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Abstract The problem of finding the optimal timing of audit activities within an
organisation has been addressed by many researchers. We propose a stochastic pro-
gramming formulation with Mixed Integer Linear Programming (MILP) and Con-
straint Programming (CP) certainty-equivalent models. In experiments neither ap-
proach dominates the other. However, the CP approach is orders of magnitude faster
for large audit times, and almost as fast as the MILP approach for small audit times.
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This work generalises a previous approach by relaxing the assumption of instanta-
neous audits, and by prohibiting concurrent auditing.

Keywords Uncertainty · Audit scheduling · Combinatorial optimization ·
Mathematical programming · Constraint programming

1 Introduction

Based on costs and benefits that change over time, the focus of the internal audit
scheduling problem is how often to conduct an internal audit on an auditable unit.
Auditable units are the units upon which internal control procedures are applied, in
order to safeguard assets and assure the reliability of information flows. The scope
of auditable units depends on organizational characteristics: they could be organiza-
tional units (finance, accounting department), geographic regions (branches, cities)
or activities (budgeting, purchasing, etc.) (Boritz and Broca 1986).

The problem of finding the optimal timing of audit activities within an organisa-
tion has been addressed by many researchers including Wilson and Ranson (1971),
Hughes (1977), Boritz and Broca (1986), and Knechel and Benson (1991). The first
study of audit scheduling was by Wilson and Ranson (1971) who found the audit fre-
quency that minimizes the discounted present value of losses and audit costs. Audit
costs are assumed to be incurred at a uniform rate, while losses in the absence of
auditing are assumed to rise exponentially from zero to an asymptotic level. After an
audit is conducted, the losses drop to zero but start to accrue until the next audit. In
Hughes (1977) the audits are chosen at the beginning of each of an infinite number of
periods, conditional upon available information concerning the state of internal con-
trol system, and a model is proposed for determining the optimal timing of internal
audits. The model proposed by Boritz and Broca (1986) determines the optimal audit
interval, assuming that expected losses accrue if a unit remains unaudited and audit
cost is incurred each time the decision to audit is made. In order to use their formula-
tion, each audit unit is assessed using an index of loss riskiness called the Audit Unit
Priority Score (AUPS). The parameters of the model (i.e. the shape of the loss func-
tion and the rate of increase in losses) are determined through auditors’ judgmental
process, which gives auditors flexibility in the scheduling of audit activities.

In a recent paper by Tarim et al. (2008) a stochastic version of the internal audit
scheduling problem is formulated under relatively relaxed assumptions. Unlike previ-
ous models that determine optimal timing for one audit unit, their model determines
the optimal timing of audit activities for multiple audit units. This is important be-
cause many firms have more than one auditable unit to which audit resources must
be allocated. Moreover, their formulation takes into account uncertainty in the losses
accrued in the absence of auditing, and employs a chance-constraint to keep the ex-
pected losses below a certain level with a given probability. However, in Tarim et al.
(2008) it is assumed that audit activities are instantaneous, i.e. that conducting an
audit does not take any time. The computational issues are not addressed by Tarim
et al.

Mixed Integer Linear Programming (MILP) (Nemhauser and Wolsey 1988) and
Constraint Programming (CP) (Hanus 2001) are two orthogonal approaches used to
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address combinatorial problems. MILP-based methods are rooted at the area of Op-
erations Research (Nemhauser and Wolsey 1988), whereas CP-based methods are
the result of research by the Artificial Intelligence community in the areas of Logic
Programming and Constraint Satisfaction (Colmerauer 1985; Van Hentenryck 1989;
Tsang 1993). MILP and CP methods have both been successfully applied to solve
diverse problems such as network synthesis, crew scheduling, planning, and capital
budgeting. Determining which type of problems or instances are best solved by which
method is an active research area. This is the line of research pursued in this paper. We
relax the assumption of instantaneous audits and propose a stochastic programming
formulation for this important class of combinatorial problems involving uncertainty.
To solve this stochastic program we develop two alternatives deterministic equivalent
models: a MILP model and a CP model. The two approaches are complementary in
the sense that for some instances MILP is superior and for other instances CP is supe-
rior. Our numerical experiments show that the certainty-equivalent MILP formulation
is efficient when the time to perform an audit is relatively short. However, as the audit
time gets longer our CP model proved to be significantly much more effective than
the MILP model.

The paper is organised as follows. Section 2 describes the problem, Sect. 3 pro-
vides a stochastic programming formulation of the problem, Sect. 4 surveys possi-
ble solution methods, Sect. 5 reports experimental results comparing methods, and
Sect. 6 concludes the paper. Finally, in the Appendix we provide a complete list of
the notation adopted in the paper.

2 Problem statement

We consider a planning horizon comprising N time periods. We are given a set of
M audit units over which random losses may accrue over time. In particular, lmt cor-
responds to the losses that accrue in audit unit m during period t . lmt is a random
variable with a known probability density function glmt

(lmt ). For convenience, losses
in each period are assumed to be normally distributed with a constant coefficient of
variation: ρ = σm

t /μm
t in this problem, but this assumption may be relaxed without

loss of generality. The distribution of losses may vary from period to period, i.e. it
is non-stationary. Losses in different time periods are assumed to be independent.
Figure 1 illustrates expected losses on a single auditable unit.

Without loss of generality, we consider the case in which a single audit team has to
be employed to keep losses under control. Auditing is a time-consuming task, and we

Fig. 1 Expected losses; E[lmt ]
denotes the expected value of lmt
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Fig. 2 Multiple units

assume that the team is given a strict deadline for performing an audit. Specifically,
an audit must be completed in T time periods (T > 0). Therefore after T periods
the accrued losses will drop to zero. If a team has already started auditing a unit at
a given period, then no other audit can be initiated during this period for the given
audit team. Figure 2 depicts such a situation in which an audit duration of 2 periods
is assumed. An audit scheduled for unit 1 at the beginning of period 3 rules out any
following audit for unit 2 until period 5.

Note that the timing of audits are fixed once and for all at the beginning of the
planning horizon, and cannot be changed thereafter even if it is suspected that certain
auditable units have accrued unexpected losses. The objective is to find the optimal
audit schedule while respecting the maximum loss level criterion. That is, the invari-
ant audit costs (i.e. fixed audit costs incurred each time an audit is conducted) and
expected total discounted audit losses (i.e. cumulative losses accrued at the end of
each period) are minimized by satisfying a maximum loss level constraint, which in
this problem is defined by specifying a minimum probability α that the losses will not
exceed a predetermined level L̄ (allowed maximum loss) in any given audit period
for any auditable unit.

Example 1 In what follows we will employ a running example to better exemplify
the above concepts. We consider the following simple instance:

M: the total number of audit units, equal to 2

N : the number of periods in the planning horizon, equal to 6

T : the duration of an audit in time periods, equal to 2

a: the fixed cost incurred each time an audit is conducted, equal to 100

h: the loss discount factor measuring the opportunity cost associated to a given

loss level, equal to 1
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L̄: a threshold indicating the maximum allowed loss level in each period, equal

to 200

α: the probability of not exceeding the loss threshold L̄, equal to 0.95.

We assume the losses accrued in each period to be normally distributed with
a constant coefficient of variation ρ = 0.2, where ρ = σm

t /μm
t . The expected

value, μm
t , for the losses in each period t and for each audit unit m is respec-

tively {50,30,50,30,50,30} in each period t = 1, . . . ,6 for audit unit 1, and
{10,20,30,40,50,60} in each period for audit unit 2.

3 Stochastic programming formulation

Stochastic programming (Birge and Louveaux 1997) is a well known modeling tech-
nique that deals with problems where uncertainty comes into play. Problems of
optimization under uncertainty are characterized by the necessity of making de-
cisions without knowing what their full effect will be. Stochastic programming
needs to represent uncertain elements of the problem. Typically random variables
are employed to model this uncertainty to which probability theory (Ventsel 1979;
Jeffreys 1961) can be applied. For this purpose such uncertain elements must have a
known probability distribution. The typical requirement in stochastic programs is to
maintain certain constraints, called chance constraints (Charnes and Cooper 1959),
satisfied at a prescribed level of probability. The objective is typically related to the
minimization/maximization of some expectation on the problem costs.

The stochastic programming model we propose balances the discounted cost of
losses accrued due to lack of audits with the cost of conducting audits. Taking the
discounted cost of losses into account is particularly relevant when the cost of money
must be considered. Consider, for instance, the situation in which some losses are
due to a specific reason in a given period. Then in the following periods this loss
will affect company assets until the originating factor is discovered by an audit and
cleared. Obviously these effects will have a higher impact the longer it takes to clear
such an originating factor. Consider, for instance, the case in which a company’s
tax liabilities are overestimated. The capital tied into tax liabilities could be invested
in a more profitable way if the accounts were not flawed. In this case the discount
factor would reflect the opportunity cost associated with the fact that capitals may be
invested in a more profitable way if an audit were scheduled.

We employ the expected value criterion to minimize the sum of the expected dis-
counted period losses and audit costs over an N period planning horizon. Let us
consider, without loss of generality, an initial loss levels Lm

1 set to any non-negative
values for each audit unit m = 1, . . . ,M . Let

Lm
t : the loss level in audit unit m at the beginning of period t .

The objective function below and the following constraints give the optimum au-
dit timing for each audit unit by minimizing E[T C], that is the sum of expected
audit costs and discounted period losses that are expected to accrue in the absence of
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auditing.

minE[T C] =
M∑

m=1

∫

lm1

∫

lm2

. . .

∫

lmN

N∑

t=1

(aKm
t + h(Lm

t + lmt ))

× glm1
(lm1 )glm2

(lm2 ) · · ·glmN
(lmN)d(lm1 )d(lm2 ) . . . d(lmN) (1)

where

M: the total number of audit units

N : the number of periods in the planning horizon

a: the amount of cost incurred each time an audit is conducted

h: the loss discount factor measuring the opportunity cost associated to

a given loss level

Km
t : a variable that takes the value of 1 if an internal audit (lasting T periods)

is started for audit unit m in period t , otherwise 0.

The above objective function is subject to several constraints. If (Km
t = 1) an internal

audit is conducted at the beginning of period t (i.e. at the end of period t − 1), then
the loss level at the beginning of period t + T should be 0. Yet, if an internal audit
is not conducted, the loss level at the beginning of period t + T will be equal to the
loss level at the beginning of the preceding period plus the loss accrued during the
preceding period. This can be expressed as

Lm
t+T ≥ Lm

t+T −1 + lmt+T −1 − MKm
t , m = 1, . . . ,M, t = 1, . . . ,N − T , (2)

where M is some very large number. Obviously in the first T periods no audit can be
completed, therefore

Lm
t ≥ Lm

t−1 + lmt−1, m = 1, . . . ,M, t = 1, . . . , T . (3)

For convenience we consider lmt = Lm
t = 0, for {t | t < 1}.

Now consider a plan for audit unit m, which schedules r audits over the N pe-
riod planning horizon with audits conducted at {Am

1 , . . . ,Am
r }, where Am

j > Am
j−1,

Am
r ≤ N − T . For convenience Am

1 = 1 − T , because the initial loss level is set to 0;
Am

r+1 = N − T + 1 is defined as the earliest period for which an associated audit

Fig. 3 Chance-constraint on the
maximum loss level. Assuming
losses to be normally
distributed: α is the desired
minimum probability (area
marked in the figure) that the
loss level in any time period will
not exceed a subjectively
determined level, L̄
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would be completed only after the end of the horizon. The associated audits will take
place at the beginning of periods Am

i , i = 1 to r . In the considered plan there are
clearly no audits scheduled for audit unit m except at periods Am

1 , . . . ,Am
r . The accu-

mulated loss level Lm
t+1 carried over from period t to period t + 1 is the loss to date

since the last completed audit. This can be written as

Lm
t+1 =

t∑

k=Am
i +T

lmk , Am
i + T ≤ t < Am

i+1 + T , i = 1, . . . , r. (4)

As defined above, α is the desired minimum probability that the loss level in any time
period will not exceed a subjectively determined level, L̄ (Fig. 3). In this regard the
chance constraint becomes

Pr{Lm
t + lmt ≤ L̄} ≥ α, t = 1 + T , . . . ,N. (5)

Using (4), this can be written alternatively as, for t ≥ 1 + T

Pr

{
t∑

k=Am
i +T

lmk ≤ L̄

}
≥ α, Am

i + T ≤ t < Am
i+1 + T , i = 1, . . . , r, (6)

which implies

Glm
Am

i
+T

+lm
Am

i
+T +1

+···+lmt
(L̄) ≥ α, Am

i + T ≤ t < Am
i+1 + T , (7)

where Glmt
(x) = ∫ x

−∞ glmt
(τ )dτ is the cumulative distribution function of lmt . By as-

suming Glmt
(x) to be strictly increasing, thus invertible, (7) can then be rewritten as

L̄ ≥ G−1
lm
Am

i
+T

+lm
Am

i
+T +1

+···+lmt
(α), Am

i + T ≤ t < Am
i+1 + T , (8)

where G−1
lmt

(α) is the inverse cumulative distribution function (or α-quantile) of lmt .
Since the problem has a finite planning horizon of N periods, for all the relevant

cases the right-hand side of (8), G−1
lm
Am

i
+T

+lm
Am

i
+T +1

+···+lmt
(α), can be computed or pos-

sibly read from a table, once the form of glmt
(.) is decided. If the binary variable P m

t,j

is defined as taking a value of 1 if the most recent audit prior to period t was in period
j and zero elsewhere for a given audit unit m, then (8) can be written as

L̄ ≥
t∑

j=1

(
G−1

lmj +lmj+1+···+lmt
(α) P m

t,j−T

)
. (9)

There can be at most only one most recent audit prior to period t . Thus P m
t,j must

satisfy

t∑

j=1−T

P m
t,j = 1, m = 1, . . . ,M, t = 1, . . . ,N. (10)
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Note that losses in the first T periods cannot be controlled with respect to the thresh-
old L̄ and the probability α. In fact benefits from the first possible audit appear only
in period T + 1. Therefore we assume, for all m = 1, . . . ,M , Km

1−T = 1 (according
to the fact that initial losses should be equal to 0) and Km

i−T = 0, i = 2, . . . , T .
The following equation (11) is necessary to identify uniquely the period in

which the most recent audit prior to any period t took place. For each audit unit
m = 1, . . . ,M

P m
t,j ≥ Km

j −
t−T∑

k=j+1

Km
k , t = 1, . . . ,N, j = 1 − T , . . . , t − T . (11)

It is not common practice for internal audit teams to conduct multiple audits simul-
taneously. To have a modicum of resemblance to reality, as already stated, here it is
assumed that a team can conduct an internal audit only for one audit unit at a given
time period. In our model we shall consider the following capacity constraint

m∑

k=1

Km
t ≤ C, m = 1, . . . ,M, t = 1, . . . ,N − T , (12)

which states that the firm can assign at most C audit teams to conduct audits in any
given time period. For simplicity, in what follows we will assume C = 1.

Example 2 For the running example introduced in Sect. 2, in Table 1 we show the
values of G−1

lmj +lmj+1+···+lmt
(α) for audit unit m = 1,2. Values in italic are those that

satisfy constraint (9), that is values that stay below the loss threshold L̄ = 200. Un-
derlined values identify audit cycles1 in the optimal solution. The optimal audit plan
is also presented graphically in Fig. 4. In this plan, in order to keep accrued losses
under control, one single audit for unit 1 is scheduled at the beginning of period 2,
and this audit terminates at the end of period 3. Similarly, for unit 2 a single audit is
scheduled at period 4 and this audit terminates at the end of period 5. The expected
total cost for this plan is 1090.

Fig. 4 Optimal audit plan for
the numerical example

1An audit cycle is a set of periods {j, . . . , t}, j ≤ t , where j is the first period after the completion of an
audit, and no other audit is completed by period t .
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Table 1 Values of
G−1

lm
j

+lm
j+1+···+lmt

(α) for audit

unit m = 1,2. Values in italic are
those that satisfy constraint (9).
That is, values that stay below
the loss threshold L̄ = 200.
Underlined values identify audit
cycles in the optimal solution

t

j 1 2 3 4 5 6

Unit 1

1 66.5 99.2 155.3 187.1 241.7 273.2

2 39.9 99.2 131.6 187.1 218.9

3 66.5 99.2 155.3 187.1

4 39.9 99.2 131.6

5 66.5 99.2

6 39.9

Unit 2

1 13.3 37.4 72.3 118.0 174.4 241.4

2 26.6 61.9 107.7 164.2 231.2

3 39.9 86.5 143.3 210.5

4 53.2 111.1 178.9

5 66.5 135.7

6 79.7

We now show in detail how the values in Table 1 are computed. Let GN

be the standard normal distribution function. This function is strictly increas-
ing, therefore G−1

N is uniquely defined.2 G−1
N (0.95) = 1.645 corresponds to the

0.95-quantile. Therefore, since all the random variables lmt , t = 1, . . . ,N , m =
1, . . . ,M , are independent and normally distributed, G−1

l12+l13+l14
(0.95) = 1.645 · 0.2 ·√

302 + 502 + 302 = 131.6. This value can be found in the first matrix presented in
Table 1 at position (2, 4). It corresponds to a sequence of periods starting in period
2 and ending in period 4, where no audit is completed and where the last audit per-
formed has been completed by the end of period 1 (therefore losses at the beginning
of period 2 are null). Since 131.6 < 200 it follows that this set of periods constitutes
a feasible audit cycle.

4 Solution methods

In this section we present two alternative certainty equivalent (Birge and Louveaux
1997) models for the stochastic programming model presented in the former section:
a Mixed Integer Linear Programming model and a Constraint Programming model.

4.1 A certainty equivalent MILP model

In Linear Programming (Dantzig 1963; Chvtal 1983; Schrijver 1986) a model, called
a “program”, consists of continuous variables and linear constraints (inequalities or

2Tables are available for obtaining values of the inverse normal cumulative distribution function (also
known as α-quantile, Ventsel 1979).
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equalities), and the aim is to optimize(minimize or maximize) a linear cost func-
tion. In matrix notation the standard form of a linear program is min{cTx | Ax = b,
x ≥ 0}, where c ∈ R

n, b ∈ R
n, A ∈ R

m×n. Here c represents the cost vector and x

is the vector of variables. Linear programs are usually solved by the simplex method
(Dantzig 1951) which is very fast in practice, though it has exponential worst-case
time complexity. A Mixed Integer Linear Program (MILP) is a Linear Program (LP)
plus integrality requirements on some decision variables. Discrete variables in MILP
are often 0–1 variables representing yes/no, on/off or true/false choices. Logical con-
ditions between 0–1 variables such as ∨ (or), ∧ (and), ¬ (not), ⇒ (if . . . then), and ⇔
(if and only if) can be imposed using appropriate linear constraints (Williams 1994).
Solution methods for MILP typically employ tree search in which internal nodes cor-
respond to partial solutions, branches are choices partitioning the search space, and
leaf nodes are solutions. Branching is intertwined with a relaxation to eliminate the
exploration of nodes for which the relaxation is either infeasible or worse than the
best solution found so far. Each node represents a partial assignment of the discrete
variables, and at each node a relaxation is formed by turning the integrality require-
ments into bounds, thus transforming the subproblem into an LP. This LP is solved,
and if the solution is not suboptimal then descendant nodes are formed by branch-
ing on the fractional relaxation value of a discrete variable. The historical popularity
of MILP derives from Dantzig’s discovery that the vocabulary of LP is surprisingly
versatile in many applications. MILP-based methods have been developed over the
last four decades by the Operations Research community (Nemhauser and Wolsey
1988).

The mathematical programming model of the previous section, as presented, is a
stochastic nonlinear combinatorial optimization model, which is extremely complex
to solve. In this section we adopt the static-dynamic uncertainty strategy, proposed
by Bookbinder and Tan (1988) to solve their stochastic inventory lot-sizing prob-
lem, and apply it to the mathematical programming model of Sect. 3. The model can
be expressed as minimizing the objective function given in (1) subject to the con-
straints (2–4), (9–12), and non-negativity and 0/1 integrality conditions for Lm

t , Km
t

and P m
i,j .

In our internal audit scheduling problem the analysis is completed at the beginning
of the planning horizon by taking expectations (see Bookbinder and Tan 1988). Hence
the deterministic equivalent model for the original chance-constrained stochastic pro-
gramming model is obtained. The resultant model is in the form of a mixed-integer
program, given below, in which the expected value operator is denoted by E[.].

min
M∑

m=1

(
N∑

t=1

aKm
t +

N∑

t=1

hE[Lm
t + lmt ]

)
(13)

subject to, for m = 1, . . . ,M, (14)

E[Lm
1 ] = 0, (15)

E[Lm
t+1] ≥ E[Lm

t ] + E[lmt ], t = 1, . . . , T , (16)

E[Lm
t+T ] ≥ E[Lm

t−1+T ] + E[lmt−1+T ] − MKm
t , t = 1, . . . ,N − T , (17)
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M∑

k=1

min(t+T −1,N)∑

h=1

Kk
h ≤ 1, t = 1, . . . ,N, (18)

L̄ ≥
t∑

j=1

G−1
lmj +lmj+1+···+lmt

(α) · P m
t,j−T , t = 1, . . . ,N, (19)

t∑

j=1

P m
t,j = 1, t = 1 − T , . . . ,N, (20)

Pm,t,j ≥ Km
j −

t−T∑

k=j+1

Km
k , j = 1 − T , . . . , t − T , (21)

Km
1−T = 1, (22)

Km
t−T = 0, t = 2, . . . , T , (23)

E[Lm
t ] ≥ 0, (24)

Km
t ,P m

t,j ∈ {0,1}, t = 1, . . . ,N, j = 1 − T , . . . , t. (25)

This model thus determines the optimal audit schedule by balancing the fixed audit
costs and discounted expected period losses that accrue in the absence of auditing.
The problem is to determine the values of the 0/1 integer variables, Km

t for m =
1, . . . ,M , t = 1, . . . ,N , and P m

t,j for t = 1, . . . ,N , j = 1 − T , . . . , t , and the non-
negative continuous variable E[Lm

t ] for t = 1, . . . ,N , that minimize the objective
function. The times of the audit reviews in each audit unit m are given by the values
of t such that Km

t = 1. Constraint (15) states that the initial losses are equal to 0.
Constraint (16) lets expected losses accumulate in the first T periods for each audit
unit, since no audit can be terminated before period T + 1. Constraint (17) states that
if an audit is planned in period t , then expected losses must drop to zero in period
t + T , as soon as the audit terminates, while if no audit is planned in period t , then
expected losses in period t + T must be equal to the expected losses accumulate till
the beginning of the previous period (t + T − 1) plus the expected losses accrued in
such a period. Constraint (18) prevents multiple audits in any given period. If an audit
team starts an audit in period t on a given unit, this means that no other audit can be
performed on any unit before period t + T . Constraints (19–21) implement (8) and
therefore they identify feasible audit schedules, that is those for which losses never
exceed the given threshold L̄ more than α percent of the times.

Example 3 By employing the mathematical programming model presented in this
section we can solve the running example originally presented in Sect. 2. The optimal
plan, which we already described in Sect. 3, is shown in Fig. 5. In this picture, we
also show the expected losses accumulated in each period and computed by the MILP
model. The plan schedules one single audit for unit 1 at period 2, and for unit 2 at
period 4. The expected total cost for this plan is 1090. Note that for each audit, losses
drop to 0 only after T = 2 periods, which is in fact the time required to perform an
audit. It is also clear from the plan shown that the audit team cannot perform multiple
audits at any given time period.
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Fig. 5 Optimal audit plan for
the numerical example

4.2 A certainty equivalent CP model

A Constraint Satisfaction Problem (CSP) (Apt 2003; Brailsford et al. 1999; Lustig
and Puget 2001) is a triple 〈V,C,D〉 where V is a set of decision variables, D is a
function mapping each element of V to a domain of potential values, and C is a set
of constraints stating allowed combinations of values for subsets of variables in V .
A solution to a CSP is simply a set of values of the variables such that the values are
in the domains of the variables and all the constraints are satisfied. We may also be
interested in finding a feasible solution that minimizes or maximizes the value of a
given objective function over a subset of the variables.

We now recall some key concepts in Constraint Programming (CP): constraint
filtering algorithm, constraint propagation and arc-consistency (Regin 2003). A fil-
tering algorithm is typically associated with a constraint, and removes values from
the domains of its variables that cannot belong to any solution of the CSP. These al-
gorithms are repeatedly called until no new deduction can be made, a process called
propagation. In conjunction with this process CP uses a search procedure (typically
a backtracking algorithm) in which filtering is systematically applied whenever the
domain of a variable is modified. One of the most interesting properties of a filter-
ing algorithm is arc-consistency: we say that a filtering algorithm associated with a
constraint establishes arc-consistency if it removes all the values from the domains
of the variables involved in the constraint that are not consistent with the constraint.
Studies on arc-consistency are often limited to binary constraints, but modeling prob-
lems by means of binary constraints has drawbacks: they are not very expressive,
and their domain reduction is typically weak. To overcome both these drawbacks,
constraints that capture a relation among a non-fixed number of variables were intro-
duced. These constraints are not only more expressive than the equivalent aggregation
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of simple constraints, but they can be associated with more powerful filtering algo-
rithms that take into account the simultaneous presence of several simple constraints
to further reduce the domains of the variables. These more powerful constraints are
called global constraints. One of the best-known examples is the alldiff con-
straint (Regin 1994), both because of its expressiveness and its efficiency in estab-
lishing arc-consistency. A comprehensive and up-to-date survey of the state of knowl-
edge regarding CP is Apt (2003), while a general account of the CP–MP relationship
is given by Brailsford et al. (1999) and Lustig and Puget (2001).

In this section we propose a CP reformulation for the mathematical programming
model in Sect. 4.1. This reformulation follows the approach originally proposed in
Tarim and Smith (2008), it exploits non-binary (global) constraints and other features
of CP. The CP model, similarly to the mathematical programming one, can be ex-
pressed as minimizing the objective function given in (1). But, as we shall see, in
the CP model constraints (2–4) and (9–12) are now reformulated and expressed in a
more compact and readable way. Furthermore, as we will see, the number of decision
variables employed is dramatically reduced as we do not employ anymore the binary
decision variables P m

i,j . The number of constraints is also significantly reduced. The
CP model is as follows.

min
M∑

m=1

(
N∑

t=1

aKm
t +

N∑

t=1

hE[Lm
t + lmt ]

)
(26)

subject to, for m = 1, . . . ,M , (27)

E[Lm
1 ] = 0, (28)

E[Lm
t+1] ≥ E[Lm

t ] + E[lmt ], t = 1, . . . , T , (29)

Km
t = 1 → E[Lm

t+T ] = 0, t = 1, . . . ,N − T , (30)

Km
t = 0 → E[Lm

t+T ] = E[Lm
t−1+T ] + E[lmt−1+T ], t = 1, . . . ,N − T , (31)

M∑

k=1

min(t+T −1,N)∑

h=1

Kk
h ≤ 1, t = 1, . . . ,N, (32)

�
[
m, t + T ,max

(
1, max

j=1,...,t
(j + T ) · Km

j

)]
≥ 0, t = 1 − T , . . . ,N − T ,

(33)

where

�[m, t, j ] = L̄ − G−1
lmj +lmj+1+···+lmt

(α), t = 1, . . . ,N, j = 1, . . . ,N.

The objective function, as in the mathematical programming model, balances the
fixed audit costs and discounted expected period losses that accrue in the absence of
auditing. Constraint (28) states that the initial losses are equal to 0. Constraint (29)
lets losses accumulate in the first T periods for each audit unit, since no audit can be
terminated before period T + 1. Constraint (30) states that if an audit is planned in
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period t , then losses must drop to zero in period t +T , as soon as the audit terminates.
Conversely, constraint (31) states that if no audit is planned in period t , then losses in
period t + T must be equal to the losses accumulated till the beginning of the previ-
ous period (t + T − 1) plus the losses accrued in such a period. These two non-linear
constraints are equivalent to constraint (17) in the mathematical programming for-
mulation. Constraint (32), similarly to constraint (18), prevents multiple audits in any
given period. If an audit team starts an audit in period t on a given unit, this means that
no other audit can be performed on any unit before period t +T . Constraint (33) iden-
tifies feasible audit schedules, that is those for which losses never exceed the given
threshold L̄ more than α percent of the time. This constraint replaces the set of con-
straints (19–21). The model given in (26–33) can be directly implemented using the
OPL optimization programming language (Van Hentenryck 1999). It should be noted
that, in OPL, constraint (33) is implemented using the element(I,A,J ) constraint
(Van Hentenryck and Carillon 1988). The element constraint holds iff A[I ] = J ,
where I and J are decision variables, and A is an array of decision variables.

5 Experiments

In this section, we compare the computational performance of the MILP formulation,
presented in Sect. 4.1, versus the CP equivalent formulation, presented in Sect. 4.2,
on a number of test problems.

Computational tests are performed on a 1.5 GHz, 2 GB RAM, Centrino machine
using ILOG Cplex 9.0 (Ilog 2007a) in OPL Studio 3.7 (Ilog 2007b). The packages
are used with their default settings.

In the MILP model, the M in constraint (17) must have a numerical value. It is well
known that the computational performance of the MILP model can be improved by
choosing M as small as possible, without ruling out any possible solution. It is also
clear that in different time periods, the corresponding M may have been assigned
different numerical values. One way of generating such M is by observing that, by
assuming a reasonably high service level (that is α > 0.5) the loss level will never
exceed L̄. Hence, M = L̄.

It should be also noted that, while the integer program is treated in its matrix
form, and different heuristics are used to choose the variable to branch on based on
the solution of the LP relaxation that is solved at each node, in a CP approach the
user specifies the branching strategy in terms of the formulation of the problem. The
following search strategy is employed in solving the CP model proposed: Km

t = 0
and 1 are tried in order, for all m ∈ {1, . . . ,M}, for all t ∈ {1, . . . ,N}.

5.1 Experimental settings

The design of the test problems is as follows. We consider the following inputs:

M: the total number of audit units, equal to 5

N : the number of periods in the planning horizon, taking values in {20,30,40}
T : the duration of an audit in time periods, taking values in {1, . . . ,6}
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Fig. 6 Expected value μm
t for the losses in each period t and for each audit unit m
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a: the amount of cost incurred each time an audit is conducted, taking values in

{500,750,1000}
h: the loss discount factor measuring the opportunity cost associated to a given

loss level, equal to 1

L̄: a threshold indicating the maximum allowed loss level in each period, taking

values in {1500,2500,3500}
α: the probability of not exceeding the loss threshold L̄, equal to 0.95.

We assume the losses accrued in each period to be normally distributed with a
constant coefficient of variation ρ ∈ {0.15,0.3}, where ρ = σm

t /μm
t . The expected

value μm
t for the losses in each period t and for each audit unit m is shown in Fig. 6.

The total number of test problems generated is 108. We further partition our set of
problem instances into two classes as follows:

– The instances where the audit time is 1, i.e., T = 1 (18 instances).
– The instances where the audit time is greater than 1, i.e., T ∈ {2, . . . ,6} (90 in-

stances).

We now analyze each set separately.

5.1.1 Instances for which T = 1

For each test problem the solution time (in seconds), for both the MILP and the CP
approach, is given in Table 2. In this table italic figures highlight the approach that
produced the best run time. In Table 3 instead we reported for the MILP approach and
for the CP approach, respectively, the simplex iterations performed and the nodes ex-
plored. In this first set of 18 instances, where T = 1, the MILP approach always
dominates the CP approach in terms of run time. Nevertheless the discrepancy be-
tween the two approaches reaches only one order of magnitude in the worst case. In
the average case MILP is faster than CP by a factor of 7.7.

5.1.2 Instances for which T > 1

For each test problem the solution time (in seconds), for both the MILP and the CP
approach, is given in Table 4. In this table, again italic figures highlight the approach
that produced the best run time, while those instances for which the figures are un-
derlined are infeasible. In Table 5 we reported for the MILP approach and for the CP
approach, respectively, the simplex iterations performed and the nodes explored.

In contrast to what we observed in the first set of 18 instances, where T = 1, in
this second set of 90 instances, where T > 1, the CP approach always dominates the
MILP approach in terms of run time. When T > 1 the MILP approach does not scale
particularly well with respect to N , L̄ and ρ. Instances with a large N , T , L̄ and
ρ require, in fact, up to more than 30000 seconds to be solved. For these instances
CP is able to quickly prove optimality or efficiently detect infeasibility. In contrast,
CPLEX requires several simplex iterations and a long time to prove infeasibility. The
discrepancy between the two approaches for infeasible problems reaches a factor of
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Table 2 Computational times (in sec) for the MILP approach (MILP) and for the CP approach (CP). Italic
figures in the table highlight the approach that produced the best run time

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP 1.1 0.98 0.7 1.4 1.5 0.56 0.72 1.4 0.59 1 10

CP 6.2 7.6 8.2 6.7 8.1 8.2 7.2 9.2 8.8 1 10

ρ = 0.3

MILP 1.1 0.96 0.63 1.3 1.1 0.57 1.2 1.0 0.59 1 10

CP 5.9 6.8 7.5 6.5 7.5 7.8 6.5 7.7 8.05 1 10

Table 3 Simplex iterations performed by the MILP approach (MILP-SI) and nodes explored by the CP
approach (CP-Nod). Italic figures in the table highlight the approach that produced the best run time

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP-SI 14122 13383 8071 15868 13483 6666 15350 13854 7083 1 10

CP-Nod 83480 103442 108266 83480 103442 108266 83480 103372 108266 1 10

ρ = 0.3

MILP-SI 16084 13460 8381 16937 13649 6683 15357 13854 7083 1 10

CP-Nod 1 83480 103442 108266 83480 103442 108266 83480 103442 108266 1 10

3900, that is three orders of magnitude. Although MILP performs better at proving
optimality, its performances are still far from those achieved by the CP approach. In
fact the discrepancy between the two approaches with respect to feasible problems
reaches a factor of 88: almost two orders of magnitude.

5.2 Discussion of results

The results presented indicate that the CP approach is in general more tractable than
the mathematical programming one for this class of scheduling problems. The av-
erage solution time over all the instances considered is 950 seconds for the MILP
approach and 24 seconds for the CP approach. This shows that, on average, CP is
about one order of magnitude faster than MILP for the test bed analyzed. A compar-
ison of solution times for the test problems reveals that, as the value of T increases
(Fig. 7), CP is orders of magnitude faster than MILP, irrespectively of N , L̄ and ρ.
It should be noted that CP, as a consequence of constraint propagation, is extremely
good at proving infeasibility, while this is the class of problems for which MILP re-
quires significant computational efforts. CP also shows a more stable behavior and
scalable performances as T , N , L̄ and ρ increase. MILP performs poorly for the
largest instances considered both in proving optimality and detecting infeasibility.
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Table 4 Computational times (in sec) for the MILP approach (MILP) and for the CP approach (CP).
Italic figures in the table highlight the approach that produced the best run time. Underlined figures are
infeasible instances. +30000 means that the search has been stopped before infeasibility could be proved,
after 30000 sec (8,3 hour)

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP 150 120 98 240 240 200 310 420 310 2 20

CP 9.4 9.6 9.6 92 110 130 110 120 170 2 20

MILP 22 17 41 37 25 26 36 30 48 3 20

CP 0.12 0.11 0.10 7.6 7.3 7.4 6.4 6.8 7.6 3 20

MILP 20 110 80 500 320 400 610 540 610 4 30

CP 0.07 0.07 0.07 8.3 7.9 8.4 100 100 100 4 30

MILP 0 0 0 700 1500 810 250 140 420 5 30

CP 0.06 0.07 0.06 1.0 1.0 1.0 20 20 21 5 30

MILP 0 0 0 2300 1500 1900 660 1200 1500 6 40

CP 0.11 0.11 0.10 0.45 0.39 0.41 17 20 17 6 40

ρ = 0.3

MILP 70 100 87 190 420 200 340 400 260 2 20

CP 4.3 4.12 4.3 87 120 130 100 140 130 2 20

MILP 17 12 36 22 31 26 36 34 33 3 20

CP 0.08 0.08 0.08 6.2 7.2 6.9 6.5 6.8 7.4 3 20

MILP 39 20 23 160 370 550 550 580 620 4 30

CP 0.06 0.06 0.06 5.0 4.9 5.2 110 110 120 4 30

MILP 0 0 0 400 310 320 300 130 440 5 30

CP 0.07 0.07 0.07 0.77 0.77 0.77 20 20 20 5 30

MILP 0 0 0 1600 1500 700 20000 24000 +30000 6 40

CP 0.1 0.1 0.1 0.35 0.39 0.47 7.7 7.7 7.7 6 40

The performance of CP-based and MILP-based approaches for solving a number
of combinatorial optimization problems has been the scope of many recent studies
(e.g., the modified generalized assignment problem, Darby-Dowman et al. 1997; the
template design problem, Proll and Smith 1998; the progressive party problem, Smith
et al. 1995). There has been effort to characterise the properties of different problems
by their effect on the performance of CP and MILP approaches (Darby-Dowman
et al. 1997; Jain and Grossmann 2001). The key result of that work is that MILP is
very efficient when the relaxation is tight and the models have a structure that can be
effectively exploited, while CP seems to work better for highly constrained discrete
optimization problems in which the expressiveness of MILP is a major limitation.
Our results confirm that the best model of choice depends on the characteristics of the
instances rather than of the structure exposed at the problem level. Our experiments
suggest that when the audit time is small the relaxation is tight, hence MILP performs
well; when the audit time gets longer the problem becomes more constrained, and CP
seems to scale up much better than MILP.
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Table 5 Simplex iterations performed by the MILP approach (MILP-SI) and Nodes explored by the CP
approach (CP-Nod). Italic figures in the table highlight the approach that produced the best run time.
Underlined figures are infeasible instances. +59652116 means that the search has been stopped before
infeasibility could be proved, after 30000 sec (8,3 hour)

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP-SI 737530 534238 444055 1115993 1102108 952999 1548908 2182999 1346656 2 20

CP-Nod 70246 75317 80386 636450 764147 911016 636450 764147 911134 2 20

MILP-SI 115666 107912 227602 191912 133002 137485 179505 150434 204205 3 20

CP-Nod 511 511 511 48025 51003 54077 48025 51003 54077 3 20

MILP-SI 23915 176870 122716 1745261 1056964 1285394 1842453 1580697 1565614 4 30

CP-Nod 90 90 90 56456 56526 56620 517734 538358 559576 4 30

MILP-SI p. p. p. 1889563 4362836 2365598 889056 484259 1493608 5 30

CP-Nod 26 26 26 6017 6017 6017 104956 107308 109671 5 30

MILP-SI p. p. p. 3068784 2184342 2979721 1440912 2280890 3245663 6 40

CP-Nod 17 17 17 1358 1358 1358 94461 94465 94467 6 40

ρ = 0.3

MILP-SI 358921 455248 425701 902365 1946679 965218 1477861 2142193 1347372 2 20

CP-Nod 38004 39394 40679 636450 764147 911134 636450 764147 911134 2 20

MILP-SI 105962 80243 210615 117851 174027 129448 181685 165411 177510 3 20

CP-Nod 511 511 511 48025 51003 54077 48025 51003 54077 3 20

MILP-SI 62566 29487 30184 492571 1145508 1771707 1470525 1691075 1694070 4 30

CP-Nod 90 90 90 33660 33622 33622 511950 532192 553003 4 30

MILP-SI p. p. p. 1317658 951745 1052849 1226532 444214 1482423 5 30

CP-Nod 26 26 26 4885 4885 4885 97399 99383 101332 5 30

MILP-SI p. p. p. 2267185 2616084 884031 34210413 46569011 +59652116 6 40

CP-Nod 17 17 17 1198 1198 1198 35354 35354 35354 6 40

Fig. 7 Comparison of the average solution time for the CP approach and for the MILP approach as a
function of the audit time T
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6 Conclusions

This paper addresses the stochastic combinatorial optimization problem of schedul-
ing internal audit activities. In Tarim et al. (2008) a related problem has been tackled
by means of a similar MILP approach, but the authors assume that audit activities
are instantaneous (conducting an audit does not take any time). Our work is more
general and more realistic since we consider non-instantaneous audit activities, and
we schedule the audit team in such a way as to prevent concurrent auditing.

We proposed a stochastic programming formulation and we developed two alter-
native certainty equivalent approaches to solve this model: an MILP model and a CP
model. Our computational experience shows that MILP proved to be effective when
the time required to perform an audit is short (T ≤ 1). In contrast, our CP approach
proved to be very effective when the audit time T is greater than one period. The CP
approach proved extremely effective both in proving optimality and detecting infea-
sibility for most of the instances considered. For instances where the audit time T

is greater than one, the CP approach proves optimality or detect infeasibility in a
time that is typically orders-of-magnitude less than the one required by the MILP
approach. Nevertheless the performance of the CP approach when the audit time is
short still remains acceptable and close to that achieved by the MILP approach.

Finally, we believe that introducing additional complexity in the model may con-
stitute an interesting direction for future research. For instance, heterogeneous audit
teams may be considered, which may take different times to perform audits; alterna-
tively, random audit durations—rather than a fixed and deterministic duration T —
may be incorporated in the stochastic programming model.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

In this Appendix a complete list of the notation adopted in the paper is given.

N : (constant) number of time periods in the planning horizon

i, j, t : (index) a time period

M: (constant) number of audit units

m: (index) an audit unit

lmt : (random variable) a normally distributed random variable repre-
senting losses that accrue in audit unit m during period t

glmt
(lmt ): (function) probability density function of lmt

E[.]: (function) expected value operator

μm
t : (constant) expected value of lmt , sometimes expressed as E[lmt ]

σm
t : (constant) standard deviation of lmt

ρ: (constant) coefficient of variation of lmt , ρ = σm
t /μm

t
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T : (constant) number of time periods required by the audit team to
complete an audit

a: (constant) the fixed cost incurred each time an audit is conducted

h: (constant) the loss discount factor measuring the opportunity cost
associated with a given loss level

L̄: (constant) a threshold indicating the maximum allowed loss level
in each period

α: (constant) the probability of not exceeding the loss threshold L̄

Lm
t : (decision variable) the loss level in audit unit m at the beginning of

period t

E[T C]: (objective function) the sum of expected audit costs and discounted
period losses that are expected to accrue in the absence of auditing

Km
t : (decision variable) a variable that takes the value of 1 if an inter-

nal audit (lasting T periods) is started for audit unit m in period t ,
otherwise 0

M: (constant) some very large number

Am
r : (index) time period in which the rth audit is performed on unit m

Glmt
(x): (function) Glmt

(x) = ∫ x

−∞ glmt
(τ )dτ is the cumulative distribution

function of lmt

G−1
lmt

(α): (function) the inverse cumulative distribution function (or α-
quantile) of lmt

GN(.): (function) the standard normal distribution function

G−1
N (.): (function) the inverse of GN(.)

P m
t,j : (decision variable) a binary variable that takes a value of 1 if the

most recent audit prior to period t was in period j and zero else-
where for a given audit unit m

C: (constant) maximum number of audit teams that the firm can assign
to conduct audits in any given time period

�[m, t, j ]: (constant table) a 3-dimensional table whose elements are defined
as �[m, t, j ] = L̄−G−1

lmj +lmj+1+···+lmt
(α), t = 1, . . . ,N , j = 1, . . . ,N
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