Global attractors for von Karman equations with nonlinear interior dissipation

A.Kh. Khanmamedov*
Department of Mathematics, Faculty of Sciences, Hacettepe University, Beytepe 06532, Ankara, Turkey

Received 23 February 2005
Available online 15 June 2005
Submitted by I. Lasiecka

Abstract

In this paper we study the asymptotic behavior of weak solutions for von Karman equations with nonlinear interior dissipation. We prove the existence of a global attractor in the space $\dot{W}_{2}^{2}(\Omega) \times$ $L_{2}(\Omega)$. © 2005 Elsevier Inc. All rights reserved.

Keywords: Global attractors; von Karman equations

1. Introduction

Let Ω be a bounded smooth domain in R^{2} with boundary $\partial \Omega$. We consider the following von Karman system with the homogeneous boundary conditions:

$$
\begin{align*}
& w_{t t}+\Delta^{2} w+g\left(w_{t}\right)=[\mathcal{F}(w), w]+h \quad \text { in }(0,+\infty) \times \Omega, \tag{1.1}\\
& \Delta^{2} \mathcal{F}(w)=-[w, w] \quad \text { in }(0,+\infty) \times \Omega, \tag{1.2}\\
& w=\frac{\partial w}{\partial v}=\mathcal{F}=\frac{\partial \mathcal{F}}{\partial v}=0 \quad \text { on }(0,+\infty) \times \partial \Omega, \tag{1.3}
\end{align*}
$$

[^0]\[

$$
\begin{equation*}
w(0, \cdot)=w_{0}, \quad w_{t}(0, \cdot)=w_{1} \quad \text { in } \Omega \tag{1.4}
\end{equation*}
$$

\]

where $h \in L_{2}(\Omega)$, the vector v denotes an outward normal and von Karman bracket is given by

$$
[u, v] \equiv \frac{\partial^{2} u}{\partial x_{1}^{2}} \frac{\partial^{2} v}{\partial x_{2}^{2}}+\frac{\partial^{2} u}{\partial x_{2}^{2}} \frac{\partial^{2} v}{\partial x_{1}^{2}}-2 \frac{\partial^{2} u}{\partial x_{1} \partial x_{2}} \frac{\partial^{2} v}{\partial x_{1} \partial x_{2}}
$$

The damping function $g \in C^{1}(R)$ satisfies the condition

$$
\begin{equation*}
g(0)=0, \quad g \text { strictly increasing, and } \quad \liminf _{|s| \rightarrow \infty} g^{\prime}(s)>0 \tag{1.5}
\end{equation*}
$$

The long-time behavior of solutions for von Karman equations with interior dissipations were studied in [1-7] and references therein. The wellposedness of weak solutions of problem (1.1)-(1.4) has been established in [3] (see also [6]). The problem of existence of weak attractors for (1.1)-(1.4) in the case when $g(\cdot)$ is linear, was studied in [2]. In the case of nonlinear dissipation, the most general treatment for the problem (1.1)-(1.4) to our knowledge is given in [7]. In that article the authors have proved the existence of a global attractor in $\dot{W}_{2}^{2}(\Omega) \times L_{2}(\Omega)$ for large values of the damping parameter.

Our main goal in this paper is to prove the existence of a global attractor for the problem (1.1)-(1.4) without assuming large values for the damping parameter. The sharp regularity of Airy's stress function obtained in [8] plays a key role in our result.

2. Preliminaries

Denote the spaces $\stackrel{\circ}{W}_{2}^{s}(\Omega), W_{2}^{s}(\Omega)$ and $L_{2}(\Omega)$, by H_{0}^{s}, H^{s}, and H, respectively. The norm and scalar product in H are denoted by $\|\cdot\|$ and \langle,$\rangle , respectively. It is known that$ under condition (1.5) the solution operator $S(t)\left(w_{0}, w_{1}\right)=\left(w(t), w_{t}(t)\right), t \geqslant 0$, of problem (1.1)-(1.4) generates a C^{0}-semigroup on the energy space $H_{0}^{2} \times H$ (see [3,6]) in which

$$
\begin{align*}
& E(w(t))+\frac{1}{4}\|\Delta \mathcal{F}(w(t))\|^{2}+\int_{s}^{t} \int_{\Omega} g\left(w_{t}(\tau, x)\right) w_{t}(\tau, x) d x d \tau-\langle h, w(t)\rangle \\
& \quad \leqslant E(w(s))+\frac{1}{4}\|\Delta \mathcal{F}(w(s))\|^{2}-\langle h, w(s)\rangle \tag{2.1}
\end{align*}
$$

and

$$
\begin{align*}
& E(w(t)-u(t))+\int_{s}^{t} \int_{\Omega}\left(g\left(w_{t}(\tau, x)\right)-g\left(u_{t}(\tau, x)\right)\right)\left(w_{t}(\tau, x)-u_{t}(\tau, x)\right) d x d \tau \\
& \quad \leqslant E(w(s)-u(s))+\int_{s}^{t}\left\langle[\mathcal{F}(w(\tau)), w(\tau)]-[\mathcal{F}(u(\tau)), u(\tau)], w_{t}(\tau)-u_{t}(\tau)\right\rangle d \tau \tag{2.2}
\end{align*}
$$

hold for $\left(w(t), w_{t}(t)\right)=S(t)\left(w_{0}, w_{1}\right)$ and $\left(u(t), u_{t}(t)\right)=S(t)\left(u_{0}, u_{1}\right)$, where $E(v(t))=$ $\frac{1}{2}\left(\|\Delta v(t)\|^{2}+\left\|v_{t}(t)\right\|^{2}\right)$ and $t \geqslant s \geqslant 0$.

Denote by $G(u, v)$ a solution to a biharmonic problem:

$$
z \equiv G(u, v) \quad \text { iff } \quad \Delta^{2} z=[u, v] \quad \text { in } \Omega \quad \text { and } \quad z=\frac{\partial}{\partial v} z=0 \quad \text { on } \partial \Omega .
$$

We will use the following theorem on sharp regularity of Airy's stress function from [8], and prove some lemmas in order to show asymptotic compactness of $S(t)$.

Theorem 1. [8] The map $(u, v) \rightarrow G(u, v)$ is bounded from $H^{2} \times H^{2} \rightarrow H^{3} \cap W_{\infty}^{2}(\Omega)$.
Lemma 1. Let $g(\cdot)$ satisfy condition (1.5). Then for any $\delta>0$ there exists $c(\delta)>0$, such that

$$
\begin{equation*}
|u-v|^{2} \leqslant \delta+c(\delta)(g(u)-g(v))(u-v) \quad \text { for } u, v \in R \tag{2.3}
\end{equation*}
$$

Proof. Assume (2.3) does not hold. Then there exist $\delta_{0}>0, c_{n} \rightarrow+\infty$, and $u_{n} \in R$, $v_{n} \in R$ such that

$$
\left|u_{n}-v_{n}\right|^{2}>\delta_{0}+c_{n}\left(g\left(u_{n}\right)-g\left(v_{n}\right)\right)\left(u_{n}-v_{n}\right)
$$

from which we obtain

$$
\left|u_{n}-v_{n}\right|^{2}>\delta_{0} \quad \text { and } \quad \frac{1}{u_{n}-v_{n}} \int_{v_{n}}^{u_{n}} g^{\prime}(s) d s \rightarrow 0
$$

which contradicts (1.5).
Lemma 2. Assume that $w \in L_{\infty}\left(0, T ; H_{0}^{2}\right)$ and $w_{t} \in L_{\infty}(0, T ; H)$. Then $\mathcal{F}(w) \in$ $C\left(0, T ; H_{0}^{2}\right)$ and

$$
\begin{equation*}
\frac{1}{4}\|\Delta \mathcal{F}(w(t))\|^{2}=-\int_{s}^{t}\left\langle[\mathcal{F}(w(\tau)), w(\tau)], w_{t}(\tau)\right\rangle d \tau+\frac{1}{4}\|\Delta \mathcal{F}(w(s))\|^{2} \tag{2.4}
\end{equation*}
$$

for every $t, s \in[0, T]$.
Proof. Since $w \in L_{\infty}\left(0, T ; H_{0}^{2}\right)$ and $w_{t} \in L_{\infty}(0, T ; H)$, we have $w \in C\left(0, T ; H_{0}^{1}\right)$ and consequently $w \in C_{s}\left(0, T ; H_{0}^{2}\right)$ (see [9, Lemma 8.1, p. 275]). It means that if $t_{n} \rightarrow t_{0}$, then $w\left(t_{n}\right) \rightarrow w\left(t_{0}\right)$ weakly in H_{0}^{2}. So by Theorem 1 and the compact embedding theorems we obtain

$$
\mathcal{F}\left(w\left(t_{n}\right)\right) \rightarrow \mathcal{F}\left(w\left(t_{0}\right)\right) \quad \text { strongly in } H_{0}^{2} .
$$

Hence $\mathcal{F}(w) \in C\left(0, T ; H_{0}^{2}\right)$.
Let the sequence $w^{n} \in C_{0}^{\infty}((0, T) \times \Omega)$ be such that

$$
w^{n} \rightarrow w \quad \text { strongly in } L_{4}\left(0, T ; H_{0}^{2}\right)
$$

and

$$
w_{t}^{n} \rightarrow w_{t} \quad \text { strongly in } L_{4}(0, T ; H)
$$

as n tends to infinity. Then by Theorem 1 we have

$$
\begin{equation*}
\mathcal{F}\left(w^{n}\right) \rightarrow \mathcal{F}(w) \quad \text { strongly in } L_{2}\left(0, T ; H^{3} \cap W_{\infty}^{2}(\Omega)\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\langle\left[\mathcal{F}\left(w^{n}\right), w^{n}\right], w_{t}^{n}\right\rangle \rightarrow\left\langle[\mathcal{F}(w), w], w_{t}\right\rangle \quad \text { strongly in } L_{1}(0, T) . \tag{2.6}
\end{equation*}
$$

Taking into account $\frac{\partial}{\partial t}\left\|\Delta \mathcal{F}\left(w^{n}(t)\right)\right\|^{2}=-4\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right], w_{t}^{n}(t)\right\rangle$ from (2.5)-(2.6) we find that

$$
\frac{\partial}{\partial t}\|\Delta \mathcal{F}(w(t))\|^{2}=-4\left\langle[\mathcal{F}(w(t)), w(t)], w_{t}(t)\right\rangle \in L_{\infty}(0, T)
$$

which implies (2.4).
Lemma 3. Assume $\left\{w^{n}(t)\right\}$ and $\left\{w_{t}^{n}(t)\right\}$ are weakly star convergent in $L_{\infty}\left(0, T ; H_{0}^{2}\right)$ and $L_{\infty}(0, T ; H)$, respectively. Then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t=0 \tag{2.7}
\end{equation*}
$$

Proof. Let

$$
\begin{cases}w^{n} \rightarrow w & \text { weakly star in } L_{\infty}\left(0, T ; H_{0}^{2}\right), \tag{2.8}\\ w_{t}^{n} \rightarrow w_{t} & \text { weakly star in } L_{\infty}(0, T ; H) .\end{cases}
$$

By the compact embedding theorem (see [10, Theorem 5.1, p. 58]) from (2.8) we have

$$
\begin{equation*}
w^{n} \rightarrow w \quad \text { strongly in } L_{p}\left(0, T ; H_{0}^{2-\varepsilon}\right) \tag{2.9}
\end{equation*}
$$

for $1 \leqslant p<\infty$ and $\varepsilon>0$.
Using $(2.8)_{1},(2.9)$ and the property of the von Karman bracket, we obtain

$$
\left[w^{n}, w^{n}\right] \rightarrow[w, w] \quad \text { weakly star in } L_{\infty}\left(0, T ; H^{-2}\right)
$$

and consequently

$$
\begin{equation*}
\mathcal{F}\left(w^{n}\right) \rightarrow \mathcal{F}(w) \quad \text { weakly star in } L_{\infty}\left(0, T ; H_{0}^{2}\right) . \tag{2.10}
\end{equation*}
$$

From (2.8) ${ }_{1}$, (2.9) and (2.10) we have

$$
\begin{equation*}
\left[\mathcal{F}\left(w^{n}\right), w^{n}\right] \rightarrow[\mathcal{F}(w), w] \quad \text { weakly star in } L_{\infty}\left(0, T ; H^{-2}\right) \tag{2.11}
\end{equation*}
$$

On the other hand, by $(2.8)_{1}$ and Theorem 1 we find that $\left\{\left[\mathcal{F}\left(w^{n}\right), w^{n}\right]\right\}$ is bounded in $L_{\infty}(0, T ; H)$, which together with (2.11) gives

$$
\begin{equation*}
\left[\mathcal{F}\left(w^{n}\right), w^{n}\right] \rightarrow[\mathcal{F}(w), w] \quad \text { weakly star in } L_{\infty}(0, T ; H) \tag{2.12}
\end{equation*}
$$

From (2.8), also follows that

$$
\begin{equation*}
w^{n} \rightarrow w \quad \text { weakly in } C\left(0, T ; H_{0}^{1}\right) \tag{2.13}
\end{equation*}
$$

which according to [9, Lemma 8.1, p. 275], together with (2.8) $)_{1}$ yields $w^{n} \in C_{S}\left(0, T ; H_{0}^{2}\right)$. So $\left\langle w^{n}(\cdot), \varphi\right\rangle \in C[0, T]$ and

$$
\begin{equation*}
\left|\left\langle w^{n}(t), \varphi\right\rangle\right| \leqslant\left\|\left\langle w^{n}(\cdot), \varphi\right\rangle\right\|_{C[0, T]} \leqslant\left\|w^{n}\right\|_{L_{\infty}\left(0, T ; H_{0}^{2}\right)}\|\varphi\|_{H^{-2}}, \tag{2.14}
\end{equation*}
$$

for every $t \in[0, T]$ and $\varphi \in H^{-2}$.
From (2.13) and (2.14) we obtain

$$
w^{n}(t) \rightarrow w(t) \quad \text { weakly in } H_{0}^{2}
$$

for every $t \in[0, T]$. Thus by Theorem 1 we find that

$$
\begin{equation*}
\mathcal{F}\left(w^{n}(t)\right) \rightarrow \mathcal{F}(w(t)) \quad \text { weakly in } H^{3} \tag{2.15}
\end{equation*}
$$

for every $t \in[0, T]$.
By Lemma 2, we have

$$
\begin{aligned}
& \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t \\
& \quad=\frac{1}{4}\left[\left\|\Delta \mathcal{F}\left(w^{n}(0)\right)\right\|^{2}+\left\|\Delta \mathcal{F}\left(w^{m}(0)\right)\right\|^{2}-\left\|\Delta \mathcal{F}\left(w^{n}(T)\right)\right\|^{2}-\left\|\Delta \mathcal{F}\left(w^{m}(T)\right)\right\|^{2}\right] \\
& \quad-\int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right], w_{t}^{m}(t)\right\rangle d t-\int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)\right\rangle d t
\end{aligned}
$$

Taking into account $(2.8)_{2},(2.12),(2.15)$ and passing to limit in the last equality, we obtain

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t \\
& \quad=\frac{1}{2}\left[\|\Delta \mathcal{F}(w(0))\|^{2}-\|\Delta \mathcal{F}(w(T))\|^{2}\right]-2 \int_{0}^{T}\left\langle[\mathcal{F}(w(t)), w(t)], w_{t}(t)\right\rangle d t
\end{aligned}
$$

which together with Lemma 2 imply (2.7).
Lemma 4. Assume the condition (1.5) is satisfied, and B is a bounded subset of $H_{0}^{2} \times H$. Then for any $\varepsilon>0$ there exists $T=T(\varepsilon, B)$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \sup _{p \in \mathbb{N}}\left\|S(T) \theta_{n+p}-S(T) \theta_{n}\right\|_{H_{0}^{2} \times H} \leqslant \varepsilon \tag{2.16}
\end{equation*}
$$

where $\left\{\theta_{n}\right\}$ is a sequence in B and $\left\{S(t) \theta_{n}\right\}$ weakly star converges in $L_{\infty}\left(0, \infty ; H_{0}^{2} \times H\right)$.
Proof. We will use techniques used in [6, Proof of Lemma 2.5] for similar estimates for von Karman equations (see also [7]). Let $\left(w^{n}(t), w_{t}^{n}(t)\right)=S(t) \theta_{n}$. From (2.2) we have

$$
\begin{gathered}
\int_{0}^{T} \int_{\Omega}\left(g\left(w_{t}^{n}(t, x)\right)-g\left(w_{t}^{m}(t, x)\right)\right)\left(w_{t}^{n}(t, x)-w_{t}^{m}(t, x)\right) d x d t \\
\leqslant \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)+\int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right]\right. \\
\left.\quad w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t, \quad \text { for } T \geqslant 0
\end{gathered}
$$

where $\|B\|_{H_{0}^{2} \times H}=\sup _{v \in B}\|v\|_{H_{0}^{2} \times H}$. Taking into account (2.3) in the last, inequality we obtain

$$
\begin{align*}
& \int_{0}^{T}\left\|w_{t}^{n}(t)-w_{t}^{m}(t)\right\|^{2} d t \\
& \quad \leqslant \delta T \operatorname{mes} \Omega+c(\delta) \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right) \\
& \quad+c(\delta) \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t \tag{2.17}
\end{align*}
$$

for every $\delta>0$. On the other hand, multiplying both sides of

$$
\left(w^{n}-w^{m}\right)_{t t}+\Delta^{2}\left(w^{n}-w^{m}\right)+g\left(w_{t}^{n}\right)-g\left(w_{t}^{m}\right)=\left[\mathcal{F}\left(w^{n}\right), w^{n}\right]-\left[\mathcal{F}\left(w^{m}\right), w^{m}\right]
$$

by ($w^{n}-w^{m}$), integrating over $[0, T] \times \Omega$ and taking into account (2.1), we find that

$$
\begin{align*}
& \int_{0}^{T}\left\|\Delta\left(w^{n}(t)-w^{m}(t)\right)\right\|^{2} d t \\
& \quad \leqslant \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)+\int_{0}^{T}\left\|w_{t}^{n}(t)-w_{t}^{m}(t)\right\|^{2} d t \\
& \quad+\int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w^{n}(t)-w^{m}(t)\right\rangle d t \\
& \quad+\int_{0}^{T} \int_{\Omega}\left(g\left(w_{t}^{m}(t, x)\right)-g\left(w_{t}^{n}(t, x)\right)\right)\left(w^{n}(t, x)-w^{m}(t, x)\right) d x d t \\
& \text { for } T \geqslant 0 \tag{2.18}
\end{align*}
$$

Thus by (2.17) and (2.18) we have

$$
\int_{0}^{T} E\left(w^{n}(t)-w^{m}(t)\right) d t
$$

$$
\begin{aligned}
\leqslant & \delta T \operatorname{mes} \Omega+\tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\left(c(\delta)+\frac{1}{2}\right) \\
& +c(\delta) \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t \\
& +\frac{1}{2} \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w^{n}(t)-w^{m}(t)\right\rangle d t \\
& +\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left(g\left(w_{t}^{m}(t, x)\right)-g\left(w_{t}^{n}(t, x)\right)\right)\left(w^{n}(t, x)-w^{m}(t, x)\right) d x d t
\end{aligned}
$$

for $T \geqslant 0$,
which together with (2.2) implies

$$
\begin{align*}
& E\left(w^{n}(T)-w^{m}(T)\right) \\
& \leqslant \delta \operatorname{mes} \Omega+\frac{1}{T} \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\left(c(\delta)+\frac{1}{2}\right) \\
&+\frac{1}{T} c(\delta) \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(t)\right), w^{n}(t)\right]-\left[\mathcal{F}\left(w^{m}(t)\right), w^{m}(t)\right], w_{t}^{n}(t)-w_{t}^{m}(t)\right\rangle d t \\
&+\frac{1}{T} \int_{0}^{T} \int_{t}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(s)\right), w^{n}(s)\right]-\left[\mathcal{F}\left(w^{m}(s)\right), w^{m}(s)\right], w_{t}^{n}(s)-w_{t}^{m}(s)\right\rangle d s d t \\
&+\frac{1}{2 T} \int_{0}^{T} \int_{\Omega}\left(g\left(w_{t}^{m}(t, x)\right)-g\left(w_{t}^{n}(t, x)\right)\right)\left(w^{n}(t, x)-w^{m}(t, x)\right) d x d t \\
& \quad+\frac{1}{2 T} \int_{0}^{T}\left\langle\left[\mathcal{F}\left(w^{n}(\tau)\right), w^{n}(\tau)\right]-\left[\mathcal{F}\left(w^{m}(\tau)\right), w^{m}(\tau)\right], w^{n}(\tau)-w^{m}(\tau)\right\rangle d \tau \\
& \equiv \delta \operatorname{mes} \Omega+\frac{1}{T} \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\left(c(\delta)+\frac{1}{2}\right)+K_{1}+K_{2}+K_{3}+K_{4} . \tag{2.19}
\end{align*}
$$

By Lemma 3 we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} K_{1}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} K_{2}=0 \tag{2.20}
\end{equation*}
$$

Since $\left\{\left(w^{n}, w_{t}^{n}\right)\right\}_{n=1}^{\infty}$ is bounded in $C\left(0, T ; H_{0}^{2} \times H\right)$ and the embedding $H_{0}^{2} \subset C(\bar{\Omega})$ is compact, by Arzela theorem $\left\{w^{n}\right\}_{n=1}^{\infty}$ is compact in $C(0, T ; C(\bar{\Omega}))$. On the other hand, $\left\{w^{n}\right\}_{n=1}^{\infty}$ converges weakly star in $L_{\infty}\left(0, T ; H_{0}^{2}\right)$. Thus $\left\{w^{n}\right\}_{n=1}^{\infty}$ strongly converges in $C(0, T ; C(\bar{\Omega}))$.

Since by (1.5) and (2.1)

$$
\begin{aligned}
\int_{0}^{T} \int_{\Omega}\left|g\left(w_{t}^{n}(t, x)\right)\right| d x d t= & \int_{0}^{T}\left[\int_{\left\{x: x \in \Omega,\left|w_{t}^{n}(t, x)\right| \geqslant 1\right\}}\left|g\left(w_{t}^{n}(t, x)\right)\right| d x\right. \\
& \left.+\int_{\left\{x: x \in \Omega,\left|w_{t}^{n}(t, x)\right|<1\right\}}\left|g\left(w_{t}^{n}(t, x)\right)\right| d x\right] d t \\
\leqslant & \int_{0}^{T} \int_{\Omega} g\left(w_{t}^{n}(t, x)\right) w_{t}^{n}(t, x) d x d t \\
& +T \operatorname{mes} \Omega(g(1)+|g(-1)|) \\
\leqslant & T \operatorname{mes} \Omega(g(1)+|g(-1)|)+\tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)
\end{aligned}
$$

we have

$$
\begin{equation*}
\left|K_{3}\right| \leqslant \frac{1}{T}\left\|w^{n}-w^{m}\right\|_{C(0, T ; C(\bar{\Omega}))}\left(T \operatorname{mes} \Omega(g(1)+|g(-1)|)+\tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\right) \tag{2.21}
\end{equation*}
$$

On the other hand, for K_{4} we find that

$$
\begin{equation*}
\left|K_{4}\right| \leqslant \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\left\|w^{n}-w^{m}\right\|_{C(0, T ; C(\bar{\Omega}))} . \tag{2.22}
\end{equation*}
$$

From (2.21) and (2.22) we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} K_{3}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty} \lim _{m \rightarrow \infty} K_{4}=0 \tag{2.23}
\end{equation*}
$$

Thus by (2.19), (2.20) and (2.23) we get

$$
\limsup _{n \rightarrow \infty} \limsup _{m \rightarrow \infty} E\left(w^{n}(T)-w^{m}(T)\right) \leqslant \delta \operatorname{mes} \Omega+\frac{1}{T} \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\left(c(\delta)+\frac{1}{2}\right),
$$

consequently

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} \sup _{p \in \mathbb{N}} E\left(w^{n+p}(T)-w^{n}(T)\right) \\
& \leqslant 2 \limsup _{n \rightarrow \infty} \sup _{p \in \mathbb{N}} \limsup _{m \rightarrow \infty} E\left(w^{n+p}(T)-w^{m}(T)\right) \\
& \quad+2 \limsup _{n \rightarrow \infty} \limsup _{m \rightarrow \infty} E\left(w^{m}(T)-w^{n}(T)\right) \\
& \leqslant 4\left(\delta \operatorname{mes} \Omega+\frac{1}{t} \tilde{c}\left(\|B\|_{H_{0}^{2} \times H}\right)\left(c(\delta)+\frac{1}{2}\right)\right),
\end{aligned}
$$

which yields (2.16).

3. Global attractors

In this section, we shall show the existence of the global attractor. To this end, we first prove the asymptotic compactness of $S(t)$ in $H_{0}^{2} \times H$, which is given in the following theorem:

Theorem 2. Assume the condition (1.5) holds. Then for any bounded subset B of $H_{0}^{2} \times H$, the set $\left\{S\left(t_{n}\right) \theta_{n}\right\}_{n=1}^{\infty}$ is relatively compact in $H_{0}^{2} \times H$, where $t_{n} \rightarrow \infty$ and $\left\{\theta_{n}\right\}_{n=1}^{\infty} \subset B$.

Proof. Since B is bounded, by (2.1) we have $\sup _{t \geqslant 0} \sup _{\theta \in B}\|S(t) \theta\|_{H_{0}^{2} \times H}<\infty$. Therefore there exists a bounded subset B_{0} of $H_{0}^{2} \times H$ such that $S(t) \theta \in B_{0}$, for every $t \geqslant 0$ and $\theta \in B$. Let $\varepsilon_{m}>0$ and $\varepsilon_{m} \rightarrow 0$. By Lemma 4, for every ε_{m} there exists $T_{m}=T_{m}\left(B_{0}\right)>0$ such that

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sup _{p \in \mathbb{N}}\left\|S\left(T_{m}\right) \varphi_{k+p}-S\left(T_{m}\right) \varphi_{k}\right\|_{H_{0}^{2} \times H} \leqslant \varepsilon_{m} \tag{3.1}
\end{equation*}
$$

where $\left\{\varphi_{k}\right\}_{n=1}^{\infty}$ is a sequence in B_{0} and $\left\{S(t) \varphi_{k}\right\}_{n=1}^{\infty}$ weakly star converges in $L_{\infty}(0, \infty$; $H_{0}^{2} \times H$) 。

Now for ε_{1}, choose a subsequence $\left\{n_{k}^{(1)}\right\} \subset\{n\}$ such that $t_{n_{k}^{(1)}} \geqslant T_{1}$ and $\left\{S(t) S\left(t_{n_{k}^{(1)}}-\right.\right.$ $\left.\left.T_{1}\right) \theta_{n_{k}^{(1)}}\right\}_{k=1}^{\infty}$ weakly star converges in $L_{\infty}\left(0, \infty ; H_{0}^{2} \times H\right)$. For ε_{2}, choose a subsequence $\left\{n_{k}^{(2)}\right\} \subset\left\{n_{k}^{(1)}\right\}$ such that $t_{n_{k}^{(2)}} \geqslant T_{2}$ and $\left\{S(t) S\left(t_{n_{k}^{(2)}}-T_{2}\right) \theta_{n_{k}^{(2)}}\right\}_{k=1}^{\infty}$ weakly star converges in $L_{\infty}\left(0, \infty ; H_{0}^{2} \times H\right)$. Continuing this procedure we have $\left\{n_{k}^{(1)}\right\} \supset\left\{n_{k}^{(2)}\right\} \supset$ $\cdots \supset\left\{n_{k}^{(m)}\right\} \supset \cdots$, such that $t_{n_{k}^{(m)}} \geqslant T_{m}$ and $\left\{S(t) S\left(t_{n_{k}^{(m)}}-T_{m}\right) \theta_{n_{k}^{(m)}}\right\}_{k=1}^{\infty}$ weakly star converges in $L_{\infty}\left(0, \infty ; H_{0}^{2} \times H\right)$. Taking $\varphi_{k}=S\left(t_{n_{k}^{(m)}}-T_{m}\right) \theta_{n_{k}^{(m)}}$ in (3.1), we obtain

$$
\begin{equation*}
\limsup _{k \rightarrow \infty} \sup _{p \in \mathbb{N}}\left\|S\left(t_{n_{k+p}^{(m)}}\right) \theta_{n_{k+p}^{(m)}}-S\left(t_{n_{k}^{(m)}}\right) \theta_{n_{k}^{(m)}}\right\|_{H_{0}^{2} \times H} \leqslant \varepsilon_{m}, \tag{3.2}
\end{equation*}
$$

for every $m \in \mathbb{N}$.
Now we construct the diagonal subsequence $\left\{S\left(t_{n_{k}^{(k)}}\right) \theta_{n_{k}^{(k)}}\right\}$. Since for every $m \in \mathbb{N}$, the sequence $\left\{S\left(t_{n_{k}^{(k)}}\right) \theta_{n_{k}^{(k)}}\right\}_{k=m}^{\infty}$ is a subsequence of $\left\{S\left(t_{n_{k}^{(m)}}\right) \theta_{n_{k}^{(m)}}\right\}_{k=1}^{\infty}$, by (3.2) we have

$$
\limsup _{k \rightarrow \infty} \sup _{p \in \mathbb{N}}\left\|S\left(t_{n_{k+p}^{(k+p)}}\right) \theta_{n_{k+p}^{(k+p)}}-S\left(t_{n_{k}^{(k)}}\right) \theta_{n_{k}^{(k)}}\right\|_{H_{0}^{2} \times H} \leqslant \varepsilon_{m}
$$

Since $\varepsilon_{m} \rightarrow 0$, the last inequality means that the sequence $\left\{S\left(t_{n_{k}^{(k)}}\right) \theta_{n_{k}^{(k)}}\right\}_{k=1}^{\infty}$ is a Cauchy sequence in $H_{0}^{2} \times H$ and consequently this sequence strongly converges in $H_{0}^{2} \times H$. In other words, the sequence $\left\{S\left(t_{n}\right) \theta_{n}\right\}_{n=1}^{\infty}$ has a subsequence which is strongly convergent in $H_{0}^{2} \times H$. It can be seen in a similar way that every subsequence of $\left\{S\left(t_{n}\right) \theta_{n}\right\}_{n=1}^{\infty}$ has a subsequence strongly convergent in $H_{0}^{2} \times H$. Thus the set $\left\{S\left(t_{n}\right) \theta_{n}\right\}_{n=1}^{\infty}$ is relatively compact in $H_{0}^{2} \times H$.

Since by (2.1) the problem (1.1)-(1.4) admits a "good" Lyapunov function (see [11, p. 41]) $L(w(t))=E(w(t))+\frac{1}{4}\|\Delta \mathcal{F}(w(t))\|^{2}-\langle h, w(t)\rangle$ and since the set of stationary solutions is bounded in H_{0}^{2}, using the results of [11, pp. 49-50], we can formulate our main result.

Theorem 3. Assume that (1.5) holds. Then problem (1.1)-(1.4) has a global attractor in $H_{0}^{2} \times H$, which is invariant and compact.

Acknowledgments

The author is very grateful to the referees for their many helpful suggestions.

References

[1] I.D. Chueshov, Finite-dimensionality of the attractor in some problems of the nonlinear theory of shells, Mat. Sb. (N.S.) 133 (175) (1987) 419-428 (in Russian); translation in Math. USSR Sb. 61 (1988) 411-420.
[2] I.D. Chueshov, Strong solutions and the attractor of a system of von Karman equations, Mat. Sb. 181 (1990) 25-36 (in Russian); translation in Math. USSR Sb. 69 (1991) 25-36.
[3] I. Lasiecka, W. Heyman, Asymptotic behavior of solutions in nonlinear dynamic elasticity, Discrete Contin. Dyn. Syst. 1 (1995) 237-252.
[4] I. Lasiecka, Finite-dimensional attractors of weak solutions to von Karman plate model, J. Math. Systems Estim. Control 7 (1997) 251-275.
[5] W. Heyman, I. Lasiecka, Asymptotic behaviour of solutions to nonlinear shells in a supersonic flow, Numer. Funct. Anal. Optim. 20 (1999) 279-300.
[6] I. Lasiecka, Finite dimensionality and compactness of attractors for von Karman equations with nonlinear dissipation, NoDEA Nonlinear Differential Equations Appl. 6 (1999) 437-472.
[7] I. Chueshov, I. Lasiecka, Attractors for second order evolution equations with a nonlinear damping, J. Dynam. Differential Equations 16 (2004) 469-512.
[8] A. Favini, M.A. Horn, I. Lasiecka, D. Tataru, Global existence, uniqueness and regularity of solutions to a von Karman system with nonlinear boundary dissipation, Differential Integral Equations 9 (1996) 267-294, and Addendum to this paper: Differential Integral Equations 10 (1997) 197-200.
[9] J.L. Lions, E. Magenes, Non-Homogeneous Boundary Value Problems and Applications, vol. I, SpringerVerlag, New York, 1972.
[10] J.L. Lions, Quelques méthodes de résolution des problèmes aux limites non lineaires, Dunod, Paris, 1969.
[11] O.A. Ladyzhenskaya, On the determination of minimal global attractors for the Navier-Stokes equations and other partial differential equations, Uspekhi Math. Nauk 42 (1987) 25-60, English translation in Russian Math. Surveys 42 (1987) 27-73.

[^0]: * Permanent address: Institute of Mathematics and Mechanics of National Academy of Sciences of Azerbaijan, F. Agaev street, 9, GSP-602, 370602, Baku, Azerbaijan.

 E-mail address: azer@hacettepe.edu.tr.
 0022-247X/\$ - see front matter © 2005 Elsevier Inc. All rights reserved.
 doi:10.1016/j.jmaa.2005.05.031

