
dominate the rest. Furthermore, they considered an
FRC including two machines with three different sce-
narios of inspections including in-process and post-
process inspection, the cell with a multi-function robot,
and the linear layout FRC.14 They extended their stud-
ies on two-machine FRCs considering different pick-up

scenarios. They converted a multiple sensor system to a
single sensor and found the cycle times based on a geo-
metric distribution.15

Recently, simulated annealing algorithm (SAA) is
used to solve a wide range of optimization problems.
SAA is prominence from high solution performance,
fine results in short times among meta-heuristics
approach. In the literature, the SAA has been used for
solving the traveling salesman problem (TSP),16 the
location-routing problem,17 the emergency logistics
problem,18 the assembly line balancing problem,19,20

disassembly scheduling problem,21 the production and
preventive maintenance problem,22 the flow shop sche-
duling problem,23 the clustering problem,24 the facility
layout problem,25 the cell formation problem,26 for dis-
tributed job shop problem,27 and so on.

In the literature, some researchers employed TSP
approaches for modeling scheduling problem of the
FRC with m-machine and a robot. As examples,
Foumani et al.28 formulated the FRC problem includ-
ing a multi-function robot, as a TSP aimed to minimize
the cycle time or to maximize the production rate.
Additionally, to calculate the productivity of the cell,
they found the lower bound for the objective function
considering the both uphill and downhill permutations.
Gultekin et al.6 developed a mathematical model for
the scheduling problem of FRC considering fixed pro-
cess time for the machines using TSP’s Miller–Tucker–
Zemlin (MTZ) method and expressed that the problem
is non-deterministic polynomial-time (NP)-hard. They
used CPLEX 9.0 and reported some evidence for sol-
ving the problem considering four, five and six
machines in the cell. Similar to any other type of NP-
hard problems, computational time for solving the
problem exponentially rises in case the number of the
machines in the cell is increased.29 Using twenty ran-
dom inputs, they concluded that the computational
time for the cell with four-machine is 7.72, for the five-
machine case is 1866.7 and with only a single run for a
six-machine case, it needs 805,184.4 s to solve the prob-
lem. They did not use any meta-heuristic algorithm for
solving large-sized problems. In their model, they faced
with a non-linear constraint (i.e. constraint 4) and in
order to propose a linear model, they defined a new
auxiliary variable, namely, YlUj and six extra liner con-
straints (i.e. constraints 9–14) to convert the non-linear
model to a linear one. YlUj and its related constraints
have a notable adverse effect on computational time
(performance) of the model especially for the FRC with
more machines. These issues motivated the authors to
model the problem using other exist TSP based model-
ing approaches along with considering variable process
time for the machines. Since, the scheduling is more
vital and complicated for the cells with short process
time in the machines or for the cells with a busy robot
(the machines have idle time, and robot activity order

2 Advances in Mechanical Engineering



determine the cycle time), and also aiming to employ
fewer number of variables and constraint in the model,
‘‘Network Flow’’ modeling approach is used.30 For sol-
ving the scheduling problem of large-size cells a more
feasible model from computational time points of view
is needed. In addition, the use of a powerful meta-
heuristic algorithm from time complexity, space com-
plexity, the advantages and disadvantages of the calcu-
lation results is essential.

In this article, TSP’s ‘‘Network Flow’’ modeling
approach is used to model the scheduling problem of
FRC with m-machine. Moreover, SAA is examined to
solve the large-size problem in the model. For doing
this, first, a new mathematical model for the scheduling
problem is proposed; next, for justification of the pro-
posed model, the developed model and an existing
model in the literature are solved by CPLEX under
normalized conditions, and the results are compared.
Finally, SAA is used to solve the large-sized problem
and performances of the proposed approach using sev-
eral numerical instances.

The considered problem is defined and formulated
in section ‘‘Problem definition and formulation.’’
Section ‘‘The developed SAA’’ describes the proposed
SAA. Section ‘‘Experimental results’’ includes
experimental results about the performance of the
proposed methods. The study is concluded in section
‘‘Conclusion.’’

Problem definition and formulation

A schematic of an FRC can be seen in Figure 1. Let
the number of the machines in the considered FRC-
explained in the introduction be m. The process time of
a part on a machine is p. (In the rest of the article, the
machines are assumed to be identical. Thus, they have
the same process time p. In the case of non-identical
machines, instead of using p for all machines, using pi
for machine i as the process time of machine i will be
enough to modify all the presented methods.) The
robot performs all loading/unloading activities and

transports all parts inside the cell. The loading activity
of machine i (Li) consists of picking, transferring, and
loading a part from the input buffer to the machine i.
Similarly, the unloading activity of machine i (Ui)
includes getting the processed part from machine i, and
transferring and putting it into the output buffer. Note
that the robot stays beside of machine i at the end of Li

and beside of the output buffer at the end of any
unloading activity. A cycle time is a duration spanning
from the starting of the system from a specific state
and returning to the same state. In order to start such a
cyclic production, the system needs a setup. Each
machine may be loaded or emptied at the beginning of
the cycle. During a cycle, each machine must be loaded
and unloaded once. Let L is the set of loading activi-
ties, U is the set of unloading activities, and A is the set
of all loading and unloading activities.

Let e be the loading/unloading time for each
machine and each buffer and d be the robot travel time
between the input buffer and the first machine, between
two consecutive machines, and between the last
machine and the output buffer. dab in the following for-
mula gives the certain time needed between the comple-
tion times of activities a and b for the robot’s
operations such as taking part, moving, and putting the
part when activity b follows activity a, that is, dab is not
related with the process times on the machines

dab =

2e+(i+j)d if a= Li and b= Lj

2e+ 2(m+1�j)d if a=Ui and b=Uj

2e+(m+1+j)d if a=Ui and b= Lj

2e+(ji�jj+m+1�j)d if a= Li and b=Uj, i 6¼ j

8>><
>>:

When the process times on the machines are consid-
ered, some uncertain amount of waiting time for the
robot can be needed. Let’s consider machine i and its
loading activity Li and unloading activity Ui. At the
completion time of Li, the machine starts its operation
and finishes it after p time unit. Then, the robot may
start unloading this part. During the unloading

Figure 1. m-machine flexible robotic cell.

Ghadiri Nejad et al. 3



operation, the robot takes part from machine i (it takes
e time units), moves to the output buffer (it takes
((m+ 1� i)d) time units) and puts the part into the
output buffer (it takes e time units). Thus, the time
between the completion of Li and Ui must be at least
(2e+(m+ 1� i)d+ p). There may be several other
activities between Li and Ui, and the total time for per-
forming those activities may not be big enough to com-
plete the process on machine i. In such a case the robot
must wait for the end of the process on machine i. The
waiting times depend on the order of the activities.
Note that dab does not contain this uncertain amount
of waiting time.

Since the robot performs the same order of activities
in a cycle, to prevent permutation and have a fixed
cycle, we consider L1 as the first activity. Thus, the time
from L1 to the next L1 is the cycle time (T), and the
problem is to determine the order of all loading and
unloading activities to minimize T. Decision variables

xab =

1 if activity b is performed after activity a by the robot

0 otherwise

�

tab: the completion time of activity b when it is per-
formed just after activity a, it is zero if activity b is not
performed just after activity a; wab: the time that the
robot waits before starting activity b when it is per-
formed just after activity a, it is zero if activity b is not
performed just after activity a

zi =
1 if Li is performed before Ui for machine i

0 otherwise

�

min
X

a2A�L1

taL1

ð1Þ

s:t:X
a2A�fbg

xab = 1 8b 2 A ð2Þ

X
b2A�fag

xab = 1 8a 2 A ð3Þ

tab�Mxab 8a 6¼ b 2 A ð4Þ

wab� pxab 8a 6¼ b 2 A ð5Þ
X

b2A�fag
tab =

X
k2A�fag

tka +
X

b2A�fag
wab

+
X

b2A�fag
dabxab 8a 2 A� L1 ð6Þ

X
a2A�fL1g

tL1a =
X

a2A�fL1g
wL1a +

X
a2A�fL1g

dL1axL1a ð7Þ

X
a2A�fUig

taUi
�

X
a2A�fLig

taLi
�Mzi i= 2, . . . ,m ð8Þ

X
a2A�fUig

taUi
�

X
a2A�fLig

taLi
+ p+ 2e+ m� i+ 1ð Þdð Þ

�M 1� zið Þ i= 2, . . . ,m ð9ÞX
a2A�fLig

taLi
�

X
a2A�fUig

taUi
+

X
a2A�fL1g

taL1

� p+ 2e+ m� i+ 1ð Þdð Þ 1� zið Þ i= 2, . . . ,m ð10ÞX
a2A�fU1g

taU1
� p+ 2e+md ð11Þ

tab,wab � 0 8a 6¼ b 2 A ð12Þ

zi 2 0, 1f g zi 2 0, 1f g ð13Þ

xab 2 0, 1f g 8a 6¼ b 2 A ð14Þ

The objective is to minimize the cycle time, which is
the time that the robot performs L1 after the last activ-
ity. Note that the cycle starts at the time that L1 is com-
pleted. That time is considered as time zero. During the
cycle, all the activities, including L1, must be com-
pleted. So, the end of a cycle is the completion time of
L1, which is also the beginning of the next cycle. By
constraints (2) and (3), it is guaranteed that the robot
performs all the activities. It passes from one activity to
another activity. Constraints (4) and (5) fix tab and wab

variables to zero if the robot does not perform activity
b just after activity a. If activity b is performed just
after activity a, then xab is 1 and the corresponding tab
and wab variables are allowed to be positive by con-
straints (4) and (5). Note that the waiting time for
unloading a part cannot be more than the process time.
Because of this in constraint (5), p is used as the coeffi-
cient of xab instead of a big number M. Constraint (6)
is the balance constraint. The completion time of an
activity equals to the completion time of the previous
activity plus the robot operation times between these
two successive activities and plus the waiting time
before performing the later activity. Constraint (7) is
the balance constraint for L1. Constraints (8), (9), and
(10), together, guaranteed to have enough time between
a load of a part and unload of it for finishing its pro-
cess. Constraint (11) does the same thing for the part
processed on the first machine.

The developed SAA

In the attempts of solving the problem using the mathe-
matical models, it is seen that the solution time
increases very rapidly when the number of the machines
increases, and mathematical model based exact solution
methods fails to solve the problems. The SAA is a well-
known and efficient meta-heuristic approach. It runs
using a single solution at a time, hence does not cause

4 Advances in Mechanical Engineering



memory shortage problems for even very large-size
problem instances. Moreover, it produces a feasible
neighboring solution and does not need a repair algo-
rithm, which may lead to highly diversified solutions
and deteriorates intensification. Therefore, especially in
order to solve large-size problems, an SAA is devel-
oped. The method starts with an initial solution which
is constructed by any constructive algorithm. At any
iteration, the algorithm generates a neighboring candi-
date solution by making a randomly chosen small
change on the current solution. If the candidate solu-
tion is better than the current one, the candidate solu-
tion is adopted as the new current solution. However, if
the candidate solution turns out to be worse than the
current solution, the algorithm may either adopt the
candidate solution as the next current solution with
some acceptance probability or reject it. By giving a
chance to move to inferior solutions, the algorithm
obtains some capability for escaping from the local
minimums. The function that gives an acceptance prob-
ability of a bad solution is

EXP � F candidate solution½ � � F current solution½ �ð Þ=Tð Þ
ð15Þ

where F is the evaluation function, and T is the control
parameter of the algorithm called temperature. The
probability of accepting an inferior solution decreases
if the difference between the current solution and an
inferior candidate solution increases, or the tempera-
ture drops. At the beginning of the algorithm, the value
of temperature is higher, and it falls during the search
according to a function known as the cooling schedule
that provides intensification over time. Because of the
higher value of temperature, initially the algorithm
searches the space roughly; however, because of the
cooling effect over time, it focuses on some good solu-
tion regions. The algorithm stops when a termination
criterion is satisfied. Either the number of iterations or
the running time or the final value of the control para-
meter T can be used as the termination criterion. The
details of the developed algorithm are given in the fol-
lowing sections.

Representation

A solution is presented by an array having 2m elements
in which the numbers of 1 to m correspond to the load-
ing of the first machine to the mth machine, and the
numbers of m + 1 to 2m correspond to the unloading
of the first machine to the mth machine, respectively.
To prevent permutations, the first element of each array
is always 1. For example, L1L3L4U2U3U1U4L2 order for
a four-machine is presented in Figure 2.

Initial solution

After some preliminary experiments and testing differ-
ent policies, it is decided to generate the initial solutions,
randomly. Number 1 is fixed to the first order and then
each of the remaining numbers up to 2m assigned to an
empty order, randomly. Generating random solutions
helps to start from different initial solutions in each run
that avoid entrapment in local optima.

Computing cycle time for a given solution

All of the parameters, except waiting times, are easy to
compute for finding the objective value of a given solu-
tion (an order of the activities). Let’s consider a four-
machine case where e= 1, d= 2, and p=80, and the
L1L3L4U2U3U1L2U4 order for this case. The times
needed for performing the robot operations, such as
loading, unloading, and transportation, between the
successive activities in this order can easily be computed
by the dab formula. For example, dL1L3 is 2e+ 4d= 10.
Similarly, times between L3L4, L4U2, U2U3, U3U1, U1L2,
L2U4, and U4L1 are calculated as 16, 12, 10, 18, 16, 8,
and 14, respectively.

However, as it is explained in section ‘‘The devel-
oped SAA,’’ if the robot turns to a machine for unload-
ing the part earlier than its completion, it should wait.
The robot may wait before each of the unloading activ-
ities, and these waiting times are not so trivial to com-
pute. Let wi be the waiting time before performing Ui.
Note that these waiting times may be zero. Then, the
updated times between the completions of the succes-
sive activities in the given order are 10 for L1L3, 16 for
L3L4, (12 + w2) for L4U2, (10 + w3) for U2U3,
(18 + w1) for U3U1, 16 for U1L2, (8 + w4) for L2U4

and finally 14 for U4L1. Thus, the cycle time for this
order is CT = 10+ 16+ 12+ 10+ 18+ 16+ 8+
14+w1 +w2 +w3 +w4 = 104+w1 +w2 +w3 +w4.

As it is explained in section ‘‘The developed SAA,’’
the time between the completions of Li and Ui must be
at least (2e+(m+ 1� i)d+ p) for machine i. When we
consider the above-given order, the robot performs the
first L1 and then L3, L4, U2, U3 and then U1. Hence, the
total time between the completions of L1 and U1 is
10 + 16 + (12 + w2) + (10 + w3) + (18 + w1)=
66 + w1 + w2 + w3. This time should be at least
(2e+(m+ 1� 1)d+ p)= 90. Therefore, on w1, w2,
and w3, we have the following condition

Figure 2. Representation of L1L3L4U2U3U1U4L2 order for a
four-machine FRC.

Ghadiri Nejad et al. 5



66+w1 +w2 +w3 � (2e+(m+ 1� 1)d+ p)

) w1 +w2 +w3 � 24 ð16Þ

When we consider machine 2, U2 is earlier than L2

in the given order. So, a part is loaded to machine 2 in
a cycle, and it is unloaded in the following cycle. It is
shown in Figure 3.

The time between L2 and U2 is then (8 + w4) + 14
+ 10 + 16 + (12 + w2)=60 + w2 + w4. This time
should be at least (2e+(m+ 1� 2)d+ p)= 88. Then,
we have the condition

60+w2 +w4 � (2e+(m+ 1� 2)d+ p)

) w2 +w4 � 28 ð17Þ

Considering machines 3 and 4, the following condi-
tions are obtained, respectively

38+w2 +w3 � (2e+(m+ 1� 3)d+ p)

) w2 +w3 � 48 ð18Þ

64+w1 +w2 +w3 +w4 � (2e+(m+ 1� 4)d+ p)

) w1 +w2 +w3 +w4 � 20 ð19Þ

Consequently, the cycle time for the given order is
CT=104 + w1 + w2 + w3 + w4, and in order to
find the minimum CT, the values of w1, w2, w3, and w4

must be determined considering the above conditions
on them. This can be done by solving the following lin-
ear programming (LP) model

minCT = 104+w1 +w2 +w3 +w4 ð20Þ

s:t:

w1 +w2 +w3 � 24
ð21Þ

w2 +w4 � 28 ð22Þ

w2 +w3 � 48 ð23Þ

w1 +w2 +w3 +w4 � 20 ð24Þ

w1,w2,w3,w4 � 0 ð25Þ

The objective function values of the created orders
in the developed SAA are computed by solving such LP
models.

Generating candidate solutions

Shift, swap, and reverse operators are used to generate
neighboring solutions of the current solution. By the
shift operator, the order of a randomly selected activity
is changed randomly when the order of the other activi-
ties remained the same. Using the swap operator, two
activities are chosen randomly, and only their orders
are replaced with each other. In the reverse operator
similar to the swap operator, two activities are ran-
domly selected. Then, these two activities and all of the
activities between these two activities are reversed.
Figure 4 gives examples for each of these mechanisms.

In each iteration of the developed SAA, three new
solutions are generated from the current solution using
each of the shift, swap, and reverse operators. The
objective function of each is computed, and the best of
these three new solutions is selected as the generated
candidate neighboring solution. This solution is
adopted as the next current solution if it is better than
the current solution or it is accepted using the accep-
tance probability function.

Cooling

The geometric cooling, which is the most common cool-
ing method, is applied. According to this method, the
developed SAA starts its search at an initial tempera-
ture. Then, after each iteration, a certain percent of T is
counted as the value of T for the next iteration, that is,
T=a*T where 0\ a \ 1.

Stopping criterion

A limit on the solution time is used as the stopping cri-
terion. The starting time is kept, and the total time from
the starting time to the current time is computed after
each iteration. When it exceeds the limit, the search is
stopped.

Figure 3. The time from L2 to U2 for the order
L1L3L4U2U3U1L2U4.

Figure 4. Examples of neighboring solution generating operators:
(a) shift operator, (b) swap operator, and (c) reverse operator.

6 Advances in Mechanical Engineering



The pseudocode of the developed SAA

The pseudocode of the developed SAA is given below.

Experimental results

The performances of the proposed methods are evalu-
ated on several problem instances. In these experi-
ments, an Intel� Core� i5-3320 CPU at 2.60GHz with
a RAM of 4.0GB computer is used for the runs.

Justification of the proposed mathematical model by
an exist reference model

The proposed mathematical model is compared with
the model presented in Jiang et al.11 Both models have

been coded in CPLEX 12.6 software. Table 1 shows
the related results, and Figures 5–7 display the solution
times of the models. In the test instances, e and d are 1
and 2 time units, respectively.

According to the results in Table 1 and Figures 5–7,
the model proposed in this study solves the problem in
a shorter time than the model reported in reference.
The solution time of the reference model increases rap-
idly when the number of the machines increases. The
proposed model solves the problem in a concise time
when the process time is small. However, much longer
times are needed to solve these cases using the other

Step 0 Set values of the parameters T, Time Limit, a, m, p, e, and d. Record the time: Tstart.
Step 1: Generate the Initial Solution.

Current Solution = Initial Solution. Best Solution = Current Solution.
Step 2: Compute the cycle time of the Current Solution: F[Current Solution].

F[Best Solution] = F[Current Solution]
Step 3: (a) Generate a neighboring solution of the current solution using the swap mechanism.

(b) Generate a neighboring solution of the current solution using the shift mechanism.
(c) Generate a neighboring solution of the current solution using the reverse mechanism.
(d) Compute the cycle time of these neighboring solutions and select the best of them as the candidate solution.

Step 4: If
F[Candidate Solution]\F[Current Solution] or
Rand(0,1)\Exp(-(F[Candidate Solution]-F[Current Solution])/T)
then
Current Solution = Candidate Solution and
F[Current Solution] = F[Candidate Solution]

Step 5: If
F[Current Solution]\F[Best Solution]
then
Best Solution = Current Solution and
F[Best Solution] = F[Current Solution]

Step 6: Record the current time: Tnow.
If the duration from Tstart to Tnow is more than Time Limit, then STOP and present the Best Solution, otherwise T = a*T
and go to Step 3.

Table 1. Results for the mathematical models.

P Solution times for four-machine FRC (s) Solution times for five-machine FRC (s) Solution times for six-machine FRC (s)

Optimal
cycle time

Referenced
model

Proposed Optimal
cycle time

Referenced
model

Proposed Optimal
cycle time

Referenced
model

Proposed

0 96 1.71 0.09 140 133.32 0.07 192 23,311.81 0.09
25 96 2.43 0.15 140 181.04 0.23 192 240,94.56 0.21
50 96 2.85 0.23 140 101.71 0.21 192 18,434.19 0.29
75 99 1.76 0.59 140 105.16 0.28 192 18,536.08 0.35
100 124 2.18 0.75 140 64.61 4.62 192 9586.02 0.32
125 149 2.01 1.06 153 26.26 31.03 192 5408.44 6.48
150 174 2.53 1.32 178 59.62 34.38 192 4053.00 3.71
175 199 1.90 1.21 203 48.48 40.81 207 2415.22 1635.52
200 224 1.64 1.46 228 39.36 32.98 232 1208.37 506.75
225 249 1.90 1.17 253 33.14 31.47 257 636.32 973.65
250 274 1.70 1.34 278 22.64 35.78 282 1552.92 1231.68

FRC: flexible robotic cell.

Ghadiri Nejad et al. 7



model. Considering higher process times, solution times
of the models converge to each other. In these cases,
the solution time of the proposed model increases rap-
idly when the number of the machines increases too. It
should be noted that any of the models could not solve
problem instances having more than six machines in a
cell with high process times.

In Table 1, when the process time is large, the opti-
mal cycle time is larger than the process time by 24; it
is larger by 28 in five-machine cell, and by 32 in six-
machine cell. By analyzing the robot task sequences
derived in experiments, it seems that an optimal cycle
time can be derived from a large number of machines.
In order to validate or deny this claim 10 instances of
FRC problem with four and five machines are solved.
In these examples, the process times of the machines
are different and randomly selected in [1,100] and
[1,300] ranges, where the range of the e and d are ran-
domly selected from the [1,4] and [1,5] intervals, respec-
tively. As shown in Table 2, the resulted cycle time
indicates that the cyclic times are not harmonic, and it
is not predictable from the results of the cell with the
fewer machine for a small and large range of process
time.

Performance of the developed SAA

The performance of the proposed SAA depends on the
values of its parameters, which are the initial value of
T, Time Limit as the stopping criterion, and a. To
determine these values, some experiments are needed.
Since Taguchi method proposes fractional factorial
experiments, it is very effective in parameter setting.31

Based on noise minimization, this method selects the
best level of the parameters. Using the following equa-
tion, the deviation of the response is examined, wherein
Y designates the value of reply, and n characterizes the
number of orthogonal ranges32

S=N = �10ð Þ�log 10 sum Y 2
� �

=n
� �

ð26Þ

For each of initial value of T, Time Limit, and a,
ranges are determined. These ranges are [90–110] for
the initial value of T, [1,5] for Time Limit, and
[0.993,0.997] for a. For each of these parameters, three
different values are used: (1) the lower bound, (2) the
average, and (3) the upper bound of the corresponding
range. Thus, nine different combinations of these val-
ues are tested. In these tests, the developed SAA is used
for solving five different instances which are (4, 75), (6,
150), (8, 250), (10, 500), and (12, 750), where the first
entry shows the number of the machines and the sec-
ond one shows the process time (i.e. (m, p)). For each
of the nine combinations of the parameter values, each
of these five test instances is solved by the proposed
SAA 10 times. The average of the cycle times of the

Figure 5. Solution times of the mathematical models for four-
machine test instances.

Figure 6. Solution times of the mathematical models for five-
machine test instances.

Figure 7. Solution times of the mathematical models for six-
machine test instances.

8 Advances in Mechanical Engineering



best solutions found by these 10 runs recorded and pre-
sented in Table 3.

Then, the S/N ratios are computed using the results in
the last column of Table 3. Figure 8 shows the results of
S/N ratios. According to these ratios, when the initial value
of T is set to its lower bound (which is 90), Time Limit is
set to its upper bound (which is 5min), and a is set to its
upper bound (which is 0.997), the best results are obtained.
Thus, these values are used in the following tests.

First, the performance of the proposed SAA is tested
on the above test instances whose optimal solutions are
found by the mathematical models. Table 4 contains
the cycle times and solution times of all the examined
test problems for four- to six-machine cells found by
the proposed SAA.

According to the results in Table 4 and Figures 9–11,
the proposed SAA found almost all optimal solutions.
Only 6 of the 33 instances could not be solved optimally.
In these instances, the gap between the optimal cycle
times and the best cycle times found by the proposed
SAA is less than 10% of the optimal cycle times. Thus,
it may be concluded that the proposed SAA has a very
good performance and it may be used to find good solu-
tions to larger instances.

Conclusion

Using TSP’s network flow modeling approach, a novel
mathematical model is proposed for solving the cyclic
scheduling problem of FRCs with identical and parallel

Table 2. Results of some problems with various process times.

No. Four-machine FRC Five-machine FRC

P1, P2, P3, P4 e, d Cycle time P1, P2, P3, P4, P5 e, d Cycle time

Range of P: [1,100]; range of e
and d: [1,4]

1 12, 80, 81, 96 4, 4 224 12, 80, 81, 96, 42 4, 4 320
2 9, 94, 67, 47 1, 4 176 9, 94, 67, 47, 35 1, 4 260
3 62, 64, 92, 48 3, 4 208 62, 64, 92, 48, 8 3, 4 300
4 5, 19, 60, 61 2, 2 112 5, 19, 60, 61, 92 2, 2 160
5 69, 10, 51, 7 2, 3 152 69, 10, 51, 7, 22 2, 3 220
6 11, 16, 49, 95 4, 2 144 11, 16, 49, 95, 87 4, 2 200
7 64, 11, 28, 39 1, 3 136 64, 11, 28, 39, 68 1, 3 260
8 7, 52, 25, 63 3, 2 128 7, 52, 25, 63, 76 3, 2 180
9 38, 95, 80, 100 2, 4 192 38, 95, 80, 100, 38 2, 4 280
10 69, 71, 97, 85 3, 1 119 69, 71, 97, 85, 83 3, 1 121

Range of P: [1,300]; range of e
and d: [1,5]

1 135, 114, 190, 142 1, 4 234 135, 114, 190, 142, 83 1, 4 260
2 225, 46, 191, 103 1, 3 259 225, 46, 191, 103, 78 1, 3 265
3 165, 37, 43, 199 1, 2 223 165, 37, 43, 199, 115 1, 2 227
4 131, 111, 176, 187 4, 3 233 131, 111, 176, 187, 293 4, 3 345
5 296, 42, 180, 258 3, 3 338 296, 42, 180, 258, 35 3, 3 344
6 116, 194, 250, 137 2, 5 308 116, 194, 250, 137, 246 2, 5 340
7 19, 247, 81, 278 4, 3 324 19, 247, 81, 278, 33 4, 3 330
8 37, 211, 97, 242 3, 5 304 37, 211, 97, 242, 172 3, 5 360
9 87, 137, 45, 298 1, 3 332 87, 137, 45, 298, 251 1, 3 338
10 40, 281, 247, 45 5, 4 341 40, 281, 247, 45, 213 5, 4 349

FRC: flexible robotic cell.

Table 3. Computational results for tuning SA parameters.

Combination SA parameters Response

Initial T value Time Limit a (4, 75) (6, 150) (8, 250) (10, 500) (12, 750) Sum

1 90 1 0.993 107.2 197.6 325.6 549.6 812.0 1992.0
2 90 3 0.995 107.4 204.8 328.0 550.8 828.4 2019.4
3 90 5 0.997 108.6 197.6 327.2 550.8 806.0 1990.2
4 100 1 0.995 105.6 200.8 324.8 555.6 839.6 2026.4
5 100 3 0.997 107.2 200.8 322.0 557.2 817.2 2004.4
6 100 5 0.993 108.0 205.6 328.0 550.8 815.2 2007.6
7 110 1 0.997 107.6 202.8 326.0 556.0 813.6 2006.0
8 110 3 0.993 107.2 203.6 330.4 553.2 817.2 2011.6
9 110 5 0.995 107.4 202.8 329.6 554.4 828.4 2022.6

SA: simulated annealing.

Ghadiri Nejad et al. 9



Figure 8. S/N ratio plot for SA parameters.

Figure 9. Solution time of the SAA for four-machine test
instances.

Figure 10. Solution time of the SAA for five-machine test
instances.

Table 4. Results of the SAA.

P Four-machine cell Five-machine cell Six-machine cell

Optimal
cycle
time

SAA
cycle
time

SAA
solution
time

Optimal
cycle
time

SAA
cycle
time

SAA
solution
time

Optimal
cycle
time

SAA
cycle
time

SAA
solution
time

0 96 96 0.033 140 140 0.128 192 192 0.134
25 96 96 0.441 140 140 0.405 192 192 0.321
50 96 96 2.043 140 140 1.260 192 192 0.953
75 99 108.6 2.859 140 140 2.319 192 192 2.215
100 124 124 2.257 140 143.2 4.785 192 192 2.269
125 149 149 1.976 153 160.1 2.741 192 192 4.574
150 174 174 2.049 178 178 2.759 192 197.6 6.203
175 199 199 1.462 203 203 4.087 207 222.7 4.684
200 224 224 2.646 228 228 4.559 232 233 5.778
225 249 249 1.974 253 253 3.344 257 257 5.839
250 274 274 2.536 278 278 4.401 282 282 6.328

SAA: simulated annealing algorithm.

10 Advances in Mechanical Engineering



machines which are located on a line. Since the computa-
tion time for solving large-sized problems in the model
was high, an SAA is examined. The numerical experi-
ments show that the proposed mathematical model per-
forms better in comparison with the one existing in the
literature. Solution times by the mathematical models
increases very rapidly when the size of the problem
increases. The proposed SAA finds almost the optimal
solutions of the considered problem instances in afford-
able short times. This approach might be seen in future
studies as a real-time scheduling approach in flexible man-
ufacturing systems. Considering these problems under
uncertainty of each parameter can be regarded as another
future subject. Finally, it is interesting to consider circular
layouts. The cases where machines have buffers with lim-
ited capacity may also be considered for future research.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

References

1. Barenji RV, Barenji AV and Hashemipour M. A multi-

agent RFID-enabled distributed control system for a

flexible manufacturing shop. Int J Adv Manuf Tech 2014;

71: 1773–1791.
2. Ghadiri Nejad M, Kovacs G, Vizvari B, et al. An optimi-

zation model for cyclic scheduling problem in flexible

manufacturing cells. Int J Adv Manuf Tech 2017, http://

doi.org/10.1007/s00170-017-1470-z

3. Mosallaeipour S, Ghadiri Nejad M, Shavarani SM, et al.

Mobile robot scheduling for cycle time optimization in

flow-shop cells, a case study. Prod Engineer 2017, http://

doi.org/10.1007/s11740-017-0784-x
4. Dawande M, Geismar HN, Sethi SP, et al. Sequencing

and scheduling in robotic cells: recent developments.

J Scheduling 2005; 8: 387–426.
5. Gultekin H, Akturk MS and Karasan OE. Scheduling in

robotic cells: process flexibility and cell layout. Int J Prod

Res 2008; 46: 2105–2121.
6. Gultekin H, Karasan OE and Akturk MS. Pure cycles in

flexible robotic cells. Comput Oper Res 2009; 36:

329–343.
7. Jolai F, Foumani M, Tavakoli-Moghadam R, et al. Cyc-

lic scheduling of a robotic flexible cell with load lock and

swap. J Intell Manuf 2012; 23: 1885–1891.
8. Yildiz S, Karasan OE and Akturk MS. An analysis of

cyclic scheduling problems in robot centered cells. Com-

put Oper Res 2012; 39: 1290–1299.
9. Foumani M and Jenab K. Cycle time analysis in reen-

trant robotic cells with swap ability. Int J Prod Res 2012;

50: 6372–6387.
10. Foumani M and Jenab K. Analysis of flexible robotic

cells with improved pure cycle. Int J Comput Integ M

2012; 26: 201–215.
11. Jiang Y, Zhang Q, Hu J, et al. Single-server parallel-

machine scheduling with loading and unloading times.

J Comb Optim 2014; 30: 201–213.
12. Gultekin H, Dalgıcx OO and Akturk MS. Pure cycles in

two-machine dual-gripper robotic cells. Robot Comput

Integr Manuf 2017; 48: 121–131.
13. Foumani M, Gunawan I and Smith-Miles K. Increasing

throughput for a class of two-machine robotic cells served

by a multifunction robot. IEEE T Autom Sci Eng 2017;

14: 1150–1159.
14. Foumani M, Smith-Miles K and Gunawan I. Scheduling

of two-machine robotic rework cells: in-process, post-

process and in-line inspection scenarios. Robot Auton Syst

2017; 91: 210–225.
15. Foumani M, Smith-Miles K, Gunawan I, et al. A frame-

work for stochastic scheduling of two-machine robotic

rework cells with in-process inspection system. Comput

Ind Eng 2017; 112: 492–502.
16. Fang L, Chen P and Liu S. Particle swarm optimization

with simulated annealing for TSP. In: Proceedings of the

6th WSEAS international conference on artificial intelli-

gence, knowledge engineering and data bases (AIKED’07),

Corfu, 16–19 February 2007. Stevens Point, WI: WSEAS.
17. Golozari F, Jafari A and Amiri M. Application of a

hybrid simulated annealing-mutation operator to solve

fuzzy capacitated location-routing problem. Int J Adv

Manuf Tech 2013; 67: 1791–1807.
18. Golabi M, Shavarani SM and Izbirak G. An edge-based

stochastic facility location problem in UAV-supported

humanitarian relief logistics: a case study of Tehran

earthquake. Nat Hazards 2017; 87: 1545–1565.
19. Güden H and Meral S. An adaptive simulated annealing

algorithm-based approach for assembly line balancing

and a real-life case study. Int J Adv Manuf Tech 2016; 84:

1539–1559.

Figure 11. Solution time of the SAA for six-machine test
instances.

Ghadiri Nejad et al. 11



20. Güden H and Meral S. An adaptive simulated annealing

method for type-one simple assembly line balancing: a

real life case study. J Fac Eng Archit Gazi Univ 2013; 28:

897–908.
21. Prakash P, Ceglarek D and Tiwari MK. Constraint-based

simulated annealing (CBSA) approach to solve the disas-

sembly scheduling problem. Int J Adv Manuf Tech 2012;

60: 1125–1137.
22. La Fata CM and Passannanti G. A simulated annealing-

based approach for the joint optimization of production/

inventory and preventive maintenance policies. Int J Adv

Manuf Tech 2017; 91: 3899–3909.
23. Mousavi SM, Zandieh M and Yazdani M. A simulated

annealing/local search to minimize the makespan and

total tardiness on a hybrid flowshop. Int J Adv Manuf

Tech 2013; 64: 369–388.
24. Abdi K, Fathian M and Safari E. A novel algorithm

based on hybridization of artificial immune system and

simulated annealing for clustering problem. Int J Adv

Manuf Tech 2012; 60: 723–732.
25. Leno IJ, Sankar SS and Ponnambalam SG. An elitist

strategy genetic algorithm using simulated annealing

algorithm as local search for facility layout design. Int J

Adv Manuf Tech 2016; 84: 787–799.

26. Zeb A, Khan M, Khan N, et al. Hybridization of simu-
lated annealing with genetic algorithm for cell formation
problem. Int J Adv Manuf Tech 2016; 86: 2243–2254.

27. Naderi B and Azab A. An improved model and novel
simulated annealing for distributed job shop problems.
Int J Adv Manuf Tech 2015; 81: 693–703.

28. Foumani M, Gunawan I and Ibrahim Y. Scheduling
rotationally arranged robotic cells served by a multi-
function robot. Int J Prod Res 2014; 52: 4037–4058.

29. Ghadiri Nejad M, Shavarani SM, Vizvari B, et al. Trade-
off between process scheduling and production cost in
cyclic flexible robotic cells. Int J Adv Manuf Tech 2017;
http://dx.doi.org/10.1007/s00170-018-1577-x.

30. Orman AJ and Williams HP. A survey of different inte-
ger programming formulations of the travelling salesman
problem. In: Optimisation, econometric and financial anal-

ysis. Berlin, Heidelberg: Springer, 2007, pp.91–104.

31. Peace GS. Taguchi methods: a hands-on approach. Boston,
MA: Addison-Wesley, 1993.

32. Shavarani SM, Ghadiri Nejad M, Rismanchian F, et al.
Application of hierarchical facility location problem for
optimization of a drone delivery system: a case study of
Amazon prime air in the city of San Francisco. Int J Adv

Manuf Tech 2017; 1–13, http://doi.org/10.1007/s00170-
017-1363-1

12 Advances in Mechanical Engineering




