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a b s t r a c t

New oscillation criteria are obtained for forced second order elliptic partial differential
equations with damping and mixed nonlinearities of the form

∇ ·

A(x)|∇y|α−1

∇y

+ ⟨b(x), |∇y|α−1

∇y⟩ + f (x, y) = e(x), x ∈ Ω

where Ω is an exterior domain in RN ,

f (x, y) = c(x)|y|α−1y + c1(x)|y|β−1y + c2(x)|y|γ−1y

and

β > α > γ > 0.

It is assumed that A = (aij)N×N is a real symmetric positive definite matrix function,
b = (bi)N×1 is a real vector function, aij ∈ C1+µ

loc (Ω, R), and bi, c, c1, c2, e ∈ Cµ

loc(Ω, R)
for all i, j, for some µ ∈ (0, 1).

Examples are given to illustrate the results.
© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω(r0) = {x ∈ RN
: |x| ≥ r0}, where r0 ≥ 0 is a fixed real number, N is a positive integer, and |x| is the Euclidean

norm in RN . Denote by ⟨, ⟩ the usual scalar product in RN , and ∇ = (∂/∂xi)N×1 as usual.
We consider the second order elliptic partial differential equation with mixed nonlinearities of the form

∇ · (A(x)|∇y|α−1
∇y) + ⟨b(x), |∇y|α−1

∇y⟩ + f (x, y) = e(x), x ∈ Ω(r0), (1.1)

with

f (x, y) = c(x)|y|α−1y + c1(x)|y|β−1y + c2(x)|y|γ−1y, (1.2)
β > α > γ > 0, (1.3)

where

(i) A = (aij)N×N is a real symmetric positive definite matrix function,
(ii) b = (bi)N×1 is a real vector function,
(iii) aij ∈ C1+µ

loc (Ω(r0), R) for some µ ∈ (0, 1),
(iv) bi, c, c1, c2, e ∈ Cµ

loc(Ω(r0), R).
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A function y ∈ C1+µ

loc (Ω(r0), R) with the property aij|∇y|α−1∂y/∂xi ∈ C1+µ

loc (Ω(r0), R) is said to be a solution of Eq. (1.1)
in Ω(r0) provided that y(x) satisfies Eq. (1.1) for all x ∈ Ω(r0). We restrict our attention only to solutions y(x) of Eq. (1.1)
which satisfy sup{|y(x)| : x ∈ Ω(r)} > 0 for any r ≥ r0. Such a solution is called oscillatory if the set {x ∈ Ω(r) : y(x) = 0}
is unbounded; otherwise it is said to be nonoscillatory. Eq. (1.1) is oscillatory if all solutions are oscillatory. For the existence
and as well as the oscillation theory of nonlinear elliptic differential equations, we refer the reader in particular to the
monographs [1,2].

The oscillation of second-order elliptic equations has been investigated by many authors via employing the known tech-
niques used in second-order ordinary differential equations. Below we provide a short review of the results available in the
literature.

Noussair and Swanson [3] first extended Wintner-type oscillation criteria to the semilinear elliptic equation

∇ · (A(x)∇y) + p(x)f (y) = 0, x ∈ Ω(r0) (1.4)

based on N-dimensional vector partial Riccati type transformation

w(x) = −
α(|x|)
f (y(x))

(A∇y)(x)

where α ∈ C2(0, ∞) is an arbitrary positive function, see also [4] for some related results.
Zuang et al. [5] presented Kamenev-type oscillation results for damped elliptic equations of the form

∇ · (A(x)∇y) + bT (x)∇y + C(x, y) = 0 (1.5)

in the special case C(x, y) = c(x)f (y). Other types of criteria such as Philos, Leighton and Hille-type for Eq. (1.5) have also
been established. For some recent contributions, we refer the reader to the papers [6,7] and references cited therein.

Marik [8], by using a radialization method, derived oscillation criteria for half-linear partial differential equations of the
form

∇ · (A(x)|∇y|α−1
∇y) + ⟨b(x), |∇y|α−1

∇y⟩ + c(x)|y|α−1y = 0. (1.6)

The method is based on a comparison with half-linear ordinary differential equations.
Yoshida [9] has studied the oscillation of super-half-linear-sub-half-linear damped elliptic equations of the form

∇ · (A(x)|∇y|α−1
∇y) + (α + 1)B(x)(|∇y|α−1

∇y) + C(x)|y|β−1y + D(x)|y|γ−1y = f (x) (1.7)

where 0 < γ < α < β , by utilizing a Picone-type inequality. In particular, it is shown that each nonoscillatory solution y(x)
satisfies lim inf|x|→∞ |y(x)| = 0 under some hypotheses. Yoshida’s work was motivated by that of Li and Li [10] on second
order nonlinear ordinary differential equations. See also Jaros et al. [11] for a related work when B(x) ≡ 0 and f (x) ≡ 0. The
approach is to reduce the multi-dimensional oscillation problems to one-dimensional oscillation problems for half-linear
ordinary differential equations.

All of the resultsmentioned above involve the integral of the coefficients appearing in the equation and hence require the
information of the coefficients on the entire exterior domainΩ . However, as it is observed for ordinary differential equations
the oscillation is only an interval property by the Sturm Separation Theorem. Due to this fact there have appeared several
works making use of information of the coefficient functions on a union of intervals rather than on an infinite interval. This
type of a criterion is called an interval oscillation criterion for ordinary differential equations, see [12–17] and the references
cited therein. Therefore, our aim is tomake a contribution in this direction by establishing oscillation criteriawhich are based
on a sequence of annuluses

{x ∈ RN
: ai ≤ |x| ≤ bi, i ∈ N}.

To the best of our knowledge only a few works exist for partial differential equations concerning annulus oscillation
criteria. For a sampling of works done, we may refer in particular to the following investigations.

Zhuang [18,19] has extended the interval oscillation criteria given by Yang [20] to forced elliptic equations of the form

∇ · (A(x)∇y) + q(x)f (y) = e(x) (1.8)

and

∇ · (A(x)∇y) + BT (x)∇y + q(x)f (y) = e(x). (1.9)

In [21,22], Kamenev-type oscillation criteria are given for

∇ · (A(x)∇y) + BT (x)∇y + C(x, y) = e(x), (1.10)

where C(x, y) has mixed nonlinearities in y.
By using a Picone-type inequality, Yoshida [23] has studied

∇ · (a(x)|∇y|α−1
∇y) + (α + 1)B(x)(|∇y|α−1

∇y) + C(x)|y|β−1y = f (x) (1.11)
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when C is nonnegative on a bounded domain G. The domain is divided into subdomains in such a way that f (x) > 0 in G1
and f (x) < 0 in G2.

Compared to Eqs. (1.7)–(1.11), there seems to be nothing known on the annulus oscillation of Eq. (1.1). As there is a
demand for further research on oscillation of elliptic differential equations as such equations arise from a variety of physical
phenomena, we aim to fill a gap by establishing annulus oscillation criteria for elliptic differential equations of the form
Eq. (1.1).

2. Preliminaries

First we introduce some notation for use in the next section. Let
S(r) = {x ∈ RN

: |x| = r},
Ω[a, b] = {x ∈ RN

: a ≤ |x| ≤ b},
and

Ω(a, b) = {x ∈ RN
: a < |x| < b}.

A−1(x) denotes the inverse of the matrix A(x), ν(x) = x/|x| is the outside unit normal vector to the sphere S(|x|), dσ
represents the area element of the sphere S(|x|), λmax and λmin denote the largest and smallest eigenvalue of the matrix
A(x), respectively. Finally, |A(x)| is the matrix norm induced by the vector norm in RN , i.e., |A(x)| = supv≠0 |A(x)v|/|v|,
v ∈ RN .

We need the following preparatory lemmas.

Lemma 2.1 (Arithmetic–Geometric Mean Inequality). If pi ≥ 0 and qi > 0 for all i = 1, 2, . . . ,m, and
∑m

i=0 qi = 1, then

m−
i=0

piqi ≥

m∏
i=0

piqi . (2.1)

Lemma 2.2 (Young’s Inequality). If p > 1 and q > 1 are conjugate numbers, i.e. 1
p +

1
q = 1, then for any u, v ∈ R

|u|p

p
+

|v|
q

q
≥ |uv|

and equality holds iff u = |v|
q−2v.

Let β > γ . Put u = Aγ /βyγ , p = β/γ , and v = (Bγ )1−γ /β(β − γ )γ /β−1. It follows from Lemma 2.2 that

Ayβ
+ B ≥ βγ −γ /β(β − γ )(γ /β)−1Aγ /βB1−γ /βyγ (2.2)

for all A, B, y ≥ 0. Rewriting the above inequality, we also have

Cyγ
− D ≤ β−β/γ γ (β − γ )(β/γ )−1Cβ/γD1−β/γ yβ (2.3)

for all C, y ≥ 0 and D > 0.

3. The main results

For any [a, b] ⊂ [r0, ∞), we define
D(a, b) = {u ∈ C1([a, b], R) : u(t) ≢ 0 ∀t ∈ (a, b), u(a) = 0 = u(b)}.

Theorem 3.1. Let η0 > 0 be fixed so that βη0 < β − α. Let

η1 =
α − γ (1 − η0)

β − γ
, η2 =

β(1 − η0) − α

β − γ
.

Suppose that for any given r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1, r ≤ a2 < b2 and that

ci(x) ≥ 0 for x ∈ Ω[a1, b1] ∪ Ω[a2, b2], (i = 1, 2) (3.1)

and

(−1)ke(x) ≥ 0(≢ 0) for x ∈ Ω[ak, bk], (k = 1, 2). (3.2)

If there exists a function u ∈ D(ak, bk) for k = 1, 2 such that∫
Ω[ak,bk]


C(x)uα+1(|x|) −

1
(α + 1)α+1λα

min(x)
|A(x)|α+1

|H(x)|α+1


dx > 0 (3.3)
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where

H(x) = (α + 1)∇u(|x|) − bT (x)A−1(x)u(|x|)

and

C(x) = c(x) + (|e(x)|/η0)
η0(c1(x)/η1)

η1(c2(x)/η2)
η2 ,

then Eq. (1.1) is oscillatory.

Proof. To arrive at a contradiction, let us assume that there is a nonoscillatory solution y of (1.1). Without loss of generality,
we take y(x) to be positive for all x ∈ Ω(a0) for some a0 ≥ r0. In view of (3.1) and (3.2), we can choose a1 ≥ a0 sufficiently
large so that c1(x) ≥ 0, c2(x) ≥ 0 and e(x) ≤ 0 for all x ∈ Ω[a1, b1].

Let x ∈ Ω[a1, b1]. Then, setting

u0 =
1
η0

|e(x)|
yα(x)

, u1 =
1
η1

c1(x)yβ−α(x), u2 =
1
η2

c2(x)yγ−α(x),

we may write

−e(x) + c1(x)yβ
+ c2(x)yγ

= yα(η0u0 + η1u1 + η2u2),

and hence by Lemma 2.1, we have

−e(x) + c1(x)yβ
+ c2(x)yγ

≥ |e(x)|η0yα


2∏

i=0

ηi
−ηi


2∏

i=1

cηi
i (x).

Using this inequality in (1.1) results in

∇ · (A(x)|∇y|α−1
∇y) + ⟨b(x), |∇y|α−1

∇y⟩ + C(x)yα
≤ 0. (3.4)

Now we make use of a Riccati-like transformation

w(x) =
1

yα(x)
A(x)|∇y|α−1

∇y

in (3.4) to get

∇ · w(x) ≤ −C(x) − ⟨A−1(x)b(x), w(x)⟩ −
α

yα+1
⟨A(x)|∇y|α−1

∇y, ∇y⟩. (3.5)

Noting that

|w(x)| ≤ |A(x)|
|∇y|α

yα
, (∇y)TA(x)∇y ≥ λmin(x)|∇y|2,

we obtain from (3.5),

∇ · w(x) ≤ −C(x) − ⟨A−1(x)b(x), w(x)⟩ −
αλmin(x)

|A(x)|
α+1
α

|w(x)|
α+1
α . (3.6)

Multiplying (3.6) by uα+1(|x|) and integrating over the annulus Ω[a1, b1], we get∫
Ω[a1,b1]

C(x)uα+1(|x|)dx ≤ −

∫
Ω[a1,b1]

uα+1(|x|)∇ · w(x)dx −

∫
Ω[a1,b1]

bT (x)A−1(x)uα+1(|x|)w(x)dx

−

∫
Ω[a1,b1]

αλmin(x)

|A(x)|
α+1
α

uα+1(|x|)|w(x)|
α+1
α dx.

On the other hand, we may write that∫
Ω[a1,b1]

uα+1(|x|)∇ · w(x)dx =

∫ b1

a1
uα+1(r)


d
dr

∫
S(r)

⟨νT , w⟩dσ

dr

= −

∫
Ω[a1,b1]

(α + 1)uα(|x|)∇u(|x|)w(x)dx.

Thus, we have∫
Ω[a1,b1]

C(x)uα+1(|x|)dx ≤

∫
Ω[a1,b1]

Θ(x)uα+1(|x|)w(x)dx −

∫
Ω[a1,b1]

αλmin(x)

|A(x)|
α+1
α

uα+1(|x|)|w(x)|
α+1
α dx
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where

Θ(x) = (α + 1)
∇u(|x|)
u(|x|)

− bT (x)A−1(x).

Employing Young’s inequality we can write

Θ(x)w(x) ≤
1

λα
min(x)(α + 1)α+1

|A(x)|α+1
|Θ(x)|α+1

+
αλmin(x)

|A(x)|
α+1
α

|w(x)|
α+1
α .

Substituting this into the first integral above yields∫
Ω[a1,b1]

C(x)uα+1(|x|)dx ≤

∫
Ω[a1,b1]

1
(α + 1)α+1λα

min(x)
|A(x)|α+1

|Θ(x)|α+1uα+1(|x|)dx,

which means that∫
Ω[a1,b1]


C(x)uα+1(|x|) −

1
(α + 1)α+1λα

min(x)
|A(x)|α+1

|H(x)|α+1


dx ≤ 0.

But this inequality contradicts (3.3), completing the proof when y(x) is eventually positive.
The proof when y(x) is eventually negative is analogous by repeating the arguments on the annulus Ω[a2, b2] instead of

Ω[a1, b1]. �

Theorem 3.1 fails to apply when e(x) ≡ 0. Fortunately, we have the following theorem in that case.

Theorem 3.2. Let

η1 =
α − γ

β − γ
, η2 =

β − α

β − γ
.

Suppose that for any given r ≥ r0, there exist a, b such that r ≤ a < b and that

ci(x) ≥ 0 for x ∈ Ω[a, b], (i = 1, 2). (3.7)

If there exists a function u ∈ D(a, b) such that∫
Ω[a,b]


C̃(x)uα+1(|x|) −

1
(α + 1)α+1λα

min(x)
|A(x)|α+1

|H(x)|α+1

dx > 0 (3.8)

where

H(x) = (α + 1)∇u(|x|) − bT (x)A−1(x)u(|x|)

and

C̃(x) = c(x) + (c1(x)/η1)
η1(c2(x)/η2)

η2 ,

then Eq. (1.1) with e(x) ≡ 0 is oscillatory.

Proof. The proof is in fact a simpler version of the proof of Theorem 3.1. It suffices to take e(x) ≡ 0 and η0 = 0. �

In the next theoremwe remove the sign condition on c2(x) by requiring that e(x) never vanishes in the domain of interest.

Theorem 3.3. Suppose that for any given r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1, r ≤ a2 < b2 and that

c1(x) ≥ 0 for x ∈ Ω[a1, b1] ∪ Ω[a2, b2] (3.9)

and

(−1)ke(x) > 0 for x ∈ Ω[ak, bk], (k = 1, 2). (3.10)

If there exist a function u ∈ D(ak, bk), positive numbers δ and ϵ with δ + ϵ = 1 such that∫
Ω[ak,bk]


Ĉ(x)uα+1(|x|) −

1
(α + 1)α+1λα

min(x)
|A(x)|α+1

|H(x)|α+1


dx > 0 (3.11)

for k = 1, 2, where

Ĉ(x) = c(x) + β(β − α)α/β−1α−α/βδ1−α/βcα/β

1 (x)|e(x)|1−α/β

− (γ /α)(1 − γ /α)α/γ−1ϵ1−α/γ (−c2)
α/γ
+ (x)|e(x)|1−α/γ
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with

(−c2)+(x) = max{−c2(x), 0},

and

H(x) = (α + 1)∇u(|x|) − bT (x)A−1(x)u(|x|)

then Eq. (1.1) is oscillatory.
Proof. Suppose that Eq. (1.1) has a nonoscillatory solution. Wemay assume that y(x) is positive on Ω(a0) for some a0 ≥ r0.
Let y ∈ Ω[a1, b1], where a1 ≥ a0 is sufficiently large. If y(x) is negative, then one can repeat the proof on the interval
Ω[a2, b2]. We rewrite Eq. (1.1) as follows:

∇ · (A(x)|∇y|α−1
∇y) + ⟨b(x), |∇y|α−1

∇y⟩ + c(x)yα
+ g(x, y) = 0, (3.12)

where

g(x, y) = [c1(x)yβ
− δe(x)] + [c2(x)yγ

− ϵe(x)]
≥ [c1(x)yβ

+ δ|e(x)|] − [(−c2)+(x)yγ
− ϵ|e(x)|].

Applying the inequalities (2.2) and (2.3) to each summation on the right side with

A = c1(x), B = δ|e(x)|, C = (−c2)+(x), D = ϵ|e(x)|

we see that

g(x, y) ≥ [P(x) − R(x)]yα, (3.13)

where

P(x) = β(β − α)α/β−1α−α/βδ1−α/βcα/β

1 (x)|e(x)|1−α/β

and

R(x) = (γ /α)(1 − γ /α)α/γ−1ϵ1−α/γ (−c2)
α/γ
+ (x)|e(x)|1−α/γ .

From (3.12) and (3.13) we obtain

∇ · (A(x)|∇y|α−1
∇y) + ⟨b(x), |∇y|α−1

∇y⟩ + C(x)yα
≤ 0. (3.14)

The remainder of the proof is the same as that of Theorem 3.1, hence it is omitted. �

In case 0 < α ≤ 1 we have the following theorems. Since steps of the proofs are almost same as the corresponding one
above, we just give an outline for the proof of the first theorem.

Theorem 3.4. Let 0 < α ≤ 1. Suppose that for any given r ≥ r0, there exist a1, b1, a2, b2 such that r ≤ a1 < b1, r ≤ a2 < b2
and that (3.1) and (3.2) are satisfied. Then Eq. (1.1) is oscillatory, if there exists a function u ∈ D(ak, bk)(k = 1, 2) such that∫

Ω[ak,bk]


C(x)uα+1(|x|) −

λmax(x)
(α + 1)α+1

|H(x)|α+1


dx > 0, (3.15)

where the functions C and H are as given in Theorem 3.1.
Proof. Proceeding as in the proof of Theorem 3.1, we arrive at

∇ · w(x) ≤ −C(x) − ⟨A−1(x)b(x), w(x)⟩ −
α

yα+1
⟨A(x)|∇y|α−1

∇y, ∇y⟩.

Using the estimates

|w(x)|1/α

|A(x)|1/α
≤

|∇y|
y

, wT (x)A−1(x)w(x) ≥
|w(x)|2

λmax(x)
,

we have

α

yα+1
⟨A(x)|∇y|α−1

∇y, ∇y⟩ ≥ α
|w(x)|(1+α)/α

λ
1/α
max(x)

.

It follows that

∇ · w(x) ≤ −C(x) − ⟨A−1(x)b(x), w(x)⟩ − α
|w(x)|(1+α)/α

λ
1/α
max(x)

.

The remainder of the proof is similar to that of Theorem 3.1. �



1862 Y. Şahiner, A. Zafer / Mathematical and Computer Modelling 53 (2011) 1856–1864

Theorem 3.5. Let 0 < α ≤ 1. Suppose that for any given r ≥ r0, there exist a, b such that r ≤ a < b and that (3.7) holds. Then
Eq. (1.1) with e(x) ≡ 0 is oscillatory, if there exists a function u ∈ D(a, b) such that∫

Ω[a,b]


C̃(x)uα+1(|x|) −

λmax(x)
(α + 1)α+1

|H(x)|α+1


dx > 0 (3.16)

where the functions C̃(x) and H are as given in Theorem 3.2.

Theorem 3.6. Let 0 < α ≤ 1. Suppose that for any given r ≥ r0, there exist a1, b1, a2, b2 ∈ [r, ∞) such that r ≤ a1 < b1,
r ≤ a2 < b2 and that (3.9) and (3.10) hold. Then Eq. (1.1) is oscillatory, if there exist a function u ∈ D(ak, bk)(k = 1, 2), and
positive numbers δ and ϵ with δ + ϵ = 1 such that∫

Ω[ak,bk]


Ĉ(x)uα+1(|x|) −

λmax(x)
(α + 1)α+1

|H(x)|α+1


dx > 0,

where the functions Ĉ(x) and H are as given in Theorem 3.3.

Remark 1. In view of |A(x)| = λmax(x), we may replace the conditions (3.3), (3.8) and (3.11), respectively, by∫
Ω


C(x)uα+1(|x|) −

λα+1
max (x)

(α + 1)α+1λα
min(x)

|H(x)|α+1


dx > 0, (3.17)

∫
Ω


C̃(x)uα+1(|x|) −

λα+1
max (x)

(α + 1)α+1λα
min(x)

|H(x)|α+1


dx > 0, (3.18)

and ∫
Ω


Ĉ(x)uα+1(|x|) −

λα+1
max (x)

(α + 1)α+1λα
min(x)

|H(x)|α+1


dx > 0. (3.19)

Remark 2. If we take α = 1 and replace (3.3) by (3.17) in Theorem 3.1, and (3.8) by (3.18) in Theorem 3.3, then we
recover [22, Theorem2.1] and [22, Theorem2.2], respectively. The case e ≡ 0 is not considered in [22], therefore Theorem3.2
(even for α = 1) and Theorem 3.6 are new.

Remark 3. All of the theorems in this paper can be extended to a class of more general equations of the form

∇ · (A(x)|∇y|α−1
∇y) + ⟨b(x), |∇y|α−1

∇y⟩ + f (x, y) = e(x).

where

f (x, y) = c(x)|y|α−1y +

m−
i=1

ci(x)|y|βi−1y

with

βm > βm−1 > · · · βk+1 > α > βk > · · · β1 > 0, m ≥ 2.

In this case, one should use [15, Lemma 1], see also [12, Lemma 2.4], to get the numbers η1, η2, . . . , ηm.

4. Examples

Two examples are given to illustrate the results.We should note that no oscillation criterion in the literature is applicable
for these examples.

Example 4.1. Consider the nonlinear PDE

∇ · (|∇y|2∇y) −
(x1, x2)T

x21 + x22
|∇y|2∇y + m1 sin1/7


x21 + x22 |y|3y + m2 sin9


x21 + x22 |y|y = cos5


x21 + x22. (4.1)
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We see that x = (x1, x2) ∈ R2 and A(x) = I (Identity matrix), c(x) = 0, α = 3, β = 4 and γ = 2. With the choice of
η0 = 1/5, we have η1 = 7/10, η2 = 1/10, and

C(x) = K | cos

x21 + x22| sin


x21 + x22, K =


108

77
m1

7m2

1/10

.

Let a1 = 2iπ + π/2, b1 = 2iπ + π, a2 = 2(i + 1)π, b2 = 2(i + 1)π + π/2 for i ∈ N setting

u(x) =

sin 2

x21 + x22

(x21 + x22)1/8
,

we have

H(x) =

8 cos 2

x21 + x22

(x21 + x22)5/8
(x1, x2).

A simple calculation yields for k = 1, 2 that∫
Ω[ak,bk]

[
C(x)u4


x21 + x22


−

1
43

|H(x)|4
]
dx = 2π

∫ bk

ak
[K | cos r| sin r sin4 2r − 64 cos4 2r]dr =

25π

60
(K − 45π).

Clearly, if

m7
1m2 >

77(9π)10

28
,

then the condition (3.3) is satisfied, and so Eq. (4.1) is oscillatory by Theorem 3.1.

Example 4.2. Consider the nonlinear PDE

∇ · (|∇y|2∇y) −
(x1, x2)T

x21 + x22
|∇y|2∇y + m sin


x21 + x22|y|

3y + m sin

x21 + x22|y|y = 0. (4.2)

In this case we have e(x) ≡ 0, so η1 = η2 = 1/2.
Taking a = 2iπ and b = (2i + 1)π for i ∈ N, and using the same H and u given in the previous example, we have

C̃(x) = 2m sin

x21 + x22.∫

Ω[a,b]

[
C̃(x)u4


x21 + x22


−

1
43

|H(x)|4
]
dx = 2π

∫ b

a
[2m sin r sin4 2r − 64 cos4 2r]dr = 25π


16m
315

−
3π
4


.

Note that the condition (3.8) is satisfied when m > 35π( 3
4 )

3. Applying Theorem 3.2, we may conclude in this case that
Eq. (4.2) is oscillatory.
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