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Abstract: Hemoglobin is an iron carrying protein in erythrocytes and also an essential element
to transfer oxygen from the lungs to the tissues. Abnormalities in hemoglobin concentration are
closely correlated with health status and many diseases, including thalassemia, anemia, leukemia,
heart disease, and excessive loss of blood. Particularly in resource-constrained settings existing
blood analyzers are not readily applicable due to the need for high-level instrumentation and skilled
personnel, thereby inexpensive, easy-to-use, and reliable detection methods are needed. Herein,
a molecular fingerprints of hemoglobin on a nanofilm chip was obtained for real-time, sensitive,
and selective hemoglobin detection using a surface plasmon resonance system. Briefly, through the
photopolymerization technique, a template (hemoglobin) was imprinted on a monomeric (acrylamide)
nanofilm on-chip using a cross-linker (methylenebisacrylamide) and an initiator-activator pair
(ammonium persulfate-tetramethylethylenediamine). The molecularly imprinted nanofilm on-chip
was characterized by atomic force microscopy and ellipsometry, followed by benchmarking detection
performance of hemoglobin concentrations from 0.0005 mg mL−1 to 1.0 mg mL−1. Theoretical
calculations and real-time detection implied that the molecularly imprinted nanofilm on-chip was
able to detect as little as 0.00035 mg mL−1 of hemoglobin. In addition, the experimental results
of hemoglobin detection on the chip well-fitted with the Langmuir adsorption isotherm model
with high correlation coefficient (0.99) and association and dissociation coefficients (39.1 mL mg−1

and 0.03 mg mL−1) suggesting a monolayer binding characteristic. Assessments on selectivity,
reusability and storage stability indicated that the presented chip is an alternative approach to current
hemoglobin-targeted assays in low-resource regions, as well as antibody-based detection procedures
in the field. In the future, this molecularly imprinted nanofilm on-chip can easily be integrated with
portable plasmonic detectors, improving its access to these regions, as well as it can be tailored to
detect other proteins and biomarkers.
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1. Introduction

Proteins display multiple functional and structural features in cellular machinery. They are
also essential elements as indicators and predictors of diseases through their inherent structural
properties, concentration, and 3-D orientation [1]. Such a compound, hemoglobin, a tetrameric
protein in red blood cells, consists of two dimer subunits with an iron-carrying protein that transports
oxygen and carbon dioxide throughout the body and also maintains acid-base balance in the blood.
Any structural and concentration changes in hemoglobin may lead to serious diseases, mostly caused
by genetic factors, including hemoglobinopathies, thalassaemia and sickle cell anemia [2,3]. Although
there are many laboratory-based analytical tools to determine hemoglobin levels, considerable
limitations including expensive assays, multi-step procedures, long assay times, the need for skilled
personnel, poor test stability and specificity still limit their implementations in resource-constrained
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settings [4]. Even though many efforts are directed at developing sensitive detection strategies,
especially affinity-based methods, transportation, refrigeration, and storage are main issues in these
regions, thereby easy-to-use, reliable, sensitive, durable, specific and long-term stable detection assays
are urgently needed [5].

Besides affinity-based assays, molecular imprinting methods have attracted researchers due to
their nanolevel molecular replicability of template/target proteins [6–8]. The molecular imprinting
method is one of the fascinating surface modification technique that utilizes templates to create
specific cavities for recognition of targets in a polymeric matrix. This method provides a broad
range of versatility to imprint targets with different molecular size, three dimensional structure,
and physicochemical properties. In contrast to biological molecules such as antibodies that
require labor intensive, high-cost production and multiple quality-control procedures, molecularly
imprinted polymers offer notable advantages including long-term stability, high durability in
harsh conditions (e.g., high pressure and temperature), ease-of-preparation, versatility, reusability,
inexpensive production, and high sensitivity to the target protein. Therefore, these molecular
replica nanofilms produced by molecular imprinting methods are vital candidates for bio-assays
in resource-constrained settings.

In this study, we designed a specific, sensitive and stable molecularly imprinted nanofilm on-chip
to detect hemoglobin. As a detector, surface plasmon resonance technology was selected since it enables
one to record minute binding events at the close vicinity of the surface [9]. Hemoglobin was utilized as a
model protein for the molecular fingerprinting process. First, hemoglobin and acrylamide pre-complex
was prepared with template and monomer mixture, and then the cross-linker (methylenebisacrylamide)
was added to the pre-complex mixture to form a final mixture for polymerization. After addition
of an initiator and activator (ammonium persulfate and tetramethyl ethylenediamine) pair to the
final mixture, the whole mixture was then used to decorate to the molecularly imprinted nanofilm
on-chip. The molecularly imprinted nanofilm on-chip was characterized and then the detection
performance was investigated through kinetic parameters and isotherm models. The selectivity,
reusability and storage stability performance of the molecularly imprinted nanofilm on-chip was
also studied. Therefore, we developed an alternative strategy to monitor protein biomarker levels
for clinical laboratories or primary care clinics with limited resources that are deprived of expensive
infrastructure, skilled personnel, and storage/refrigeration.

2. Materials and Methods

2.1. Materials

Acrylamide (A3553, Sigma-Aldrich, St. Louis, MO, USA), N,N-methylenebisacrylamide (M7279,
Sigma-Aldrich, St. Louis, MO, USA), ammonium persulfate (A3678, Sigma-Aldrich, St. Louis, MO,
USA), N,N,N′,N′-tetramethylethylene diamine (T9281, Sigma-Aldrich, St. Louis, MO, USA), bovine
hemoglobin (Hb, H3760, Sigma-Aldrich, St. Louis, MO, USA), bovine serum albumin (BSA, A2153,
Sigma-Aldrich, St. Louis, MO, USA), lysozyme (Lyz, 62971, Sigma-Aldrich, St. Louis, MO, USA),
transferrin (Trf, T8158, Sigma-Aldrich, St. Louis, MO, USA), myoglobin (Myb, M0630, Sigma-Aldrich,
St. Louis, MO, USA), 2-propene-1-thiol (allyl mercaptan, 06030, Sigma-Aldrich, St. Louis, MO, USA),
dipotassium hydrogen phosphate (K2HPO4, 60356, Sigma-Aldrich, St. Louis, MO, USA), potassium
dihydrogen phosphate (KH2PO4, 04243, Sigma-Aldrich, St. Louis, MO, USA) and gold surfaces
(GWC-1000-050, GWC Technologies, Madison, WI, USA) were purchased for all experiments.

2.2. Modification and Preparation of the NanoFilms

The modification of the nanofilm was first carried out by using allyl mercaptan due to the
improvement of the coupling for the imprinting process [10]. Allyl mercaptan was dropped on the
gold chip surfaces and incubated overnight to obtain pendant vinyl groups. After the modification,
the gold chip surfaces were washed with ethyl alcohol and dried at room temperature for the imprinting
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process. The pre-complex was prepared with the model protein hemoglobin and different amounts
of acrylamide monomer dissolved in a water and were stirred 30 min. The optimized ratio of
hemoglobin to acrylamide was evaluated by UV-visible spectrophotometer (Model 1601, Shimadzu,
Kyoto, Japan). The measurements were repeated until no increment of absorbance belonging to the
formed pre-complex between hemoglobin and acrylamide was observable.

The molecularly imprinted nanofilm on-chip was prepared using the pre-complex and
N,N-methylenebisacrylamide (6.0 mg) as a cross-linker. Then, 10 µL of ammonium persulfate (10%) and
10 µL of N,N,N′,N′-tetramethylethylenediamine (5%) as an initiator and activator pair were added to
the monomer mixture to uniformly coat the modified chip surface by spin coating. The polymerization
was accomplished under UV light (100 W, 365 nm) for 30 min. The unreacted monomer and impurities
were removed by employing ethyl alcohol, followed by drying. The molecularly imprinted nanofilm
on-chip was treated with desorption agent (0.01 M NaCl) for an hour to remove the template from the
hemoglobin specific cavities of the chip. The washing steps were repeated several times until no band
was observed at 406 nm by UV-visible spectrophotometry. A non-imprinted nanofilm on-chip was
also produced by the same procedure without using hemoglobin.

2.3. Characterization of the NanoFilms

Characterization studies of the non-imprinted and molecularly imprinted nanofilms were done
via atomic force microscope and ellipsometry analysis. The atomic force microscope analysis
was employed in tapping mode (Nanomagnetics Instruments, Oxford, UK). The atomic force
microscope system could perform measurements in high resolution due to the cantilever interferometer.
The non-imprinted and molecularly imprinted nanofilm on-chips were placed to the atomic force
microscope system by using double-sided carbon strip and images were obtained with oscillation
frequency (341.30 Hz), vibration amplitude (1 voltage root mean square) and free vibration amplitude
(2 voltage root mean square). Ellipsometry analysis of the non-imprinted and molecularly imprinted
nanofilms was carried out by using an auto-nulling imaging ellipsometry system (Nanofilm EP3,
Goettingen, Germany). A four-zone auto-nulling procedure integrating sample areas (50 µm × 50 µm)
was followed by a fitting algorithm in the layer thickness analysis. All ellipsometry analyses were
performed at a wavelength of 532 nm with an angle of incidence at 72◦ and were also carried out three
times. The thickness results were reported as the mean value of the analysis plus standard deviations.

2.4. Kinetic Analysis

Kinetic analysis was first performed using in the same hemoglobin concentration (0.1 mg mL−1)
in solutions of different pH that was changed from 4.0 to 8.0 and then with different hemoglobin
concentrations that changed from 0.0005 mg mL−1 to 1.0 mg mL−1 in the solution (pH 6.0) that gave
the maximum response with the same flow rate (150 µL min−1). The resonance angle and plasmon
curve were adjusted and then the adsorption solution (pH 6.0) was passed from the surface plasmon
resonance system to obtain a baseline. Then, the hemoglobin solutions were interacted with chips,
individually. The change in reflectivity (%∆R) was observed immediately and desorption agent,
0.01 M NaCl in deionized water, was supplied when the surface plasmon resonance system was in an
equilibrium condition. After the desorption process, the chips were regenerated with ultrapure water
and then adsorption solution was used for re-equilibration. These adsorption-desorption-regeneration
steps were repeated for each sample solution. The signal changes for each sample concentration were
then calculated from a series of difference images obtained by subtracting the reference image from the
image obtained at each concentration of the hemoglobin. The reflectivity changes were then plotted
versus concentration of the hemoglobin.

2.5. Selectivity, Reusability and Storage Stability Analysis

The selectivity analysis of the non-imprinted and molecularly imprinted nanofilm on-chips was
investigated by using lysozyme (Lyz), transferrin (Trf), bovine serum albumin (BSA), and myoglobin
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(Myb) sample solutions as competing agents in same concentrations (0.1 mg mL−1). In addition,
the selectivity properties were also done with a mixture of these competing proteins and hemoglobin.
The total concentration of protein mixture was adjusted to 0.1 mg mL−1 at pH 6.0. To demonstrate
the reusability performance of the molecularly imprinted nanofilm on-chip, different concentrations
of hemoglobin solution ranging from 0.1 to 1.0 mg mL−1 were used, respectively. The molecularly
imprinted nanofilm on-chip was also examined with the same hemoglobin concentration (0.1 mg mL−1)
at different times (0, 3 and 27 months) to determine storage stability performance.

3. Results and Discussions

3.1. Preparation and Characterization of the NanoFilms

The pre-complex was prepared with the ratio 1 µmol:4 mmol of hemoglobin and acrylamide
and the absorbance intensity increment ended up at this ratio. After obtaining an optimum ratio,
the non-imprinted and molecularly imprinted nanofilms for hemoglobin molecule fingerprints were
prepared as shown in Figure 1A,B. The atomic force microscope images of the bare, non-imprinted and
molecularly imprinted nanofilm on-chips revealed that the average surface roughness values were
increased from 0.54 nm to 1.05 nm from bare to non-imprinted nanofilm. After hemoglobin imprinting,
the average surface roughness value was also increased to 1.86 nm, pointing out the success of the
polymerization by the increase of roughness values. In addition, the root means square values were
amplified by 3.4-fold (0.73 nm to 2.46 nm) after the imprinting process (Figure S1 and Figure 1C–E).
To evaluate surface thickness after the polymerization and template removal, ellipsometry analysis
was also performed. The surface thicknesses were calculated as 88.3 ± 3.3 nm and 87.9 ± 1.6 nm for
non-imprinted and molecularly imprinted nanofilms, respectively (Figure 1D–F). These results were
also coherent with the results obtained from the atomic force microscopy analysis. In sum, monolayer
and almost homogeneous nanofilm formation after the polymerization process was successful.
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Figure 1. Schematic illustrations, atomic force microscope and ellipsometry images of the
non-imprinted (A,C,D) and molecularly imprinted (B,E,F) nanofilms.

3.2. Kinetic Analysis

To evaluate the kinetic behavior of the molecularly imprinted nanofilm on-chip, the binding of
hemoglobin molecules was monitored using a surface plasmon resonance system that considerably
reduces assay time, cost, and the need for labelling process. In addition, specific molecular interactions
and binding events between molecularly imprinted nanofilm and hemoglobin can be measured in
real-time, making the analysis quantitative while also determining the kinetic parameters.
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In this analysis, the molecularly imprinted nanofilm on-chip was first washed with adsorption
solution (pH 6.0) for 200 s to obtain a baseline, and then, hemoglobin solutions with different
concentrations were introduced into the surface plasmon resonance system (SPR imager II, GWC
Technologies, Madison, WI, USA) for 1000 s. Following this step, desorption buffer (0.01 M NaCl in
deionized water) was applied for 200 s. After that, a second wash step was applied with the desorption
buffer for 30 min, followed by washing with deionized water for 30 min and the adsorption buffer for
30 min. The same flow rate (150 µL min−1) was used for all experiments.

In addition, a rise in hemoglobin concentration produced an increase in the molecularly imprinted
nanofilm response (Figure 2A). As referred earlier, hemoglobin sample solutions were prepared with
pH 6.0 phosphate buffer. To obtain a maximum response, the effect of pH of the adsorption solution
was investigated by using different pHs in a range from 4.0–8.0. As shown in Figure S2, the highest
response was observed at pH 6.0. Acrylamide monomer can supply several H-bonding spots for
hemoglobin template at this pH. Thus, the hemoglobin molecule can be polymerized in the polymeric
matrix through the H-bond between the acrylamide amide group and the hemoglobin amino and
carboxyl groups.

In the surface plasmon resonance system, the data was obtained as a change in reflectivity, %∆R,
demonstrating the absolute physical unit of measurement. In the measurements, %∆R values in
resonance frequency reached a plateau value around 1200 s. The relationships between hemoglobin
concentration and %∆R were obtained with this concentration range and the calibration curves were
demonstrated in Figure 2B. In all solutions, the molecularly imprinted nanofilm on-chip extended
the plateau value up to 1200 s (~23 min), and increments in hemoglobin concentrations resulted
in higher %∆R values. After applying the desorption buffer to the system, %∆R values decreased
to approximately the initial value. Therein, the %∆R values increased from 0.098 to 13.67 between
0.0005 mg mL−1 and 1.0 mg mL−1 of hemoglobin concentrations. Further examinations on the
performance of the molecularly imprinted nanofilm on-chip indicated a high (99%) precision for
hemoglobin concentrations from 0.0005 to 0.05 mg mL−1 with an equation y = 102.44x + 0.1126, as well
as 94% precision was observed between 0.1 and 1.0 mg mL−1 with an equation y = 7.5448x + 6.5111.
Theoretical calculation results (using the 3S/b formula, where S is the standard deviation of the chip
response can be estimated by the standard deviation of either y-intercept of regression lines) showed
that the molecularly imprinted nanofilm on-chip was able to detect as low as 0.00035 mg mL−1.

All hemoglobin concentrations produced a response in the surface plasmon resonance
measurements. In the pseudo first order reactions, the hemoglobin concentration was kept constant
and the binding events were defined by Equation (1):

d∆R
dt

= kac(∆Rmax − ∆R)kd∆R (1)

where d∆R/dt is the rate change of the molecularly imprinted nanofilm response; ∆R and ∆Rmax are
the measured value and maximum response calculated, respectively; c is hemoglobin concentration;
and ka and kd are association and dissociation rate constants, respectively. The association constant
(KA) was calculated using KA = ka/kd. At the equilibrium (d∆R/dt = 0), the equation was then revised
as Equation (2):

∆Req/c = KA∆Rmax − KA∆Req (2)

The KA value was also obtained using the plot of ∆Req/c vs. ∆Req, and the dissociation constant,
KD, was calculated as 1/KA. Further derivations of Equation (1) were revised to Equation (3):

d∆R
dt

= kac∆Rmax − (kac + kd)∆R (3)

The plot of d∆R/dt versus ∆R provided a straight line with a slope of −(ka + kd). With the
identification of ∆Rmax, both ka and kd were calculated from an association sensorgram [11]. A preferred
method is to quantify the association sensorgram at various hemoglobin concentrations [12].
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The forward and backward reaction rates were obtained from a plot of d∆R/dt versus ∆R, and
the value of s (the slope) was calculated using the Equation (4):

s = kac + kd (4)
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The plot of s versus c provided a straight line and ka was defined as the slope of this plot.
In principle, the intercept on the ordinate presents kd [13]. The dissociation can also be quantified using
Equation (5):

ln(∆R0/∆Rt) = kd(t− t0) (5)

where ∆R0 is the initial response at t0; ∆R and t are calculated from the dissociation curve [14].
Association kinetics analysis graph was shown in Figure 2C. Equilibrium analysis, i.e., Scatchard,
is employed to evaluate the experimental data for reversible host/guest interactions and identify the
total binding sites the host has at the equilibrium condition [15].

∆Rex/c = KA
(
∆Rmax − ∆Req

)
(6)

The equilibrium analysis graph was also presented in Figure 2D. According to the kinetic
calculations and analysis, high correlation coefficients of the experimental data were observed,
with values of 0.92 and 0.98 for the equilibrium and association kinetics analysis. In the equilibrium
analysis, the KA and KD coefficients were calculated as 12.6 mL mg−1 and 0.08 mg mL−1, respectively.
In the association kinetic analysis, the KA and KD coefficients of 15 mL mg−1 and 0.07 mg mL−1,
were found, respectively.
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3.3. Adsorption Isotherm Models

The adsorption isotherm models identify multiple parameters, including detection capability,
selectivity and surface homogeneity. As stated in Equations (7) and (8), the binding events between the
molecularly imprinted nanofilm on-chip and hemoglobin molecules were defined with two different
adsorption isotherm models as follows:

Langmuir ∆R = {∆Rmax[c]/KD + [c]} (7)

Freundlich ∆R = ∆Rmax[c]
1/n (8)

Langmuir adsorption isotherm model is based on the acceptance of a homogeneous distribution
of equal energy (without extra interactions), whereas the Freundlich adsorption isotherm model
demonstrates heterogeneous interactions. The heterogeneity index, 1/n, ranges between 0 and 1.
As heterogeneity decreases, 1/n becomes closer to 1, and equals to 1 for a homogeneous system [16].
Experimental data were plotted according to the above equations of adsorption isotherm models
(Figure 3A,B). As a result, the experimental data were fitted well to the Langmuir adsorption isotherm
model with high correlation coefficient (R2 = 0.99) compared to the Freundlich adsorption isotherm
model, which means that the binding of hemoglobin molecules onto the molecularly imprinted
nanofilm on-chip is a monolayer on a homogeneous surface, and KA and KD coefficients were found as
39.1 mL mg−1 and 0.03 mg mL−1, respectively. All coefficients were provided in Table 1.
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Table 1. All coefficients of kinetic analysis.

Equilibrium Analysis Association Kinetic Analysis Langmuir Freundlich

∆Rmax 13 ka, mL mg s−1 0.011 ∆Rmax 5.01 ∆Rmax 22.4
KA, mL mg−1 12.6 kd, s−1 0.001 KD, mg mL−1 0.03 1/n 0.67
KD, mg mL−1 0.08 KA, mL mg−1 15 KA, mL mg−1 39.1 R2 0.96

R2 0.92 KD, mg mL−1 0.07 R2 0.99
R2 0.98

3.4. Selectivity Analysis

In the selectivity analysis, the responses of potential competitors (i.e., lysozyme (Lyz), transferrin
(Trf), bovine serum albumin (BSA), and myoglobin (Myb)) were evaluated for both non-imprinted and
molecularly imprinted nanofilm on-chips. The concentrations of competitive protein solutions were
prepared as 0.1 mg mL−1.

In addition, the selectivity coefficient (k) was also calculated according to Equation (9). The relative
selectivity coefficient (k′) was depicted using the Equation (10):

k = ∆Rtemplate/∆Rcompetitor (9)
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k′ =
kmolecularly imprinted

knon−imprinted
(10)

All selectivity and relative selectivity coefficients of the non-imprinted and molecularly imprinted
nanofilm on-chips were calculated and demonstrated in Table 2. The molecularly imprinted nanofilm
on-chip provided higher %∆R values than those of non-imprinted nanofilm on-chip (Figure 4A,B).
Furthermore, Lyz exhibited higher binding than the other competitive proteins as the molecular weight
of Lyz (MW: 14.3 kDa) is much lower than BSA (MW: 66 kDa) and Trf (MW: 76 kDa). In principle,
small proteins can diffuse easily to cavities and generate non-specific binding. Contrary to the small
proteins, large proteins can be easily removed from cavities due to steric hindrance [17]. Although the
molecular weight of Myb (MW: 17 kDa) is close to Lyz, amino acid sequence and 3-D orientation of
Myb is distinct, resulting in lower non-specific binding. In addition, a mixture of protein solutions
(Lyz-Hb, Trf-Hb, BSA-Hb, and Myb-Hb) with same concentrations (0.1 mg mL−1) was evaluated to
compare selectivity performance. The protein mixture of Lyz-Hb showed the highest response to
the molecularly imprinted nanofilm on-chip. On the other hand, protein mixtures resulted in lower
responses on the non-imprinted nanofilm on-chip. Overall, structural memory and specificity were
only observed in molecularly imprinted nanofilm on-chip and also the molecularly imprinted nanofilm
on-chip had particular detection capability toward hemoglobin because of the hemoglobin specific
imprinting process.
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Table 2. The selectivity and relative selectivity coefficients of non-imprinted and molecularly imprinted
nanofilm on-chips.

Protein
Molecularly Imprinted Non-Imprinted

%∆R k %∆R k k′

Hb 6.58 0.57
Lyz 4.19 1.57 1.48 0.39 4.08
Rrf 1.64 4.01 1 0.57 7.04

BSA 0.61 10.79 0.46 1.24 8.71
Myb 0.4 16.45 0.24 2.38 6.93

The comparison of the real-time responses of non-imprinted and molecularly imprinted nanofilm
on-chips is also shown in Figure S3. Three sample solutions with different hemoglobin concentrations
(0.05, 0.1 and 0.25 mg mL−1) were prepared and applied to non-imprinted and molecularly imprinted
nanofilm on-chips, separately. As clearly seen that the molecularly imprinted nanofilm on-chip has
high responses to the hemoglobin molecules of different concentration due to the fact that there are no
specific cavities for hemoglobin molecules to bind in the non-imprinted nanofilm on-chip.
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3.5. Reusability and Storage Stability Analysis

The four adsorption-desorption cycles that shown by arrows were employed to test the reusability
of the molecularly imprinted nanofilm on-chip. As seen in Figure 5A, the hemoglobin solutions
were prepared in different hemoglobin solutions (0.05, 0.25, 0.5 and 1.0 mg mL−1) and then applied
consecutively to the molecularly imprinted nanofilm on-chip, and the real-time responses were
increased according to the increasing hemoglobin concentration. In addition, the molecularly imprinted
nanofilm on-chip was tested with the same hemoglobin concentration (0.1 mg mL−1) at different times
(0, 3, 27 months) to show storage stability. One of the most significant challenges in this field is to keep
the bio-sensing layer stable for long-term storage. However, most bio-sensing systems notably face
this obstacle since antibody and protein-based layers have difficulties to prolong their stability at room
temperature, and these layers hence require refrigeration at certain temperatures (ranging from +4 ◦C
to −80 ◦C) according to their stability capability. Even under refrigeration conditions, the timeframe is
around one month at 4 ◦C and can be extended with chemical treatments up to one year at −80 ◦C [18].
Although some studies have reported that antibodies could be stored around a year in liquid nitrogen,
sensor surfaces cannot resist such harsh conditions, resulting in function problems on the chip surface.
Therefore, ‘3 months’ was designated as the first (starting) stability control check to evaluate first
performance efficiency after storage at room temperature. Recently, the researchers demonstrated that
antibody-coated chips could be stored at room temperature after they were evacuated and treated
with a certain concentration of trehalose solution [19]. This procedure kept the chip performance
and antibody stability constant for 24 weeks. To evaluate stability performance of the molecularly
imprinted nanofilm on-chip during longer periods (more than 6 months), 27 months was determined
as a second stability check point. Such a long period of storage at room temperature did not result in
any statistically significant change in our chip performance. The response of the molecularly imprinted
nanofilm on-chip was decreased from 6.42% to 6.33% and the performance loss was only 0.09% in
27 months (Figure 5B). Finally, the comparison of the different systems for hemoglobin detection is
summarized in Table 3. The table was prepared with different parameters such as detection system
and range, limit of detection, selectivity, reusability year by year since 2013 and based on molecular
imprinting polymer database references.
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Table 3. The comparison of different detection systems with this study for hemoglobin detection.

Detection System Base on Detection Range Limit of Detection Selectivity Reusability Time Ref.

Electrochemical Magnetic
nanoparticles 0.005–0.1 mg mL−1 0.001 mg mL−1 Lyz, BSA, HRP Not reported 7 min [20]

Fluorescence Core-shell 0.02–2.0 µM 6.3 nM Lyz, BSA, OB 5 times 15 min [21]

Localized surface plasmon
resonance Artificial antibody 0.5–20 µg mL−1 Not reported HSA, BSA, Lyz Not reported 120 min [22]

Differential pulse voltametry eATRP 1.10−10–1.101 mg L−1 7.8.10−11 mg L−1 Lyz, BSA, HSA,
IgG 3 times 120 min [23]

Fluorescence Gold nanoparticle 0.1–20 µmol L−1 0.03 µmol L−1 BSA, BHb, Alb, CE Not reported Not reported [24]

Differential pulse voltametry Cryogel 1.10−8–1.102 mg L−1 6.7.10−9 mg L−1 Lyz, BSA, HSA 3 times 120 min [25]

Electrochemical SAM 1–20 µg mL−1 Not reported Myb Not reported Not reported [26]

Localized surface plasmon
resonance

PEGlated
nanorattle 1–2500 ng mL−1 Not reported HSA, BSA, Myb Not reported Not reported [27]

Chemiluminescent Carbon nanotube 5.10−10–7.10−7 mg mL−1 1.5.10−10 mg mL−1 BSA, Lyz Not reported Not reported [28]

Electrochemical Gold nanoparticle 1.10−11–1.10−2 mg mL−1 Not reported BSA, EA, Lyz 5 times Not reported [29]

Electrochemical Nanoparticle 0.005–0.1 mg mL−1 25.8 ng mL−1 Lyz, HRP Not reported 10 min [30]

Electrochemical Graphene-carbon
electrode 1.10−10–1.10−3 mg mL−1 3.09.10−11 mg mL−1 BSA, HSA, Lyz,

ATP, BI 3 times 120 min [31]

Electrochemical Magnetic
nanoparticle 5.10−7–1.10−5 mg mL−1 1.184.10−8 mg mL−1 BSA, Lyz, Cyt C,

HRP Not reported 70 min [32]

Electrochemical Graphene
composite 1.10−9–1.10−1 mg mL−1 2.10−10 mg mL−1 BSA, Lyz, EA, Pap Not reported 10 min [33]

Surface plasmon
resonance-Electrochemical Thin film 0.0005–5.0 mg mL−1 0.000435 mg mL−1 BSA, Lyz, Ova Not reported 25 min [34]

Electrochemi-luminescence Magnetic
nanocomposite 0.1–4.104 pg mL−1 0.023 pg mL−1 BSA, CEA, AFP,

HCG, HIgG Not reported 70 min [35]

Phosphorescence Quantum dot 1.10−7–5.10−6 mol L−1 3.8.10−8 mol L−1 Not reported 11 times 15 min [36]

Electrochemical Gold
microdentrites 0.1–4.103 µg mL−1 0.05 µg mL−1 BSA, Lyz, Cyt C,

Ova 5 times 60 min [37]

Electrochemical
Quantum

dot-carbon
nanotube

27.8–444 ng mL−1 6.73 ng mL−1 BSA, Trp, Crp, Glu,
Dop, Cys, AA, Ins Not reported Not reported [38]

Fluorescence Quantum dot 0.02–2.1 µM 9.4 nM BSA, Lyz, OB Not reported 60 min [39]

Surface plasmon resonance Nanofilm 0.0005–1.0 mg mL−1 0.00035 mg mL−1 Lyz, BSA, Trf, Myb 4 times 23 min This study



Sensors 2018, 18, 3016 11 of 13

4. Conclusions

In this study, molecular fingerprints of hemoglobin were obtained on a nanofilm chip through
the molecular imprinting strategy. The as-prepared chip successfully detected hemoglobin levels
down to 0.0005 mg mL−1 without any significant changes in its specificity after periods as long as
several months. Due to durability and stability shortages in affinity-based assays, resource-constrained
settings are still seeking for alternative strategies allowing long-term storage without refrigeration
while keeping the performance of assays constant. Owing to the physical and chemical robustness,
low-cost production, reusability, high selectivity, durability, and storage stability of the presented
nanofilm on-chip hold we can claim a pivotal improvement over currently available detection strategies
in these settings. In addition, the versatility and capability of molecularly imprinted methods will
potentially enable one to tailor these nanofilms for detecting other protein markers and cells, as well as
integrate them with different detector systems in the future.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/18/9/3016/s1.
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