LONG-TIME BEHAVIOUR OF DOUBLY NONLINEAR PARABOLIC EQUATIONS

A. Kh. Khanmamedov
Department of Mathematics, Faculty of Science Hacettepe University, Beytepe 06532, Ankara, Turkey

(Communicated by Alain Miranville)

Abstract

We consider a doubly nonlinear parabolic equation in R^{n}. Under suitable hypotheses we prove that a semigroup generated by this equation possesses a global attractor.

1. Introduction. We are interested in the study of the long-time behaviour (in terms of attractors) of a doubly nonlinear parabolic equation of the form

$$
\begin{equation*}
\alpha\left(u_{t}\right)-\Delta u+\lambda u+f(u)=g \tag{1.1}
\end{equation*}
$$

in R^{n}.
In the case when $\alpha(x) \equiv x$, the equation (1.1) becomes a reaction-diffusion equation, whose attractors in bounded domains were studied in [1], [9], [19] and references therein. For unbounded domains, there are technical difficulties coming from the lack of compact embeddings of Sobolev spaces. To overcome these difficulties, some authors, as in [2] and [3], used weighted Sobolev spaces, while some authors, as in [15] and [18], used the cut-off function technique introduced in [20]. In [7], using the weighted energy method the authors studied the global attractors for the reaction-diffusion equations with more general source terms in three dimensional unbounded domains. The weighted energy method presented in [7] is widely applicable and in present paper we use this method to prove the uniform tail estimate (see proof of Lemma 4.3).

The long-time behaviour of the solutions of (1.1) in the bounded domain when $\alpha(\cdot)$ is sub-linear was studied in [17]. In the case that $\alpha(v)$ is like $|v|^{p} v$, the existence of a global attractor for (1.1) in a three dimensional bounded domain was established in [8] assuming that the force term g is a bounded function. As mentioned in that article, when the nonlinearity $\alpha(\cdot)$ grows sufficiently fast at infinity, unlike the case of usual reaction-diffusion equations, there is a principal difference between weak and strong solutions of doubly nonlinear equations of the form (1.1). Namely, in contrast to strong solutions, weak solutions may contain so-called "pathological" solutions which do not possess any smoothing properties for $t>0$. In [8], the global attractors were studied for the solutions which are not "pathological". Recently, in [16], the long-time behaviour of the solutions of equation (1.1) with the bounded force term was studied in a three dimensional bounded domain. In that article also, the existence of the attractors was established for the strong solutions.

[^0]We also note that there are several articles, such as [5], [6], [13], [14] devoted to the study of global attractors of doubly nonlinear parabolic equations of the form

$$
\frac{\partial}{\partial t} \alpha(u)-\Delta u+f(u)=g
$$

In this paper, we study the long-time behaviour of the weak solutions of (1.1) in the whole space. The paper is organized as follows: In the next section we state our main result, in Section 3 we prove the well-posedness of the problem, in Section 4 we establish the asymptotic compactness property of solutions and then prove the existence of a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$ - attractor for the equation (1.1), and finally the proofs of some auxiliary lemmas are given in Appendix.
2. Statement of the problem and main result. We consider the following Cauchy problem:

$$
\left\{\begin{array}{l}
\alpha\left(u_{t}\right)-\Delta u+\lambda u+f(u)=g(x), \quad(t, x) \in(0, \infty) \times R^{n}, \tag{2.1}\\
u(0, x)=u_{0}(x), \quad x \in R^{n}
\end{array}\right.
$$

where $\lambda>0, g \in L^{2}\left(R^{n}\right)$ and the nonlinear functions α, f satisfy the following conditions:

Assumption 2.1.

- $\alpha \in C^{1}(R), \quad \alpha(0)=0, \quad \alpha$ is odd function,
- $\alpha^{\prime}(0)>0, \alpha^{\prime}(\cdot)$ is nondecreasing function on $R_{+}, \limsup _{x \rightarrow \infty} \frac{\alpha(2 x)}{\alpha(x)}<\infty$,
- $f \in C^{2}(R), \liminf _{|v| \rightarrow \infty} f^{\prime}(v)>0, \quad f(v) v \geq 0,\left|f^{\prime \prime}(v)\right| \leq c$ for every $v \in R$,
- $\left|f^{\prime}(v)\right| \leq c\left(1+|v|^{p}\right)$ for every $v \in R$, where $0 \leq p \leq \min \left\{1, \frac{2}{(n-2)^{+}}\right\}$.

Now to define a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor let us introduce the following family of sets:
$\mathfrak{B}=\left\{B: B\right.$ is a bounded subset of $H^{1}\left(R^{n}\right)$ and for any $\varepsilon>0$, there exists

$$
\left.m=m(\varepsilon, B)>0 \text { such that } \sup _{u \in B} \int_{\left\{x: x \in R^{n},|u(x)|>m\right\}}|\nabla u(x)|^{2} d x \leq \varepsilon\right\}
$$

Definition 2.1. Let $\{S(t)\}_{t \geq 0}$ be an operator semigroup on $H^{1}\left(R^{n}\right)$. We say that a set $\mathcal{A} \in \mathfrak{B}$ is a global $\left(H^{1}\left(\bar{R}^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor for the semigroup $\{S(t)\}_{t \geq 0}$ iff

- \mathcal{A} is compact in $H^{1}\left(R^{n}\right)$;
- \mathcal{A} is invariant, i.e. $S(t) \mathcal{A}=\mathcal{A}, \nvdash t \geq 0$;
- $\lim _{t \rightarrow \infty} \sup _{v \in B} \inf _{u \in \mathcal{A}}\|S(t) v-u\|_{H^{1}\left(R^{n}\right)}=0$ for each $B \in \mathfrak{B}$;

Our main result is:
Theorem 2.1. Under Assumption 2.1, a semigroup generated by the problem (2.1) possesses a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor.

Remark 2.1. By the definition it follows that a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor is maximal as an invariant set belonging to \mathfrak{B} and minimal as a closed attractor attracting every element of \mathfrak{B}. Since every bounded subset of $H^{1}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$ and $W^{1,2+\varepsilon}\left(R^{n}\right)$ belongs to \mathfrak{B}, a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor attracts each bounded subset of $H^{1}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$ and $W^{1,2+\varepsilon}\left(R^{n}\right)$ in the topology of $H^{1}\left(R^{n}\right)$, where $\varepsilon>0$.

Remark 2.2. We also note that Theorem 2.1 remains true if we assume

$$
f \in C^{1}(R), \quad f(v) v \geq-\sigma \text { for every } v \in R
$$

$\liminf _{|v| \rightarrow \infty} f^{\prime}(v)>-\lambda$, and $f^{\prime}(\cdot)$ satisfies the global Lipschitz condition, instead of (2.4), where $\sigma \in(0, \lambda)$.
3. Well-posedness. Let us consider the following initial-boundary value problem:

$$
\left\{\begin{array}{l}
\alpha\left(v_{t}\right)-\Delta v+\lambda v+f(w)-f(w-v)=\widehat{g}(x), \quad(t, x) \in(0, T) \times B_{\rho}, \tag{3.1}\\
v(t, x)=0, \quad(t, x) \in(0, T) \times \partial B_{\rho} \\
v(0, x)=v_{0}(x), \quad x \in B_{\rho}
\end{array}\right.
$$

where $B_{\rho}=\left\{x: x \in R^{n},|x|<\rho\right\}$.
To prove well-posedness of (2.1) we will use the following lemma:
Lemma 3.1. Let Assumption 2.1 hold. Also assume that $w \in L^{2}\left(0, T ; H^{2}\left(B_{\rho}\right) \cap\right.$ $\left.H_{0}^{1}\left(B_{\rho}\right)\right)$, $w_{t} \in L^{2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right)$ and $\widehat{g} \in L^{2}\left(B_{\rho}\right)$. Then for every $v_{0} \in H^{2}\left(B_{\rho}\right) \cap$ $H_{0}^{1}\left(B_{\rho}\right)$ there exists a unique strong solution $v(t, x)$ of (3.1), that is $v \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right)$ satisfies (3.1) 1 a.e. on $(0, T) \times B_{\rho}$ and (3.1) $)_{3}$ a.e. on B_{ρ}.

Proof. Uniqueness. Let $v^{(i)}(t, x) \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \cap$ $\cap L^{\infty}\left(0, \infty ; H^{2}\left(B_{\rho}\right)\right)(i=1,2)$ be solutions of (3.1). Then multiplying both sides of

$$
\alpha\left(v_{t}^{(1)}\right)-\alpha\left(v_{t}^{(2)}\right)-\Delta\left(v^{(1)}-v^{(2)}\right)+\lambda\left(v^{(1)}-v^{(2)}\right)=f\left(w-v^{(1)}\right)-f\left(w-v^{(2)}\right)
$$

by $2\left(v_{t}^{(1)}-v_{t}^{(2)}\right)$ and integrating over $(0, t) \times B_{\rho}$ we have

$$
\begin{aligned}
& \left\|\nabla\left(v^{(1)}(t)-v^{(2)}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{(1)}(t)-v^{(2)}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& +2 \int_{0}^{t} \int_{B_{\rho}}\left(\alpha\left(v_{t}^{(1)}(s, x)\right)-\alpha\left(v_{t}^{(2)}(s, x)\right)\right)\left(v_{t}^{(1)}(s, x)-v_{t}^{(2)}(s, x)\right) d x d s \\
& =2 \int_{0}^{t} \int_{B_{\rho}}\left(f\left(w(s, x)-v^{(1)}(s, x)\right)-f\left(w(s, x)-v^{(2)}(s, x)\right)\right) \\
& \quad \times\left(v_{t}^{(1)}(s, x)-v_{t}^{(2)}(s, x)\right) d x d s
\end{aligned}
$$

and consequently

$$
\left\|v^{(1)}(t)-v^{(2)}(t)\right\|_{H^{1}\left(B_{\rho}\right)}^{2} \leq C \int_{0}^{t}\left\|v^{(1)}(s)-v^{(2)}(s)\right\|_{H^{1}\left(B_{\rho}\right)}^{2} d s, \quad \nvdash t \in[0, T] .
$$

Applying Gronwall's lemma to the last inequality we find $v^{(1)} \equiv v^{(2)}$.

Existence. Let $\left\{\varphi_{i}\right\}_{i=1}^{\infty}$ be eigenfunctions of $-\Delta$ in $H_{0}^{1}\left(B_{\rho}\right)$, i.e.

$$
\left\{\begin{array}{c}
-\Delta \varphi_{i}=\mu_{i} \varphi_{i}, \text { in } B_{\rho}, \\
\left.\varphi_{i}\right|_{B_{\rho}}=0,
\end{array} \quad, i=1,2, \ldots\right.
$$

By standard elliptic theory we have $\varphi_{i} \in C^{\infty}\left(\overline{B_{\rho}}\right), i=1,2, \ldots$. Set $v^{m}(t)=$ $\sum_{j=1}^{m} a_{m j}(t) \varphi_{j}$ and consider the following system of ordinary differential equations:

$$
\begin{gather*}
\frac{1}{m} \frac{d^{2}}{d t^{2}}\left\langle v^{m}(t), \varphi_{j}\right\rangle+\left\langle\nabla v^{m}(t), \nabla \varphi_{j}\right\rangle+\left\langle\alpha\left(\frac{d}{d t} v^{m}(t)\right), \varphi_{j}\right\rangle \\
+\lambda\left\langle v^{m}(t), \varphi_{j}\right\rangle+\left\langle f(w(t))-f\left(w(t)-v^{m}(t)\right), \varphi_{j}\right\rangle=\left\langle g, \varphi_{j}\right\rangle, \quad j=\overline{1, m} \tag{3.2}
\end{gather*}
$$

with initial conditions

$$
\begin{equation*}
v^{m}(0)=\sum_{j=1}^{m} b_{m j} \varphi_{j}, \quad \frac{d}{d t} v^{m}(0)=0 \tag{3.3}
\end{equation*}
$$

where $\langle\psi, \varphi\rangle=\int_{B_{\rho}} \psi(x) \varphi(x) d x$ and $\sum_{j=1}^{m} b_{m j} \varphi_{j} \rightarrow v_{0}$ strongly in $H^{2}\left(B_{\rho}\right) \cap H_{0}^{1}\left(B_{\rho}\right)$ as $m \rightarrow \infty$. Existence theory of ordinary differential equations implies that there exists a solution of (3.2)-(3.3) on $\left[0, T_{m}\right)$. Multiplying both sides of (3.2) by $2 \frac{d}{d t} a_{m j}(t)$, summing from 1 to m and integrating over $[0, t] \subset\left[0, T_{m}\right)$ we obtain

$$
\begin{align*}
& \quad \frac{1}{m}\left\|v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\left\|\nabla v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& \quad+2 \int_{0}^{t} \int_{B_{\rho}} \alpha\left(v_{t}^{m}(s, x)\right) v_{t}^{m}(s, x) d s-2\left\langle g, v^{m}(0)\right\rangle \\
& \quad+2 \int_{0}^{t}\left\langle f(w(s))-f\left(w(s)-v^{m}(s)\right), v_{t}^{m}(s)\right\rangle d s \\
& =\left\|\nabla v^{m}(0)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{m}(0)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+2\left\langle g, v^{m}(t)\right\rangle, \quad 0 \leq t<T_{m} \tag{3.4}
\end{align*}
$$

By condition (2.4)-(2.5) we have

$$
\begin{align*}
& \int_{0}^{t}\left\langle f(w(s))-f\left(w(s)-v^{m}(s)\right), v_{t}^{m}(s)\right\rangle d s=\int_{0}^{t}\left\langle f(w(s)), v_{t}^{m}(s)\right\rangle d s \\
&+ \int_{0}^{t}\left\langle f\left(w(s)-v^{m}(s)\right), w_{t}(s)-v_{t}^{m}(s)\right\rangle d s-\int_{0}^{t}\left\langle f\left(w(s)-v^{m}(s)\right), w_{t}(s)\right\rangle d s \\
& \geq-c \int_{0}^{t} \int_{B_{\rho}}\left(1+|w(s, x)|^{p}\right)|w(s, x)|\left|v_{t}^{m}(s, x)\right| d x d s \\
&+\int_{B_{\rho}} F\left(w(t, x)-v^{m}(t, x)\right) d x-\int_{B_{\rho}} F\left(w(0, x)-v^{m}(0, x)\right) d x \\
&-c \int_{0}^{t} \int_{B_{\rho}}\left(1+|w(s, x)|^{p}+\left|v^{m}(s, x)\right|^{p}\right)\left(|w(s, x)|+\left|v^{m}(s, x)\right|\right)\left|w_{t}(s, x)\right| d x d s \tag{3.5}
\end{align*}
$$

where $F(u)=\int_{0}^{u} f(v) d v$. Taking into account (3.5) in (3.4) we find

$$
\begin{aligned}
& \frac{1}{m}\left\|v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\left\|\nabla v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& +\int_{0}^{t} \int_{B_{\rho}} \alpha\left(v_{t}^{m}(s, x)\right) v_{t}^{m}(s, x) d x d s \\
& \leq c_{1}\left(T,\|w\|_{C\left([0, T] ; H^{1}\left(B_{\rho}\right)\right)}\right)\|w\|_{C\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}+c_{2}\left(\left\|v_{0}\right\|_{H^{1}\left(B_{\rho}\right)},\|g\|_{L^{2}\left(B_{\rho}\right)}\right) \\
& +c_{3}\left(T,\|w\|_{C\left([0, T] ; H^{1}\left(B_{\rho}\right)\right)}\right)\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)} \times\left(1+\int_{0}^{t}\left\|v^{m}\right\|_{\left.H^{1}\left(B_{\rho}\right)\right)}^{4}\right)^{\frac{1}{2}}, \quad 0 \leq t<T_{m}
\end{aligned}
$$

and consequently

$$
\begin{aligned}
& \left\|v^{m}(t)\right\|_{\left.H^{1}\left(R^{n}\right)\right)}^{4} \leq c_{4}\left(T,\|w\|_{C\left([0, T] ; H^{1}\left(B_{\rho}\right)\right)}\right)\left(\|w\|_{C\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}^{2}+\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}^{2}\right) \\
& \quad \times\left(1+\int_{0}^{t}\left\|v^{m}\right\|_{\left.H^{1}\left(B_{\rho}\right)\right)}^{4}\right)+2 c_{2}^{2}\left(\left\|v_{0}\right\|_{H^{1}\left(B_{\rho}\right)},\|g\|_{L^{2}\left(B_{\rho}\right)}\right), 0 \leq t<T_{m}
\end{aligned}
$$

where $c_{i}: R_{+} \times R_{+} \rightarrow R_{+}(i=\overline{1,4})$ are nondecreasing functions with respect to each variable. Applying Gronwall's lemma we obtain

$$
\begin{aligned}
\left\|v^{m}(t)\right\|_{\left.H^{1}\left(B_{\rho}\right)\right)} \leq & 1+c_{2}\left(\left\|v_{0}\right\|_{H^{1}\left(B_{\rho}\right)},\|g\|_{L^{2}\left(B_{\rho}\right)}\right) \\
& +c_{5}\left(T,\|w\|_{C\left([0, T] ; H^{1}\left(B_{\rho}\right)\right)},\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}\right), 0 \leq t<T_{m}
\end{aligned}
$$

where $c_{5}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable and $c_{5}(\cdot, 0,0)=0$. Hence $v^{m}(t, \cdot)$ can be extended to an interval $[0, T]$ and

$$
\begin{gather*}
\quad \frac{1}{m}\left\|v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\left\|\nabla v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\int_{0}^{t} \int_{B_{\rho}} \mathcal{N}\left(\alpha\left(v_{t}^{m}(s, x)\right)\right) d x d s \\
\leq c_{6}\left(\left\|v_{0}\right\|_{H^{1}\left(B_{\rho}\right)},\|g\|_{L^{2}\left(B_{\rho}\right)}\right)+c_{7}\left(T,\|w\|_{C\left([0, T] ; H^{1}\left(B_{\rho}\right)\right)},\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}\right) \\
0 \leq t \leq T \tag{3.6}
\end{gather*}
$$

where $\mathcal{N}(x)=\int_{0}^{x} \alpha^{-1}(y) d y$ and $c_{6}: R_{+} \times R_{+} \rightarrow R_{+}, c_{7}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$ are nondecreasing functions with respect to each variable and $c_{7}(\cdot, 0,0)=0$.

Multiplying both sides of (3.2) by $2 \mu_{j} \frac{d}{d t} a_{m j}(t)$, summing from 1 to m and integrating over $[0, t]$ we obtain

$$
\begin{align*}
& \frac{1}{m}\left\|\nabla v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\left\|\Delta v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& +2 \alpha^{\prime}(0) \int_{0}^{t}\left\|\nabla v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s+2 \int_{0}^{t}\left\langle f\left(w(s)-v^{m}(s)\right)-f(w(s)), \Delta v_{t}^{m}(s)\right\rangle d s \\
& \leq\left\|\Delta v^{m}(0)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\lambda\left\|v^{m}(0)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-2\left\langle g, \Delta v^{m}(t)\right\rangle+2\left\langle g, \Delta v^{m}(0)\right\rangle \\
& 0 \leq t \leq T \tag{3.7}
\end{align*}
$$

By condition (2.4)-(2.5) we find

$$
\begin{align*}
& \int_{0}^{t}\left\langle f\left(w(s)-v^{m}(s)\right)-f(w(s)), \Delta v_{t}^{m}(s)\right\rangle d s \\
= & \int_{0}^{t}\left\langle f^{\prime}(w(s)) \nabla w(s), \nabla v_{t}^{m}(s)\right\rangle d s \\
& -\int_{0}^{t}\left\langle f^{\prime}\left(w(s)-v^{m}(s)\right) \nabla\left(w(s)-v^{m}(s)\right), \nabla v_{t}^{m}(s)\right\rangle d s \\
\geq & -c \int_{0}^{t} \int_{B_{\rho}}\left(1+|w(s, x)|^{p}\right)|\nabla w(s, x)|\left|\nabla v_{t}^{m}(s, x)\right| d x d s \\
& -c \int_{0}^{t} \int_{B_{\rho}}\left(1+|w(s, x)|^{p}+\left|v^{m}(s, x)\right|^{p}\right)\left|\nabla v^{m}(s, x)\right|\left|\nabla v_{t}^{m}(s, x)\right| d x d s \\
& -c \int_{0}^{t} \int_{B_{\rho}}\left(1+|w(s, x)|^{p}+\left|v^{m}(s, x)\right|^{p}\right)|\nabla w(s, x)|\left|\nabla v_{t}^{m}(s, x)\right| d x d s . \tag{3.8}
\end{align*}
$$

Taking into account (3.6) and (3.8) in (3.7) we obtain

$$
\begin{align*}
& \quad \frac{1}{m}\left\|v_{t}^{m}(t)\right\|_{H^{1}\left(B_{\rho}\right)}^{2}+\left\|v^{m}(t)\right\|_{H^{2}\left(B_{\rho}\right)}^{2}+\int_{0}^{t}\left\|\nabla v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \\
& \leq c_{8}\left(\left\|v_{0}\right\|_{H^{2}\left(B_{\rho}\right)},\|g\|_{L^{2}\left(B_{\rho}\right)}\right)+c_{9}\left(T,\|w\|_{L^{2}\left([0, T] ; H^{2}\left(B_{\rho}\right)\right)},\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}\right) \\
& 0 \leq t \leq T \tag{3.9}
\end{align*}
$$

where $c_{8}: R_{+} \times R_{+} \rightarrow R_{+}, c_{9}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$are nondecreasing functions with respect to each variable and $c_{9}(\cdot, 0,0)=0$.

Now multiplying both sides of (3.2) by $\frac{d^{2}}{d t^{2}} a_{m j}(t)$, summing from 1 to m and integrating over $[0, t]$ we find

$$
\begin{align*}
& \frac{1}{m} \int_{0}^{t}\left\|v_{t t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s+\int_{B_{\rho}} \widehat{\alpha}\left(v_{t}^{m}(t, x)\right) d x-\left\langle\Delta v^{m}(t), v_{t}^{m}(t)\right\rangle+\lambda\left\langle v^{m}(t), v_{t}^{m}(t)\right\rangle \\
= & \left\langle g, v_{t}^{m}(t)\right\rangle+\int_{0}^{t}\left\|\nabla v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s+\lambda \int_{0}^{t}\left\|v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \\
& -\left\langle f(w(t))-f\left(w(t)-v^{m}(t)\right), v_{t}^{m}(t)\right\rangle+\int_{0}^{t}\left\langle f^{\prime}(w(s)) w_{t}(s), v_{t}^{m}(s)\right\rangle d s \\
& -\int_{0}^{t}\left\langle f^{\prime}\left(w(s)-v^{m}(s)\right)\left(w_{t}(s)-v_{t}^{m}(s)\right), v_{t}^{m}(s)\right\rangle d s, \quad 0 \leq t \leq T \tag{3.10}
\end{align*}
$$

where $\widehat{\alpha}(v)=\int_{0}^{v} \alpha(v) d v$.
Differentiating both sides of (3.2), multiplying by $\frac{d^{2}}{d t^{2}} a_{m j}(t)$, summing from 1 to m and integrating over $[s, t]$ we have

$$
\begin{aligned}
& \frac{1}{2 m}\left\|v_{t t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-\frac{1}{2 m}\left\|v_{t t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\int_{s}^{t} \int_{B_{\rho}} \alpha^{\prime}\left(v_{t}^{m}(\tau, x)\right)\left|v_{t t}^{m}(\tau, x)\right|^{2} d x d \tau \\
& +\frac{1}{2}\left\|\nabla v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-\frac{1}{2}\left\|\nabla v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\frac{\lambda}{2}\left\|v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& -\frac{\lambda}{2}\left\|v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\int_{s}^{t}\left\langle f^{\prime}(w(\tau)) w_{t}(\tau), v_{t t}^{m}(\tau)\right\rangle d \tau \\
& -\int_{s}^{t}\left\langle f^{\prime}\left(w(\tau)-v^{m}(\tau)\right)\left(w_{t}(\tau)-v_{t}^{m}(\tau)\right), v_{t t}^{m}(\tau)\right\rangle d \tau=0, \quad 0<s<t \leq T
\end{aligned}
$$

Integrating the last equality with respect to s from 0 to t we find

$$
\begin{align*}
& \frac{1}{2 m} t\left\|v_{t t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-\frac{1}{2 m} \int_{0}^{t}\left\|v_{t t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \\
& +\int_{0}^{t} \int_{s}^{t} \int_{B_{\rho}} \alpha^{\prime}\left(v_{t}^{m}(\tau, x)\right)\left|v_{t t}^{m}(\tau, x)\right|^{2} d x d \tau d s+\frac{1}{2} t\left\|\nabla v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& -\frac{1}{2} \int_{0}^{t}\left\|\nabla v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s+\frac{\lambda}{2} t\left\|v_{t}^{m}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& -\frac{\lambda}{2} \int_{0}^{t}\left\|v_{t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s+\int_{0}^{t} \int_{s}^{t}\left\langle f^{\prime}(w(\tau)) w_{t}(\tau), v_{t t}^{m}(\tau)\right\rangle d \tau d s \\
& -\int_{0}^{t} \int_{s}^{t}\left\langle f^{\prime}\left(w(\tau)-v^{m}(\tau)\right)\left(w_{t}(\tau)-v_{t}^{m}(\tau)\right), v_{t t}^{m}(\tau)\right\rangle d \tau d s=0, \quad 0 \leq t \leq T \tag{3.11}
\end{align*}
$$

By (2.3), (2.4), (2.5), (3.9), (3.10) and (3.11) we have

$$
\begin{array}{r}
\int_{t}^{T}\left\|v_{t t}^{m}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \leq \frac{1+T}{t} c_{10}\left(\left\|v_{0}\right\|_{H^{2}\left(B_{\rho}\right)},\|g\|_{L^{2}\left(B_{\rho}\right)}\right) \\
+\frac{1}{t} c_{11}\left(T,\|w\|_{L^{2}\left([0, T] ; H^{2}\left(B_{\rho}\right)\right)},\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)}\right), \quad 0 \leq t \leq T \tag{3.12}
\end{array}
$$

where $c_{10}: R_{+} \times R_{+} \rightarrow R_{+}, c_{11}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$are nondecreasing functions with respect to each variable and $c_{11}(\cdot, 0,0)=0$. Taking into account (3.6), (3.9), (3.12) and applying [11, Theorem 14.4, p. 131] we can say that there exists a
subsequence $\left\{m_{k}\right\}$ such that

$$
\left\{\begin{array}{l}
v^{m_{k}} \rightarrow v \text { weakly star in } L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right) \cap H_{0}^{1}\left(B_{\rho}\right)\right) \tag{3.13}\\
v_{t}^{m_{k}} \rightarrow v_{t} \quad \text { weakly in } L^{2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \\
v_{t t}^{m_{k}} \rightarrow v_{t t} \quad \text { weakly in } L_{l o c}^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \\
T \\
\int_{0}^{T} \int_{B_{\rho}} \alpha\left(v_{t}^{m}\right) \psi d x d s \rightarrow \int_{0}^{T} \int_{B_{\rho}} \alpha\left(v_{t}\right) \psi d x d s, \quad \nvdash \psi \in L^{\infty}\left((0, T) \times B_{\rho}\right)
\end{array}\right.
$$

Now taking into account (3.13) and passing to limit in (3.2)-(3.3) we obtain

$$
\begin{aligned}
& \left\langle\alpha\left(v_{t}(t)\right), \varphi_{j}\right\rangle-\left\langle\Delta v(t), \varphi_{j}\right\rangle+\lambda\left\langle v(t), \varphi_{j}\right\rangle+\left\langle f(w(t)), \varphi_{j}\right\rangle \\
& -\left\langle f(w(t)-v(t)), \varphi_{j}\right\rangle=\left\langle g, \varphi_{j}\right\rangle, \quad \text { a.e. on }(0, T), \quad j=1,2 \ldots
\end{aligned}
$$

and

$$
v(0)=v_{0}
$$

from which we find that $\alpha\left(v_{t}\right) \in L^{\infty}\left(0, T ; L^{2}\left(B_{\rho}\right)\right)$ and $v \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \cap$ $W_{l o c}^{2,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right)$ satisfies (3.1).

Now let us prove the existence and uniqueness of the strong solution of (2.1).
Theorem 3.1. Let Assumption (2.1) hold and $u_{0} \in H^{2}\left(R^{n}\right)$. Then for every $T>0$, the problem (2.1) has a unique strong solution $u(t, x)$ on $\left[0, T\left[\times R^{n}\right.\right.$, that is $u \in W^{1,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(R^{n}\right)\right)$ satisfies (2.1) 1 a.e. on $(0, T) \times R^{n}$ and (2.1)2 a.e. on R^{n}.

Proof. Since proof of the uniqueness is trivial we prove the existence of the strong solution. Since the function $-f(-x)$ satisfies conditions (2.4)-(2.5) choosing $w(t, x) \equiv$ 0 , taking $-f(-x)$ instead of $f(x)$ and applying Lemma 3.1 we obtain that there exists a function $u_{m} \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{m}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(B_{m}\right)\right) \cap L^{\infty}(0, T$; $\left.H^{2}\left(B_{m}\right) \cap H_{0}^{1}\left(B_{m}\right)\right)$ which satisfies $(2.1)_{1}$ a.e. on $(0, T) \times B_{m}$ and $(2.1)_{2}$ a.e. on B_{m}. Also by (3.9), (3.11) and (3.12) we have

$$
\begin{align*}
& \left\|\alpha\left(u_{m t}(t)\right)\right\|_{L^{2}\left(B_{m}\right)}^{2}+\left\|u_{m}(t)\right\|_{H^{2}\left(B_{m}\right)}^{2} \\
& +\frac{\tau}{1+t} \int_{\tau}^{t}\left\|u_{m t t}(s)\right\|_{L^{2}\left(B_{m}\right)}^{2} d s+\int_{0}^{t}\left\|\nabla u_{m t}(s)\right\|_{L^{2}\left(B_{m}\right)}^{2} d s \\
& \leq c\left(\left\|u_{0}\right\|_{H^{2}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right), \quad 0<\tau \leq t \leq T, \quad \nvdash m \in \mathbb{N} \tag{3.14}
\end{align*}
$$

where $c: R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. Setting $\widetilde{u}_{m}(t, x)=\left\{\begin{array}{l}u_{m}(t, x), \quad x \in B_{m} \\ 0, \quad x \in R^{n} \backslash B_{m}\end{array}\right.$ by (3.14) we can say that there exists a subsequence $\left\{m_{k}\right\} \subset\{m\}$ such that

$$
\left\{\begin{array}{l}
\widetilde{u}_{m_{k}} \rightarrow u \text { weakly star in } L^{\infty}\left(0, T ; H^{1}\left(R^{n}\right)\right) \\
u_{m_{k}} \rightarrow u \text { weakly star in } L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right) \\
u_{m_{k} t} \rightarrow u_{t} \text { weakly in } L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right) \\
u_{m_{k} t t} \rightarrow u_{t t} \text { weakly in } L_{l o c}^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \\
\alpha\left(u_{m_{k} t}\right) \rightarrow \alpha\left(u_{t}\right) \text { weakly in } L^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right)
\end{array}\right.
$$

and consequently

$$
\left\|\alpha\left(u_{t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+\|u(t)\|_{H^{2}\left(B_{\rho}\right)}^{2}+\frac{\tau}{1+t} \int_{\tau}^{t}\left\|u_{t t}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s
$$

$$
+\int_{0}^{t}\left\|\nabla u_{t}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \leq c\left(\left\|u_{0}\right\|_{H^{2}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right), \quad 0<\tau \leq t \leq T, \quad \nvdash \rho>0
$$

Hence $u(t, x)$ is the strong solution of (2.1).
Now let us define a weak solution.
Definition 3.1. A function $u \in C\left([0, T] ; H^{1}\left(R^{n}\right)\right)$ possessing the property $u(0, \cdot)=$ u_{0} is said to be a weak solution to problem (2.1) on $\left[0, T\left[\times R^{n}\right.\right.$, iff there exists a sequence of strong solutions $\left\{u^{m}(t, x)\right\}$ to problem (2.1) with initial data u_{0}^{m} instead of u_{0} such that

$$
\lim _{n \rightarrow \infty}\left\|u-u^{n}\right\|_{C\left([0, T] ; H^{1}\left(R^{n}\right)\right)}=0 .
$$

Remark 3.1. It is easy to see that, for sub-linear $\alpha(\cdot)$ and non-decreasing $f(\cdot)$, the weak solution defined here coincides with the solution studied in [4].

Using Theorem 3.1 and also density argument we have the following existence theorem:
Theorem 3.2. Let Assumption 2.1 hold. Then for every $T>0$ and $u_{0} \in H^{1}\left(R^{n}\right)$, the problem (2.1) has the unique weak solution $u(t, x)$ on $\left[0, T\left[\times R^{n}\right.\right.$, which satisfies the following inequality

$$
\begin{align*}
& E(u(t))+\int_{R^{n}} F(u(t, x)) d x-\int_{R^{n}} g(x) u(t, x) d x+\int_{\tau}^{t} \int_{R^{n}} \alpha\left(u_{t}(t, x)\right) u_{t}(t, x) d x d t \\
& \leq E(u(\tau))+\int_{R^{n}} F(u(\tau, x)) d x-\int_{R^{n}} g(x) u(\tau, x) d x, \quad 0 \leq \tau \leq t \leq T \tag{3.15}
\end{align*}
$$

Moreover if $v(t, x)$ is a weak solution to (2.1) on $[0, T] \times R^{n}$ with initial data v_{0} and $\max \left\{\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\left\|v_{0}\right\|_{H^{1}\left(R^{n}\right)}\right\} \leq R$, then there exists $c=c(T, R)>0$ such that

$$
E(u(t)-v(t)) \leq c E\left(u_{0}-v_{0}\right), \quad \nvdash t \in[0, T],
$$

where $E(u)=\frac{1}{2}\left(\|\nabla u(t)\|_{L^{2}\left(R^{n}\right)}^{2}+\lambda\|u(t)\|_{L^{2}\left(R^{n}\right)}^{2}\right)$.
Thus, under Assumption 2.1, problem (2.1) generates a continuous semigroup $\{S(t)\}_{t \geq 0}$ in $H^{1}\left(R^{n}\right)$ by the formula $S(t) u_{0}=u(t$,$) , where u(t, x)$ is a weak solution with initial data u_{0}.
4. Asymptotic compactness and global attractors. Let $u(t, x)$ be a solution of (2.1). We decompose $u(t, x)$ as a sum $v(t, x)+w(t, x)$, where

$$
\begin{align*}
& \left\{\begin{array}{l}
\alpha\left(v_{t}\right)-\Delta v+\lambda v+f(u)-f(u-v)=g_{0}(x),(t, x) \in(0, \infty) \times R^{n}, \\
v(0, x)=0, \quad x \in R^{n}
\end{array}\right. \tag{4.1}\\
& \left\{\begin{array}{l}
\alpha\left(v_{t}+w_{t}\right)-\alpha\left(v_{t}\right)-\Delta w+\lambda w+f(w) \\
=g(x)-g_{0}(x), \quad(t, x) \in(0, \infty) \times R^{n}, w(0, x)=u_{0}, \quad x \in R^{n},
\end{array}\right. \tag{4.2}
\end{align*}
$$

and $g_{0} \in L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$.
To prove the asymptotic compactness of the solutions of (2.1) we will prove the compactness of the solutions of (4.1) in $H^{1}\left(R^{n}\right)$ (for fixed t and g_{0}) and then show that the solutions of (4.2) are sufficiently small in the norm of $H^{1}\left(R^{n}\right)$ for large t and for $g_{0} \in L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$ which is sufficiently close to g in $L^{2}\left(R^{n}\right)$.

Let us first prove the regularity of the solutions of (4.1). For this we will use the following maximum principle:

Lemma 4.1. Let Assumption 2.1 hold. Also assume that $w \in L^{2}\left(0, T ; H^{2}\left(B_{\rho}\right) \cap\right.$ $\left.H_{0}^{1}\left(B_{\rho}\right)\right), w_{t} \in L^{2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right), \widehat{g} \in L^{\infty}\left(B_{\rho}\right)$ and $v_{0}=0$. Then the strong solution $v(t, x)$ of (3.1) satisfies the following inequality

$$
\begin{equation*}
\|v\|_{L^{\infty}\left((0, T) \times B_{\rho}\right)} \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\|\widehat{g}\|_{L^{\infty}\left(B_{\rho}\right)} \tag{4.3}
\end{equation*}
$$

where the positive constant μ_{0} depends only on $f(\cdot)$.
Proof. For the proof, see Appendix.
Now using Lemma 4.1 let us prove the following lemma:
Lemma 4.2. Assume that Assumption 2.1 holds. Then for every $u_{0} \in H^{2}\left(R^{n}\right)$ and $T>0$ there exists a unique strong solution $v \in W^{1,2}\left(0, T ; H^{1}\left(R^{n}\right)\right) \cap$ $\cap W_{\text {loc }}^{2,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(R^{n}\right)\right)$ of (4.1) on $\left[0, T\left[\times R^{n}\right.\right.$ such that

$$
\begin{equation*}
\|v(t)\|_{H^{2}\left(R^{n}\right)} \leq c\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)}\right), \quad \nvdash t \geq 0 \tag{4.4}
\end{equation*}
$$

where $c: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable.

Proof. From Lemma 3.1, Theorem 3.1 and Lemma 4.1 it follows that there exists a unique strong solution $v_{m} \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{m}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(B_{m}\right)\right) \cap$ $L^{\infty}\left(0, T ; H^{2}\left(B_{m}\right)\right)$ of the problem

$$
\left\{\begin{array}{l}
\alpha\left(v_{m t}\right)-\Delta v_{m}+\lambda v_{m}+f(u)-f\left(u-v_{m}\right)=g_{0}(x), \quad(t, x) \in(0, T) \times B_{m}, \\
v_{m}(t, x)=0, \quad(t, x) \in(0, T) \times \partial B_{m}, \\
v_{m}(0, x)=0, \quad x \in B_{m}
\end{array}\right.
$$

which satisfies

$$
\begin{gather*}
\| \alpha\left(v_{m t}(t)\left\|_{L^{2}\left(B_{m}\right)}^{2}+\right\| v_{m}(t) \|_{H^{2}\left(B_{m}\right)}^{2}\right. \\
+\frac{\tau}{1+t} \int_{\tau}^{t}\left\|v_{m t t}(s)\right\|_{L^{2}\left(B_{m}\right)}^{2} d s+\int_{0}^{t}\left\|\nabla v_{m t}(s)\right\|_{L^{2}\left(B_{m}\right)}^{2} d s \\
\leq c_{1}\left(T,\left\|u_{0}\right\|_{H^{2}\left(R^{n}\right)},\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right)}\right), \quad 0<\tau \leq t \leq T, \quad \nvdash m \in \mathbb{N}, \tag{4.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|v_{m}\right\|_{L^{\infty}\left((0, T) \times B_{m}\right)} \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\left\|g_{0}\right\|_{L^{\infty}\left(B_{m}\right)}, \quad \nvdash m \in \mathbb{N}, \tag{4.6}
\end{equation*}
$$

where $c_{1}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. Setting $\widetilde{v}_{m}(t, x)=\left\{\begin{array}{l}v_{m}(t, x), \quad x \in B_{m} \\ 0, \\ 0,\end{array} \quad x \in R^{n} \backslash B_{m} \quad\right.$ by (4.5) and (4.6) we can say that there exists a subsequence $\left\{m_{k}\right\} \subset\{m\}$ such that

$$
\left\{\begin{array}{l}
\widetilde{v}_{m_{k}} \rightarrow v \text { weakly star in } L^{\infty}\left(0, T ; H^{1}\left(R^{n}\right)\right) \tag{4.7}\\
v_{m_{k}} \rightarrow v \text { weakly star in } L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right) \\
v_{m_{k} t} \rightarrow v_{t} \text { weakly in } L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right) \\
v_{m_{k} t t} \rightarrow v_{t t} \text { weakly in } L_{l o c}^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \\
\alpha\left(v_{m_{k} t}\right) \rightarrow \alpha\left(v_{t}\right) \text { weakly in } L^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \\
\widetilde{v}_{m_{k}} \rightarrow v \text { weakly star in } L^{\infty}\left((0, T) \times R^{n}\right)
\end{array}\right.
$$

for every $\rho>0$. So by $(4.7)_{1}-(4.7)_{5}$ and (4.5) we have $v \in W^{1,2}\left(0, T ; H^{1}\left(R^{n}\right)\right) \cap$ $W_{\text {loc }}^{2,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(R^{n}\right)\right)$ is the strong solution of (4.1) on $\left[0, T\left[\times R^{n}\right.\right.$. Also from (4.6) and (4.7) ${ }_{6}$ it follows that

$$
\|v\|_{L^{\infty}\left((0, T) \times R^{n}\right)} \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\left\|g_{0}\right\|_{L^{\infty}\left(R^{n}\right)} .
$$

Set $\bar{\alpha}_{k}(s)=\left\{\begin{array}{cc}\alpha^{\prime}(k), & |s|>k \\ \alpha^{\prime}(s), & |s| \leq k\end{array}\right.$ and $\alpha_{k}(s)=\int_{0}^{s} \bar{\alpha}_{k}(t) d t$ for $k \in \mathbb{N}$. Since $\alpha_{k}(\cdot)$ also satisfies conditions (2.2)-(2.3) for any $u_{0} \in H^{2}\left(R^{n}\right)$ and $T>0$ there exists a unique strong solution $v_{k} \in W^{1,2}\left(0, T ; H^{1}\left(R^{n}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(R^{n}\right)\right)$ of the problem

$$
\left\{\begin{array}{l}
\alpha_{k}\left(v_{k t}\right)-\Delta v_{k}+\lambda v_{k}+f(u)-f\left(u-v_{k}\right)=g_{0}(x),(t, x) \in(0, T) \times R^{n} \tag{4.8}\\
v_{k}(0, x)=0, \quad x \in R^{n}
\end{array}\right.
$$

which also satisfies

$$
\begin{equation*}
\left\|v_{k}\right\|_{L^{\infty}\left((0, T) \times R^{n}\right)} \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\left\|g_{0}\right\|_{L^{\infty}\left(R^{n}\right)}, \quad \nvdash k \in \mathbb{N} . \tag{4.9}
\end{equation*}
$$

By (4.8) 1_{1} we have $\frac{\partial}{\partial t} \alpha_{k}\left(v_{k t}\right) \in L^{2}\left(0, T ; H^{-1}\left(R^{n}\right)\right)$, which together with the inclusion $\alpha_{k}\left(v_{k t}\right) \in L^{2}\left(0, T ; H^{1}\left(R^{n}\right)\right)$ implies that $\alpha_{k}\left(v_{k t}\right) \in C\left([0, T] ; L^{2}\left(R^{n}\right)\right)$. Now differentiating (4.8) $)_{1}$ with respect to t and testing obtained equation by $\alpha_{k}\left(v_{k t}\right)$ we find

$$
\begin{align*}
& \quad \frac{1}{2}\left\|\alpha_{k}\left(v_{k t}(t)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2}-\frac{1}{2}\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2} \\
& \leq \int_{0}^{t} \int_{R^{n}}\left(f^{\prime}\left(u(s, x)-v_{k}(s, x)\right)-f^{\prime}(u(s, x))\right) u_{t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s \\
& \quad+c \int_{0}^{t} \int_{R^{n}} v_{k t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s, \nvdash t \geq 0, \tag{4.10}
\end{align*}
$$

where the constant $c>0$ depends only on $f(\cdot)$. By (2.4) and (4.9) we have

$$
\begin{align*}
& \left|\int_{0}^{t} \int_{R^{n}}\left(f^{\prime}\left(u(s, x)-v_{k}(s, x)\right)-f^{\prime}(u(s, x))\right) u_{t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s\right| \\
\leq & \left(\frac{c \mu_{0}}{\lambda}+\frac{c}{\lambda}\left\|g_{0}\right\|_{L^{\infty}\left(R^{n}\right)}\right) \int_{0}^{t} \int_{R^{n}}\left|u_{t}(s, x)\right|\left|\alpha_{k}\left(v_{k t}(s, x)\right)\right| d x d s, \nvdash t \geq 0 . \tag{4.11}
\end{align*}
$$

Applying Young inequality (see for example [11]) to the integral on right side of (4.11) and taking into account (3.15) we obtain

$$
\begin{align*}
& \int_{0}^{t} \int_{R^{n}}\left|u_{t}(s, x)\right|\left|\alpha_{k}\left(v_{k t}(s, x)\right)\right| d x d s \\
\leq & \int_{0}^{t} \int_{R^{n}} u_{t}(s, x) \alpha_{k}\left(u_{t}(s, x)\right) d x d s+\int_{0}^{t} \int_{R^{n}} v_{k t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s \\
\leq & \int_{0}^{t} \int_{R^{n}} u_{t}(s, x) \alpha\left(u_{t}(s, x)\right) d x d s+\int_{0}^{t} \int_{R^{n}} v_{k t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s \\
\leq & c_{2}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right)+\int_{0}^{t} \int_{R^{n}} v_{k t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s, \quad \nvdash t \geq 0 \tag{4.12}
\end{align*}
$$

where $c_{2}: R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. Taking into account (4.11) and (4.12) in (4.10) we have

$$
\begin{gather*}
\left\|\alpha_{k}\left(v_{k t}(t)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2} \leq c_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)}\right) \\
\left(c+\frac{c \mu_{0}}{\lambda}+\frac{c}{\lambda}\left\|g_{0}\right\|_{L^{\infty}\left(R^{n}\right)}\right) \int_{0}^{t} \int_{R^{n}} v_{k t}(s, x) \alpha_{k}\left(v_{k t}(s, x)\right) d x d s, \quad \nvdash t \geq 0 \tag{4.13}
\end{gather*}
$$

where $c_{3}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable.

On the other hand subtracting $(4.8)_{1}$ from $(4.1)_{1}$ and testing the obtained equation by $\left(v_{t}-v_{k t}\right)$ we find

$$
\begin{align*}
& \frac{1}{3} \alpha^{\prime}(0) \int_{0}^{t}\left\|v_{t}(s)-v_{k t}(s)\right\|_{L^{2}\left(R^{n}\right)}^{2} d s+\frac{1}{2}\left\|\nabla\left(v(t)-v_{k}(t)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2} \\
+ & \frac{\lambda}{2}\left\|v(t)-v_{k}(t)\right\|_{L^{2}\left(R^{n}\right)}^{2} \leq \frac{3}{4 \alpha^{\prime}(0)} \int_{0}^{t}\left\|\alpha\left(v_{t}(s)\right)-\alpha_{k}\left(v_{t}(s)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2} d s \\
+ & c_{4}\left(t,\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \int_{0}^{t}\left\|v(s)-v_{k}(s)\right\|_{H^{1}\left(R^{n}\right)}^{2} d s, \nvdash t \geq 0 . \tag{4.14}
\end{align*}
$$

From definition of $\alpha_{k}(\cdot)$ it follows that

$$
\begin{equation*}
\int_{0}^{T}\left\|\alpha\left(v_{t}(s)\right)-\alpha_{k}\left(v_{t}(s)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2} d s \leq \int_{0}^{T} \int_{\left\{x: x \in R^{n},\left|v_{t}(s, x)\right|>k\right\}}\left|\alpha\left(v_{t}(s, x)\right)\right|^{2} d x d s \tag{4.15}
\end{equation*}
$$

Since $\alpha\left(v_{t}\right) \in L^{2}\left(0, T ; L^{2}\left(R^{n}\right)\right)$ (thanks to (4.5) and (4.7)), by (4.15) we have

$$
\alpha_{k}\left(v_{t}\right) \rightarrow \alpha\left(v_{t}\right) \text { strongly in } L^{2}\left(0, T ; L^{2}\left(R^{n}\right)\right)
$$

for every $T>0$. Then applying Gronwall's lemma to (4.14) we obtain

$$
\left\{\begin{array}{l}
v_{k} \rightarrow v \text { strongly in } L^{\infty}\left(0, T ; H^{1}\left(R^{n}\right)\right) \\
v_{k t} \rightarrow v_{t} \text { strongly in } L^{2}\left(0, T ; L^{2}\left(R^{n}\right)\right)
\end{array}\right.
$$

So passing to limit in (4.13) we find

$$
\begin{array}{r}
\left\|\alpha\left(v_{t}(t)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2} \leq c_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)}\right) \\
+\left(c+\frac{c \mu_{0}}{\lambda}+\frac{c}{\lambda}\left\|g_{0}\right\|_{L^{\infty}\left(R^{n}\right)}\right) \int_{0}^{t} \int_{R^{n}} v_{t}(s, x) \alpha\left(v_{t}(s, x)\right) d x d s, \quad \nvdash t \geq 0 . \tag{4.16}
\end{array}
$$

Now let us estimate the second term on the right side of (4.16). Multiplying both sides of $(4.2)_{1}$ by w_{t} and integrating over $(s, T) \times R^{n}$ we obtain

$$
\begin{aligned}
& E(w(T))+\int_{R^{n}} F(w(T, x)) d x-\int_{R^{n}}\left(g(x)-g_{0}(x)\right) w(T, x) d x \\
& \quad+\int_{s}^{T} \int_{R^{n}} w_{t}(t, x)\left(\alpha\left(v_{t}(t, x)+w_{t}(t, x)\right)-\alpha\left(v_{t}(t, x)\right)\right) d x d t
\end{aligned}
$$

$$
\begin{equation*}
\leq E(w(s))+\int_{R^{n}} F(w(s, x)) d x-\int_{R^{n}}\left(g(x)-g_{0}(x)\right) w(s, x) d x, \quad \nvdash T \geq s \geq 0 \tag{4.17}
\end{equation*}
$$

By (2.2)-(2.3), we have

$$
(\alpha(x)-\alpha(y))(x-y) \geq \widehat{c} \alpha(x-y)(x-y), \quad \nvdash x, y \in R
$$

for some $\widehat{c}>0$. By the last two inequalities we find

$$
\begin{align*}
& \|w(T)\|_{H^{1}\left(R^{n}\right)}^{2}+\int_{0}^{T} \int_{R^{n}} \alpha\left(w_{t}(s, x)\right) w_{t}(s, x) d x d s \\
\leq & c_{5}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\left\|g-g_{0}\right\|_{L^{2}\left(R^{n}\right)}\right), \quad \nvdash T \geq 0 \tag{4.18}
\end{align*}
$$

and using Young inequality we have

$$
\begin{align*}
& \quad \widehat{c} \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{t}(s, x)\right) v_{t}(s, x) d x d s \\
& \leq \int_{0}^{T} \int_{R^{n}}\left(\alpha\left(u_{t}(s, x)\right)-\alpha\left(w_{t}(s, x)\right)\right)\left(u_{t}(s, x)-w_{t}(s, x)\right) d x d s \\
& \leq 2 \int_{0}^{T} \int_{R^{n}} \alpha\left(u_{t}(s, x)\right) u_{t}(s, x) d x d s+2 \int_{0}^{T} \int_{R^{n}}^{T} \alpha\left(w_{t}(s, x)\right) w_{t}(s, x) d x d s \\
& \leq c_{6}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right)}\right), \quad \nvdash T \geq 0 \tag{4.19}
\end{align*}
$$

where $c_{5}: R_{+} \times R_{+} \rightarrow R_{+}$and $c_{6}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$are nondecreasing functions with respect to each variable. The last inequality together with (4.16) yields

$$
\left\|\alpha\left(v_{t}(t)\right)\right\|_{L^{2}\left(R^{n}\right)}^{2} \leq c_{7}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{0}\right\|_{L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)}\right), \nvdash t \geq 0
$$

where $c_{7}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. Thus taking into account (3.15), (4.18) and the last inequality in (4.1) ${ }_{1}$ we obtain (4.4).

Now let us prove the uniform tail estimate for the solutions of (4.1):
Lemma 4.3. Assume that Assumption 2.1 holds and $u_{0} \in H^{2}\left(R^{n}\right)$. Then for any $\varepsilon>0$ and $T>0$ there exists $r=r\left(\varepsilon, T,\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)}\right)>0$ such that

$$
\begin{equation*}
\int_{\left\{x: x \in R^{n},|x| \geq r\right\}}\left(|\nabla v(T, x)|^{2}+|v(T, x)|^{2}\right) d x \leq \varepsilon \tag{4.20}
\end{equation*}
$$

where $r: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to the third variable.

Proof. We use techniques of [7]. Multiplying equation (4.1) by $v_{t} e^{-\left|x-x_{0}\right|}$, integrating over $(0, T) \times R^{n}$ and applying Gronwall's inequality we find

$$
\int_{R^{n}}\left(|\nabla v(T, x)|^{2}+\lambda|v(T, x)|^{2}\right) e^{-\left|x-x_{0}\right|} d x \leq \frac{4}{\lambda} e^{C_{1}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)}\right) T} \int_{R^{n}}\left|g_{0}\right|^{2} e^{-\left|x-x_{0}\right|} d x
$$

where $C_{1}: R_{+} \rightarrow R_{+}$is a nondecreasing function.

Integrating the last inequality with respect to x_{0} over $\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}$ we obtain

$$
\begin{align*}
& \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}} \int_{R^{n}}\left(|\nabla v(T, x)|^{2}+\lambda|v(T, x)|^{2}\right) e^{-\left|x-x_{0}\right|} d x d x_{0} \\
& \leq \frac{4}{\lambda} e^{C_{1} T} \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\} R^{n}} \int_{0}\left|g_{0}\right|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \tag{4.21}
\end{align*}
$$

Let $\varphi \in L^{2}\left(R^{n}\right)$. Then we have

$$
\begin{align*}
& \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}} \int_{R^{n}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \\
= & \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}} \int_{\left\{x: x \in R^{n},|x| \geq \frac{r}{2}\right\}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \\
& +\int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}} \int_{\left\{x: x \in R^{n},|x|<\frac{r}{2}\right\}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \\
\leq & \left(\int_{\left\{x: x \in R^{n},|x| \geq \frac{r}{2}\right\}}|\varphi(x)|^{2} d x\right)\left(\int_{R^{n}} e^{-|y|} d y\right) \\
& +e^{-\frac{r}{4}} \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}} \int_{\left\{x: x \in R^{n},|x|<\frac{r}{2}\right\}} \int_{\int^{2}}|\varphi(x)|^{2} e^{-\frac{1}{4}\left|x_{0}\right|} d x d x_{0} \\
\leq & C_{2} \int_{\left\{x: x \in R^{n},|x| \geq \frac{r}{2}\right\}}|\varphi(x)|^{2} d x+C_{3} e^{-\frac{r}{4}} \int_{R^{n}}|\varphi(x)|^{2} d x \tag{4.22}
\end{align*}
$$

and

$$
\begin{align*}
& \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right| \geq r\right\}} \int_{R^{n}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \\
= & \int_{R^{n}} \int_{R^{n}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right|<r\right\} R^{n}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \\
= & C_{2} \int_{R^{n}}|\varphi(x)|^{2} d x-\int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right|<r\right\}\left\{x: x \in R^{n},|x|<2 r\right\}}|\varphi(x)|^{2} e^{-\left|x-x_{0}\right|} d x d x_{0} \\
& -\int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right|<r\right\}\left\{x: x \in R^{n},|x| \geq 2 r\right\}} \int_{|\varphi(x)|^{2}} e^{-\left|x-x_{0}\right|} d x d x_{0} \int_{\left\{x_{0}: x_{0} \in R^{n},\left|x_{0}\right|<r\right\}\left\{x: x \in R^{n},|x| \geq 2 r\right\}}|\varphi(x)|^{2} d x d x_{0} \\
\geq & C_{2} \int_{\left\{x: x \in R^{n},|x| \geq 2 r\right\}} \int_{\left\{x: x \in R^{n},|x| \geq 2 r\right\}} \\
= & \left.\left(C_{2}-C_{4} r^{n} e^{-r}\right) \int(x)\right|^{2} d x . \tag{4.23}
\end{align*}
$$

Taking into account (4.22)-(4.23) in (4.21) we find (4.20).

Now denote by $\mathcal{R}(t)$ a solution operator of (4.1), i.e. $v(t)=\mathcal{R}(t)\left(u_{0}, g_{0}\right)$, where $u_{0} \in H^{2}\left(R^{n}\right), g_{0} \in L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$ and $v(t$,$) is the solution of (4.1) determined by$ Lemma 4.2. By (4.1), it is easy to see that if the sequence $\left\{u_{0 n}\right\}_{n=1}^{\infty} \subset H^{2}\left(R^{n}\right)$ converges in $H^{1}\left(R^{n}\right)$, then the sequence $\left\{\mathcal{R}(t)\left(u_{0 n}, g_{0}\right)\right\}_{n=1}^{\infty}$ also converges in $H^{1}\left(R^{n}\right)$. Hence using density argument, the operator $\mathcal{R}(t)\left(\cdot, g_{0}\right)$ can be extended to $H^{1}\left(R^{n}\right)$, and so by Lemma 4.2 and Lemma 4.3 we immediately have the following corollary.

Corollary 4.1. Assume that Assumption 2.1 holds. Then the operator $\mathcal{R}(t)\left(\cdot, g_{0}\right)$: $H^{1}\left(R^{n}\right) \rightarrow H^{1}\left(R^{n}\right), t \geq 0$, is compact.

Now let us denote $g_{k}(x)=\left\{\begin{array}{ll}g(x), & |g(x)| \leq k \\ 0, & |g(x)|>k\end{array}\right.$.
Lemma 4.4. Assume that Assumption 2.1 holds and B is a bounded subset of $H^{1}\left(R^{n}\right)$. Then for any $\varepsilon>0$ and $m>0$ there exist $k_{0}=k_{0}(\varepsilon, B) \in \mathbb{N}, M_{0}=$ $M_{0}(\varepsilon, B)>0$ and $T_{0}=T_{0}(\varepsilon, B, m)>0$ such that

$$
\begin{gather*}
\left\|S(T) u_{0}-\mathcal{R}(T)\left(u_{0}, g_{k}\right)\right\|_{H^{1}\left(R^{n}\right)}^{2} \leq c \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right|>m\right\}}\left|\nabla u_{0}(x)\right|^{2} d x+\varepsilon, \\
\nvdash u_{0} \in B, \nvdash T \geq T_{0}, \nvdash k \geq k_{0}, \nvdash m \geq M_{0} \tag{4.24}
\end{gather*}
$$

where the positive constant c depends only λ and $f(\cdot)$.
Proof. We apply the techniques used in [10]. Since $g \in L^{2}\left(R^{n}\right)$, we have $g_{k} \in$ $L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$ and $g_{k} \rightarrow g$ strongly in $L^{2}\left(R^{n}\right)$ as $k \rightarrow \infty$. Let $u_{0} \in H^{2}\left(R^{n}\right)$. Denote $v_{k}(t)=\mathcal{R}(T)\left(u_{0}, g_{k}\right)$ and $w_{k}=u(t)-v_{k}(t)$, where $u(t)=S(t) u_{0}$. Then the function $w_{k} \in W^{1,2}\left(0, T ; H^{1}\left(R^{n}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(R^{n}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(R^{n}\right)\right)$ satisfies $(4.2)_{1}$ (with force term $g(x)-g_{k}(x)$ instead of $g(x)-g_{0}(x)$) a.e. on $(0, T) \times R^{n}$ for every $T>0$ and $w_{k}(0)=u_{0}$ a.e. on R^{n}. Denote $u_{0 m}(x)=$ $\left\{\begin{array}{ll}u_{0}(x)+m, & u_{0}(x)<-m \\ 0, & \left|u_{0}(x)\right| \leq m \\ u_{0}(x)-m, & u_{0}(x)>m\end{array}\right.$. Putting g_{k}, v_{k} and w_{k} instead of g_{0}, v and w in (4.2) respectively, multiplying obtained equation by $\frac{1}{t+1}\left(w_{k}(t, x)-u_{0 m}(x)\right)$ and integrating over $(0, T) \times R^{n}$ we have

$$
\begin{aligned}
& \int_{0}^{T} \frac{1}{t+1}\left\|\nabla w_{k}(t)\right\|_{L^{2}\left(R^{n}\right)}^{2} d t-\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} \sum_{i=1}^{n} w_{k x_{i}}(t, x) u_{0 m x_{i}}(x) d x d t \\
& +\lambda \int_{0}^{T} \frac{1}{t+1}\left\|w_{k}(t)\right\|_{L^{2}\left(R^{n}\right)}^{2} d t-\lambda \int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} w_{k}(t, x) u_{0 m}(x) d x d t \\
& +\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} f\left(w_{k}(t, x)\right) w_{k}(t, x) d x d t-\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} f\left(w_{k}(t, x)\right) u_{0 m}(x) d x d t
\end{aligned}
$$

$$
\begin{align*}
\leq & \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) \frac{1}{t+1} \int_{0}^{t} w_{k t}(s, x) d s d x d t-\int_{0}^{T} \int_{R^{n}} \alpha\left(u_{t}(t, x)\right) \frac{1}{t+1} \int_{0}^{t} w_{k t}(s, x) d s d x d t \\
& +\int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) \frac{1}{t+1}\left(u_{0}(x)-u_{0 m}(x)\right) d x d t \\
& -\int_{0}^{T} \int_{R^{n}} \alpha\left(u_{t}(t, x)\right) \frac{1}{t+1}\left(u_{0}(x)-u_{0 m}(x)\right) d x d t \\
& +\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1}\left(w_{k}(t, x)-u_{0 m}(x)\right)\left(g(x)-g_{k}(x)\right) d x d t \tag{4.25}
\end{align*}
$$

Now let us estimate first four terms on the right side of (4.25).
Using Young and Jensen inequalities (see [11]) we find

$$
\begin{align*}
& \int_{0}^{T} \int_{R^{n}}\left|\alpha\left(v_{k t}(t, x)\right)\right| \frac{1}{t+1} \int_{0}^{t}\left|w_{k t}(s, x)\right| d s d x d t \\
\leq & \int_{0}^{T} \int_{R^{n}} \mathcal{N}\left(\mu\left|\alpha\left(v_{k t}(t, x)\right)\right|\right) d x d t+\int_{0}^{T} \int_{R^{n}} \mathcal{M}\left(\frac{1}{\mu(t+1)} \int_{0}^{t}\left|w_{k t}(s, x)\right| d s\right) d x d t \\
\leq & \int_{0}^{T} \int_{R^{n}}^{T} \mathcal{N}\left(\mu \alpha\left(v_{k t}(t, x)\right)\right) d x d t+\int_{0}^{T} \int_{R^{n}} \frac{t}{\mu(t+1)} \mathcal{M}\left(\frac{1}{t} \int_{0}^{t}\left|w_{k t}(s, x)\right| d s\right) d x d t \\
\leq & \int_{0}^{T} \int_{R^{n}} \mathcal{N}\left(\mu \alpha\left(v_{k t}(t, x)\right)\right) d x d t+\int_{0}^{T} \int_{R^{n}} \frac{1}{\mu(t+1)} \int_{0}^{t} \mathcal{M}\left(w_{k t}(s, x)\right) d s d x d t, \nvdash \mu>1 \tag{4.26}
\end{align*}
$$

where $\mathcal{M}(z)=\int_{0}^{z} \alpha(x) d x$. By (2.3), since α is odd function and $\alpha^{\prime}(\cdot)$ is nondecreasing on R_{+}, we have

$$
\alpha(\mu x) \geq \mu \alpha(x), \quad \nvdash x \in R_{+}, \quad \nvdash \mu>1
$$

and consequently

$$
\alpha^{-1}(\mu \alpha(x)) \leq \mu x, \quad \nvdash x \in R_{+}, \nvdash \mu>1
$$

The last inequality together with (2.3) yields that

$$
\begin{align*}
\int_{0}^{T} \int_{R^{n}} \mathcal{N}\left(\mu \alpha\left(v_{k t}(t, x)\right)\right) d x d t & \leq \mu \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) \alpha^{-1}\left(\mu \alpha\left(v_{k t}(t, x)\right)\right) d x d t \\
& \leq \mu^{2} \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) v_{k t}(t, x) d x d t \tag{4.27}
\end{align*}
$$

By (4.26)-(4.27) we obtain

$$
\begin{aligned}
& \int_{0}^{T} \int_{R^{n}}\left|\alpha\left(v_{k t}(t, x)\right)\right| \frac{1}{t+1} \int_{0}^{t}\left|w_{k t}(s, x)\right| d s d x d t \\
\leq & \mu^{2} \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) v_{k t}(t, x) d x d t+\frac{\ln (T+1)}{\mu} \int_{0}^{T} \int_{R^{n}} \alpha\left(w_{k t}(t, x)\right) w_{k t}(t, x) d x d t
\end{aligned}
$$

which together with (4.18)-(4.19) implies

$$
\begin{gather*}
\int_{0}^{T} \int_{R^{n}}\left|\alpha\left(v_{k t}(t, x)\right)\right| \frac{1}{t+1} \int_{0}^{t}\left|w_{k t}(s, x)\right| d s d x d t \\
\leq\left(\mu^{2}+\frac{\ln (T+1)}{\mu}\right) \widehat{c}_{1}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right), \quad \nvdash T \geq 0, \nvdash \mu>1, \tag{4.28}
\end{gather*}
$$

where $\widehat{c}_{1}: R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing functions with respect to each variable. By the same way we find

$$
\begin{gather*}
\int_{0}^{T} \int_{R^{n}}\left|\alpha\left(u_{t}(t, x)\right)\right| \frac{1}{t+1} \int_{0}^{t}\left|w_{k t}(s, x)\right| d s d x d t \\
\leq\left(\mu^{2}+\frac{\ln (T+1)}{\mu}\right) \widehat{c}_{2}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right), \nvdash T \geq 0, \nvdash \mu>1 \tag{4.29}
\end{gather*}
$$

where $\widehat{c}_{2}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. By definition of $u_{0 m}(x)$, we have

$$
\begin{aligned}
& \int_{0}^{T} \int_{R^{n}} \frac{1}{t+1}\left|\alpha\left(v_{k t}(t, x)\right)\right|\left|u_{0}(x)-u_{0 m}(x)\right| d x d t \\
& =\int_{0}^{T} \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right| \leq m\right\}}\left|\alpha\left(v_{k t}(t, x)\right)\right| \frac{1}{t+1}\left|u_{0}(x)\right| d x d t \\
& \quad+m \int_{0}^{T} \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right|>m\right\}} \frac{1}{t+1}\left|\alpha\left(v_{k t}(t, x)\right)\right| d x d t \\
& \leq \int_{0}^{T} \int_{R^{n}}^{T} \mathcal{N}\left(\alpha\left(v_{k t}(t, x)\right)\right) d x d t+\int_{0}^{T} \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right| \leq m\right\}}^{T} \mathcal{M}\left(\frac{1}{t+1} u_{0}(x)\right) d x d t \\
& \quad+m \int_{0}^{T} \frac{1}{t+1}\left|\alpha\left(v_{k t}(t, x)\right)\right| d x d t \\
& \quad+m \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right|>m,\left|v_{k t}(t, x)\right| \leq 1\right\}}^{T} \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right|>m,\left|v_{k t}(t, x)\right|>1\right\}}^{t+1}\left|\alpha\left(v_{k t}(t, x)\right)\right| d x d t
\end{aligned}
$$

$$
\begin{align*}
\leq & \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) v_{k t}(t, x) d x d t \\
& +\int_{0}^{T} \int_{\left\{x: x \in R^{n},\left|u_{0}(x)\right| \leq m\right\}} \alpha\left(\frac{1}{t+1} u_{0}(x)\right) \frac{1}{t+1} u_{0}(x) d x d t \\
& +m \alpha(1) \ln (T+1) \operatorname{mes}\left\{x: x \in R^{n},\left|u_{0}(x)\right|>m\right\} \\
& +m_{0}^{T} \int_{R^{n}} \frac{1}{t+1} \alpha\left(v_{k t}(t, x)\right) v_{k t}(t, x) d x d t \\
\leq & (m+1) \int_{0}^{T} \int_{R^{n}} \alpha\left(v_{k t}(t, x)\right) v_{k t}(t, x) d x d t \\
& +\int_{0}^{T} \\
& +\frac{1}{m} \alpha(1) \ln \left(T+x \in R^{n},\left|u_{0}(x)\right| \leq m\right\} \\
& (t+1)^{2} \\
& \alpha\left(u_{0}(x)\right) u_{0}(x) d x d t \\
& +\alpha^{\prime}(m)\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2} \leq(m+1) \int_{L^{2}\left(R^{n}\right)}^{2} \int_{R^{n}}^{T} \alpha\left(v_{k t}(t, x)\right) v_{k t}(t, x) d x d t \tag{4.30}\\
\leq & \left(\frac{1}{m} \alpha(1) \ln (T+1)\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2}\right. \\
& \left.\ln (T+1)+\alpha^{\prime}(m)\right)\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2} \\
& +(m+1) \widehat{c}_{1}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \quad \nvdash T \geq 0, \nvdash m>0
\end{align*}
$$

Similarly we have

$$
\begin{align*}
& \quad \int_{0}^{T} \int_{R^{n}}\left|\alpha\left(u_{t}(t, x)\right)\right| \frac{1}{t+1}\left|u_{0}(x)-u_{0 m}(x)\right| d x d t \\
& \leq \\
& \left(\frac{1}{m} \alpha(1) \ln (T+1)+\alpha^{\prime}(m)\right)\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2} \tag{4.31}\\
& \quad+(m+1) \widehat{c}_{2}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \quad \nvdash T \geq 0, \nvdash m>0 .
\end{align*}
$$

Taking into account (4.28)-(4.31) in (4.25) we find

$$
\begin{aligned}
& \quad \int_{0}^{T} \frac{1}{t+1} E\left(w_{k}(t)\right) d t+\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} f\left(\left(w_{k}(t, x)\right) w_{k}(t, x) d x d t\right. \\
& \leq \ln (T+1) E\left(u_{0 m}\right)+2\left(\frac{1}{m} \alpha(1) \ln (T+1)+\alpha^{\prime}(m)\right)\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2} \\
& \quad+(m+1) \widehat{c}_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \\
& \quad+\left(\mu^{2}+\frac{\ln (T+1)}{\mu}\right) \widehat{c}_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1}\left(w_{k}(t, x)-u_{0 m}(x)\right)\left(g(x)-g_{k}(x)\right) d x d t \\
& +\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} f\left(w_{k}(t, x)\right) u_{0 m}(x) d x d t, \nvdash T>0, \nvdash m>0, \nvdash \mu>1,
\end{aligned}
$$

where $\widehat{c}_{3}=\widehat{c}_{1}+\widehat{c}_{2}$. Taking into account (2.4), (2.5) and (4.18) in the last inequality we obtain

$$
\begin{aligned}
& \int_{0}^{T} \frac{1}{t+1} E\left(w_{k}(t)\right) d t+\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1} F\left(\left(w_{k}(t, x)\right) d x d t\right. \\
& \quad-\int_{0}^{T} \int_{R^{n}} \frac{1}{t+1}\left(g(x)-g_{k}(x)\right) w_{k}(t, x) d x d t \\
& \leq \widehat{c} \ln (T+1) E\left(u_{0 m}\right)+2 \widehat{c}\left(\frac{1}{m} \alpha(1) \ln (T+1)+\alpha^{\prime}(m)\right)\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2} \\
& \quad+\widehat{c}(m+1) \widehat{c}_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \\
& \quad+\widehat{c}\left(\mu^{2}+\frac{\ln (T+1)}{\mu}\right) \widehat{c}_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \\
& \quad+\widehat{c}_{4}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)}\right) \ln (T+1)\left\|u_{0 m}\right\|_{L^{2}\left(R^{n}\right)} \\
& \quad+\widehat{c}_{4}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)}\right)\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)} \ln (T+1) \\
& \quad+\widehat{c} \ln (T+1)\left\|u_{0 m}\right\|_{L^{2}\left(R^{n}\right)}\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)}, \quad \nvdash T>0, \nvdash m>0, \nvdash \mu>1,
\end{aligned}
$$

where $\widehat{c}_{4}: R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable and the positive constant \widehat{c} depends only on λ and $f(\cdot)$.

Now putting g_{k}, v_{k} and w_{k} instead of g_{0}, v and w in (4.17) respectively, multiplying both sides of obtained inequality by $\frac{1}{1+s}$ and integrating with respect to s from 0 to T we have

$$
\begin{aligned}
& \quad \ln (T+1) E\left(w_{k}(T)\right)+\ln (T+1) \int_{R^{n}} F\left(w_{k}(T, x)\right) d x \\
& \leq \ln (T+1) \int_{R^{n}}\left(g(x)-g_{k}(x)\right) w_{k}(T, x) d x+\int_{0}^{T} \frac{1}{s+1} E\left(w_{k}(s)\right) d s \\
& \quad+\int_{0}^{T} \int_{R^{n}} \frac{1}{s+1} F\left(w_{k}(s, x)\right) d x d s-\int_{0}^{T} \int_{R^{n}} \frac{1}{s+1}\left(g(x)-g_{k}(x)\right) w_{k}(s, x) d x d s .
\end{aligned}
$$

By the last two inequalities, for any $\varepsilon>0$ there exists $M_{0}=M_{0}\left(\varepsilon,\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)}\right)>0$ such that

$$
\begin{aligned}
\frac{1}{2} E\left(w_{k}(T)\right) \leq & \frac{\varepsilon}{4}+\widehat{c} \int u_{\left\{x: x \in R^{n},\left|u_{0}(x)\right|>m\right\}}\left|\nabla u_{0}(x)\right|^{2} d x \\
& +\frac{2 \widehat{c} \alpha^{\prime}(m)}{\ln (T+1)}\left\|u_{0}\right\|_{L^{2}\left(R^{n}\right)}^{2}+\frac{\widehat{c}(m+1)}{\ln (T+1)} \widehat{c}_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\widehat{c}\left(\frac{\mu^{2}}{\ln (T+1)}+\frac{1}{\mu}\right) \widehat{c}_{3}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)}\right) \\
& +\widehat{c}_{4}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)}\right)\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)} \\
& +\frac{1}{\lambda}\left\|g-g_{k}\right\|_{L^{2}\left(R^{n}\right)}^{2}, \nvdash m \geq M_{0}
\end{aligned}
$$

Thus choosing $\mu=\ln ^{\frac{1}{4}}(T+1)$, we obtain (4.24) for large T and k.
Lemma 4.5. Assume that Assumption 2.1 holds and $B \in \mathfrak{B}$. Then for any $\varepsilon>0$ there exist $\delta_{0}=\delta_{0}(\varepsilon)>0, T_{0}=T_{0}(\varepsilon, B)>0$ and $M_{0}=M_{0}(\varepsilon, B)>0$ such that

$$
\begin{equation*}
\int_{\left.,|u(T, x)|>M_{0}\right\}}|\nabla u(T, x)|^{2} d x \leq \varepsilon, \quad \nvdash T \geq T_{0}, \nvdash u_{0} \in O_{\delta_{0}}(B), \tag{4.32}
\end{equation*}
$$

where $u(T)=,S(T) u_{0}$ and $O_{\delta}(B)$ is δ-neihbourhood of B in $H^{1}\left(R^{n}\right)$.
Proof. We present the proof for $n \geq 3$. By Lemma 4.4 for any $\varepsilon>0$ there exist $k_{0}=k_{0}(\varepsilon, B) \in \mathbb{N}, \delta_{0}=\delta_{0}(\varepsilon)>0$ and $T_{0}=T_{0}(\varepsilon, B)>0$ such that

$$
\begin{equation*}
\left\|S(T) u_{0}-\mathcal{R}(T)\left(u_{0}, g_{k_{0}}\right)\right\|_{H^{1}\left(R^{n}\right)} \leq \frac{\varepsilon}{2}, \quad \nvdash T \geq T_{0}, \nvdash u_{0} \in O_{\delta_{0}}(B) \tag{4.33}
\end{equation*}
$$

Also by Theorem 3.2 and Lemma 4.2 we have

$$
\begin{align*}
& \quad \int_{\left\{x: x \in R^{n},|u(T, x)|>M\right\}}\left(|\nabla v(T, x)|^{2}+|v(T, x)|^{2}\right) d x \\
& \leq \operatorname{mes}^{\frac{2}{n}}\left\{x: x \in R^{n},|u(T, x)|>M\right\} \\
& \times c_{1}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{k_{0}}\right\|_{L^{\infty}\left(R^{n}\right)}\right) \\
& \leq M^{-\frac{4}{n-2}} c_{2}\left(\left\|u_{0}\right\|_{H^{1}\left(R^{n}\right)},\|g\|_{L^{2}\left(R^{n}\right)},\left\|g_{k_{0}}\right\|_{L^{\infty}\left(R^{n}\right)}\right), \tag{4.34}
\end{align*}
$$

where $c_{i}: R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}(i=1,2)$ are nondecreasing functions with respect to each variable and $v(T)=,\mathcal{R}(T)\left(u_{0}, g_{k_{0}}\right)$. By (4.33)-(4.34) we obtain (4.32).

We are now in a position to prove the asymptotic compactness of solution of (2.1), which is included in the following theorem:

Theorem 4.1. Assume that Assumption 2.1 holds and $B \in \mathfrak{B}$. Then any sequence of the form $\left\{S\left(t_{m}\right) u_{0 m}\right\}_{m=1}^{\infty}, t_{m} \rightarrow \infty, u_{0 m} \in O_{\delta_{m}}(B), \delta_{m} \searrow 0$, has a convergent subsequence in $H^{1}\left(R^{n}\right)$.
Proof. Denote by $K_{H^{1}\left(R^{n}\right)}(A)$ the Kuratowski measure of non-compactness of the set A in $H^{1}\left(R^{n}\right)$, i.e.

$$
\begin{aligned}
K_{H^{1}\left(R^{n}\right)}(A):=\inf \{\varepsilon \mid & A \text { has a finite open cover of sets } \\
& \text { whose diameters are less than } \varepsilon\} .
\end{aligned}
$$

By Lemma 4.5, for any $\varepsilon>0$ and $B \in \mathfrak{B}$ there exist $\delta_{0}=\delta_{0}(\varepsilon)>0, T_{0}=T_{0}(\varepsilon, B)>$ 0 and $M_{0}=M_{0}(\varepsilon, B)>0$ such that

$$
\int_{\left\{x: x \in R^{n},|\varphi(x)|>M_{0}\right\}}|\nabla \varphi(x)|^{2} d x \leq \frac{\varepsilon}{2 c}, \nvdash \varphi \in \bigcup_{t \geq T_{0}}^{\cup} S(t) O_{\delta}(B), \nvdash \delta \in\left(0, \delta_{0}\right) .
$$

Then by Lemma 4.4, there exist $k_{0}=k_{0}(\varepsilon, B) \in \mathbb{N}$ and $T_{1}=T_{1}\left(\varepsilon, B, M_{0}\right)>0$ such that

$$
\begin{equation*}
\left\|S\left(T_{1}\right) \varphi-\mathcal{R}\left(T_{1}\right)\left(\varphi, g_{k_{0}}\right)\right\|_{H^{1}\left(R^{n}\right)} \leq \sqrt{\varepsilon}, \quad \nvdash \varphi \in \underset{t \geq T_{0}}{\cup} S(t) O_{\delta}(B), \quad \nvdash \delta \in\left(0, \delta_{0}\right) \tag{4.35}
\end{equation*}
$$

Taking into account (4.35) and Corollary 4.1 we obtain

$$
K_{H^{1}\left(R^{n}\right)}\left(S\left(T_{1}\right)\left(\underset{t \geq T_{0}}{\cup} S(t) O_{\delta}(B)\right)\right) \leq 4 \sqrt{\varepsilon}, \nvdash \delta \in\left(0, \delta_{0}\right)
$$

or

$$
K_{H^{1}\left(R^{n}\right)}\left(\cup_{t \geq T_{0}+T_{1}} S(t) O_{\delta}(B)\right) \leq 4 \sqrt{\varepsilon}, \nvdash \delta \in\left(0, \delta_{0}\right)
$$

Now if $t_{m} \rightarrow \infty, u_{0 m} \in O_{\delta_{m}}(B)$ and $\delta_{m} \searrow 0$, then from the last inequality it follows that

$$
K_{H^{1}\left(R^{n}\right)}\left(\left\{S\left(t_{m}\right) u_{0 m}\right\}_{m=1}^{\infty}\right)=0
$$

which completes the proof.
From this theorem immediately the following corollary follows.
Corollary 4.2. Under Assumption 2.1 for every $B \in \mathfrak{B}$, the sets
$\omega(B)=\underset{t \geq 0}{\cap} \bar{\bigcup} S(\tau) B \quad$ and $\widehat{\omega}(B)=\cap_{\delta>0} \cap_{t \geq 0 \tau \geq t}^{\bigcup S(\tau) O_{\delta}(B)}$ are nonempty strictly invariant compacts which attract B.

Now we can prove the main result.
Proof of Theorem 2.1. Set

$$
Z=\left\{\varphi: \varphi \in H^{1}\left(R^{n}\right),-\Delta \varphi+\lambda \varphi+f(\varphi)=g\right\}
$$

It is easy to see that under conditions (2.4)-(2.5) the set Z is a bounded subset of $H^{2}\left(R^{n}\right)$ and consequently $Z \in \mathfrak{B}$. Then by Corollary 4.2 the set $\widehat{\omega}(Z)$ is invariant and compact in $H^{1}\left(R^{n}\right)$. We will show that $\widehat{\omega}(Z)$ is the global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$ attractor for $\{S(t)\}_{t \geq 0}$. To this end it is sufficient to show that

$$
\begin{equation*}
\omega(B) \subset \widehat{\omega}(Z), \quad \nvdash B \in \mathfrak{B} \tag{4.36}
\end{equation*}
$$

As shown in [1, p.159-161], since $\omega(B),(B \in \mathfrak{B})$ is a compact strictly invariant set and the problem (2.1) admits the Lyapunov function $L(u(t)):=E(u(t))+$ $\int_{R^{n}} F(u(t, x)) d x-\int_{R^{n}} u(t, x) g(x) d x$ (thanks to (3.15)), for every $v \in \omega(B)$ there exists a complete trajectory $\gamma=\{u(t), t \in R\} \subset \omega(B)$ such that

$$
\begin{equation*}
u(0)=v \text { and } \lim _{t \rightarrow-\infty} \inf _{\varphi \in Z}\|u(t)-\varphi\|_{H^{1}\left(R^{n}\right)}=0 \tag{4.37}
\end{equation*}
$$

Taking into account (4.37) and the equality $u(t+\tau)=S(t) u(\tau), t \geq 0, \tau \in R$, we find that $v \in \widehat{\omega}(Z)$. Since v and B are the arbitrary element of $\omega(B)$ and \mathfrak{B} respectively, by the last conclusion we obtain (4.36).

Remark 4.1. If $g \in L^{2}\left(R^{n}\right) \cap L^{\infty}\left(R^{n}\right)$, then by the proof of Lemma 4.2 one can see that

$$
\begin{equation*}
\left\|\mathcal{R}(t)\left(u_{0}, g\right)\right\|_{L^{\infty}\left(R^{n}\right)} \leq c, \nvdash t \geq 0, \nvdash u_{0} \in H^{2}\left(R^{n}\right), \tag{i}
\end{equation*}
$$

where the positive constant c depends on $\lambda, f(\cdot)$ and $\|g\|_{L^{\infty}\left(R^{n}\right)}$. Also by Lemma 4.4 for any $B \in \mathfrak{B}$ we have

$$
\begin{equation*}
\left\|S(t) u_{0}-\mathcal{R}(t)\left(u_{0}, g\right)\right\|_{H^{1}\left(R^{n}\right)} \rightarrow 0 \quad \text { as } t \rightarrow \infty \tag{ii}
\end{equation*}
$$

uniformly with respect to all $u_{0} \in B$. Since a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor is invariant, from (i)-(ii) it follows that a global $\left(H^{1}\left(R^{n}\right), H^{1}\left(R^{n}\right)\right)_{\mathfrak{B}}$-attractor is a bounded subset of $L^{\infty}\left(R^{n}\right)$.
Remark 4.2. Let $\Omega \subset R^{3}$ be a bounded domain with smooth boundary and $g \in L^{\infty}(\Omega)$. Using the method of this paper it is easy to see that under Assumption 2.1 a semigroup generated by

$$
\begin{cases}\alpha\left(u_{t}\right)-\Delta u+f(u)=g(x), & (t, x) \in(0, \infty) \times \Omega \tag{*}\\ u(t, x)=0, & (t, x) \in(0, \infty) \times \partial \Omega \\ u(0, x)=u_{0}(x), & x \in \Omega\end{cases}
$$

possesses a global $\left(H_{0}^{1}(\Omega), H_{0}^{1}(\Omega)\right)_{\mathfrak{B}}$-attractor $\mathcal{A}_{\mathfrak{B}}$, which is also a bounded subset of $L^{\infty}(\Omega)$, as mentioned in Remark 5.1. If, in addition to (2.2)-(2.3), the function $\alpha(\cdot)$ satisfies also the conditions imposed in [8], then as shown in [8] the semigroup generated by $\left(^{*}\right)$ possesses also a global $\left(H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega), H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)\right)$-attractor \mathcal{A}_{∞}. Since $\mathcal{A}_{\mathfrak{B}}$ is an invariant, bounded subset of $H_{0}^{1}(\Omega) \cap L^{\infty}(\Omega)$, we have $\mathcal{A}_{\mathfrak{B}}$ $\subset \mathcal{A}_{\infty}$. On the other hand, since \mathcal{A}_{∞} is an invariant element of \mathfrak{B}, as mentioned in Remark 2.1, we have $\mathcal{A}_{\infty} \subset \mathcal{A}_{\mathfrak{B}}$. Thus under additional conditions the attractor constructed here coincides with the attractor constructed in [8].
5. Appendix. To prove Lemma 4.1 we need the following lemma:

Lemma 5.1. Let (2.2) and (2.4) hold. Also assume that $w \in C\left([0, T] \times \overline{B_{\rho}}\right)$, $\widehat{g} \in C\left(\overline{B_{\rho}}\right), v_{0}=0$ and $v \in C^{2}\left([0, T] \times \overline{B_{\rho}}\right)$ is a classical solution of (3.1). Then

$$
\begin{equation*}
\|v\|_{C\left([0, T] \times \overline{B_{\rho}}\right)} \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\|\widehat{g}\|_{C\left(\overline{B_{\rho}}\right)}, \tag{5.1}
\end{equation*}
$$

where the positive constant μ_{0} depends only on $f(\cdot)$.
Proof. By (2.4) it follows that there exists $M>0$ such that

$$
\begin{equation*}
\inf _{|x|>M} f^{\prime}(x)>0 \tag{5.2}
\end{equation*}
$$

Let $\mu_{0}=\max _{x, y \in[-M, M]}(f(x)-f(y))$. Let us show that

$$
\begin{equation*}
(f(x)-f(y)) \operatorname{sgn}(x-y) \geq-\mu_{0}, \quad \nvdash x, y \in R \tag{5.3}
\end{equation*}
$$

If $x, y \in[-M, M]$ then (5.3) is trivial. If $x, y>M$ or $x, y<-M$ then (5.3) follows from (5.2). If $x>M$ and $y<M \quad(y>M$ and $x<M)$ then by (2.4) and (5.2) we have

$$
\begin{gathered}
(f(x)-f(y)) \operatorname{sgn}(x-y)>f(M)-f(y) \geq-\mu_{0} \\
\left((f(x)-f(y)) \operatorname{sgn}(x-y)>f(M)-f(x) \geq-\mu_{0}\right) .
\end{gathered}
$$

If $x<-M$ and $y>-M \quad(x>-M$ and $y<-M)$ then

$$
\begin{gathered}
(f(x)-f(y)) \operatorname{sgn}(x-y)>f(y)-f(-M) \geq-\mu_{0} \\
\left((f(x)-f(y)) \operatorname{sgn}(x-y)>f(x)-f(-M) \geq-\mu_{0}\right)
\end{gathered}
$$

Now let $v\left(t_{0}, x_{0}\right)=\max _{[0, T] \times \overline{B_{\rho}}} v(t, x)$. Since $v(0, x) \equiv 0$ we have $v\left(t_{0}, x_{0}\right) \geq 0$. If $\left(t_{0}, x_{0}\right) \in(0, T] \times B_{\rho}$ then from (3.1) $)_{1}$ we obtain

$$
\lambda v\left(t_{0}, x_{0}\right)+f\left(w\left(t_{0}, x_{0}\right)\right)-f\left(w\left(t_{0}, x_{0}\right)-v\left(t_{0}, x_{0}\right)\right) \leq \widehat{g}\left(x_{0}\right)
$$

which together with (5.3) yields

$$
v\left(t_{0}, x_{0}\right) \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\|\widehat{g}\|_{C\left(\overline{B_{\rho}}\right)}
$$

If $t_{0}=0$ or $x_{0} \in \partial B_{\rho}$ then by the initial-boundary conditions it follows that

$$
v\left(t_{0}, x_{0}\right)=0
$$

So we have

$$
\begin{equation*}
v(t, x) \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\|\widehat{g}\|_{C\left(\overline{B_{\rho}}\right)}, \quad \nvdash(t, x) \in[0, T] \times \overline{B_{\rho}} \tag{5.4}
\end{equation*}
$$

Similarly one can show that if $v\left(t_{1}, x_{1}\right)=\min _{[0, T] \times \overline{B_{\rho}}} v(t, x)$, then

$$
v\left(t_{1}, x_{1}\right) \geq-\frac{\mu_{0}}{\lambda}-\frac{1}{\lambda}\|\widehat{g}\|_{C\left(\overline{B_{\rho}}\right)}
$$

and consequently

$$
v(t, x) \geq-\frac{\mu_{0}}{\lambda}-\frac{1}{\lambda}\|\widehat{g}\|_{C\left(\overline{B_{\rho}}\right)}, \quad \nvdash(t, x) \in[0, T] \times \overline{B_{\rho}} .
$$

The last inequality and (5.4) imply (5.1).
Proof of Lemma 4.1. Step1. We first prove lemma for $w \in C^{2}\left([0, T] \times \overline{B_{\rho}}\right)$ and $\widehat{g} \in C_{0}^{3}\left(\overline{B_{\rho}}\right)$. Since $\alpha_{m}(\cdot)$ (for definition see proof of Lemma 4.2) satisfies (2.2)-(2.3) and $\alpha_{m}^{\prime}(0)=\alpha^{\prime}(0)$, by Lemma (3.1) we can say there exists a unique strong solution $v_{m} \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right)$ of the following initial-boundary value problem:

$$
\left\{\begin{array}{l}
\alpha_{m}\left(v_{m t}\right)-\Delta v_{m}+\lambda v_{m}+f(w)-f\left(w-v_{m}\right)=\widehat{g}(x),(t, x) \in(0, T) \times B_{\rho} \tag{5.6}\\
v_{m}(t, x)=0,(t, x) \in(0, T) \times \partial B_{\rho} \\
v_{m}(0, x)=0, x \in B_{\rho}
\end{array}\right.
$$

which satisfies the following inequality

$$
\begin{align*}
& \left\|v_{m}(t)\right\|_{H^{2}\left(B_{\rho}\right)}^{2}+\int_{0}^{t}\left\|\nabla v_{m t}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s+\frac{\tau}{1+t} \int_{\tau}^{t}\left\|v_{m t t}(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \\
& \leq c_{1}\left(T,\|w\|_{L^{2}\left([0, T] ; H^{2}\left(B_{\rho}\right)\right)},\left\|w_{t}\right\|_{L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right)},\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}\right) \\
& \nvdash m \in \mathbb{N}, \quad 0<\tau \leq t \leq T \tag{5.7}
\end{align*}
$$

where $c_{1}: R_{+} \times R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. From (5.6) and (5.7) it follows that $\alpha_{m}\left(v_{m t}\right) \in L^{2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right)$ and $\frac{\partial}{\partial t} \alpha_{m}\left(v_{m t}\right) \in L^{2}\left(0, T ; H^{-1}\left(B_{\rho}\right)\right)$. So we have $\alpha_{m}\left(v_{m t}\right) \in C\left(0, T ; L^{2}\left(B_{\rho}\right)\right)$ and consequently $v_{m t} \in C\left(0, T ; L^{2}\left(B_{\rho}\right)\right)$. Denoting $h_{q, k}(s)=\left\{\begin{aligned} k^{q} s, & |s|>k \\ |s|^{q} s, & |s| \leq k\end{aligned}\right.$, we obtain that $h_{q, k}\left(v_{m t}\right) \in L^{2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \cap C\left(0, T ; L^{2}\left(B_{\rho}\right)\right)$, where $q>0$. Differentiating both sides of $(5.6)_{1}$ with respect to t and testing by $h_{q, k}\left(v_{m t}\right)$ we obtain

$$
\begin{align*}
& c \int_{0}^{t}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(s)\right)\right\|_{H^{1}\left(B_{\rho}\right)}^{2} d s+\int_{0}^{t}\left\langle\frac{\partial}{\partial t} \alpha_{m}\left(v_{m t}(s)\right), h_{q, k}\left(v_{m t}\right)\right\rangle d s \\
& \quad+\int_{0}^{t}\left\langle\frac{\partial}{\partial t}\left(f(w(s))-f\left(w(s)-v_{m}(s)\right)\right), h_{q, k}\left(v_{m t}\right)\right\rangle d s \leq 0 \tag{5.8}
\end{align*}
$$

Now for $m>\left\|\alpha^{-1}(\widehat{g})\right\|_{L^{\infty}\left(B_{\rho}\right)}$ let us estimate the second and third terms in (5.8):

$$
\begin{aligned}
\int_{0}^{t}\left\langle\frac{\partial}{\partial t} \alpha_{m}\left(v_{m t}(s)\right), h_{q, k}\left(v_{m t}\right)\right\rangle d s & =\lim _{\tau \rightarrow 0^{+}} \int_{\tau}^{t}\left\langle\frac{\partial}{\partial t} \alpha_{m}\left(v_{m t}(s)\right), h_{q, k}\left(v_{m t}\right)\right\rangle d s \\
& =\lim _{\tau \rightarrow 0^{+}} \int_{\tau}^{t}\left\langle\bar{\alpha}_{m}\left(v_{m t}(s)\right) v_{m t t}(s), h_{q, k}\left(v_{m t}\right)\right\rangle d s \\
& =\left\langle\widehat{\alpha}_{m}\left(v_{m t}(t)\right), 1\right\rangle-\lim _{\tau \rightarrow 0^{+}}\left\langle\widehat{\alpha}_{m}\left(v_{m t}(\tau)\right), 1\right\rangle,
\end{aligned}
$$

where $\widehat{\alpha}_{m k}(s)=\int_{0}^{s} \bar{\alpha}_{m}(\tau) h_{q, k}(\tau) d \tau$. Since $v_{m t} \in C\left(0, T ; L^{2}\left(B_{\rho}\right)\right)$ we have $\widehat{\alpha}_{m k}\left(v_{m t}\right) \in$ $C\left(0, T ; L^{2}\left(B_{\rho}\right)\right)$ and taking into account it in the above equality we obtain

$$
\begin{align*}
& \int_{0}^{t}\left\langle\frac{\partial}{\partial t} \alpha_{m}\left(v_{m t}(s)\right), h_{q, k}\left(v_{m t}\right)\right\rangle d s \\
\geq & \alpha^{\prime}(0) \frac{1}{q+2}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-\left\langle\widehat{\alpha}_{m k}\left(v_{m t}(0)\right), 1\right\rangle \\
= & \alpha^{\prime}(0) \frac{1}{q+2}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-\left\langle\widehat{\alpha}_{m k}\left(\alpha_{m}^{-1}(\widehat{g})\right), 1\right\rangle \\
\geq & \alpha^{\prime}(0) \frac{1}{q+2}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2}-\frac{1}{q+2} \int_{B_{\rho}} \widehat{g}(x)\left|\alpha^{-1}(\widehat{g}(x))\right|^{q+1} d x \\
\geq & \alpha^{\prime}(0) \frac{1}{q+2}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
& -\frac{1}{(q+2) \alpha^{\prime}(0)}\left\|\alpha^{-1}(\widehat{g})\right\|_{L^{\infty}\left(B_{\rho}\right)}^{q}\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}^{2}, \quad \nvdash t \in[0, T] \tag{5.9}
\end{align*}
$$

$$
\int_{0}^{t}\left\langle\frac{\partial}{\partial t} f\left(w(s)-v_{m}(s)\right)-\frac{\partial}{\partial t} f(w(s)), h_{q, k}\left(v_{m t}\right)\right\rangle d s
$$

$$
=\int_{0}^{t}\left\langle\left(f^{\prime}\left(w(s)-v_{m}(s)\right)-f^{\prime}(w(s))\right) w_{t}(s), h_{q, k}\left(v_{m t}\right)\right\rangle
$$

$$
-\int_{0}^{t}\left\langle f^{\prime}\left(w(s)-v_{m}(s)\right) v_{m t}, h_{q, k}\left(v_{m t}\right)\right\rangle d s
$$

$$
\leq c_{2}\left(T, \rho,\|w\|_{C^{2}\left([0, T] \times \overline{B_{\rho}}\right)},\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}\right)\left(\int_{0}^{t}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(s)\right)\right\|_{H^{1}\left(B_{\rho}\right)}^{2} d s\right)^{\frac{q+1}{q+2}}
$$

$$
\begin{equation*}
+c \int_{0}^{t}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(s)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s, \nvdash t \in[0, T], \tag{5.10}
\end{equation*}
$$

where $c_{2}: R_{+} \times R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. Taking into account (5.9)-(5.10) in (5.8) we obtain

$$
\begin{gathered}
\alpha^{\prime}(0) \frac{1}{q+2}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \leq \frac{1}{(q+2) \alpha^{\prime}(0)}\left\|\alpha^{-1}(\widehat{g})\right\|_{L^{\infty}\left(B_{\rho}\right)}^{q+1}\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}^{2} \\
+\frac{1}{c^{q+1}} \frac{1}{q+2} c_{2}^{q+2}\left(T, \rho,\|w\|_{C^{2}\left([0, T] \times \overline{\left.B_{\rho}\right)}\right.},\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}\right) \\
\quad+c \int_{0}^{t}\left\|h_{\frac{q}{2}, k}\left(v_{m t}(s)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s, \quad \nvdash t \in[0, T] .
\end{gathered}
$$

Applying Gronwall's lemma to the last inequality we find

$$
\begin{equation*}
\left\|h_{\frac{q}{2}, k}\left(v_{m t}(t)\right)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \leq d_{1} e^{d_{2} t}, \quad \nvdash t \in[0, T], \tag{5.11}
\end{equation*}
$$

where $d_{1}=\frac{1}{\left(\alpha^{\prime}(0)\right)^{2}}\left\|\alpha^{-1}(\widehat{g})\right\|_{L^{\infty}\left(B_{\rho}\right)}^{q+1}\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}^{2}+$ $+\frac{1}{c^{q+1} \alpha^{\prime}(0)} c_{2}^{q+2}\left(T, \rho,\|w\|_{C^{2}\left([0, T] \times \overline{B_{\rho}}\right)},\|\widehat{g}\|_{L^{2}\left(B_{\rho}\right)}\right)$ and $d_{2}=\frac{c(q+2)}{\alpha^{\prime}(0)}$. Passing to the limit in (5.11) with respect to k we have

$$
\left\|v_{m t}(t)\right\|_{L^{q+2}\left(B_{\rho}\right)} \leq\left(d_{1}\right)^{\frac{1}{q+2}} e^{\frac{d_{2}}{q+2} t}, \quad \nvdash t \in[0, T] .
$$

Now passing to limit in the last inequality as $q \rightarrow \infty$ we obtain

$$
\begin{equation*}
\left\|v_{m t}(t)\right\|_{L^{\infty}\left((0, T) \times B_{\rho}\right)} \leq M_{0}\left(T, \rho,\|w\|_{C^{2}\left([0, T] \times \overline{B_{\rho}}\right)},\|\widehat{g}\|_{L^{\infty}\left(B_{\rho}\right)}\right) \tag{5.12}
\end{equation*}
$$

where $M_{0}: R_{+} \times R_{+} \times R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable. By (5.7) and (5.12) it is easy to see that

$$
\left\{\begin{array}{l}
v_{m} \rightarrow v \text { weakly star in } L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right) \\
v_{m t} \rightarrow v_{t} \text { weakly in } L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right) \\
v_{m t} \rightarrow v_{t} \text { weakly star in } L^{\infty}\left((0, T) \times B_{\rho}\right) \\
v_{m t t} \rightarrow v_{t t} \text { weakly in } L_{l o c}^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \\
\alpha_{m}\left(v_{m t}\right) \rightarrow \alpha\left(v_{t}\right) \text { weakly in } L^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right)
\end{array}\right.
$$

where $v(t, x)$ is the solution of (3.1) with initial data $v_{0}=0$. It is also clear that $v(t, x)$ satisfies (5.7) and (5.12).

Now let us consider the following initial-boundary value problem:

$$
\left\{\begin{array}{l}
\alpha_{\varepsilon}\left(v_{t}^{\varepsilon}\right)-\Delta v^{\varepsilon}+\lambda v^{\varepsilon}+f(w)-f\left(w-v^{\varepsilon}\right)=\widehat{g}(x), \quad(t, x) \in(0, T) \times B_{\rho}, \tag{5.13}\\
v^{\varepsilon}(t, x)=0, \quad(t, x) \in(0, T) \times \partial B_{\rho} \\
v^{\varepsilon}(0, x)=0, \quad x \in B_{\rho}
\end{array}\right.
$$

where $\alpha_{\varepsilon} \in C^{3}(R), \alpha_{\varepsilon} \rightarrow \alpha$ strongly in $C^{1}\left[-M_{0}, M_{0}\right]$ (M_{0} is the same as in (5.12)) as $\varepsilon \rightarrow 0^{+}$, and $\alpha_{\varepsilon}^{\prime}(x) \geq \alpha^{\prime}(0)$ for every $x \in R$. By Lemma 3.1 and the argument done above we can say that there exists a unique strong solution of (5.13) which satisfies (5.7) and (5.12). Moreover

$$
\left\{\begin{array}{l}
v^{\varepsilon} \rightarrow v \text { weakly star in } L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right) \tag{5.14}\\
v_{t}^{\varepsilon} \rightarrow v_{t} \text { weakly in } L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right) \\
v_{t}^{\varepsilon} \rightarrow v_{t} \text { weakly star in } L^{\infty}\left((0, T) \times B_{\rho}\right) \\
v_{t t}^{\varepsilon} \rightarrow v_{t t} \text { weakly in } L_{l o c}^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \\
\alpha_{\varepsilon}\left(v_{t}^{\varepsilon}\right) \rightarrow \alpha\left(v_{t}\right) \text { weakly in } L^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right)
\end{array}\right.
$$

Since $v^{\varepsilon}(t, x)$ satisfies (5.12) by $(5.13)_{1}$ we have

$$
\begin{equation*}
-\Delta v^{\varepsilon}+\lambda v^{\varepsilon}+f(w)-f\left(w-v^{\varepsilon}\right)=\widehat{g}(x)-\alpha_{\varepsilon}\left(v_{t}^{\varepsilon}\right) \in L^{\infty}\left((0, T) \times B_{\rho}\right) \tag{5.15}
\end{equation*}
$$

Since $w \in C^{2}\left([0, T] \times \overline{B_{\rho}}\right)$ from condition (2.4) it follows that there exists $M_{1}=$ $M_{1}\left(\|w\|_{C\left([0, T] \times \overline{B_{\rho}}\right)}\right)>0$ such that

$$
(f(w(t, x))-f(w(t, x)-v)) v>0, \quad \nvdash(t, x) \in[0, T] \times \overline{B_{\rho}}
$$

for $|v| \geq M_{1}$. Setting $v_{M}^{\varepsilon}(t, x)=\left\{\begin{array}{l}v^{\varepsilon}(t, x)-M, v^{\varepsilon}(t, x)>M \\ 0, \quad\left|v^{\varepsilon}(t, x)\right| \leq M \\ v^{\varepsilon}(t, x)+M, \quad v^{\varepsilon}(t, x)<-M\end{array}\right.$ and testing
(5.15) by $v_{M}^{\varepsilon}(t, x)$ we obtain

$$
\lambda M\left\|v_{M}^{\varepsilon}(t, x)\right\|_{L^{1}\left((0, T) \times B_{\rho}\right)} \leq\left\|\widehat{g}(x)-\alpha_{\varepsilon}\left(v_{t}^{\varepsilon}\right)\right\|_{L^{\infty}\left((0, T) \times B_{\rho}\right)}\left\|v_{M}^{\varepsilon}(t, x)\right\|_{L^{1}\left((0, T) \times B_{\rho}\right)}
$$

and consequently

$$
\left\|v_{M}^{\varepsilon}(t, x)\right\|_{L^{1}\left((0, T) \times B_{\rho}\right)}=0
$$

for every $M>\max \left\{M_{1}, \frac{1}{\lambda}\left\|\widehat{g}(x)-\alpha_{\varepsilon}\left(v_{t}^{\varepsilon}\right)\right\|_{L^{\infty}\left((0, T) \times B_{\rho}\right)}\right\}$. The last equality means that $v^{\varepsilon} \in L^{\infty}\left((0, T) \times B_{\rho}\right)$, which together with (5.15) yields

$$
\begin{equation*}
v^{\varepsilon} \in L^{\infty}\left(0, T ; W^{2, \infty}\left(B_{\rho}\right)\right) \tag{5.16}
\end{equation*}
$$

Differentiating both sides of (5.13) with respect to t we have

$$
\left\{\begin{array}{l}
\varphi_{t}-\Delta \alpha_{\varepsilon}^{-1}(\varphi)+\lambda \alpha_{\varepsilon}^{-1}(\varphi)+f_{1}(t, x) \alpha_{\varepsilon}^{-1}(\varphi)+f_{2}(t, x)=0, \quad(t, x) \in(0, T) \times B_{\rho} \tag{5.17}\\
\varphi(t, x)=0, \quad(t, x) \in(0, T) \times \partial B_{\rho} \\
\varphi(0, x)=\widehat{g}(x), \quad x \in B_{\rho}
\end{array}\right.
$$

where $\varphi(t, x)=\alpha_{\varepsilon}\left(v_{t}^{\varepsilon}(t, x)\right), f_{1}(t, x)=f^{\prime}\left(w(t, x)-v^{\varepsilon}(t, x)\right)$ and $f_{2}(t, x)=\left(f^{\prime}(w(t, x)\right.$ $\left.-f^{\prime}\left(w(t, x)-v^{\varepsilon}(t, x)\right)\right) w_{t}(t, x)$. Since $v^{\varepsilon}(t, x)$ satisfies (5.12) and (5.16), applying [12, Theorem 6.1, p.513] to (5.17) we find that $\varphi \in H^{2+\beta, 1+\frac{\beta}{2}}\left([0, T] \times \overline{B_{\rho}}\right)$ and consequently $v^{\varepsilon}(t, x)=\int_{0}^{t} \alpha_{\varepsilon}^{-1}(\varphi(s, x)) d s \in C^{2}\left([0, T] \times \overline{B_{\rho}}\right)$. Now we can apply Lemma 5.1 to (5.13) which gives us the following estimate:

$$
\left\|v^{\varepsilon}(t, x)\right\|_{L^{\infty}\left((0, T) \times B_{\rho}\right)} \leq \frac{\mu_{0}}{\lambda}+\frac{1}{\lambda}\|\widehat{g}\|_{L^{\infty}\left(B_{\rho}\right)}
$$

The last inequality together with (5.14) yields (4.2).
Step2. Let $w \in L^{2}\left(0, T ; H^{2}\left(B_{\rho}\right) \cap H_{0}^{1}\left(B_{\rho}\right)\right), w_{t} \in L^{2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right), \widehat{g} \in L^{\infty}\left(B_{\rho}\right)$ and $v_{0}=0$. Then by Lemma 3.1, the problem (3.1) has a unique strong solution $v \in W^{1,2}\left(0, T ; H_{0}^{1}\left(B_{\rho}\right)\right) \cap W_{l o c}^{2,2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right) \cap L^{\infty}\left(0, T ; H^{2}\left(B_{\rho}\right)\right)$. By the density there are $\left\{w_{k}\right\}_{k=1}^{\infty} \subset C^{2}\left([0, T] \times \overline{B_{\rho}}\right)$ and $\left\{\widehat{g}_{k}\right\}_{k=1}^{\infty} \subset C^{3}\left(\overline{B_{\rho}}\right)$ such that

$$
\left\{\begin{array}{l}
w_{k} \rightarrow w \text { strongly in } L^{2}\left(0, T ; H^{2}\left(B_{\rho}\right)\right) \tag{5.18}\\
w_{k t} \rightarrow w_{t} \text { strongly in } L^{2}\left(0, T ; H^{1}\left(B_{\rho}\right)\right) \\
\widehat{g}_{k} \rightarrow \widehat{g} \text { strongly in } L^{2}\left(B_{\rho}\right) \\
\sup _{k}\left\|\widehat{g}_{k}\right\|_{L^{\infty}\left(B_{\rho}\right)} \leq\|\widehat{g}\|_{L^{\infty}\left(B_{\rho}\right)}
\end{array}\right.
$$

Put $w_{k}(t, x)$ instead of $w(t, x)$ and $\widehat{g}_{k}(x)$ instead of $\widehat{g}(x)$ in (3.1) $)_{1}$. Then by the arguments done in Step 1, we can say that there exists a unique strong solution $v_{k}(t, x)$ of

$$
\left\{\begin{array}{l}
\alpha\left(v_{k t}\right)-\Delta v_{k}+\lambda v_{k}+f\left(w_{k}\right)-f\left(w_{k}-v_{k}\right)=\widehat{g}_{k}(x), \quad(t, x) \in(0, T) \times B_{\rho} \\
v_{k}(t, x)=0, \quad(t, x) \in(0, T) \times \partial B_{\rho} \\
v_{k}(0, x)=0, \quad x \in B_{\rho}
\end{array}\right.
$$

which (thanks to $(5.18)_{4}$) satisfies (4.2). On the other hand multiplying both sides of

$$
\begin{aligned}
& \alpha\left(v_{t}\right)-\alpha\left(v_{k t}\right)-\Delta\left(v-v_{k}\right)+\lambda\left(v-v_{k}\right) \\
= & f\left(w_{k}\right)-f(w)+f(w-v)-f\left(w_{k}-v_{k}\right)+\widehat{g}(x)-\widehat{g}_{k}(x),
\end{aligned}
$$

by $\left(v_{t}-v_{k t}\right)$ and integrating over $(0, t) \times B_{\rho}$ we have

$$
\begin{aligned}
& \left\|v(t)-v_{k}(t)\right\|_{H^{1}\left(B_{\rho}\right)}^{2}+\left\|v_{t}(t)-v_{k t}(t)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} \leq c \int_{0}^{T}\left\|w_{k}(s)-w(s)\right\|_{L^{2}\left(B_{\rho}\right)}^{2} d s \\
& \quad+c T\left\|\widehat{g}-\widehat{g}_{k}\right\|_{L^{2}\left(B_{\rho}\right)}^{2}+c \int_{0}^{t}\left\|v(t)-v_{k}(t)\right\|_{H^{1}\left(B_{\rho}\right)}^{2} d s, \quad \nvdash t \in[0, T] .
\end{aligned}
$$

Taking into account $(5.18)_{1-}-(5.18)_{3}$ in the last inequality we obtain

$$
\left\{\begin{array}{l}
v_{k} \rightarrow v \text { strongly in } L^{\infty}\left(0, T ; H^{1}\left(B_{\rho}\right)\right) \\
v_{k t} \rightarrow v_{t} \text { strongly in } L^{2}\left(0, T ; L^{2}\left(B_{\rho}\right)\right)
\end{array}\right.
$$

Thus since $v_{k}(t, x)$ satisfies (4.2), it yields that $v(t, x)$ also satisfies (4.2).
Acknowledgements. The author is grateful to the referee for many helpful suggestions.

REFERENCES

[1] A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," $1^{\text {st }}$ edition, NorthHolland, Amsterdam, 1992.
[2] A. V. Babin and M. I. Vishik, Attractors of partial differential evolution equations in an unbounded domain, Proc. R. Soc. Edinburgh, 116A (1990), 221-243.
[3] A. V. Babin and B. Nicolaenko, Exponential attractors of reaction-diffusion systems in an unbounded domain, J. Dyn. Diff. Eqs., 7 (1995), 567-590.
[4] P. Colli and A. Visintin, On a class of doubly nonlinear evolution equations, Comm. Partial Differential Equations, 15 (1990), 737-756.
[5] A. Eden, B. Michaux and J-M. Rakotoson, Doubly nonlinear parabolic-type equations as dynamical systems, J. Dyn. Diff. Eqns., 3 (1991), 87-131.
[6] A. Eden and J-M. Rakotoson, Exponential attractors for a doubly nonlinear equation, J. Math. Anal. Appl., 185 (1994), 321-339.
[7] M. Efendiev and S. Zelik, The attractor for a nonlinear reaction-diffusion system in an unbounded domain, Comm. Pure Appl. Math., 54 (2001), 625-688.
[8] M. Efendiev and S. Zelik, Finite dimensional attractors and exponential attractors for degenerate doubly nonlinear equations, Preprint available at http://www.maths.surrey.ac.uk/personal/st/S.Zelik/publications/publ.html.
[9] J. Hale, "Asymptotic Behavior of Dissipative Systems," $1^{\text {st }}$ edition, AMS, Providence, 1988.
[10] A. Kh. Khanmamedov, Long-time behaviour of wave equations with nonlinear interior damping, Discrete Contin. Dyn. Syst., 21 (2008), 1185-1198.
[11] M. Krasnoselskii and Y. Rutickii, "Convex Functions and Orlicz Spaces," $1^{\text {st }}$ edition, P. Noordhoff Ltd., Groningen, 1961.
[12] O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uraltseva, "Linear and Quasilinear Equations of Parabolic Type," Nauka, 1967 [English translation; Amer.Math. Soc., Providence, RI, 1968.].
[13] A. Miranville, Finite dimensional global attractor for a class of doubly nonlinear parabolic equations, CEJM, 4 (2006), 163-182.
[14] A. Miranville and S. Zelik, Finite-dimensionality of attractors for degenerate equations of elliptic-parabolic type, Nonlinearity, 20 (2007), 1773-1797.
[15] A. Rodriguez-Bernal and B. Wang, Attractors for partly dissipative reaction diffusion systems in R^{n}, J. Math. Anal. Appl., 252 (2000), 790-803.
[16] G. Schimperna and A. Segatti, Attractors for the semiflow associated with a class of doubly nonlinear parabolic equations, Asymptotic Analysis, 56 (2008), 61-86.
[17] A. Segatti, Global attractor for a class of doubly nonlinear abstract evolution equations, Discrete Contin. Dyn. Syst., 14 (2006), 801-820
[18] C. Sun and C. Zhong, Attractors for the semilinear reaction-diffusion equation with distribution derivatives in unbounded domain, Noninear Analysis, 63 (2005), 49-65.
[19] R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," $1^{\text {st }}$ edition, Springer-Verlag, New York, 1988.
[20] B. Wang, Attractors for reaction diffusion equations in unbounded domains, Physica D, 128 (1999), 41-52.

Received May 2008; revised July 2008.

[^0]: 2000 Mathematics Subject Classification. 35B41, 35K55.
 Key words and phrases. Attractors, nonlinear parabolic equations.

