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Global attractors for von Karman equations
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Abstract

In this paper we study the asymptotic behavior of weak solutions for von Karman equations with
nonlinear interior dissipation. We prove the existence of a global attractor in the space W̊2

2 (Ω) ×
L2(Ω).
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω be a bounded smooth domain in R2 with boundary ∂Ω . We consider the follow-
ing von Karman system with the homogeneous boundary conditions:

wtt + Δ2w + g(wt ) = [
F(w),w

] + h in (0,+∞) × Ω, (1.1)

Δ2F(w) = −[w,w] in (0,+∞) × Ω, (1.2)

w = ∂w

∂ν
= F =∂F

∂ν
= 0 on (0,+∞) × ∂Ω, (1.3)
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w(0, ·) = w0, wt (0, ·) = w1 in Ω, (1.4)

where h ∈ L2(Ω), the vector ν denotes an outward normal and von Karman bracket is
given by

[u,v] ≡ ∂2u

∂x2
1

∂2v

∂x2
2

+ ∂2u

∂x2
2

∂2v

∂x2
1

− 2
∂2u

∂x1∂x2

∂2v

∂x1∂x2
.

The damping function g ∈ C1(R) satisfies the condition

g(0) = 0, g strictly increasing, and lim inf|s|→∞ g′(s) > 0. (1.5)

The long-time behavior of solutions for von Karman equations with interior dissipa-
tions were studied in [1–7] and references therein. The wellposedness of weak solutions
of problem (1.1)–(1.4) has been established in [3] (see also [6]). The problem of existence
of weak attractors for (1.1)–(1.4) in the case when g(·) is linear, was studied in [2]. In the
case of nonlinear dissipation, the most general treatment for the problem (1.1)–(1.4) to our
knowledge is given in [7]. In that article the authors have proved the existence of a global
attractor in W̊ 2

2 (Ω) × L2(Ω) for large values of the damping parameter.
Our main goal in this paper is to prove the existence of a global attractor for the problem

(1.1)–(1.4) without assuming large values for the damping parameter. The sharp regularity
of Airy’s stress function obtained in [8] plays a key role in our result.

2. Preliminaries

Denote the spaces W̊ s
2 (Ω), Ws

2 (Ω) and L2(Ω), by Hs
0 , Hs , and H , respectively. The

norm and scalar product in H are denoted by ‖ · ‖ and 〈,〉, respectively. It is known that
under condition (1.5) the solution operator S(t)(w0,w1) = (w(t),wt (t)), t � 0, of problem
(1.1)–(1.4) generates a C0-semigroup on the energy space H 2

0 × H (see [3,6]) in which

E
(
w(t)

) + 1

4

∥∥ΔF
(
w(t)

)∥∥2 +
t∫

s

∫
Ω

g
(
wt(τ, x)

)
wt(τ, x) dx dτ − 〈

h,w(t)
〉

� E
(
w(s)

) + 1

4

∥∥ΔF
(
w(s)

)∥∥2 − 〈
h,w(s)

〉
(2.1)

and

E
(
w(t) − u(t)

) +
t∫

s

∫
Ω

(
g
(
wt(τ, x)

) − g
(
ut (τ, x)

))(
wt(τ, x) − ut (τ, x)

)
dx dτ

� E
(
w(s) − u(s)

) +
t∫

s

〈[
F

(
w(τ)

)
,w(τ)

] − [
F

(
u(τ)

)
, u(τ )

]
,wt (τ ) − ut (τ )

〉
dτ,

(2.2)

hold for (w(t),wt (t)) = S(t)(w0,w1) and (u(t), ut (t)) = S(t)(u0, u1), where E(v(t)) =
1 (‖Δv(t)‖2 + ‖vt (t)‖2) and t � s � 0.
2
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Denote by G(u,v) a solution to a biharmonic problem:

z ≡ G(u,v) iff Δ2z = [u,v] in Ω and z = ∂

∂ν
z = 0 on ∂Ω.

We will use the following theorem on sharp regularity of Airy’s stress function from [8],
and prove some lemmas in order to show asymptotic compactness of S(t).

Theorem 1. [8] The map (u, v) → G(u,v) is bounded from H 2 × H 2 → H 3 ∩ W 2∞(Ω).

Lemma 1. Let g(·) satisfy condition (1.5). Then for any δ > 0 there exists c(δ) > 0, such
that

|u − v|2 � δ + c(δ)
(
g(u) − g(v)

)
(u − v) for u,v ∈ R. (2.3)

Proof. Assume (2.3) does not hold. Then there exist δ0 > 0, cn → +∞, and un ∈ R,
vn ∈ R such that

|un − vn|2 > δ0 + cn

(
g(un) − g(vn)

)
(un − vn)

from which we obtain

|un − vn|2 > δ0 and
1

un − vn

un∫
vn

g′(s) ds → 0,

which contradicts (1.5). �
Lemma 2. Assume that w ∈ L∞(0, T ;H 2

0 ) and wt ∈ L∞(0, T ;H). Then F(w) ∈
C(0, T ;H 2

0 ) and

1

4

∥∥ΔF
(
w(t)

)∥∥2 = −
t∫

s

〈[
F

(
w(τ)

)
,w(τ)

]
,wt (τ )

〉
dτ + 1

4

∥∥ΔF
(
w(s)

)∥∥2
, (2.4)

for every t , s ∈ [0, T ].

Proof. Since w ∈ L∞(0, T ;H 2
0 ) and wt ∈ L∞(0, T ;H), we have w ∈ C(0, T ;H 1

0 ) and
consequently w ∈ Cs(0, T ;H 2

0 ) (see [9, Lemma 8.1, p. 275]). It means that if tn → t0, then
w(tn) → w(t0) weakly in H 2

0 . So by Theorem 1 and the compact embedding theorems we
obtain

F
(
w(tn)

) → F
(
w(t0)

)
strongly in H 2

0 .

Hence F(w) ∈ C(0, T ;H 2
0 ).

Let the sequence wn ∈ C∞
0 ((0, T ) × Ω) be such that

wn → w strongly in L4
(
0, T ;H 2

0

)
and

wn
t → wt strongly in L4(0, T ;H)
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as n tends to infinity. Then by Theorem 1 we have

F
(
wn

) → F(w) strongly in L2
(
0, T ;H 3 ∩ W 2∞(Ω)

)
(2.5)

and 〈[
F

(
wn

)
,wn

]
,wn

t

〉 → 〈[
F(w),w

]
,wt

〉
strongly in L1(0, T ). (2.6)

Taking into account ∂
∂t

‖ΔF(wn(t))‖2 = −4〈[F(wn(t)),wn(t)],wn
t (t)〉 from (2.5)–(2.6)

we find that

∂

∂t

∥∥ΔF
(
w(t)

)∥∥2 = −4
〈[
F

(
w(t)

)
,w(t)

]
,wt (t)

〉 ∈ L∞(0, T ),

which implies (2.4). �
Lemma 3. Assume {wn(t)} and {wn

t (t)} are weakly star convergent in L∞(0, T ;H 2
0 ) and

L∞(0, T ;H), respectively. Then

lim
n→∞ lim

m→∞

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn

t (t) − wm
t (t)

〉
dt = 0.

(2.7)

Proof. Let{
wn → w weakly star in L∞(0, T ;H 2

0 ),

wn
t → wt weakly star in L∞(0, T ;H).

(2.8)

By the compact embedding theorem (see [10, Theorem 5.1, p. 58]) from (2.8) we have

wn → w strongly in Lp

(
0, T ;H 2−ε

0

)
(2.9)

for 1 � p < ∞ and ε > 0.
Using (2.8)1, (2.9) and the property of the von Karman bracket, we obtain[

wn,wn
] → [w,w] weakly star in L∞

(
0, T ;H−2)

and consequently

F
(
wn

) → F(w) weakly star in L∞
(
0, T ;H 2

0

)
. (2.10)

From (2.8)1, (2.9) and (2.10) we have[
F

(
wn

)
,wn

] → [
F(w),w

]
weakly star in L∞

(
0, T ;H−2). (2.11)

On the other hand, by (2.8)1 and Theorem 1 we find that {[F(wn),wn]} is bounded in
L∞(0, T ;H), which together with (2.11) gives[

F
(
wn

)
,wn

] → [
F(w),w

]
weakly star in L∞(0, T ;H). (2.12)

From (2.8), also follows that

wn → w weakly in C
(
0, T ;H 1) (2.13)
0
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which according to [9, Lemma 8.1, p. 275], together with (2.8)1 yields wn ∈ Cs(0, T ;H 2
0 ).

So 〈wn(·), ϕ〉 ∈ C[0, T ] and∣∣〈wn(t), ϕ
〉∣∣ �

∥∥〈
wn(·), ϕ〉∥∥

C[0,T ] �
∥∥wn

∥∥
L∞(0,T ;H 2

0 )
‖ϕ‖H−2, (2.14)

for every t ∈ [0, T ] and ϕ ∈ H−2.
From (2.13) and (2.14) we obtain

wn(t) → w(t) weakly in H 2
0

for every t ∈ [0, T ]. Thus by Theorem 1 we find that

F
(
wn(t)

) →F
(
w(t)

)
weakly in H 3 (2.15)

for every t ∈ [0, T ].
By Lemma 2, we have

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn

t (t) − wm
t (t)

〉
dt

= 1

4

[∥∥ΔF
(
wn(0)

)∥∥2 + ∥∥ΔF
(
wm(0)

)∥∥2 − ∥∥ΔF
(
wn(T )

)∥∥2 − ∥∥ΔF
(
wm(T )

)∥∥2]

−
T∫

0

〈[
F

(
wn(t)

)
,wn(t)

]
,wm

t (t)
〉
dt −

T∫
0

〈[
F

(
wm(t)

)
,wm(t)

]
,wn

t (t)
〉
dt.

Taking into account (2.8)2, (2.12), (2.15) and passing to limit in the last equality, we obtain

lim
n→∞ lim

m→∞

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn

t (t) − wm
t (t)

〉
dt

= 1

2

[∥∥ΔF
(
w(0)

)∥∥2 − ∥∥ΔF
(
w(T )

)∥∥2] − 2

T∫
0

〈[
F

(
w(t)

)
,w(t)

]
,wt (t)

〉
dt,

which together with Lemma 2 imply (2.7). �
Lemma 4. Assume the condition (1.5) is satisfied, and B is a bounded subset of H 2

0 × H .
Then for any ε > 0 there exists T = T (ε,B) such that

lim sup
n→∞

sup
p∈N

∥∥S(T )θn+p − S(T )θn

∥∥
H 2

0 ×H
� ε, (2.16)

where {θn} is a sequence in B and {S(t)θn} weakly star converges in L∞(0,∞;H 2
0 × H).

Proof. We will use techniques used in [6, Proof of Lemma 2.5] for similar estimates for
von Karman equations (see also [7]). Let (wn(t),wn

t (t)) = S(t)θn. From (2.2) we have
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T∫
0

∫
Ω

(
g
(
wn

t (t, x)
) − g

(
wm

t (t, x)
))(

wn
t (t, x) − wm

t (t, x)
)
dx dt

� c̃
(‖B‖H 2

0 ×H

) +
T∫

0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,

wn
t (t) − wm

t (t)
〉
dt, for T � 0,

where ‖B‖H 2
0 ×H = supv∈B ‖v‖H 2

0 ×H . Taking into account (2.3) in the last, inequality we
obtain

T∫
0

∥∥wn
t (t) − wm

t (t)
∥∥2

dt

� δT mesΩ + c(δ)c̃
(‖B‖H 2

0 ×H

)

+ c(δ)

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn

t (t) − wm
t (t)

〉
dt,

(2.17)

for every δ > 0. On the other hand, multiplying both sides of(
wn − wm

)
t t

+ Δ2(wn − wm
) + g

(
wn

t

) − g
(
wm

t

) = [
F

(
wn

)
,wn

] − [
F

(
wm

)
,wm

]
by (wn − wm), integrating over [0, T ] × Ω and taking into account (2.1), we find that

T∫
0

∥∥Δ
(
wn(t) − wm(t)

)∥∥2
dt

� c̃
(‖B‖H 2

0 ×H

) +
T∫

0

∥∥wn
t (t) − wm

t (t)
∥∥2

dt

+
T∫

0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn(t) − wm(t)

〉
dt

+
T∫

0

∫
Ω

(
g
(
wm

t (t, x)
) − g

(
wn

t (t, x)
))(

wn(t, x) − wm(t, x)
)
dx dt,

for T � 0. (2.18)

Thus by (2.17) and (2.18) we have

T∫
E

(
wn(t) − wm(t)

)
dt
0
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� δT mesΩ + c̃
(‖B‖H 2

0 ×H

)(
c(δ) + 1

2

)

+ c(δ)

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn

t (t) − wm
t (t)

〉
dt

+ 1

2

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn(t) − wm(t)

〉
dt

+ 1

2

T∫
0

∫
Ω

(
g
(
wm

t (t, x)
) − g

(
wn

t (t, x)
))(

wn(t, x) − wm(t, x)
)
dx dt,

for T � 0,

which together with (2.2) implies

E
(
wn(T ) − wm(T )

)
� δ mesΩ + 1

T
c̃
(‖B‖H 2

0 ×H

)(
c(δ) + 1

2

)

+ 1

T
c(δ)

T∫
0

〈[
F

(
wn(t)

)
,wn(t)

] − [
F

(
wm(t)

)
,wm(t)

]
,wn

t (t) − wm
t (t)

〉
dt

+ 1

T

T∫
0

T∫
t

〈[
F

(
wn(s)

)
,wn(s)

] − [
F

(
wm(s)

)
,wm(s)

]
,wn

t (s) − wm
t (s)

〉
ds dt

+ 1

2T

T∫
0

∫
Ω

(
g
(
wm

t (t, x)
) − g

(
wn

t (t, x)
))(

wn(t, x) − wm(t, x)
)
dx dt

+ 1

2T

T∫
0

〈[
F

(
wn(τ)

)
,wn(τ)

] − [
F

(
wm(τ)

)
,wm(τ)

]
,wn(τ) − wm(τ)

〉
dτ

≡ δ mesΩ + 1

T
c̃
(‖B‖H 2

0 ×H

)(
c(δ) + 1

2

)
+ K1 + K2 + K3 + K4. (2.19)

By Lemma 3 we have

lim
n→∞ lim

m→∞K1 = 0 and lim
n→∞ lim

m→∞K2 = 0. (2.20)

Since {(wn,wn
t )}∞n=1 is bounded in C(0, T ;H 2

0 × H) and the embedding H 2
0 ⊂ C(Ω̄)

is compact, by Arzela theorem {wn}∞n=1 is compact in C(0, T ;C(Ω̄)). On the other hand,
{wn}∞n=1 converges weakly star in L∞(0, T ;H 2

0 ). Thus {wn}∞n=1 strongly converges in
C(0, T ;C(Ω̄)).

Since by (1.5) and (2.1)
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T∫
0

∫
Ω

∣∣g(
wn

t (t, x)
)∣∣dx dt =

T∫
0

[ ∫
{x: x∈Ω, |wn

t (t,x)|�1}

∣∣g(
wn

t (t, x)
)∣∣dx

+
∫

{x: x∈Ω, |wn
t (t,x)|<1}

∣∣g(
wn

t (t, x)
)∣∣dx

]
dt

�
T∫

0

∫
Ω

g
(
wn

t (t, x)
)
wn

t (t, x) dx dt

+ T mesΩ
(
g(1) + ∣∣g(−1)

∣∣)
� T mesΩ

(
g(1) + ∣∣g(−1)

∣∣) + c̃
(‖B‖H 2

0 ×H

)
,

we have

|K3| � 1

T

∥∥wn − wm
∥∥

C(0,T ;C(Ω̄))

(
T mesΩ

(
g(1) + ∣∣g(−1)

∣∣) + c̃
(‖B‖H 2

0 ×H

))
.

(2.21)

On the other hand, for K4 we find that

|K4| � c̃
(‖B‖H 2

0 ×H

)∥∥wn − wm
∥∥

C(0,T ;C(Ω̄))
. (2.22)

From (2.21) and (2.22) we obtain

lim
n→∞ lim

m→∞K3 = 0 and lim
n→∞ lim

m→∞K4 = 0. (2.23)

Thus by (2.19), (2.20) and (2.23) we get

lim sup
n→∞

lim sup
m→∞

E
(
wn(T ) − wm(T )

)
� δ mesΩ + 1

T
c̃
(‖B‖H 2

0 ×H

)(
c(δ) + 1

2

)
,

consequently

lim sup
n→∞

sup
p∈N

E
(
wn+p(T ) − wn(T )

)
� 2 lim sup

n→∞
sup
p∈N

lim sup
m→∞

E
(
wn+p(T ) − wm(T )

)
+ 2 lim sup

n→∞
lim sup
m→∞

E
(
wm(T ) − wn(T )

)
� 4

(
δ mesΩ + 1

t
c̃
(‖B‖H 2

0 ×H

)(
c(δ) + 1

2

))
,

which yields (2.16). �

3. Global attractors

In this section, we shall show the existence of the global attractor. To this end, we first
prove the asymptotic compactness of S(t) in H 2

0 × H , which is given in the following
theorem:
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Theorem 2. Assume the condition (1.5) holds. Then for any bounded subset B of H 2
0 ×H ,

the set {S(tn)θn}∞n=1 is relatively compact in H 2
0 × H , where tn → ∞ and {θn}∞n=1 ⊂ B .

Proof. Since B is bounded, by (2.1) we have supt�0 supθ∈B ‖S(t)θ‖H 2
0 ×H < ∞. There-

fore there exists a bounded subset B0 of H 2
0 ×H such that S(t)θ ∈ B0, for every t � 0 and

θ ∈ B . Let εm > 0 and εm → 0. By Lemma 4, for every εm there exists Tm = Tm(B0) > 0
such that

lim sup
k→∞

sup
p∈N

∥∥S(Tm)ϕk+p − S(Tm)ϕk

∥∥
H 2

0 ×H
� εm, (3.1)

where {ϕk}∞n=1 is a sequence in B0 and {S(t)ϕk}∞n=1 weakly star converges in L∞(0,∞;
H 2

0 × H).

Now for ε1, choose a subsequence {n(1)
k } ⊂ {n} such that t

n
(1)
k

� T1 and {S(t)S(t
n

(1)
k

−
T1)θn

(1)
k

}∞k=1 weakly star converges in L∞(0,∞;H 2
0 × H). For ε2, choose a subse-

quence {n(2)
k } ⊂ {n(1)

k } such that t
n

(2)
k

� T2 and {S(t)S(t
n

(2)
k

− T2)θn
(2)
k

}∞k=1 weakly star

converges in L∞(0,∞;H 2
0 × H). Continuing this procedure we have {n(1)

k } ⊃ {n(2)
k } ⊃

· · · ⊃ {n(m)
k } ⊃ · · · , such that t

n
(m)
k

� Tm and {S(t)S(t
n

(m)
k

− Tm)θ
n

(m)
k

}∞k=1 weakly star con-

verges in L∞(0,∞;H 2
0 × H). Taking ϕk = S(t

n
(m)
k

− Tm)θ
n

(m)
k

in (3.1), we obtain

lim sup
k→∞

sup
p∈N

∥∥S
(
t
n

(m)
k+p

)
θ
n

(m)
k+p

− S
(
t
n

(m)
k

)
θ
n

(m)
k

∥∥
H 2

0 ×H
� εm, (3.2)

for every m ∈ N.
Now we construct the diagonal subsequence {S(t

n
(k)
k

)θ
n

(k)
k

}. Since for every m ∈ N, the

sequence {S(t
n

(k)
k

)θ
n

(k)
k

}∞k=m is a subsequence of {S(t
n

(m)
k

)θ
n

(m)
k

}∞k=1, by (3.2) we have

lim sup
k→∞

sup
p∈N

∥∥S
(
t
n

(k+p)
k+p

)
θ
n

(k+p)
k+p

− S
(
t
n

(k)
k

)
θ
n

(k)
k

∥∥
H 2

0 ×H
� εm.

Since εm → 0, the last inequality means that the sequence {S(t
n

(k)
k

)θ
n

(k)
k

}∞k=1 is a Cauchy

sequence in H 2
0 × H and consequently this sequence strongly converges in H 2

0 × H . In
other words, the sequence {S(tn)θn}∞n=1 has a subsequence which is strongly convergent
in H 2

0 × H . It can be seen in a similar way that every subsequence of {S(tn)θn}∞n=1 has
a subsequence strongly convergent in H 2

0 × H . Thus the set {S(tn)θn}∞n=1 is relatively
compact in H 2

0 × H . �
Since by (2.1) the problem (1.1)–(1.4) admits a “good” Lyapunov function (see [11,

p. 41]) L(w(t)) = E(w(t)) + 1
4‖ΔF(w(t))‖2 −〈h, w(t)〉 and since the set of stationary

solutions is bounded in H 2
0 , using the results of [11, pp. 49–50], we can formulate our main

result.

Theorem 3. Assume that (1.5) holds. Then problem (1.1)–(1.4) has a global attractor in
H 2

0 × H , which is invariant and compact.
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