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ABSTRACT. We consider a doubly nonlinear parabolic equation in R™. Under
suitable hypotheses we prove that a semigroup generated by this equation
possesses a global attractor.

1. Introduction. We are interested in the study of the long-time behaviour (in
terms of attractors) of a doubly nonlinear parabolic equation of the form

afug) —Au+Au+ fu)=g (1.1)
in R™.

In the case when a(x) = z, the equation (1.1) becomes a reaction-diffusion
equation, whose attractors in bounded domains were studied in [1], [9], [19] and
references therein. For unbounded domains, there are technical difficulties coming
from the lack of compact embeddings of Sobolev spaces. To overcome these diffi-
culties, some authors, as in [2] and [3], used weighted Sobolev spaces, while some
authors, as in [15] and [18], used the cut-off function technique introduced in [20].
In [7], using the weighted energy method the authors studied the global attrac-
tors for the reaction-diffusion equations with more general source terms in three
dimensional unbounded domains. The weighted energy method presented in [7] is
widely applicable and in present paper we use this method to prove the uniform
tail estimate (see proof of Lemma 4.3).

The long-time behaviour of the solutions of (1.1) in the bounded domain when
a(+) is sub-linear was studied in [17]. In the case that a(v) is like |v|” v, the existence
of a global attractor for (1.1) in a three dimensional bounded domain was established
in [8] assuming that the force term g is a bounded function. As mentioned in that
article, when the nonlinearity a(-) grows sufficiently fast at infinity, unlike the case
of usual reaction-diffusion equations, there is a principal difference between weak
and strong solutions of doubly nonlinear equations of the form (1.1). Namely, in
contrast to strong solutions, weak solutions may contain so-called ”pathological”
solutions which do not possess any smoothing properties for ¢ > 0. In [8], the global
attractors were studied for the solutions which are not ”pathological”. Recently,
in [16], the long-time behaviour of the solutions of equation (1.1) with the bounded
force term was studied in a three dimensional bounded domain. In that article also,
the existence of the attractors was established for the strong solutions.
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We also note that there are several articles, such as [5], [6], [13], [14] devoted to
the study of global attractors of doubly nonlinear parabolic equations of the form

= aw) = Au+ f(w) =g

In this paper, we study the long-time behaviour of the weak solutions of (1.1)
in the whole space. The paper is organized as follows: In the next section we state
our main result, in Section 3 we prove the well-posedness of the problem, in Section
4 we establish the asymptotic compactness property of solutions and then prove
the existence of a global (H'(R™), H'(R"™))s — attractor for the equation (1.1), and
finally the proofs of some auxiliary lemmas are given in Appendix.

2. Statement of the problem and main result. We consider the following
Cauchy problem:

afus) — Au+ Au+ f(u) =g(x), (t,z) € (0,00) X R™, 2.1)
u(0,2) = up(x), x€ R™, :

where A > 0, g € L?(R") and the nonlinear functions «, f satisfy the following
conditions:
Assumption 2.1.
e acC'R), «a(0)=0, «isodd function, (2.2)
/ 1oy . . . a(2x)
e o/(0) >0, o(-) is nondecreasing function on R;, limsup @
r—oo0 O\T

e fcC*R), liminff'(v) >0, f(v)v>0, | f'(v)| <cforeveryve R, (2.4)

|[v]—o0

< oo, (2.3)

o| f'(v)] < c(1+ |v|”) for every v € R, where 0 < p < min{1, (2.5)

2
=27
Now to define a global (H'(R"), H'(R"))»—attractor let us introduce the fol-
lowing family of sets:

B = {B: B is a bounded subset of H'(R") and for any € > 0, there exists

m = m(e,B) >0 such that sup / \Vu(z)|® de < e
ueB
{z:zeR", |u(z)|>m}

Definition 2.1. Let {S(?)},, be an operator semigroup on HY(R™). We say that
aset A € B is a global (H'(R"), H'(R"))xs —attractor for the semigroup {S(t)},~
iff -

e A is compact in H'(R");

e A is invariant, i.e. S(t)A= A, ¥t >0;

e lim sup inf |[S(t)v — ull g1 (gey =0 for each B € B;

t—o0 yeB uceA

Our main result is:

Theorem 2.1. Under Assumption 2.1, a semigroup generated by the problem (2.1)
possesses a global (H'(R™), H'(R™))s — attractor.



LONG-TIME BEHAVIOUR 1375

Remark 2.1. By the definition it follows that a global (H*(R™), H'(R"))x-attractor
is maximal as an invariant set belonging to B and minimal as a closed attractor
attracting every element of 8. Since every bounded subset of H!(R™")NL>*(R") and
W1 2+¢(R") belongs to B, a global (H!(R™), H'(R"™))g—attractor attracts each
bounded subset of H*(R"™) N L>®(R™) and W' 2*¢(R™) in the topology of H'(R"),
where € > 0.

Remark 2.2. We also note that Theorem 2.1 remains true if we assume
feCYR), f(v)v> —o for every v € R,
1‘iI|n inff'(v) > —\, and f'(-) satisfies the global Lipschitz condition,

instead of (2.4), where o € (0, \).

3. Well-posedness. Let us consider the following initial-boundary value problem:

a(ve) = Av+ v+ f(w) = f(w—v) =g(z), (t,z)€(0,T)x By,
v(t,z) =0, (t,z)€ (0,T)x 0B, (3.1)
v(0,2) =vo(z), =€ B,,

where B, = {z : z € R", |z| < p}.
To prove well-posedness of (2.1) we will use the following lemma:

Lemma 3.1. Let Assumption 2.1 hold. Also assume that w € L*(0,T; H*(B,) N
H}(B,)), wy € L*(0,T; H}(B,)) and g € L*(B,). Then for every vy € H*(B,) N
H{(B,) there exists a unique strong solution v(t,x) of (5.1), that is

ve Wh2(0,T; HY(B,))N W22(0,T; L*(B,))NL>(0,T; H*(B,)) satisfies (3.1); a.e.

loc

on (0,T) x B, and (3.1)3 a.e. on B,,.
Proof. Uniqueness. Let v (t,x) € WY2(0,T; HY(B,)) N W22(0,T; L*(B,))N

loc

NL>(0,00; H*(B,))(i = 1,2) be solutions of (3.1). Then multiplying both sides of
a(o) = a(v?) = AR® —o®) + 2V —0®) = flw o) — fw o)

by 2(1),51) - v§2)) and integrating over (0,t) x B, we have

2 2

vaﬂxw_v®a»‘ +A

L*(By)

v(l)(t) ) (t)‘

L*(By)

+2//(o¢(vt(l)(s, x)) — a(vt@)(s, x)))(vt(l)(s,x) - vt(2)(s, x))dxds

0 B,

= wsx—v(l)sx — ’LUSI—’U(2)SI
—g//u<<,> (5,2)) — F(w(s,z) — v (s,2)))

0 B,
x(vt(l)(s, x) — vt@)(s, x))dxds

and consequently

Hv(l)(t) - U(2)(t)H21(B : < C] Hv(l)(s) - ’U(2)(8)H ds, ¥Ftelo,T).
’ 0

2
H(By)

Applying Gronwall’s lemma to the last inequality we find v*) = v,
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Ezistence. Let {p;}.-, be eigenfunctions of —A in Hj(B,), i.e.

{ “Avi = in By

vi |B,= 0,
By standard elliptic theory we have ¢; € C*(B,), i = 1,2,... . Set v™(t) =
Z;nzl am;(t)p; and consider the following system of ordinary differential equations:

2
L W (0e) + (V0. Vi + (a5 (0. )

+ AT (1), 05) + (F(w(t) — flw(t) —v™ (1), ¢5) = (g.05), J=LTm (3.2)

with initial conditions

m d .
O) = mejspjv E v (0) =0, (3'3)
where (1, ) fz/J x)dr and mejgoj — v strongly in H*(B,) N Hg(B,) as

m — 00. Ex1stence theory of ordmary differential equations implies that there exists
a solution of (3.2)-(3.3) on [0,7},). Multiplying both sides of (3.2) by 2% a,;(t),
summing from 1 to m and integrating over [0,t] C [0,T},) we obtain

1 m 2 m 2 m 2
— ”Ut Ollz2s,) T IVO"(Ol12,) + A" O 725,

t

vz [ / o (5, 2)ds — 2 (g, 0™ (0))

0B
t

/ (w(s) — 0™ (5)), v} (s) ds

0
= Vo™ (Ol 32(5,) + A" Oz, + 29,0 (@), 0<t<Tm.  (34)
By condition (2.4)-(2.5) we have

/<f(w(8)) —f(w(S)—vm(S))avZ”(S)MSZ/<f(w(8))=v?(8)>d8
0 0

+/ (f(w(s) —v™(5)), wi(s) — v} (s)) ds — / (f(w(s) —v™(s5)), wi(s)) ds

> —c//(l + |w(s, z)|P) |w(s, z)| v (s, )| deds

0B,
—l—/F(w(t,:E) — o™ (t,x))dx — /F(w(O,x) —0v"™(0,z))dx
B, B,

- c//(l + Jw(s, )P + o™ (s, 2)|")(w(s, z)| + [v™ (s, 2)]) |we (s, x)| deds, (3.5)

0 B,
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u

where F(u) = [ f(v)dv. Taking into account (3.5) in (3.4) we find
0

1 m m m
— v Ol Z2em,) + IVO™@)I72(5,) + Mo O 22(5,)

t
—i—//a(vfl(s,x))v;"(s,x)dxds
0B
< a(T, ||w||C([O,T];H1(B,,))) ||w||C(0,T;H1(B,,)) + C2(||UO||H1(BP) ) ||g||L2(B,,))
t
m 1
tes(T wlle o,y s,) 1Well 220,751 (8,)) > (1+/ 10" 1321 (3,0)*, 0 << T,
0

and consequently

m 4 2 2
0™ (O a1 ey < ealT [wll oo, rym 8, ) IWllcomm s,y + 1wellL20,75m1(8,))

t
m 4
X 1"’/”” e (8,)) +20§(||U0||H1(Bp)7||g||L2(BP))a 0<t<Ty,
0

where ¢; : Ry x Ry — Ry (i =1, 4) are nondecreasing functions with respect to
each variable. Applying Gronwall’s lemma we obtain

[o™ Ol 18,y <1+ c2(lvollgr (s, - 191lL25,))

res(T, lwlleorya s,y 1wtz o rimn s,)) 0 <t <Tm,

where ¢5 : Ry X Ry X Ry — R, is a nondecreasing function with respect to each
variable and ¢5(+,0,0) = 0. Hence v™(t, ) can be extended to an interval [0, 7] and

t

1 m m m m

P O35, + 190" O3, + A" Ol s,y + [ [Aalep (5.2))dods
0 B,

Scﬁ(”UO”Hl(Bp) ) ”g”L?(B,,)) + 7 (T, ”w”c([o,T];Hl(Bp)) ) ||wt||L2(o,T;H1(Bp)))v

0<t<T, (3.6)

where N(z) = [a'(y)dy and ¢¢: Ry x Ry — Ry ,¢r: Ry x Ry x Ry — Ry
0

are nondecreasing functions with respect to each variable and ¢z (-,0,0) = 0.
Multiplying both sides of (3.2) by 2#;‘%@7@ (t), summing from 1 to m and inte-
grating over [0, t] we obtain

1 m m m
— Vo O ze(s,) + 180" (D 525,y + M0™ O 72(5,)

t

420/0) [ 907 )25, s+ 2 [ (F(wls) = o7 (6)) = F(w(s), Aef* () ds
0

0
< A0 (0)2 5 ) + A0 ()22, — 2 (9, Av™ (1)) + 2 {g, Av™(0)),

0<t<T. (3.7)



1378 A. KH. KHANMAMEDOV

By condition (2.4)-(2.5) we find

/<f(w(8) —v™(s)) = fw(s)), Av/" (s)) ds
0

—4 w(s), Vop(s)) ds

t

—/ (f'(w(s) —v™(s)V(w(s) —v™(s)), Vi (s)) ds

0

Y

—c//(l + |w(s, z)|") |[Vw(s,z)| |Voi* (s, z)| deds

0 B,

t
—c// (14 |w(s,z)|” + [v"(s,2)|") [V (s, 2)| [V (s, x)| duds
0B

p

c// L+ Jw(s, )" 4+ [v™ (s, 2)") [Vw(s, z)| [V (s, 2)| dzds.  (3.8)
0B,

Taking into account (3.6) and (3.8) in (3.7) we obtain

t
1 m m m
POl s,y + 0" O e,y + [ 19576 s,
0
< CS(HUOHH2(BP) ) H9HL2(BP)) + co(T, ”wHL2([0,T];H2(B,,)) ) ||thL2(o,T;H1(BP)))a

0<t<T, (3.9)

where cg : Ry X Ry — R4 ,c9: Ry X Ry x Ry — Ry are nondecreasing functions
with respect to each variable and cy(-,0,0) = 0.

Now multiplying both sides of (3.2) by %amj(t), summing from 1 to m and
integrating over [0,t] we find

1 t _ m m m m m
- / 0 (32, s + B/ AP () — (A™(0), 0" (1)) + A (0™ (0) o (1)

t t
— (g 0" () + / 1907 ()3, ds + A / o (5) 225, ds
0 0

t

— (f(w(t)) = f(w(t) = o™ (@), 0" (1)) + / (f'(w(s))wi(s), vi" (s)) ds

0

- [ 0wl — "6 wn(s) — P ) (s s, 0<E<T, (.10
0
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where a(v f @

Differentlatlng both sides of (3.2), multiplying by g—;amj (t), summing from 1 to
m and integrating over [s,t] we have

t
1 m 2 1 m 2 m m 2
oo O 25, = o [0 O3,y + [ [ /@0 () o ) dadr
s B,

+5 Ve 725,y — 5 IIVet ($)I72(8,) + 5 llvi Ol 72(5,)

= S IO, + [ 4 wr)us(r), o (7) dr

s
t

— / (f'(w(r) — o™ (7)) (wi (1) — v (7)), vpp (7)) dT =0, 0<s<t<T.

S

Integrating the last equality with respect to s from 0 to ¢ we find

t
1 12 1 m 2
%t v (t)||L2(Bp) - %/ ([0t (5)||L2(Bp) ds

/// (v (1, 2)) gy (T, x)| dxdrds + tHVvt ()||L2 (B,)

s By
/ IV 3, ds + 517 Ol acn,
\ t t
; / 486 s s+ [ [ 4 ol (o). o)) drs
0 0 s

— // (f'(w(r) — o™ (7)) (w (1) — v (7)), vy (7)) drds =0, 0<t<T. (3.11)
0 s

By (2.3), (2.4), (2.5), (3.9), (3.10) and (3.11) we have

ClO(HUOHH?(BP) 5 ||9HL2(BP))

T

. 14T
J I3, ds <
t

1
+ren( wll o rym2cs,)) Wil 2omimn s,y 0<t<T, (3.12)

where c19 : Ry xRy — Ry, c11: Ry x Ry X Ry — Ry are nondecreasing functions
with respect to each variable and ¢11(-,0,0) = 0. Taking into account (3.6), (3.9),
(3.12) and applying [11, Theorem 14.4, p. 131] we can say that there exists a
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subsequence {mj} such that

v™k — v weakly star in L>(0,T; H*(B,) N H}(B,))
vy — v weakly in L%(0,T; H}(B,))
U?fk — vy Weakly in L7,.(0,T; L*(B,)) (3.13)

ff a(v z/1d:vds—>ff a(ve)pdads, ¥ € L=((0,T) x B,)

Now taking into account (3.13) and passing to limit in (3.2)-(3.3) we obtain

3) w
<O‘(Ut(t))=90j> - <Av(t)7(pj> + )‘<U( )7 > < ( (t))v ]>
- <f(w(t) — (1)), ij> = (g, Spj> , ae. on(0,7), j=1,2.

and

v(0) = v
from which we find that a(v;) € L>(0,T;L?(B,)) and v € W42(0,T; H}(B,)) N
W22(0,T; L2(R™)) N L>(0,T; H%(B,)) satisfies (3.1). O

Now let us prove the existence and uniqueness of the strong solution of (2.1).

Theorem 3.1. Let Assumption (2.1) hold and uy € H?*(R"™). Then for every
T >0, the problem (2.1) has a unique strong solution u(t,z) on [0, T[xR™, that is
u € W20, T; L2(R™) N W22(0,T; L*(R™)) N L>(0, T; H*(R™)) satisfies (2.1);
a.e. on (0,T) x R™ and (2.1)2 a.e. on R™.

Proof. Since proof of the uniqueness is trivial we prove the existence of the strong so-
lution. Since the function — f(—x) satisfies conditions (2.4)-(2.5) choosing w(t, z) =
0, taking — f(—=x) instead of f(z) and applying Lemma 3.1 we obtain that there
exists a function u,, € W'2(0, T; HY(B,,)) N W22(0,T; L*(B,y,)) N L>=(0, T;
H?(B,,) N Hi(B,,)) which satisfies (2.1); a.e. on (0,7) x By, and (2.1)2 a.e. on
B,,. Also by (3.9), (3.11) and (3.12) we have

(e 725, + lum (B 325,,)

Ht/numtt M, ds+/|\wm ()2, s

< C(HUOHHQ(R”) MNollpzrny), 0<7T<t<T, FmeN, (3.14)
where ¢ : Ry x Ry — R4 is a nondecreasing function with respect to each variable.
um(t,x), x €B
0, x € R"\B,,
subsequence {m} C {m} such that

— u weakly star in L>(0,T; H'(R"))
Um, — u weakly star in L>(0,T; H*(B,))
Uyt — up weakly in LQ(O,T; H'(B,))
Uyt — Uy weakly in L2 (0,7 L2( B,))

(U, t) — a(uy) weakly in L2(0 T;L*(B,))

Setting ,, (t, ) = ™ by (3.14) we can say that there exists a

U,

k

and consequently

.
o) 3acs,) + 1O, + Ty / et ()25, ds
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t
2
+ / IVar(9)22s,, ds < c(ltol gz - I9llagmy)s 0<7 ST, ¥p>0.
0

Hence u(t, x) is the strong solution of (2.1). O
Now let us define a weak solution.

Definition 3.1. A function u € C([0, T]; H!(R™)) possessing the property u(0, ) =
up is said to be a weak solution to problem (2.1) on [0, T[xR", iff there exists a
sequence of strong solutions {u™ (¢, )} to problem (2.1) with initial data u{ instead
of ug such that

Jim ju = ™| 0,77, 11 Ry = 0

Remark 3.1. Tt is easy to see that, for sub-linear a(-) and non-decreasing f(-), the
weak solution defined here coincides with the solution studied in [4].

Using Theorem 3.1 and also density argument we have the following existence
theorem:

Theorem 3.2. Let Assumption 2.1 hold. Then for every T > 0 and ug € H*(R"),
the problem (2.1) has the unique weak solution u(t,z) on [0, T[xR™, which satisfies
the following inequality

¢
E(u(t)) + /F(u(t,x))d:c — /g(a:)u(t,:z:)d:z: + //oz(ut(t,x))ut(t,x)d:cdt
R™ Rn T Rn
< E(u(r)) + /F(U(T, x))dr — /g(z)u(T, x)dr, 0<7<t<T. (3.15)
Rn Rn
Moreover if v(t,x) is a weak solution to (2.1) on [0,T] x R™ with initial data vy and
maX{HuOHHI(Rn) Mvoll gy ¢ < R, then there exists ¢ = c(T, R) > 0 such that
E(u(t) —v(t)) < cE(ug —vg), ¥ tel0,T],
where E(u) = §([|Va()l|72(gn) + A |w(®)l|72(zn))-

Thus, under Assumption 2.1, problem (2.1) generates a continuous semigroup
{S(t)}i>0 in H'(R™) by the formula S(¢)ug = u(t, ), where u(t, z) is a weak solution
with initial data ug.

4. Asymptotic compactness and global attractors. Let u(t,z) be a solution
of (2.1). We decompose u(t,x) as a sum v(t, z) + w(t, z), where

O[(Ut)—A’U—i-AU—I—f(’UJ)—f(U—’U):gO(I>, (t,x)E(O,oo)xR”, (4 1)
v(0,2) =0, x€ R™, ‘
{ alvy +wy) — a(vy) — Aw + Aw + f(w) (4.2)
= g(x) - gO(x)v (t,I) € (0,00) X Rn,’LU(O,.I) = Uo, YIS Rna '

and go € L2(R™) N L>=(R").

To prove the asymptotic compactness of the solutions of (2.1) we will prove the
compactness of the solutions of (4.1) in H'(R") (for fixed ¢ and go) and then show
that the solutions of (4.2) are sufficiently small in the norm of H*(R") for large t
and for gg € L?(R™) N L*°(R™) which is sufficiently close to g in L?(R").

Let us first prove the regularity of the solutions of (4.1). For this we will use the
following maximum principle:
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Lemma 4.1. Let Assumption 2.1 hold. Also assume that w € L*(0,T; H*(B,) N
H{(B))), wy € L*(0,T; H}(B,)), § € L>=(B,) and vo = 0. Then the strong solution
v(t,x) of (3.1) satisfies the following mequality

”UHLOO((O,T)XB ) < 7 ||g||L°°(B (4.3)
where the positive constant po depends only on f ().
Proof. For the proof, see Appendix. O
Now using Lemma 4.1 let us prove the following lemma:
Lemma 4.2. Assume that Assumption 2.1 holds . Then for every ug € H?*(R™)

and T > 0 there exists a unique strong solution v € W2(0,T; H(R™))N
AW22(0,T; L2(R™)) N L>(0,T; H2(R™)) of (4.1) on [0, T[xR"™ such that

loc
[0l 2 gy < elwoll g gny > 191l L2 ey 900 L2(rryaLe gny))s ¥ E =0, (4.4)
where ¢ : Ry X Ry X Ry — Ry is a nondecreasing function with respect to each
variable.
Proof. From Lemma 3.1, Theorem 3.1 and Lemma 4.1 it follows that there ex-
ists a unique strong solution v,, € W1Y2(0,T; H}(B,,)) N W22(0,T; L*(B,y)) N
L*(0,T; H?(B,,)) of the problem
a(vmt) - Avm + )\’Um + f(u) - f(u - Um) = gO(x)a (t,JJ) € (OaT) X Bmu
vm(t,x) =0, (t,x) € (0,T) X By,
vm(0,2) =0, x € By,

which satisfies

2 2
le(vme (Ol L2,y + 1om (D525,

b / e (5) 3. ds + / 190t (5) 3,

Scl(Ta ||u0||H2(Rn)a”g()”L?(Rn))a O<T§t§Ta %meNv (45)
and
o 1
lomll oo 0,7y x By < SR lgoll s,y ¥ meN, (4.6)

where ¢; : Ry x Ry X Ry — Ry is a nondecreasing function with respect to each
Un(t:2), 2 € B 5 and (4.6)

0, € R"\B,, v n we can say
that there exists a subsequence {my} C {m} such that

Um, — v weakly star in L>(0,T; H'(R"))
Um, — v weakly star in L>(0,T; H*(B,))
Vmyt — v weakly in L2(0,T; HY(B,))

Umytt — Ve weakly in LlOC(O T;L*B )
a(vmkt) — a(vy) weakly in L2(O T; L2( B,))
U, — v weakly star in L*°((0,7) x R")

for every p > 0. So by (4.7)1-(4.7)5 and (4.5) we have v € W12(0,T; H*(R™)) N
W22(0,T; L2(R™)) N L>(0, T; H?(R™)) is the strong solution of (4.1) on [0, T[x R™.
Also from (4.6) and (4.7)g it follows that

variable. Setting v, (t,z) =

(4.7)

Ho
ol o 0,1y x Ry < 5 F 5 19001 e () -
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_ "(k), >k . .
Set @k (s) = { g’((s)), ||SS||§ 1 and ay(s) = {ak(t)dt for k € N. Since ay(-) also

satisfies conditions (2.2)-(2.3) for any ug € H?(R™) and T > 0 there exists a unique
strong solution vy € W2(0,T; HY(R™)) N W22 (0,T; L2(R™)) N L>=(0, T; H*(R™))
of the problem
ok (vke) — Avg + Avg + f(u) = f(u— o) = go(), (t,2) € (0,T) x R,
vt (0,2) =0, z € R", ’
(4.8)
which also satisfies
o 1
[0kll oo 0,7y x Ry < Ty gollLoe(gny, ¥ k€N (4.9)
By (4.8); we have 2oy (vie) € L2(0,T; H~Y(R")), which together with the inclu-
sion ag(vkr) € L2(0,T; HY(R™)) implies that ay(vk:) € C([0,T]; L*(R")). Now
differentiating (4.8); with respect to t and testing obtained equation by «y (vy:) we
find

1 2 1 2
5 low(ore @)z (rmy = 5 190012 ()

< //(f/(u(s,x) — vk (s,2)) — f(u(s, 2))ue (s, x)og (Ve (s, x))dxds
0 Rn

t

+ c//vkt(s,x)ozk(vkt(s,x))d:cds, Ft>0, (4.10)

0 R»
where the constant ¢ > 0 depends only on f(-). By (2.4) and (4.9) we have

//(f’(u(s,x) —vk(s,2)) — f(u(s, 2))ue(s, x) ok (v (s, x))dxds
0 Rn

t

< (B4 5 lanlle ) [ [ st lan(ons(s )l dnds, #e= 0. (@11)
0 Rn
Applying Young inequality (see for example [11]) to the integral on right side of
(4.11) and taking into account (3.15) we obtain

t

// [ui(s, )| |ok (vie (s, 2))| dwds

0 R™

g]/ut(s,x)ak(ut(s,:E))d:vds + ]/vkt(s,;v)ak(vkt(s,x))d:vds

0 R™ 0 R»

g]/ut(s,x)a(ut(s,x))dxds + ]/Ukt(s,:E)ak(vkt(s,x))dxds

0 R™ 0 R»

t
< ea([[uoll g1 gy + 191 p2(rmy) + //Ukt(s,w)ak(vkt(s,w))dxds, Ft>0, (4.12)
0 Rr
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where co : Ry X Ry — Ry is a nondecreasing function with respect to each variable.
Taking into account (4.11) and (4.12) in (4.10) we have

2
||0‘k(vkt(t))”L2(Rn) < C3(H“0”H1(Rn) ) H9HL2(Rn) ’ ||90||L2(Rn)mLoo(Rn))

t
(c-i— % + § HQOHLoo(Rn)) //vkt(s,:E)ak(vkt(s,x))dxds, Ft>0, (4.13)
0 R"
where ¢3 : Ry X Ry X Ry — Ry is a nondecreasing function with respect to each
variable.
On the other hand subtracting (4.8); from (4.1); and testing the obtained equa-
tion by (v: — vg) we find

t

1 1

2a(0) / loe(5) = e ()3 5 + 5 190 (8) = 08 () 3 e
0

+5 1000 = 0Oy < gy [ 1000 (9) = kor (o) ey s
0

t
2
+C4(t7|\uOHH1(Rn>,||9||L2<Rn>)/ [0(s) = vk ()51 () s, £ > 0. (4.14)
0

From definition of ay(+) it follows that

T T
[ lawe) — st [ f (v (s, ) dds.
0 0 {z:zeR™, |vi(s,x)|>k}
(4.15)
Since a(vy) € L?(0,T; L*(R™)) (thanks to (4.5) and (4.7)), by (4.15) we have

ag(vs) — afv;) strongly in L?(0,T; L*(R™))
for every T' > 0. Then applying Gronwall’s lemma to (4.14) we obtain

v — v strongly in L®(0,T; HY(R™))
vt — vg strongly in L2(0,T; L*(R™))

So passing to limit in (4.13) we find

Ha(vt(t))HQw(Rn) < es([luoll g (rny s 191 L2grmy s 190l L2 (rmynz = (7))

¢
c c
+ (c—|— % + 3 HgOHLOO(R")) //vt(s,x)oz(vt(s,x))da:ds, Ft>0. (4.16)

0 R™
Now let us estimate the second term on the right side of (4.16). Multiplying both
sides of (4.2); by w; and integrating over (s,7) x R™ we obtain

E(w(T)) + / F(w(T, ))dx — / (9(z) — gola))w(T, x)dx

Rn Rn

T
—l—//wt(t, x)(a(ve(t, @) + we(t, x)) — alve(t, )))dadt

s R™
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< E(w(s))+ /F(w(s,x))d:c— /(g(x) —go(x))w(s,x)de, ¥ T >s>0.(4.17)
Rn Rn
By (2.2)-(2.3), we have

(a(z) —a()(z —y) >ca(z —y) (v —y), ¥r,yeR,

for some ¢ > 0. By the last two inequalities we find

T
Hw(T)|ﬁ{1(Rn) —i—//a(wt(s,x))wt(s,x)dxds

0 R™

< es([[woll gra gy 19 = 9oll p2mny)s ¥ T 20, (4.18)
and using Young inequality we have

57 / alvy(s, z))ve (s, z)dads

0 R»

T
§// afue(s,z)) — a(w(s, x))) (ur(s, ) — we(s, z))dxds
0 Rn
T T
// a(u(s,x) utsxd:rds—F?//awtsx Ywe (s, x)dxds
0 Rn 0 R
< CG(HUOHHI(Rn) ; ||9HL2(Rn) ’ ||90||L2(Rn))v FT >0, (4.19)

where ¢5 : Ry x Ry — R4 and ¢ : Ry X Ry X Ry — Ry are nondecreasing
functions with respect to each variable. The last inequality together with (4.16)
yields
2
”O‘(vt(t))”H(R") < C7(Hu0||Hl(Rn 7H9HL2 (R™) > ||90||L2 Rn)ﬁLOO(Rn)>a ¥it>0,

where ¢7 : Ry X Ry x Ry — Ry is a nondecreasing function with respect to each
variable. Thus taking into account (3.15), (4.18) and the last inequality in (4.1);
we obtain (4.4). O

Now let us prove the uniform tail estimate for the solutions of (4.1):

Lemma 4.3. Assume that Assumption 2.1 holds and ug € H?(R™). Then for any
€>0 and T > 0 there exists r = (g, T, |[uol| g1 (gny) > 0 such that

(|Vv(T, )% + [u(T, 3:)|2> dr < e, (4.20)
{z:xeR™, |z|>r}

where r : Ry X Ry x Ry — Ry is a nondecreasing function with respect to the third
variable.

Proof. We use techniques of [7]. Multiplying equation (4.1) by v;e~|#=0l integrat-
ing over (0,7) x R™ and applying Gronwall’s inequality we find

4
/ (|VU(T, x)|2 + A o(T, :C)|2> e~ lrmolgy < Xecl(”“UHHl(R"))T/ |go|2 e~ le=wol gy,
RTL n

where C7 : Ry — Ry is a nondecreasing function.
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Integrating the last inequality with respect to xg over {xg : xg € R", |zo| > r}
we obtain

[ (e e anaf) e,

{zo:xo€R™, |x0|>T}R"™

4
<= 1€ e / /|go|2 e~ T2l dpda. (4.21)
{zo:wo€ER™, |x0|2T}R™

Let ¢ € L?(R"™). Then we have

|<p(x)|2 e 1*=2ol dpda,

{zo:xoER™, |x0|>r}R"

- / / |<,0($C)|2 6_‘m_m°|d:vd:v0

{zo:xz0ER™, |I0|>T}{z zER™, |z|> %}

+ / / lo(2)]? e~ 1*=2ol dzda

{zo:z0ER™, ‘10‘>T}{w:mERn, \m|<%}

( lo(2)]? da /e—ly‘dy
_|_

{m TER™, \z\>T R™

- / lo(@)]” e~ Fl7olddag

{zo: mOER”, ‘IU‘ZT}{z:mER", \m|<%}

<0y / lo(@)|? do + cge-%/ o (@)|? da (4.22)

| [Pt lina

{zo:xoER™, |x0|>r}R"

:// lp(z)|* e~ 1o 70l dwdag — / /lgo(:v)|2e*‘m*m“‘d:cdxo

and

R"R" {zo:xo€R"™, |zo|<r}R™
2 2 _|p—
:CQ/|<p(x)| dx — / / lp(z) ] e~ 120l dpday
R {zo:xo€R", |xo|<r}{z:xER™, |x|<2r}

- / / ()| e 170l dwdag
{zo:xoER™, |xo|<r}{z:x€R™, |x|>2r}
>Csy / lo(@)* do — e / lo(x)|* dudxo
{z:xeR", |x|>2r} {zo:x0€R"™, |xo|<r}{z:xeR™, |x|>2r}
= (Cy - Cyr™e™) / ()2 d. (4.23)

{z:xeR", |x|>2r}
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Taking into account (4.22)-(4.23) in (4.21) we find (4.20). O

Now denote by R(t) a solution operator of (4.1), i.e. v(t) = R(t)(uo, go), where
up € H2(R"), go € L*(R™)NL>(R™) and v(t, ) is the solution of (4.1) determined by
Lemma 4.2. By (4.1), it is easy to see that if the sequence {ug, },., C H?(R™) con-
verges in H'(R™), then the sequence {R(t)(uon, g0)},-; also converges in H'(R™).
Hence using density argument, the operator R(¢)(+, go) can be extended to H'(R"),
and so by Lemma 4.2 and Lemma 4.3 we immediately have the following corollary.

Corollary 4.1. Assume that Assumption 2.1 holds. Then the operator R(t)(-, go) :
HYR") — HY(R"), t >0, is compact.

Now let us denote g (z) = { g(x)7 ngi E Z '

Lemma 4.4. Assume that Assumption 2.1 holds and B is a bounded subset of
HY(R™). Then for any € > 0 and m > 0 there exist ko = ko(e,B) € N, My =
Moy(e, B) >0 and Ty = Ty(e, B,m) > 0 such that

1S(T)uo — R(T)(’U,07gk)||i[1(Rn) <c / Vo (2)|? dz + ¢,

{z:xeR™, |up(x)|>m}

FuyeB, ¥T>1Ty, ¥k>ky, ¥Fm>DM,y, (424)
where the positive constant ¢ depends only X and f(-).

Proof. We apply the techniques used in [10]. Since g € L?(R"™), we have g €
L*(R™) N L>®(R") and gy — g strongly in L?(R"™) as k — oco. Let ug € H?(R").
Denote v (t) = R(T)(uo, gr) and wy, = u(t) — vg(t), where u(t) = S(t)ug. Then
the function wy € WY2(0,T; HY(R™)) N W22(0,T; L*(R™)) N L>(0,T; H*(R™))
satisfies (4.2); (with force term g(z) — gi(z) instead of g(z) — go(x)) a.e. on
(0,7) x R™ for every T > 0 and wi(0) = up a.e. on R". Denote ugn(z) =
uo(z) +m, wuo(x) < —m
0, luo(z)] <m . Putting gi, vi and wy instead of go, v and w in
uo(x) —m, wug(xz) >m
(4.2) respectively, multiplying obtained equation by t%(wk (t,2) — uom(x)) and
integrating over (0,7") x R™ we have

T
1 2
/T [Vwi ()| 72(gny dt — //t+ 12“””1 (t, ®)uome, (z)dzdt

0 R»

1
/t+ 1 HL2(R") dt — )\//H—lwk(tax)UOm(x)dl'dt

0 R»

//—f wktx))wktwdxdt—//_f wi(t, 2))uom () dzdt

0 R™



1388 A. KH. KHANMAMEDOV

t

T
/a vt (t, ) 1/wkt(s,x)dsd:cdt - //oz(ut(t,a:))t_’_%/wkt(s,x)dsd:cdt

R™ 0 R» 0

o\’ﬂ

+ /a (vge(t, ) t+ 1( o(x) — uom (x))dzdt

Rn

1
au(t, z) —1(u0(:v) — U (z))dadt
R'Vl

O\’ﬂ O\’ﬂ

+ //H_Ll(wk(t,x) — uom (2))(g(x) — gr(z))dzdt. (4.25)
0 Rr

Now let us estimate first four terms on the right side of (4.25).
Using Young and Jensen inequalities (see [11]) we find

t
//|avktt:17 T/ |wit (s, z)| dsdxdt
0

0 Rn
¢
///\/ wlo(vg (8, ) dxdt—i—///\/l ﬁ/mkt(s,xﬂds dxdt
0 Rn 0
///\/uavkttw d:vdt—i—// t+1 /|wkts;v)|ds dadt
0 Rn 0 Rn
T
//./\/,uozvkttx da:dt—i—// t+1/kat5I Ydsdxdt, ¥ p > 1,
0 Rn 0 Rn
(4.26)
where M(z f a(x)dz. By (2.3), since « is odd function and o/ () is nondecreasing

on Ry, we have
a(uz) > pale), ¥ o€ Ry, ¥pu>1,
and consequently
a tpalr)) <px, ¥Fare Ry, ¥Fu>l.

The last inequality together with (2.3) yields that

7 / N (v (8, 2)))dedt < /‘7 / (e (t, ) (pa(og (t, ) ) dwdt

0 R™ 0 R™

T
< MQ//a(Ukt(t,x))vkt(t,x)dxdt. (4.27)

0 Rn
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By (4.26)-(4.27) we obtain

T
//|oz(vkt(t x t+1/|wkt s, x)| dsdxdt

0 R»

n(T+1)
<p // (v (t, z))vge (2, x)d:cdt—|— i

0 R»

which together with (4.18)-(4.19) implies

T t
1
// |a(vge (t, x) —1/ Wit (8, )| dsdadt
0

n N
+ T) (vl gy s 19l p2(rny), ¥ T 20, Fu>1,  (4.28)

a(wg (t, x))wge (¢, x)dxdt,

o\ﬂ

Rn

where ¢1 : Ry x Ry — Ry is a nondecreasing functions with respect to each variable.
By the same way we find

T

//|a ue(t, x)) t+1/|wkt s, x)| dsdxdt

0 R™

In(T+1)\ .
< (pﬂ ¥ %) oa(lwoll s oy Il )s KT 20, ¥ > 1, (4.29)

where ¢3 : Ry X Ry x Ry — Ry is a nondecreasing function with respect to each
variable. By definition of ug, (), we have

//—|a ke (t, )| [uo () — uom (z)| dadt

0 R™

:/ / la(one (£, 2))| t% luo ()| dudt

0 {z:weR™, ug(z)| <m}
T

1
+ m/ / 1 |a(vge (t, )| dedt
0 {z:xeR™, |ug(z)|>m}

T
1
//J\/ afvge(t, x) d:cdt+/ / M(t+1uo(x))d:cdt
0

0 R™ {z:xeR", |uo(z)|<m}
; " Ja(ou(t,2))] dedt
m o a(vg(t,z))| dz
0 {z:xeR™, |ug(z)|>m, |vi(t,x)|<1}
g 1
+ m/ 1 |a(vge (t, x))| dedt

0 {wweR", |uo(@)|>m, [vre (t.a)|>1}
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vkt (t, )k (t, x)dadt

o\’ﬂ

R

+

T
1 1
/ / a(t n 1u0(:v))t n luo(ac)dacdt
0 {mwe R, Juo(z)|<m}

+ma(1)In(T + mes{x : x € R", |ug(x)| > m}

T
- //t+1 (ke (t, 7)) vre (¢, @) dadt
0R

3

<(m+ 1)//a(vkt(t,:E))Ukt(t,;v)dacdt

0 R™

+7 / ( : afug(w))ug (v)drdt
0

(e R, ug (2)| <m}

+ %a(l) In(T+1) HuOHiz(Rn) < (m+ 1)//a(vkt(t, @) (t, x)dxdt

0 R»

9 1 2
o (m) Juollzz(gey + () (T +1) fluolzz ()
1
< (Ea(l) In(T+ 1)+ a/(m)) HUOHiQ(R")

+ (m+Dc([voll g gey s 19 L2(rey) ¥ T 20, ¥ m > 0.

Similarly we have

//'o‘ ur(t, ) |t+—1| uo () — uom ()| dadt

0 R»

1
< (Ea(l) In(T +1) + o/(m)) [ s

+ (m+1)c(voll gragey s 191l p2(pny) ¥ T 20, ¥m>0.
Taking into account (4.28)-(4.31) in (4.25) we find

T T
/;%EWkDﬁ+//i%ﬂWMMWMMMMﬁ
0 R™

<In(T + 1)E(ugm) + 2 (%a(l) In(T +1) + a’(m)> w0172 (g

+ (m+1)cs([woll g (gey » 191 22(rey)

+ <N2 + T) CB(HUOHHl(R") ) ||g||L2(R"))

(4.30)

(4.31)
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T
+ [ [ wntt) = von(@))(a(a) - gu(o)dsds
0 Rn
o
n //H_lf(wk(t 2)om (¥)dxdt, ¥ T >0, ¥m >0, ¥u>1,
0 R™

where ¢35 = ¢1 + ¢2. Taking into account (2.4), (2.5) and (4.18) in the last inequality
we obtain

T
/t—i——lE wy (¢ dt+//—F wy (¢, x))dxdt

0 R»

//H—l — gk(@))wi(t, x)dxdt

O R’Vl
R (1
<EI(T + 1)E(uom) + 20 (Eo‘(l) T +1)+ O‘I(m)) ol
+2(m + 1S (lwoll g1 ey » 191 22 (sny)
N In(T+ 1)\ .
40 (M2 + T) C3(HU‘OHH1(R”) ) ||g||L2(R"))
(ol s sy 19 = Grll 2 (o)) (T + 1) ol 2 sy
o @a(lwoll s ey 19 = 9ell ) 19 = 9l oy (T +1)
+ (T + 1) [[wom |l g2y 19 = gk ll L2 (gny, ¥ T >0, ¥Fm>0, ¥p>1,

where ¢, : Ry X Ry — R, is a nondecreasing function with respect to each variable
and the positive constant ¢ depends only on A and f(-).

Now putting g, vr and wy instead of go, v and w in (4.17) respectively, multi-
plying both sides of obtained inequality by ﬁ and integrating with respect to s
from 0 to T" we have

In(T + 1) E(wg(T)) + In(T + 1)/F(wk (T, z))dx
Rn

T
<(T+1) [ (g(a) - gu(e)un (T 0)do + / — Blun(s)ds

Rn

//—kasx ))dxds —

0 R™ OR"

— gk(x))wi (s, z)dxds.

By the last two inequalities, for any e > 0 there exists Mo = Mo(e, [[uo|| g1 (gny) > 0
such that

1
P iz f V(@) do
{z:xeR™, |ug(z)|>m}
2¢a’ (m) cm+1) .

(T +1) HUOHLQ(R" + mCB(HUOHHl(Rn) gl mmy)
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2
o n 12
+c <m —+ ;) Cg(HUOHHl(Rn) ’ HgHLz(Rn))
+Callluoll g (rny 19 = grllL2rm)) 19 = gkl L2 (rny

1 2
+ X Hg - ngL2(Rn) , ¥m > M.
Thus choosing y = In# (T'+1) , we obtain (4.24) for large T and k. O

Lemma 4.5. Assume that Assumption 2.1 holds and B € B. Then for any € > 0
there exist 69 = do(e) > 0, Ty = To(e, B) > 0 and My = My(e, B) > 0 such that

\Vu(T,z))*de <e, ¥T>Ty, Fug€ Os5(B),  (4.32)
{z:xeR", |u(T,x)|>Mo}
where u(T,) = S(T)ug and Os(B) is —neihbourhood of B in H'(R™).
Proof. We present the proof for n > 3. By Lemma 4.4 for any € > 0 there exist
ko = ko(e, B) € N, §p = dp() > 0 and Ty = To(e, B) > 0 such that
|S(T)u0 = RAT)(wos gio)lpgs oy < 50 FT=To, Fuo € Oy (B). (4:33)
Also by Theorem 3.2 and Lemma 4.2 we have
(IVe(T,2) + (T, )| ) da
{z:xeR", |u(T,x)|>M}
<mes™ {z:zeR", |u(T,x)|> M}

X c1lluoll g (gny s 190 L2y 5 ko ll oo ()

4
< M7=z ea((luoll g (rmy > 191 2y > 1980 oo () (4.34)

where ¢; : Ry x Ry X Ry — Ry (i =1, 2) are nondecreasing functions with respect
to each variable and v(T,) = R(T)(uo, gk, ). By (4.33)-(4.34) we obtain (4.32). O

We are now in a position to prove the asymptotic compactness of solution of
(2.1), which is included in the following theorem:

Theorem 4.1. Assume that Assumption 2.1 holds and B € 8. Then any sequence
of the form {S(tm)uom }too—1s tm — 00, Uom € Os,, (B), dm \, 0, has a convergent
subsequence in H*(R™).

Proof. Denote by Kp1(gny(A) the Kuratowski measure of non-compactness of the
set Ain HY(R"™), i.e.
K1 (gry(A) := inf{e |A has a finite open cover of sets
whose diameters are less than ¢}.

By Lemma 4.5, for any € > 0 and B € B there exist 6y = do(e) > 0, Ty = Tp(e, B) >
0 and My = My(e, B) > 0 such that

V@) de < —. ¥pe U SHOs(B), ¥4 e (0,d).

>To
{z:z€R™, |p(z)|>Mo}
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Then by Lemma 4.4, there exist kg = ko(e, B) € N and Ty = Ti (e, B, My) > 0 such
that

1S(T1)e = R(T1)(@: gkl g1 ey S VE, Ko € . S(1)0s(B), ¥ o€ (0,0).

(4.35)
Taking into account (4.35) and Corollary 4.1 we obtain

K (rmy (S(Tl) (tZuTUS(t)O(;(B))) <4y, ¥6€(0,6)

or

K (rn) <t>TU+T S(t)O5(B)) <d4d\fe, Féc (0, dp).
10 1
Now if t,,, — 00, ugm € Os,, (B) and d,, \, 0, then from the last inequality it follows
that
K (gny ({S(tm)uom }y—1) = 0,

which completes the proof. |
From this theorem immediately the following corollary follows.

Corollary 4.2. Under Assumption 2.1 for every B € B, the sets

B) = B d ©(B) = B ty strictl
w(B) tQOTLétS(T) and @(B) JQO tQOTLZJtS(T)O(;( ) are nonempty strictly

invariant compacts which attract B.

Now we can prove the main result.
Proof of Theorem 2.1. Set

Z={p:pe H'(R"), —Ap+Xp+flp) =g}
It is easy to see that under conditions (2.4)-(2.5) the set Z is a bounded subset of
H?(R™) and consequently Z € 8. Then by Corollary 4.2 the set @(Z) is invariant
and compact in H(R™). We will show that @(Z) is the global (H*(R"), H'(R™))s —
attractor for {S(t)},5,. To this end it is sufficient to show that

w(B)Ccw(Z), ¥ Be®B. (4.36)

As shown in [1, p.159-161], since w(B), (B € B) is a compact strictly invariant
set and the problem (2.1) admits the Lyapunov function L(u(t)) := E(u(t)) +
[ F(u(t,z))dz— [ u(t,z)g(z)dz (thanks to (3.15)), for every v € w(B) there exists
Rr Rn
a complete trajectory v = {u(t),t € R} C w(B) such that

u(0) =v and tﬁ'@w ;Ielfz [u(®) = @l g (gny = 0. (4.37)
Taking into account (4.37) and the equality u(t + 7) = S(t)u(r),t > 0,7 € R,
we find that v € ©(Z). Since v and B are the arbitrary element of w(B) and B
respectively, by the last conclusion we obtain (4.36).

Remark 4.1. If g € L?(R™) N L°°(R™), then by the proof of Lemma 4.2 one can
see that
IR(t) (w0, 9)| e sy < €0 ¥ >0, ¥ ug € H*(R"), (i)

where the positive constant ¢ depends on A, f(-) and [|g[| e (gn)- Also by Lemma
4.4 for any B € B we have

15 (t)uo = R(t) (w0, 9l g1 gy = 0 ast — oo (i)
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uniformly with respect to all ug € B. Since a global (H(R"), H'(R™))x —attractor
is invariant, from (i)-(ii) it follows that a global (H!(R™), H'(R"))y —attractor is
a bounded subset of L>*(R™).

Remark 4.2. Let Q2 C R? be a bounded domain with smooth boundary and
g € L>(Q). Using the method of this paper it is easy to see that under Assumption
2.1 a semigroup generated by

aluy) — Au+ f(u) = g(z), (t,z) € (0,00) x Q,

u(t,z) =0, (t,z) € (0,00) x 0 (*)

u(0,x) = up(x), x €,
possesses a global (H}(2), H}(Q))ss —attractor Ass, which is also a bounded subset
of L>=(), as mentioned in Remark 5.1. If, in addition to (2.2)-(2.3), the function
a(+) satisfies also the conditions imposed in [8], then as shown in [8] the semigroup
generated by (*) possesses also a global (H(Q)NL* (), H} (Q)NL>(Q))—attractor
Aoo. Since Ay is an invariant, bounded subset of H}(2) N L>(2), we have Ay
C Aso. On the other hand, since A, is an invariant element of 9B, as mentioned
in Remark 2.1, we have A, C Ag. Thus under additional conditions the attractor
constructed here coincides with the attractor constructed in [8].

5. Appendix. To prove Lemma 4.1 we need the following lemma:
Lemma 5.1. Let (2.2) and (2.4) hold. Also assume that w € C([0,T] x B,),
g€ C(B,), vo=0 andv € C%([0,T] x B,) is a classical solution of (3.1). Then
o | 1.
”’UHC([O,T]xE) < BY + b ||9|‘c(?p) ) (5.1)
where the positive constant po depends only on f(-).

Proof. By (2.4) it follows that there exists M > 0 such that

inf f'(z) >0 (5.2)
|z|>M
Let pog = xygflﬁj\);M](f(x) — f(y)). Let us show that
(f(x) = f(y)) sen(z —y) > —po, ¥ 2,y € R. (5.3)

If 2,y € [-M, M] then (5.3) is trivial. If 2,y > M or z,y < —M then (5.3) follows
from (5.2). f o > M and y < M (y > M and © < M) then by (2.4) and (5.2) we
have

(f(z) = f(y)) sgn(z —y) > f(M) = f(y) = —po
((f(z) = f(y)) sen(z —y) > f(M) = f(z) = —po ) -
Ifr<—-Mandy>-M (x>—-M and y < —M) then
(f(x) = f(y) sen(z —y) > f(y) = F(=M) = —po
((f(z) = fy)) sen(x —y) > f(z) = f(=M) = —po ) -

Now let v(to,x0) max_v(t,x). Since v(0,2) = 0 we have v(tg,z9) > 0. If
[0,T]xB,

(to,z0) € (0,T] x B, then from (3.1); we obtain
Av(to, mo) + f(w(to, z0)) — f(w(to, z0) — v(to, x0)) < glxo)
which together with (5.3) yields

Ho

- 1, .
v(to, zo) < 5% + B\ 19llcE;)
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If to = 0 or &y € OB, then by the initial-boundary conditions it follows that

’U(fo, ,’Eo) =0
So we have
po 1 —
ot <B4 il ¥ () € 0.7 < B, (5.4
Similarly one can show that if v(t;,21) = min_ v(¢,x), then
(0,T]xB,
Ho
ot ) > 20— S gllor,

and consequently

pmo 1 —
o(t,x) > ESEDY 19, ¥ (tz)€l[0,T]x B,

The last inequality and (5.4) imply (5.1). O

Proof of Lemma 4.1. Stepl. We first prove lemma for w € C%([0,T] x B,,) and
g € C3(B,). Since ay,(+) (for definition see proof of Lemma 4.2) satisfies (2.2)-(2.3)
and o/, (0) = a/(0), by Lemma (3.1) we can say there exists a unique strong solution

€ WL2(0,T; HY(B,)) N W22(0,T; L3(B,)) N L>(0,T; H*(B,)) of the following
initial-boundary value problem:

am(vmt) - Avm + )\'Um + f(’LU) - f(w - ’Um) = 5(17), (tvx) € (Oa T) X Bpa
U (t,z) =0, (t,x) € (0,T) x 0B,
Um(0,2) =0,z € B,,

(5.6)
which satisfies the following inequality
t
-
Iom O,y + [ 170me(5) 25, d5 + o [ Toma(6) 35, 5
0 T
<a(T, HwHLz([o,T];Hz(BP)) ) HthLz(o,T;Hl(BP)) ’ ||§||L2(Bp))v

FmeN, 0<7<t<T, (5.7)

where ¢; : Ry X Ry X Ry x Ry — Ry is a nondecreasing function with respect
to each variable. From (5.6) and (5.7) it follows that cu,(vme) € L*(0,T; HY(B,))
and 2 ap, (vne) € L2(0,T; HH(B,)). So we have oy, (vn) € C(0,T; L*(B,)) and
q
consequently v,y € C(0,T;L*(B,)). Denoting hgi(s) = { |5k|:q85, ||SS||><IZ:
obtain that hqx(vme) € L*(0,T; HY(B,))N C(0,T; L*(B,)), where ¢ > 0. Differen-
tiating both sides of (5.6); with respect to ¢ and testing by hq k(vm) we obtain

, we

t

C{th,k(vmt(s) o, Z< m (Ume(s ))7hq,k(vmt)>ds
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Now for m > Hofl@)HLoo(Bp) let us estimate the second and third terms in (5.8):

T7—0+

/ D o (0t (8)), g (vme) Y ds = Timm / 2 (). () ) s
{ <at > <3t

= lim [ (@ (0 (5))vmer (5), B,k (0me)) ds

= (@m (v (1)),1) = lim_ (@ (vme (7)), 1),

T—0t

where Qi (s) = [ (T)hgr(T)dT. Since vy, € C(0,T; L*(B,)) we have Qi (vme) €
0

C(0,T; L*(B,)) and taking into account it in the above equality we obtain

/: <%am(vmt(s))’ hq-,k(vmt)> ds

20/ (0) = g e )], = @m0 1)
= O [ stone @], = @l @)
20/ O [ atom @), = = [30) 0~ @] s
B,
/ 1 2
>« (0)m h%)k(’l)mt(t)) 12(B,)
- 557w 1o @l 1825, ¥t 0.T] (5.9)
(G 008) = 0 (0) = 1D, B (o) ) s

((f'(w(s) = vm(s)) = f'(w(s)))wi(s), hg g (vme))

= [/ 00) = 0 (s haao) ds
0

)
+
AR

H(B,)

t a¥2
2
<e (T, p, ||w||cz([o,T]x37) 5 ||§||L2(Bp)) (/ ‘ h%,k(vmt(s))H ds)
0

t

o

0

2
ds, ¥tel0,T), (5.10)
L2(B,)

g 1 (ma(5))
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where co : Ry X Ry X Ry x Ry — R, is a nondecreasing function with respect to
each variable. Taking into account (5.9)-(5.10) in (5.8) we obtain

paCom )]

<o
L2(B,) ~ (¢+2)a/(0)

o) oS

(g

2 lal2cs,

1 2
+c‘1+1 192 (T, p, lwll 20,11 5;) + 191 L2(5,))
! 2
—|—c/ [1og cemets) vy 5 FEEDT]

0
Applying Gronwall’s lemma to the last inequality we find

thyk(vmt(t))’ P et pieoT), (5.11)

L2(By)

—1 19+t ~12
where dl = W Ha 1 g)} L(B,) HgHL2(Bp) +
—|—CL,++(O)CZ+2(T P 1wl ez o, rx5;) - 191l L2 (5,)) and d2 = 27252)). Passing to the

limit in (5.11) with respect to k We have

[ome ()| oz s,y < (d)T2e 7t Kte0,T].
Now passing to limit in the last inequality as ¢ — oo we obtain

[[vme (t )||Loo ((0,T)xB,) = Mo(T, p, Hchz(OT xB,) HQHLw(B,,)) (5.12)

where My : Ry x Ry X Ry x Ry — R, is a nondecreasing function with respect to
each variable. By (5.7) and (5.12) it is easy to see that

v — v weakly star in L>(0,T; H*(B,))
Umt — vy weakly in L%(0, T} Hl( b))
Ume — v weakly star in L>°((0, T) x B,)
Uit — vy weakly in LE (0, T; L(B,))

Qm (Umt) — avy) weakly in L2(0,T; L*(B,))

where v(t, ) is the solution of (3.1) with initial data vy = 0. It is also clear that
v(t, x) satisfies (5.7) and (5.12).
Now let us consider the following initial-boundary value problem:

a:(vF) — Av® 4+ 2f + f(w) — f(w—v°) =g(z), (t,z) € (0,T)x By,
v(t,x) =0, (tz)e (0,T)x0dB,, (5.13)
v°(0,2) =0, z € B,,

where a. € C3(R), a. — a strongly in C1[—My, Moy (M is the same as in (5.12))
as e — 07 | and al(z) > o/(0) for every # € R. By Lemma 3.1 and the argument
done above we can say that there exists a unique strong solution of (5.13) which
satisfies (5.7) and (5.12). Moreover

v — v weakly star in L>(0,T; H*(B,))

v§ — vy weakly in L?(0,T; H'(B,))

v§ — vy weakly star in L°°((O,T) x Bp) (5.14)

v§, — vy weakly in L7 (0,7 L*(B,))

ae(vi) — a(vy) weakly in L?(0,T; L*(B,))

Since v (t, x) satisfies (5.12) by (5.13); we have
— Av" + X + f(w) — f(w—v°) =g(z) —ae(vy) € L=((0,T) x B,)  (5.15)
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Since w € C?([0,T] x B,) from condition (2.4) it follows that there exists M; =
M1(||wHC([Q7T]><B_p)) > 0 such that

(f(w(t,z)) — fw(t,z) —v))v >0, F(t,xz)<[0,T]x B,
ve(t,x) — M, ve(t,x) > M
for [v| > M. Setting v§,(t,z) = { 0, vi(t,x)| < M and testing
ve(t,x) + M, ve(t,z) < —M

(5.15) by v5,(t, ) we obtain

AM |03 (8 @)l L1 0,7y x B,) < 19(2) = e (WD)l Low 0,7y xB,) 1932 (E ) L1 0, x B,
and consequently
Hviw(t,I)HLl((o,T)pr) =0,

for every M > max {Ml, +9(z) — ae (vf)||Lw((07T)XBP)}. The last equality means
that v® € L>((0,T) x B,), which together with (5.15) yields

v® € L(0,T; W*>(B,)) (5.16)
Differentiating both sides of (5.13) with respect to ¢ we have

pr = Aazl(p) + A () + [ilt, 2)as (@) + folt,w) =0, (t,2) € (0,T) x By,
o(t,xz) =0, (t,z) € (0,T)x dB,,
QD(O,LL‘) = /g\(‘r)v VS Bp7
(5.17)
where o(t,z) = ac(vf (t, ), fi(t,z) = f'(w(t, 2)—v®(t,2)) and fo(t, ) = (f'(w(t, z)
—f(w(t,x) —ve(t,x)))w(t, x). Since ve(t, ) satisfies (5.12) and (5.16), applying
[12, Theorem 6.1, p.513] to (5.17) we find that ¢ € H2+B’1+§([O,T] x B,) and
t

consequently v¥(t,z) = [ aZl(p(s,z))ds € C*([0,T] x B,). Now we can apply
0
Lemma 5.1 to (5.13) which gives us the following estimate:

Mo

1,
v @)l Lo 0,1y xB,) < S 191l oo (5,) -

The last inequality together with (5.14) yields (4.2).

Step2. Let w € L*(0,T; H*(B,) N H}(B,)), wy € L*(0,T; H}(B,)), g € L>(B,)
and vg = 0. Then by Lemma 3.1, the problem (3.1) has a unique strong solution
v e Wh2(0,T; HY(B,)) N W22(0,T; L*(B,)) N L>=(0,T; H*(B,)). By the density

there are {wy},—, C C?([0,T] x B,) and {gx},—; C C3(B,) such that
wy, — w strongly in L?(0,T; H*(B,))
wye — wy strongly in L2(0,T; H'(B,))
gk — g strongly in L*(B,) (5.18)
Sl;pH@\kHLm(Bp) < H/g\HLoo(Bp)

Put wyg(t,z) instead of w(t,x) and gi(x) instead of g(x) in (3.1);. Then by the
arguments done in Step 1, we can say that there exists a unique strong solution
vk (t, ) of

a(vgt) — Avg + Avg + f(wg) = flwg —vk) = gi(x), (t,2) € (0,T) x B,

vp(t,z) =0, (t,x) € (0,T)x 0B,

vp(0,2) =0, =€ B,,
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which (thanks to (5.18)4) satisfies (4.2). On the other hand multiplying both sides

of

a(vy) — a(vg) — A(v — vg) + AM(v — vg)
=f(wr) = f(w) + f(w —v) = f(wr — vx) +9() = Gr (),

by (v+ — vie) and integrating over (0,¢) x B, we have

T
lo() = or ()17, + l0e(t) = vre (D 725, < 0/ lwi(s) = w(s) 72 (p,) ds
0

t
+eT |G = Gull3as,) + / lo()) = v ()3 5,y ds. ¥ te(0.T).
0

Taking into account (5.18);-(5.18)3 in the last inequality we obtain

vr — v strongly in L*°(0,T; H'(B,))
vge — v strongly in L2(0,T; L?(B,))

Thus since vy (¢, x) satisfies (4.2), it yields that v(t, x) also satisfies (4.2).
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