# GLOBAL ATTRACTORS FOR STRONGLY DAMPED WAVE EQUATIONS WITH DISPLACEMENT DEPENDENT DAMPING AND NONLINEAR SOURCE TERM OF CRITICAL EXPONENT 

A. Kh. Khanmamedov<br>Department of Mathematics, Faculty of Science Hacettepe University, Beytepe 06800, Ankara, Turkey

(Communicated by Irena Lasiecka)


#### Abstract

In this paper the long time behaviour of the solutions of the 3-D strongly damped wave equation is studied. It is shown that the semigroup generated by this equation possesses a global attractor in $H_{0}^{1}(\Omega) \times L_{2}(\Omega)$ and then it is proved that this is also a global attractor in $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$.


1. Introduction. We consider the following initial-boundary value problem for the strongly damped wave equation:

$$
\begin{array}{lr}
w_{t t}-\Delta w_{t}+\sigma(w) w_{t}-\Delta w+f(w)=g(x) & \text { in }(0, \infty) \times \Omega \\
w=0 & \text { on }(0, \infty) \times \partial \Omega \\
w(0, \cdot)=w_{0}, & w_{t}(0, \cdot)=w_{1} \tag{1.3}
\end{array}
$$

where $\Omega \subset R^{3}$ is a bounded domain with sufficiently smooth boundary and $g \in$ $L_{2}(\Omega)$.

As shown in [6] and [13], equation (1.1) is related to the following reactiondiffusion equation with memory:

$$
\begin{equation*}
w_{t}(t, x)=\int_{-\infty}^{t} K(t, s) \Delta w(s, x) d s-f(w(t, x))+g(x) \tag{1.4}
\end{equation*}
$$

Namely, if $K(t, s)=\frac{1-\alpha}{\lambda} e^{-\frac{t-s}{\lambda}}+2 \alpha \delta(t-s)$ then (1.4) can be transformed into

$$
\lambda w_{t t}-\alpha \lambda \Delta w_{t}+\left(1+\lambda f^{\prime}(w)\right) w_{t}-\Delta w+f(w)=g
$$

where $\lambda>0, \alpha \in[0,1)$ and $\delta$ is a Dirac delta function. This equation is interesting from a physical viewpoint as a model describing the flow of viscoelastic fluids (see [6] and [13] for details).

When $\sigma(\cdot) \equiv 0$ the equation (1.1) becomes

$$
\begin{equation*}
w_{t t}-\Delta w_{t}-\Delta w+f(w)=g \tag{1.5}
\end{equation*}
$$

The long time behaviour (in terms of attractors) of solutions in this case has been studied by many authors (see [2], [5], [7], [14], [15], [19], [22] and references therein). In [14] the existence of a global attractor for (1.5) with critical source term (i.e. in the case when the growth of $f$ is of order 5) was proved. However, the regularity of

[^0]the global attractor in that article was established only in the subcritical case. For the critical case, the regularity of the global attractor of (1.5) was proved in [15], under the assumptions
\[

$$
\begin{equation*}
f \in C^{1}(R),\left|f^{\prime}(s)\right| \leq c\left(1+|s|^{4}\right), \forall s \in R \text { and } \liminf _{|s| \rightarrow \infty} f^{\prime}(s)>-\lambda_{1} \tag{1.6}
\end{equation*}
$$

\]

or

$$
\begin{equation*}
f \in C^{2}(R),\left|f^{\prime \prime}(s)\right| \leq c\left(1+|s|^{3}\right), \forall s \in R \text { and } \liminf _{|s| \rightarrow \infty} \frac{f(s)}{s}>-\lambda_{1} \tag{1.7}
\end{equation*}
$$

where $\lambda_{1}$ is a first eigenvalue of $-\Delta$ with zero Dirichlet data. In that article the authors obtained a regular estimate for $w_{t t}$ (when $w(t, x)$ is a weak solution of (1.5)) and then proved the asymptotic regularity of the solution of the non-autonomous equation

$$
-\Delta w_{t}-\Delta w+f(w)=g-w_{t t}
$$

In [5] and [19], the regularity of the global attractor of (1.5) was proved under the following weaker condition on the source term:
$f \in C(R),|f(u)-f(v)| \leq c\left(1+|u|^{4}+|v|^{4}\right)|u-v|, \forall u, v \in R$ and $\liminf _{|s| \rightarrow \infty} \frac{f(s)}{s}>-\lambda_{1}$.
In [8], the authors investigated the weak attractor for the quasi-linear strongly damped equation

$$
w_{t t}-\Delta w_{t}-\Delta w+f(w)=\nabla \cdot \varphi^{\prime}(\nabla w)+g
$$

under the following conditions on the nonlinear functions $f$ and $\varphi$ :

$$
\begin{gathered}
f \in C^{1}(R), \quad-C+a_{1}|s|^{q} \leq f^{\prime}(s) \leq C|s|^{q}, \forall s \in R \\
\varphi \in C^{2}\left(R^{3}, R\right), \quad a_{2}|\eta|^{p-1}|\xi|^{2} \leq \sum_{i, j=1}^{3} \frac{\partial^{2} \varphi(\eta)}{\partial \eta_{i} \partial \eta_{j}} \xi_{i} \xi_{j} \leq a_{3}\left(1+|\eta|^{p-1}\right)|\xi|^{2}, \quad \forall \xi, \eta \in R^{3},
\end{gathered}
$$

for some $a_{i}>0,(i=1,2,3), C>0, q>0$ and $p \in[1,5)$. When $\frac{\partial^{2} \varphi}{\partial \eta_{i} \partial \eta_{j}}=0$, $(i, j=1,2,3)$, the strong attractor has also been studied. Recently, in [3], the authors have studied the global attractor for the strongly damped abstract equation

$$
w_{t t}+D\left(w, w_{t}\right)+A w+F(w)=0 .
$$

However, the approaches of the articles mentioned above, in general, do not seem to be applicable to (1.1). The difficulty is caused by the term $\sigma(w) w_{t}$, when the function $\sigma(\cdot)$ is not differentiable and the growth condition imposed on $\sigma(\cdot)$ is critical. In this paper we prove the existence of the global attractors for (1.1)-(1.3) in $H_{0}^{1}(\Omega) \times L_{2}(\Omega)$ and $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$. Then using the embedding $H^{\frac{3}{2}+\varepsilon}(\Omega) \subset C(\bar{\Omega})$ we show that these attractors coincide.
2. Well-posedness and the statement of the main result. We start with the conditions on nonlinear terms $f$ and $\sigma$.

- $f \in C(R),|f(s)-f(t)| \leq c\left(1+|s|^{4}+|t|^{4}\right)|s-t|, \forall s, t \in R$,
- $\liminf _{|s| \rightarrow \infty} \frac{f(s)}{s}>-\lambda_{1}$, where $\lambda_{1}=\inf _{\varphi \in H_{0}^{1}(\Omega), \varphi \neq 0} \frac{\|\nabla \varphi\|_{L_{2}(\Omega)}^{2}}{\|\varphi\|_{L_{2}(\Omega)}^{2}}$,
- $\sigma \in C(R), \sigma(s) \geq 0, \quad|\sigma(s)| \leq c\left(1+|s|^{4}\right), \quad \forall s \in R$.

By the standard Galerkin's method it is easy to prove the following existence theorem:

Theorem 2.1. Let conditions (2.1)-(2.3) hold. Then for every $T>0$ and every $\left(w_{0}, w_{1}\right) \in \mathcal{H}:=H_{0}^{1}(\Omega) \times L_{2}(\Omega)$, the problem (1.1)-(1.3) admits a weak solution

$$
w \in C\left([0, T] ; H_{0}^{1}(\Omega)\right), w_{t} \in C\left([0, T] ; L_{2}(\Omega)\right) \cap L_{2}\left(0, T ; H_{0}^{1}(\Omega)\right)
$$

which satisfies the following energy equality

$$
\begin{align*}
& E(w(t))+\int_{s}^{t}\left\|\nabla w_{t}(\tau)\right\|_{L_{2}(\Omega)}^{2} d \tau+\int_{s}^{t}\left\langle\sigma(w(\tau)) w_{t}(\tau), w_{t}(\tau)\right\rangle d \tau+\langle F(w(t)), 1\rangle- \\
& -\langle g, w(t)\rangle=E(w(s))+\langle F(w(s)), 1\rangle-\langle g, w(s)\rangle, \quad 0 \leq s \leq t \leq T, \tag{2.4}
\end{align*}
$$

where $E(w(t))=\frac{1}{2}\left(\|\nabla w(t)\|_{L_{2}(\Omega)}^{2}+\left\|w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right),\langle u, v\rangle=\int_{\Omega} u(x) v(x) d x$ and $F(w)=$ $\int_{0}^{w} f(u) d u$.

Now using the method of [16, Proposition 2.2] let us prove the following uniqueness theorem:

Theorem 2.2. Let conditions (2.1)-(2.3) hold. If $w(t, \cdot)$ and $\widehat{w}(t, \cdot)$ are the weak solutions of (1.1)-(1.3), determined by Theorem 2.1, with initial data $\left(w_{0}, w_{1}\right)$ and $\left(\widehat{w}_{0}, \widehat{w}_{1}\right)$ respectively, then

$$
\begin{gathered}
\|w(T)-\widehat{w}(T)\|_{H^{1}(\Omega)}^{2}+\left\|w_{t}(T)-\widehat{w}_{t}(T)\right\|_{H^{-1}(\Omega)}^{2} \leq \\
\leq c(T, R)\left(\left\|w_{0}-\widehat{w}_{0}\right\|_{H^{1}(\Omega)}+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}\right)
\end{gathered}
$$

where $c: R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable and $R=\max \left\{\left\|\left(w_{0}, w_{1}\right)\right\|_{\mathcal{H}},\left\|\left(\widehat{w}_{0}, \widehat{w}_{1}\right)\right\|_{\mathcal{H}}\right\}$.
Proof. By (2.1)-(2.4), it follows that

$$
\left\|\left(w(t), w_{t}(t)\right)\right\|_{\mathcal{H}}+\left\|\left(\widehat{w}(t), \widehat{w}_{t}(t)\right)\right\|_{\mathcal{H}} \leq c_{1}(R), \quad \forall t \geq 0
$$

Denote $u(t, \cdot)=w(t, \cdot)-\widehat{w}(t, \cdot)$ and $\widehat{u}(t, \cdot)=\int_{0}^{t} u(\tau, \cdot) d \tau$. Integrating (1.1) for $w(t, \cdot)$ and $\widehat{w}(t, \cdot)$ on $[0, t]$ and taking the difference, we have

$$
\begin{gather*}
u_{t}-\Delta u+\Sigma(w)-\Sigma(\widehat{w})-\Delta \widehat{u}+\int_{0}^{t}(f(w(\tau,))-f(\widehat{w}(\tau,))) d \tau= \\
=\Sigma\left(w_{0}\right)-\Sigma\left(\widehat{w}_{0}\right)-\Delta\left(w_{0}-\widehat{w}_{0}\right)+w_{1}-\widehat{w}_{1}, \quad \forall t \geq 0 \tag{2.5}
\end{gather*}
$$

where $\Sigma(w)=\int_{0}^{w} \sigma(s) d s$. Testing (2.5) by $u$ and taking into account (2.1), (2.3), (2.4) and monotonicity of $\Sigma(\cdot)$, we find

$$
\begin{gather*}
\frac{d}{d t} E(\widehat{u}(t))+\frac{1}{2}\|\nabla u(t)\|_{L_{2}(\Omega)}^{2} \leq \\
\leq c_{2}(R)\left(\left\|\nabla\left(w_{0}-\widehat{w}_{0}\right)\right\|_{L_{2}(\Omega)}^{2}+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}^{2}\right)+ \\
+c_{2}(R) t \int_{0}^{t}\|\nabla u(\tau)\|_{L_{2}(\Omega)}^{2} d \tau, \quad \forall t \geq 0 \tag{2.6}
\end{gather*}
$$

and consequently

$$
\frac{d}{d t} \widehat{E}(\widehat{u}(t)) \leq c_{2}(R)\left(\left\|w_{0}-\widehat{w}_{0}\right\|_{H^{1}(\Omega)}^{2}+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}^{2}\right)+2 c_{2}(R) t \widehat{E}(\widehat{u}(t))
$$

where $\widehat{E}(\widehat{u}(t))=E(\widehat{u}(t))+\frac{1}{2} \int_{0}^{t}\|\nabla u(\tau)\|_{L_{2}(\Omega)}^{2} d \tau$. Applying Gronwall's lemma to the last inequality, we get

$$
\begin{equation*}
\widehat{E}(\widehat{u}(t)) \leq c_{3}(R) e^{c_{2}(R) t^{2}}\left(\left\|w_{0}-\widehat{w}_{0}\right\|_{H^{1}(\Omega)}^{2}+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}^{2}\right) \tag{2.7}
\end{equation*}
$$

By (2.1), (2.3), (2.4) and (2.7), it follows that

$$
\begin{gathered}
\left|\frac{d}{d t} E(\widehat{u}(t))\right| \leq\left|\left\langle u_{t}(t), u(t)\right\rangle\right|+|\langle\nabla \widehat{u}(t), \nabla u(t)\rangle| \leq \\
\leq c_{4}(R)\left(\|u(t)\|_{L_{2}(\Omega)}+\|\nabla \widehat{u}(t)\|_{L_{2}(\Omega)}\right) \leq \\
\leq c_{5}(R) e^{\frac{c_{2}(R) t^{2}}{2}}\left(\left\|w_{0}-\widehat{w}_{0}\right\|_{H^{1}(\Omega)}+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}\right), \quad \forall t \geq 0
\end{gathered}
$$

Taking into account (2.7) and the last inequality in (2.6), we obtain

$$
\begin{gathered}
\|\nabla u(t)\|_{L_{2}(\Omega)}^{2} \leq c_{6}(R)(1+t) e^{c_{2}(R) t^{2}}\left(\left\|w_{0}-\widehat{w}_{0}\right\|_{H^{1}(\Omega)}+\right. \\
\left.+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}\right), \quad \forall t \geq 0
\end{gathered}
$$

Now, from (2.5), we have

$$
\begin{gathered}
\left\|u_{t}(t)\right\|_{H^{-1}(\Omega)} \leq\|\nabla u(t)\|_{L_{2}(\Omega)}+\|\nabla \widehat{u}(t)\|_{L_{2}(\Omega)}+\|\Sigma(w(t))-\Sigma(\widehat{w}(t))\|_{H^{-1}(\Omega)}+ \\
+\int_{0}^{t}\|f(w(\tau,))-f(\widehat{w}(\tau,))\|_{H^{-1}(\Omega)} d \tau+\left\|\Sigma\left(w_{0}\right)-\Sigma\left(\widehat{w}_{0}\right)\right\|_{H^{-1}(\Omega)}+ \\
\quad+\left\|\nabla\left(w_{0}-\widehat{w}_{0}\right)\right\|_{L_{2}(\Omega)}+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}
\end{gathered}
$$

which due to the above inequalities gives

$$
\begin{gathered}
\left\|u_{t}(t)\right\|_{H^{-1}(\Omega)}^{2} \leq c_{7}(R)(1+t) e^{c_{2}(R) t^{2}}\left(\left\|w_{0}-\widehat{w}_{0}\right\|_{H^{1}(\Omega)}+\right. \\
\left.+\left\|w_{1}-\widehat{w}_{1}\right\|_{H^{-1}(\Omega)}\right), \quad \forall t \geq 0
\end{gathered}
$$

Thus by Theorem 2.1 and Theorem 2.2, it follows that by the formula $S(t)\left(w_{0}, w_{1}\right)$ $=\left(w(t), w_{t}(t)\right)$, problem (1.1)-(1.3) generates a weakly continuous (in the sense, if $\varphi_{n} \rightarrow \varphi$ strongly then $S(t) \varphi_{n} \rightarrow S(t) \varphi$ weakly) semigroup $\{S(t)\}_{t \geq 0}$ in $\mathcal{H}$, where $w(t, \cdot)$ is a weak solution of (1.1)-(1.3), determined by Theorem 2.1, with initial data $\left(w_{0}, w_{1}\right)$. To show the strong continuity of $\{S(t)\}_{t \geq 0}$ we firstly prove the following lemma:

Lemma 2.1. Let $\varphi \in C(R)$ and $|\varphi(x)| \leq c\left(1+|x|^{r}\right)$ for every $x \in R$ and some $r \geq 1$. If $v_{n} \rightarrow v$ strongly in $L_{q}(\Omega)$ for $q \geq r$, then $\varphi\left(v_{n}\right) \rightarrow \varphi(v)$ strongly in $L_{\frac{q}{r}}(\Omega)$.
Proof. By the assumption of the lemma, there exists a subsequence $\left\{v_{n_{k}}\right\}$ such that $v_{n_{k}} \rightarrow v$ a.e. in $\Omega$. Then by Egorov's theorem, for any $\varepsilon>0$ there exists a subset $A_{\varepsilon} \subset \Omega$ such that $\operatorname{mes}\left(A_{\varepsilon}\right)<\varepsilon$ and $v_{n_{k}} \rightarrow v$ uniformly in $\Omega \backslash A_{\varepsilon}$. Hence for large enough $k$

$$
\left|v_{n_{k}}(x)\right| \leq 1+|v(x)| \quad \text { in } \Omega \backslash A_{\varepsilon}
$$

and consequently

$$
\left|\varphi\left(v_{n_{k}}(x)\right)\right| \leq c_{1}\left(1+|v(x)|^{r}\right) \quad \text { in } \Omega \backslash A_{\varepsilon}
$$

Applying Lebesgue's theorem we get

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\varphi\left(v_{n_{k}}\right)-\varphi(v)\right\|_{L_{\frac{q}{r}}\left(\Omega \backslash A_{\varepsilon}\right)}=0 \tag{2.8}
\end{equation*}
$$

On the other hand since we have

$$
\lim _{k \rightarrow \infty}\left\|v_{n_{k}}\right\|_{L q\left(A_{\varepsilon}\right)}=\|v\|_{L q\left(A_{\varepsilon}\right)}
$$

the inequality

$$
\limsup _{k \rightarrow \infty}\left\|\varphi\left(v_{n_{k}}\right)\right\|_{L \frac{q}{r}\left(A_{\varepsilon}\right)}^{\frac{q}{r}}<c_{3}\left(\varepsilon+\|v\|_{L q\left(A_{\varepsilon}\right)}^{q}\right)
$$

is satisfied. The last inequality together with (2.8) implies that

$$
\limsup _{k \rightarrow \infty}\left\|\varphi\left(v_{n_{k}}\right)-\varphi(v)\right\|_{L_{\frac{q}{r}}(\Omega)}^{\frac{q}{r}} \leq c_{4} \lim _{\varepsilon \rightarrow 0}\left(\varepsilon+\|v\|_{L q\left(A_{\varepsilon}\right)}^{q}\right)=0
$$

Theorem 2.3. Under conditions (2.1)-(2.3) the semigroup $\{S(t)\}_{t \geq 0}$ is strongly continuous in $\mathcal{H}$.

Proof. Let $\left(w_{0 n}, w_{1 n}\right) \rightarrow\left(w_{0}, w_{1}\right)$ strongly in $\mathcal{H}$. Denoting $\left(w_{n}(t), w_{t n}(t)\right)=$ $S(t)\left(w_{0 n}, w_{1 n}\right),\left(w(t), w_{t}(t)\right)=S(t)\left(w_{0}, w_{1}\right)$ and $u_{n}(t)=w_{n}(t)-w(t)$, by (1.1) we have

$$
u_{n t t}-\Delta u_{n t}+\sigma\left(w_{n}\right) w_{n t}-\sigma(w) w_{t}-\Delta u_{n}+f\left(w_{n}(\tau)\right)-f(w(t))=0
$$

Since, by Theorem 2.1, every term of the above equation belongs to $L_{2}\left(0, T ; H^{-1}(\Omega)\right)$, testing it by $u_{n t}$, we obtain
$E\left(u_{n}(t)\right) \leq E\left(u_{n}(0)\right)+c\left\|\sigma\left(w_{n}\right)-\sigma(w)\right\|_{C\left([0, T] ; L_{\frac{3}{2}}(\Omega)\right)}^{2}+c \int_{0}^{t} E\left(u_{n}(s)\right) d s, \forall t \in[0, T]$.
Applying Gronwall's lemma we have

$$
\begin{equation*}
E\left(u_{n}(T)\right) \leq\left(E\left(u_{n}(0)\right)+c\left\|\sigma\left(w_{n}\right)-\sigma(w)\right\|_{C\left([0, T] ; L_{\frac{3}{2}}(\Omega)\right)}^{2}\right) e^{c T}, \quad \forall T \geq 0 \tag{2.9}
\end{equation*}
$$

By Theorem 2.2, it follows that

$$
\lim _{n \rightarrow \infty}\left\|w_{n}-w\right\|_{C\left([0, T] ; L_{6}(\Omega)\right)}=0
$$

Now applying Lemma 2.1 it is easy to see that

$$
\lim _{n \rightarrow \infty}\left\|\sigma\left(w_{n}\right)-\sigma(w)\right\|_{C\left([0, T] ; L_{\frac{3}{2}}(\Omega)\right)}=0
$$

which together with (2.9) yields that $S(T)\left(w_{0 n}, w_{1 n}\right) \rightarrow S(T)\left(w_{0}, w_{1}\right)$ strongly in $\mathcal{H}$, for every $T \geq 0$.

Now let us recall the definition of a global attractor.
Definition ([17]). Let $\{V(t)\}_{t \geq 0}$ be a semigroup on a metric space $(X, d)$. A compact set $\mathcal{A} \subset X$ is called a global attractor for the semigroup $\{V(t)\}_{t \geq 0}$ iff

- $\mathcal{A}$ is invariant, i.e. $V(t) \mathcal{A}=\mathcal{A}, \forall t \geq 0$;
- $\lim _{t \rightarrow \infty} \sup _{v \in B} \inf _{u \in \mathcal{A}} d(V(t) v, u)=0$ for each bounded set $B \subset X$.

Our main result is as follows:

Theorem 2.4. Under the conditions (2.1)-(2.3), the semigroup $\{S(t)\}_{t \geq 0}$ generated by the problem (1.1)-(1.3) possesses a global attractor $\mathcal{A}$ in $\mathcal{H}$, which is also $a$ global attractor in $\mathcal{H}_{1}:=\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$.

Remark 2.1. We note that if the condition (2.3) is replaced by

$$
\sigma \in C(R), \quad \sigma(s) \geq 0,|\sigma(s)| \leq c\left(1+|s|^{p}\right), 0 \leq p<4, \forall s \in R
$$

then using the methods of [5] , [19] and [21] one can prove Theorem 2.4. If we assume

$$
\sigma \in C^{1}(R), \quad \sigma(s) \geq 0,\left|\sigma^{\prime}(s)\right| \leq c(1+|s|), \forall s \in R
$$

instead of (2.3), then the method of [15] can be applied to (1.1)-(1.3). In this case, as in [20], one can show that a global attractor $\mathcal{A}$ attracts every bounded subset of $\mathcal{H}$ in the topology of $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$.

Remark 2.2. We also note that problem (1.1)-(1.3), in 3-D case, without the strong damping $-\Delta w_{t}$ was considered in [11] and [16]. In this case, when $\sigma(\cdot)$ is not globally bounded, the existence of a global attractor in the strong topology of $\mathcal{H}$ and the regularity of the weak attractor remain open (see [11] and [16] for details).
3. Existence of the global attractor in $\mathcal{H}$. We start with the following asymptotic compactness lemma:

Lemma 3.1. Let conditions (2.1)-(2.3) hold and $B$ be a bounded subset of $\mathcal{H}$. Then every sequence of the form $\left\{S\left(t_{n}\right) \varphi_{n}\right\}_{n=1}^{\infty},\left\{\varphi_{n}\right\}_{n=1}^{\infty} \subset B$, $t_{n} \rightarrow \infty$, has a convergent subsequence in $\mathcal{H}$.

Proof. By (2.4), we have

$$
\left\{\begin{array}{c}
\operatorname{supsup}_{t \geq 0}\|S(t) \varphi\|_{\mathcal{H}}<\infty  \tag{3.1}\\
\sup _{\varphi \in B} \int_{0}^{\infty}\|P S(t) \varphi\|_{H_{0}^{1}(\Omega)}^{2} d t<\infty
\end{array}\right.
$$

where $P: \mathcal{H} \rightarrow L_{2}(\Omega)$ is a projection map, i.e. $P \varphi=\varphi_{2}$, for every $\varphi=\left(\varphi_{1}, \varphi_{2}\right) \in \mathcal{H}$. So for any $T_{0} \geq 1$ there exists a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ such that $t_{n_{k}} \geq T_{0}$ and

$$
\left\{\begin{array}{c}
w_{k} \rightarrow w \text { weakly star in } L_{\infty}\left(0, \infty ; H_{0}^{1}(\Omega)\right),  \tag{3.2}\\
w_{k t} \rightarrow w_{t} \quad \text { weakly in } L_{2}\left(0, \infty ; H_{0}^{1}(\Omega)\right),
\end{array}\right.
$$

for some $w \in L_{\infty}\left(0, \infty ; H_{0}^{1}(\Omega)\right) \cap W^{1, \infty}\left(0, \infty ; L_{2}(\Omega)\right) \cap W_{l o c}^{1,2}\left(0, \infty ; H_{0}^{1}(\Omega)\right)$, where $\left(w_{k}(t), w_{k t}(t)\right)=S\left(t+t_{n_{k}}-T_{0}\right) \varphi_{n_{k}}$. Now multiplying the equality

$$
\begin{gathered}
\left(w_{k}-w_{m}\right)_{t t}-\Delta\left(w_{k t}-w_{m t}\right)+\sigma\left(w_{k}\right) w_{k t}-\sigma\left(w_{m}\right) w_{m t}-\Delta\left(w_{k}-w_{m}\right)+ \\
+f\left(w_{k}\right)-f\left(w_{m}\right)=0
\end{gathered}
$$

by $\left(w_{k t}-w_{m t}+\frac{\lambda_{1}}{2}\left(w_{k}-w_{m}\right)\right)$ and integrating over $(s, T) \times \Omega$, we obtain

$$
\begin{aligned}
& \frac{1}{2} E\left(w_{k}(T)-w_{m}(T)\right)+\lambda_{1} \int_{s}^{T} E\left(w_{k}(t)-w_{m}(t)\right) d t+ \\
+ & \int_{s}^{T}\left\langle\sigma\left(w_{k}(t)\right) w_{k t}(t)-\sigma\left(w_{m}(t)\right) w_{m t}(t), w_{k t}(t)-w_{m t}(t)\right\rangle d t+
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{\lambda_{1}}{2}\left\langle\widehat{\Sigma}\left(w_{k}(T)\right)+\widehat{\Sigma}\left(w_{m}(T)\right), 1\right\rangle-\frac{\lambda_{1}}{2} \int_{s}^{T}\left\langle\sigma\left(w_{k}(t)\right) w_{k t}(t), w_{m}(t)\right\rangle d t \\
& -\frac{\lambda_{1}}{2} \int_{s}^{T}\left\langle\sigma\left(w_{m}(t)\right) w_{m t}(t), w_{k}(t)\right\rangle d t+\left\langle F\left(w_{k}(T)\right)+F\left(w_{m}(T)\right), 1\right\rangle- \\
& \quad-\int_{s}^{T}\left\langle f\left(w_{k}(t)\right), w_{m t}(t)\right\rangle d t-\int_{s}^{T}\left\langle f\left(w_{m}(t)\right), w_{k t}(t)\right\rangle d t+ \\
& \quad+\frac{\lambda_{1}}{2} \int_{s}^{T}\left\langle f\left(w_{k}(t)\right)-f\left(w_{m}(t)\right), w_{k}(t)-w_{m}(t)\right\rangle d t \leq \\
& \leq\left(\frac{3}{2}+\lambda_{1}\right) E\left(w_{k}(s)-w_{m}(s)\right)+\frac{\lambda_{1}}{2}\left\langle\widehat{\Sigma}\left(w_{k}(s)\right)+\widehat{\Sigma}\left(w_{m}(s)\right), 1\right\rangle+ \\
& \quad+\left\langle F\left(w_{k}(s)\right)+F\left(w_{m}(s)\right), 1\right\rangle, \quad 0 \leq s \leq T
\end{aligned}
$$

where $\widehat{\Sigma}(w)=\int_{0}^{w} s \sigma(s) d s$. Integrating the last inequality with respect to $s$ from 0 to $T$ we find

$$
\begin{gather*}
\quad \frac{T}{2} E\left(w_{k}(T)-w_{m}(T)\right)+\lambda_{1} \int_{0}^{T} s E\left(w_{k}(s)-w_{m}(s)\right) d s+ \\
+\int_{0}^{T} s\left\langle\sigma\left(w_{k}(s)\right) w_{k t}(s)-\sigma\left(w_{m}(s)\right) w_{m t}(s), w_{k t}(s)-w_{m t}(s)\right\rangle d s+ \\
+\frac{\lambda_{1}}{2} T\left\langle\widehat{\Sigma}\left(w_{k}(T)\right)+\widehat{\Sigma}\left(w_{m}(T)\right), 1\right\rangle-\frac{\lambda_{1}}{2} \int_{0}^{T} s\left\langle\sigma\left(w_{k}(s)\right) w_{k t}(s), w_{m}(s)\right\rangle d s \\
-\frac{\lambda_{1}}{2} \int_{0}^{T} s\left\langle\sigma\left(w_{m}(s)\right) w_{m t}(s), w_{k}(s)\right\rangle d s+T\left\langle F\left(w_{k}(T)\right)+F\left(w_{m}(T)\right), 1\right\rangle- \\
\quad-\int_{0}^{T} s\left\langle f\left(w_{k}(s)\right), w_{m t}(s)\right\rangle d s-\int_{0}^{T} s\left\langle f\left(w_{m}(s)\right), w_{k t}(s)\right\rangle d s+ \\
\quad+\frac{\lambda_{1}}{2} \int_{0}^{T} s\left\langle f\left(w_{k}(s)\right)-f\left(w_{m}(s)\right), w_{k}(s)-w_{m}(s)\right\rangle d t \leq \\
\leq\left(\frac{3}{2}+\lambda_{1}\right) \int_{0}^{T} E\left(w_{k}(s)-w_{m}(s)\right) d s+\int_{0}^{T}\left\langle F\left(w_{k}(s)\right)+\frac{\lambda_{1}}{2} \widehat{\Sigma}\left(w_{k}(s)\right), 1\right\rangle d s+ \\
\quad+\int_{0}^{T}\left\langle F\left(w_{m}(s)\right)+\frac{\lambda_{1}}{2} \widehat{\Sigma}^{T}\left(w_{m}(s)\right), 1\right\rangle d s, \quad \forall T \geq 0 . \tag{3.3}
\end{gather*}
$$

By $(3.1)_{1}$, it follows that

$$
\begin{align*}
& \left(\frac{3}{2}+\lambda_{1}\right) \int_{0}^{T} E\left(w_{k}(s)-w_{m}(s)\right) d s \leq c_{1}+ \\
+ & \frac{\lambda_{1}}{2} \int_{\frac{3+2 \lambda_{1}}{\lambda_{1}}}^{T} s E\left(w_{k}(s)-w_{m}(s)\right) d s, \quad \forall T \geq \frac{3+2 \lambda_{1}}{\lambda_{1}} . \tag{3.4}
\end{align*}
$$

Since for every $\varepsilon>0$ the embedding $H^{1}(\Omega) \subset H^{1-\varepsilon}(\Omega)$ is compact (see for example [12, Theorem 16.1]), applying [18, Corollary 1] to (3.2), we have

$$
w_{k} \rightarrow w \text { strongly in } C\left([0, T] ; H^{1-\varepsilon}(\Omega)\right)
$$

Applying Lemma 2.1 it yields that

$$
\left\{\begin{aligned}
\sigma\left(w_{k}\right) & \rightarrow \sigma(w) \text { strongly in } C\left([0, T] ; L_{\frac{3}{2}-\varepsilon}(\Omega)\right), \\
\sigma^{\frac{1}{2}}\left(w_{k}\right) & \rightarrow \sigma^{\frac{1}{2}}(w) \text { strongly in } C\left([0, T] ; L_{3-\varepsilon}(\Omega)\right),
\end{aligned}\right.
$$

for small enough $\varepsilon>0$. The last approximation together with (2.3) and (3.2) ${ }_{2}$ implies that

$$
\left\{\begin{aligned}
\sigma\left(w_{k}\right) w_{k t} & \rightarrow \sigma(w) w_{t} \quad \text { weakly in } L_{2}\left([0, T] ; L_{\frac{6}{5}}(\Omega)\right) \\
\sigma^{\frac{1}{2}}\left(w_{k}\right) w_{k t} & \rightarrow \sigma^{\frac{1}{2}}(w) w_{t} \text { weakly in } L_{2}\left([0, T] ; L_{2}(\Omega)\right)
\end{aligned}\right.
$$

by which we obtain

$$
\begin{gather*}
\operatorname{liminfliminf}_{m \rightarrow \infty} \int_{0}^{T} s\left\langle\sigma\left(w_{k}(s)\right) w_{k t}(s)-\sigma\left(w_{m}(s)\right) w_{m t}(s), w_{k t}(s)-w_{m t}(s)\right\rangle d s= \\
=\liminf _{k \rightarrow \infty} \int_{0}^{T} s\left\|\sigma^{\frac{1}{2}}\left(w_{k}(s)\right) w_{k t}(s)\right\|_{L_{2}(\Omega)}^{2} d s+\liminf _{m \rightarrow \infty} \int_{0}^{T} s\left\|\sigma^{\frac{1}{2}}\left(w_{m}(s)\right) w_{m t}(s)\right\|_{L_{2}(\Omega)}^{2} d s- \\
-2 \int_{0}^{T} s\left\|\sigma^{\frac{1}{2}}(w(s)) w_{t}(s)\right\|_{L_{2}(\Omega)}^{2} d s \geq 0  \tag{3.5}\\
\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{0}^{T} s\left\langle\sigma\left(w_{k}(s)\right) w_{k t}(s), w_{m}(s)\right\rangle d s=\int_{0}^{T} s\left\langle\sigma(w(s)) w_{t}(s), w(s)\right\rangle d s= \\
=T \int_{0}^{T}\langle\widehat{\Sigma}(w(s)), 1\rangle d s-\int_{0}^{T}\langle\widehat{\Sigma}(w(s)), 1\rangle d s \tag{3.6}
\end{gather*}
$$

and

$$
\begin{gather*}
\lim _{m \rightarrow \infty} \lim _{k \rightarrow \infty} \int_{0}^{T} s\left\langle\sigma\left(w_{m}(s)\right) w_{m t}(s), w_{k}(s)\right\rangle d s=\int_{0}^{T} s\left\langle\sigma(w(s)) w_{t}(s), w(s)\right\rangle d s= \\
=T \int_{0}^{T}\langle\widehat{\Sigma}(w(s)), 1\rangle d s-\int_{0}^{T}\langle\widehat{\Sigma}(w(s)), 1\rangle d s \tag{3.7}
\end{gather*}
$$

Also applying Fatou's lemma and using (2.1), (2.2), (2.3), (3.2), we have

$$
\left\{\begin{align*}
\liminf _{k \rightarrow \infty}\left\langle\widehat{\Sigma}\left(w_{k}(T)\right), 1\right\rangle & \geq\langle\widehat{\Sigma}(w(T)), 1\rangle  \tag{3.8}\\
\liminf _{k \rightarrow \infty}^{T}\left\langle F\left(w_{k}(T)\right), 1\right\rangle & \geq\langle F(w(T)), 1\rangle \\
\liminf _{k \rightarrow \infty} \int_{0} s\left\langle f\left(w_{k}(s)\right), w_{k}(s)\right\rangle d s & \geq \int_{0}^{T} s\langle f(w(s)), w(s)\rangle d s
\end{align*}\right.
$$

Taking into account (3.4)-(3.8) in (3.3), we obtain

$$
\begin{align*}
& \frac{T}{2} \liminf _{m \rightarrow \infty} \liminf _{k \rightarrow \infty} E\left(w_{k}(T)-w_{m}(T)\right)+\frac{\lambda_{1}}{2} \liminf _{m \rightarrow \infty} \liminf _{k \rightarrow \infty} \int_{0}^{T} s E\left(w_{k}(s)-w_{m}(s)\right) d s \leq c_{1}+ \\
& \quad+2 \liminf _{k \rightarrow \infty} \int_{0}^{T}\left\langle F\left(w_{k}(s)\right)+\frac{\lambda_{1}}{2} \widehat{\Sigma}\left(w_{k}(s)\right)-F(w(s))-\frac{\lambda_{1}}{2} \widehat{\Sigma}(w(s)), 1\right\rangle d s \tag{3.9}
\end{align*}
$$

for $T \geq \frac{3+2 \lambda_{1}}{\lambda_{1}}$. Now let us estimate the right hand side of (3.9). By $(2.1),(3.1)_{1}$ and (3.2), we find that

$$
\begin{gather*}
\int_{0}^{T}\left|\left\langle F\left(w_{m}(s)\right)-F(w(s)), 1\right\rangle\right| d s \leq c_{2} \int_{0}^{T}\left\|w_{m}(s)-w(s)\right\|_{H_{0}^{1}(\Omega)} d s \leq c_{3}+c_{4}(\varepsilon) \log (T)+ \\
+\varepsilon \int_{1}^{T} s\left\|w_{m}(s)-w(s)\right\|_{H_{0}^{1}(\Omega)}^{2} d s \leq c_{3}+c_{4}(\varepsilon) \log (T)+ \\
+\varepsilon \liminf _{k \rightarrow \infty} \int_{0}^{T} s\left\|w_{m}(s)-w_{k}(s)\right\|_{H_{0}^{1}(\Omega)}^{2} d s, \quad \forall T \geq 1, \quad \forall \varepsilon>0 \tag{3.10}
\end{gather*}
$$

By the same way, we have

$$
\begin{array}{r}
\quad \int_{0}^{T}\left|\left\langle\widehat{\Sigma}\left(w_{m}(s)\right)-\widehat{\Sigma}(w(s)), 1\right\rangle\right| d s \leq c_{5}+c_{6}(\varepsilon) \log (T)+ \\
+\varepsilon \liminf _{k \rightarrow \infty} \int_{0}^{T} s\left\|w_{m}(s)-w_{k}(s)\right\|_{H_{0}^{1}(\Omega)}^{2} d s, \quad \forall T \geq 1, \quad \forall \varepsilon>0 . \tag{3.11}
\end{array}
$$

Now, choosing $\varepsilon$ small enough, by (3.9)-(3.11), we obtain

$$
\liminf _{m \rightarrow \infty} \liminf _{k \rightarrow \infty} E\left(w_{k}(T)-w_{m}(T)\right) \leq \frac{c_{7}(1+\log (T))}{T}, \quad \forall T \geq \max \left\{1, \frac{3+2 \lambda_{1}}{\lambda_{1}}\right\}
$$

Choosing $T=T_{0}$ in the last inequality we find

$$
\liminf _{n \rightarrow \infty} \liminf _{m \rightarrow \infty}\left\|S\left(t_{n}\right) \varphi_{n}-S\left(t_{m}\right) \varphi_{m}\right\|_{\mathcal{H}} \leq c_{8} \sqrt{\frac{\left(1+\log \left(T_{0}\right)\right)}{T_{0}}}
$$

and passing to the limit as $T_{0} \rightarrow \infty$ we have

$$
\liminf _{n \rightarrow \infty} \liminf _{m \rightarrow \infty}\left\|S\left(t_{n}\right) \varphi_{n}-S\left(t_{m}\right) \varphi_{m}\right\|_{\mathcal{H}}=0
$$

Similarly one can show that

$$
\begin{equation*}
\liminf _{k \rightarrow \infty} \liminf _{m \rightarrow \infty}\left\|S\left(t_{n_{k}}\right) \varphi_{n_{k}}-S\left(t_{n_{m}}\right) \varphi_{n_{m}}\right\|_{\mathcal{H}}=0 \tag{3.12}
\end{equation*}
$$

for every subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$. Now if the sequence $\left\{S\left(t_{n}\right) \varphi_{n}\right\}_{n=1}^{\infty}$ has no convergent subsequence in $\mathcal{H}$, then there exist $\varepsilon_{0}>0$ and a subsequence $\left\{n_{k}\right\}_{k=1}^{\infty}$, such that

$$
\left\|S\left(t_{n_{k}}\right) \varphi_{n_{k}}-S\left(t_{n_{m}}\right) \varphi_{n_{m}}\right\|_{\mathcal{H}} \geq \varepsilon_{0}, \quad k \neq m
$$

The last inequality contradicts (3.12).
Now since, by (2.4), the problem (1.1)-(1.3) has a strict Lyapunov function $L(w(t)):=E(w(t))+\langle F(w(t)), 1\rangle-\langle g, w(t)\rangle$, according to [4, Corollary 2.29] we have the following theorem:
Theorem 3.1. Under conditions (2.1)-(2.3), the semigroup $\{S(t)\}_{t \geq 0}$ possesses a global attractor $\mathcal{A}_{\mathcal{H}}$ in $\mathcal{H}$.
4. Existence of the global attractor in $\mathcal{H}_{1}$. To prove the existence of a global attractor in $\mathcal{H}_{1}$ we need the following lemmas:

Lemma 4.1. Let conditions (2.1)-(2.3) hold and $B$ be a bounded subset of $\mathcal{H}_{1}$. Then

$$
\begin{equation*}
\operatorname{supsup}_{t \geq 0}\|S(t) \varphi\|_{\mathcal{H}_{1}}<\infty \tag{4.1}
\end{equation*}
$$

Proof. We use the formal estimates which can be justified by Galerkin's approximations. Multiplying both sides of (1.1) by $-\Delta w_{t}$ and integrating over $\Omega$, we obtain

$$
\begin{gather*}
\frac{d}{d t}\left(\frac{1}{2}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\langle g, \Delta w(t)\rangle\right)+ \\
+\frac{1}{2}\left\|\Delta w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} \leq\|f(w(t))\|_{L_{2}(\Omega)}^{2}+ \\
+\left\|\sigma(w(t)) w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}, \quad \forall t \geq 0 \tag{4.2}
\end{gather*}
$$

By (2.1) and (2.3), we have

$$
\begin{gather*}
\|f(w(t))\|_{L_{2}(\Omega)}^{2}+\left\|\sigma(w(t)) w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} \leq c_{1}\left(1+\|w(t)\|_{L_{10}(\Omega)}^{10}+\left\|w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right)+ \\
+c_{2}\|w(t)\|_{L_{10}(\Omega)}^{8}\left\|w_{t}(t)\right\|_{L_{10}(\Omega)}^{2}, \forall t \geq 0 \tag{4.3}
\end{gather*}
$$

On the other hand, by the embedding and interpolation theorems, we find

$$
\begin{equation*}
\|\varphi\|_{L_{10}(\Omega)} \leq c_{2}\|\varphi\|_{H^{\frac{6}{5}}(\Omega)} \leq c_{3}\|\varphi\|_{H^{2}(\Omega)}^{\frac{1}{5}}\|\varphi\|_{H^{1}(\Omega)}^{\frac{4}{5}}, \quad \forall \varphi \in H^{2}(\Omega) \tag{4.4}
\end{equation*}
$$

Taking into account (2.4), (4.3) and (4.4) in (4.2) and applying Gronwall's lemma, we obtain

$$
\begin{equation*}
\left\|\left(w(t), w_{t}(t)\right)\right\|_{\mathcal{H}_{1}} \leq C(t, r)\left(1+\left\|\left(w_{0}, w_{1}\right)\right\|_{\mathcal{H}_{1}}\right), \quad \forall t \geq 0 \tag{4.5}
\end{equation*}
$$

where $C: R_{+} \times R_{+} \rightarrow R_{+}$is a nondecreasing function with respect to each variable and $r=\sup _{\varphi \in B}\|\varphi\|_{\mathcal{H}}$. Since the embedding $\mathcal{H}_{1} \subset \mathcal{H}$ is compact, by (4.5), it follows that the set $\underset{0 \leq t \leq T}{\cup} S(t) B$ is a relatively compact subset of $\mathcal{H}$, for every $T>0$. This together with Lemma 3.1 implies the relative compactness of $\cup_{t \geq 0} S(t) B$ in $\mathcal{H}$. Now using this fact let us estimate $\|w(t)\|_{L_{10}(\Omega)}$ :

$$
\|w(t)\|_{L_{10}(\Omega)}^{10} \leq m^{10} \operatorname{mes}(\Omega)+\int_{\{x: x \in \Omega,|w(t, x)|>m\}}|w(t, x)|^{10} d x \leq
$$

$$
\begin{gathered}
\leq m^{10} \operatorname{mes}(\Omega)+\left(\int_{\{x: x \in \Omega,|w(t, x)|>m\}}|w(t, x)|^{6} d x\right)^{\frac{1}{3}}\|w(t)\|_{L_{12}(\Omega)}^{8} \leq \\
\leq m^{10} \operatorname{mes}(\Omega)+c_{4}\left(\int_{\{x: x \in \Omega,|w(t, x)|>m\}}|w(t, x)|^{6} d x\right)^{\frac{1}{3}}\|w(t)\|_{H^{2}(\Omega)}^{2}\|w(t)\|_{H^{1}(\Omega)}^{6} .
\end{gathered}
$$

So for any $\varepsilon>0$ there exists $c_{\varepsilon}>0$ such that

$$
\|w(t)\|_{L_{10}(\Omega)} \leq \varepsilon\|\Delta w(t)\|_{L_{2}(\Omega)}^{\frac{1}{5}}+c_{\varepsilon}, \forall t \geq 0
$$

which together with (4.2)-(4.4) yields

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\langle g, \Delta w(t)\rangle\right)+\frac{1}{4}\left\|\Delta w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} \leq \\
& \quad \leq c_{5}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\varepsilon\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\widetilde{c}_{\varepsilon}+c_{5}, \quad \forall t \geq 0
\end{aligned}
$$

Now multiplying both sides of (1.1) by $-\mu \Delta w(\mu \in(0,1))$ and integrating over $\Omega$, we obtain

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{1}{2} \mu\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\mu\left\langle\nabla w_{t}(t), \nabla w(t)\right\rangle\right)+\mu\|\Delta w(t)\|_{L_{2}(\Omega)}^{2} \leq \\
\leq \mu\|g\|_{L_{2}(\Omega)}\|\Delta w(t)\|_{L_{2}(\Omega)}+\mu\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\|\sigma(w(t)) w_{t}(t)\right\|_{L_{2}(\Omega)}\|\Delta w(t)\|_{L_{2}(\Omega)} \\
+\mu\|f(w(t))\|_{L_{2}(\Omega)}\|\Delta w(t)\|_{L_{2}(\Omega)}, \quad \forall t \geq 0
\end{gathered}
$$

Taking into account the relative compactness of $\cup_{t \geq 0} S(t) B$, similar to the argument done above, we can say that for any $\varepsilon>0$ there exists $\widehat{c}_{\varepsilon}>0$ such that

$$
\begin{aligned}
\|f(w(t))\|_{L_{2}(\Omega)}^{2} & +\left\|\sigma(w(t)) w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} \leq \varepsilon\left(\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\left\|\Delta w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right)+ \\
& +\widehat{c}_{\varepsilon}\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\widehat{c}_{\varepsilon}, \forall t \geq 0
\end{aligned}
$$

By the last three inequalities we have

$$
\begin{gathered}
\frac{d}{d t}\left(\frac{1}{2}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}(1+\mu)\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\mu\left\langle\nabla w_{t}(t), \nabla w(t)\right\rangle+\langle g, \Delta w(t)\rangle\right) \\
\quad+\left(\frac{1}{4}-\mu c_{6}-\varepsilon\right)\left\|\Delta w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\left(\frac{1}{4} \mu-2 \varepsilon\right)\|\Delta w(t)\|_{L_{2}(\Omega)}^{2} \leq \\
\leq\left(c_{5}+\widehat{c}_{\varepsilon}\right)\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+c_{6}+\widehat{c}_{\varepsilon}+\widetilde{c}_{\varepsilon}, \forall t \geq 0
\end{gathered}
$$

Choosing $\mu$ small enough and $\varepsilon \in\left(0, \frac{1}{8} \mu\right)$, we obtain

$$
\frac{d}{d t} \Phi(t)+c_{7} \Phi(t) \leq c_{8}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} \Phi(t)+c_{8}\left(1+\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right), \forall t \geq 0
$$

where $\Phi(t)=\frac{1}{2}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}(1+\mu)\|\Delta w(t)\|_{L_{2}(\Omega)}^{2}+\mu\left\langle\nabla w_{t}(t), \nabla w(t)\right\rangle+$ $+\langle g, \Delta w(t)\rangle$. Multiplying both sides of the last inequality by $e^{\int_{0}^{t}\left(c_{7}-c_{8}\left\|\nabla w_{t}(\tau)\right\|_{L_{2}(\Omega)}^{2}\right) d \tau}$, integrating over $[0, T]$ and multiplying both sides of obtained inequality by $e^{-\int_{0}^{T}\left[c_{7}-c_{8}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right] d t}$, we find

$$
\Phi(T) \leq \Phi(0) e^{-\int_{0}^{T}\left(c_{7}-c_{8}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right) d t}+
$$

$$
+c_{8} \int_{0}^{T}\left(1+\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}\right) e^{-\int_{t}^{T}\left(c_{7}-c_{8}\left\|\nabla w_{t}(\tau)\right\|_{L_{2}(\Omega)}^{2}\right) d \tau} d t, \forall T \geq 0
$$

which together with (2.4) yields (4.1).
Lemma 4.2. Let conditions (2.1)-(2.3) hold and $B$ be a bounded subset of $\mathcal{H}_{1}$. Then every sequence of the form $\left\{S\left(t_{n}\right) \varphi_{n}\right\}_{n=1}^{\infty},\left\{\varphi_{n}\right\}_{n=1}^{\infty} \subset B$, $t_{n} \rightarrow \infty$, has a convergent subsequence in $\mathcal{H}_{1}$.
Proof. Let us decompose $\{S(t)\}_{t \geq 0}$ as $S(t)=U(t)+C(t)$, where $U(t)$ is a linear semigroup generated by the problem

$$
\left\{\begin{array}{l}
u_{t t}-\Delta u_{t}-\Delta u=0, \quad \text { in }(0, \infty) \times \Omega  \tag{4.6}\\
u=0, \quad \text { on }(0, \infty) \times \partial \Omega, \\
u(0, \cdot)=w_{0}, \quad u_{t}(0, \cdot)=w_{1}, \quad \text { in } \Omega
\end{array}\right.
$$

$C(t)$ is a solution operator of

$$
\left\{\begin{array}{lr}
v_{t t}-\Delta v_{t}-\Delta v=g(x)-f(w)-\sigma(w) w_{t}, & \text { in }(0, \infty) \times \Omega  \tag{4.7}\\
v=0, & \text { on }(0, \infty) \times \partial \Omega \\
v_{k}(0, \cdot)=0, & v_{t}(0, \cdot)=0,
\end{array}\right.
$$

(i.e. $\left(u(t), u_{t}(t)\right)=U(t)\left(w_{0}, w_{1}\right)$ and $\left.\left(v(t), v_{t}(t)\right)=C(t)\left(w_{0}, w_{1}\right)\right)$ and $\left(w(t), w_{t}(t)\right)=$ $S(t)\left(w_{0}, w_{1}\right)$. Multiplying (4.6) $)_{1}$ by ( $u_{t}-\frac{1}{2} \Delta u-\mu \Delta u_{t}-\nu t \Delta u_{t}$ ) and integrating over $\Omega$, we obtain

$$
\begin{gathered}
\frac{d}{d t}\left(E(u(t))+\frac{1}{4}\|\Delta u(t)\|_{L_{2}(\Omega)}^{2}-\frac{1}{2}\left\langle u_{t}, \Delta u\right\rangle+\frac{1}{2}(\mu+\nu t)\left\|\nabla u_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\right. \\
\left.+\frac{1}{2}(\mu+\nu t)\|\Delta u(t)\|_{L_{2}(\Omega)}^{2}\right)+\frac{1}{2}(1-\nu)\left\|\nabla u_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}(1-\nu)\|\Delta u(t)\|_{L_{2}(\Omega)}^{2}+ \\
+(\mu+\nu t)\left\|\Delta u_{t}(t)\right\|_{L_{2}(\Omega)}^{2}=0, \quad \forall t \geq 0 .
\end{gathered}
$$

Choosing $(\mu, \nu)=(1,0)$ and $(\mu, \nu)=(0,1)$ in the last equality, we find

$$
\begin{equation*}
\|U(t)\|_{\mathcal{L}\left(\mathcal{H}_{1}, \mathcal{H}_{1}\right)} \leq M e^{-\omega t}, \quad \forall t \geq 0 \tag{4.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\|U(t)\|_{\mathcal{L}\left(\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times L_{2}(\Omega), \mathcal{H}_{1}\right)} \leq \frac{M}{\sqrt{t}}, \quad \forall t>0 \tag{4.9}
\end{equation*}
$$

respectively, where $M>0$ and $\omega>0$. Also applying Duhamel's principle to (4.7), we have

$$
\begin{equation*}
C(t)\left(w_{0}, w_{1}\right)=\int_{0}^{t} U(t-s)\left(0, \Phi_{\left(w_{0}, w_{1}\right)}(s)\right) d s \tag{4.10}
\end{equation*}
$$

where $\Phi_{\left(w_{0}, w_{1}\right)}(s)=g-f(w(s))-\sigma(w(s)) w_{t}(s)$. By Lemma 4.1 and equation (1.1), it follows that the set of functions $\left\{\Phi_{\left(w_{0}, w_{1}\right)}(s):\left(w_{0}, w_{1}\right) \in B\right\}$ is precompact in $C\left([0, t] ; L_{2}(\Omega)\right)$. So, from (4.9) and (4.10) we obtain that the operator $C(t): \mathcal{H}_{1} \rightarrow$ $\mathcal{H}_{1}, t \geq 0$, is compact. Since

$$
S\left(t_{n}\right) \varphi_{n}=U(T) S\left(t_{n}-T\right) \varphi_{n}+C(T) S\left(t_{n}-T\right) \varphi_{n}
$$

for $t_{n} \geq T$, by (4.1), (4.8) and the compactness of $C(t)$, we obtain that the sequence $\left\{S\left(t_{n}\right) \varphi_{n}\right\}_{n=1}^{\infty}$ has a finite $\varepsilon$-net in $\mathcal{H}$, for every $\varepsilon>0$. This completes the proof.

Now by Lemma 4.2, similar to Theorem 3.1, we obtain the following theorem:

Theorem 4.1. Under conditions (2.1)-(2.3), the semigroup $\{S(t)\}_{t \geq 0}$ possesses a global attractor $\mathcal{A}_{\mathcal{H}_{1}}$ in $\mathcal{H}_{1}$.
5. Regularity of the $\mathcal{A}_{\mathcal{H}}$. To prove the regularity of $\mathcal{A}_{\mathcal{H}}$ we will use the method used in [9] and [10]. Since $\mathcal{A}_{\mathcal{H}}$ is invariant, by [1, p. 159], for every $\left(w_{0}, w_{1}\right) \in \mathcal{A}_{\mathcal{H}}$ there exists an invariant trajectory $\gamma=\left\{W(t)=\left(w(t), w_{t}(t)\right), t \in R\right\} \subset \mathcal{A}_{\mathcal{H}}$ such that $W(0)=\left(w_{0}, w_{1}\right)$. By an invariant trajectory we mean a curve $\gamma=\{W(t)$, $t \in R\}$ such that $S(t) W(\tau)=W(t+\tau)$ for $t \geq 0$ and $\tau \in R$ (see [1, p. 157]). Let us decompose $w(t)$ as $w(t)=u_{k}(t, s)+v_{k}(t, s)$, where

$$
\begin{align*}
& \left\{\begin{array}{cc}
v_{k t t}-\Delta v_{k t}+\sigma_{k}(w) v_{k t}-\Delta v_{k}+f_{k}(w)=g(x), & \text { in }(s, \infty) \times \Omega, \\
v_{k}=0, & \text { on }(s, \infty) \times \partial \Omega, \\
v_{k}(s, s, \cdot)=0, & v_{k t}(s, s, \cdot)=0,
\end{array},\right.  \tag{5.1}\\
& \left\{\begin{array}{lr}
u_{k t t}-\Delta u_{k t}+\sigma(w) w_{t}-\sigma_{k}(w) v_{k t}-\Delta u_{k}= & \\
=f_{k}(w)-f(w), & \text { in }(s, \infty) \times \Omega, \\
u_{k}=0, & \text { on }(s, \infty) \times \partial \Omega, \\
u_{k}(s, s, \cdot)=w(s, \cdot), & u_{k t}(s, s, \cdot)=w_{t}(s, \cdot),
\end{array} \quad \text { in } \Omega, ~, ~\right.  \tag{5.2}\\
& f_{k}(s)=\left\{\begin{array}{cc}
f(k), & s>k, \\
f(s), & |s| \leq k, \\
f(-k), & s<-k
\end{array} \quad, \quad \sigma_{k}(s)=\left\{\begin{array}{cc}
\sigma(k), & s>k, \\
\sigma(s), & |s| \leq k, \\
\sigma(-k), & s<-k
\end{array} \quad \text { and } k \in \mathbb{N} .\right.\right.
\end{align*}
$$

Now let us prove the following lemmas:
Lemma 5.1. Assume that conditions (2.1)-(2.3) are satisfied. Then $\left(v_{k}(t, s), v_{k t}(t, s)\right) \in \mathcal{H}_{1}$ and for any $k \in \mathbb{N}$ there exists $T_{k}<0$ such that

$$
\begin{equation*}
\left\|v_{k t}(t, s)\right\|_{H^{1}(\Omega)}+\left\|v_{k}(t, s)\right\|_{H^{2}(\Omega)} \leq r_{0} k^{\frac{128}{65}}, \forall s \leq t \leq T_{k} \tag{5.3}
\end{equation*}
$$

where the positive constant $r_{0}$ is independent of $k$ and $\left(w_{0}, w_{1}\right)$.
Proof. Multiplying both sides of $(5.1)_{1}$ by $v_{k t}+\mu v_{k}(\mu \in(0,1))$ and integrating over $\Omega$, we obtain

$$
\begin{gathered}
\frac{d}{d t}\left(E\left(v_{k}(t, s)\right)+\frac{\mu}{2}\left\|\nabla v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle v_{k t}(t, s), v_{k}(t, s)\right\rangle\right)+ \\
+\frac{1}{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}-\mu\left\|v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\left(\mu-c_{1} \mu^{2}\right)\left\|\nabla v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2} \leq c_{2}, \quad \forall t \geq s
\end{gathered}
$$

Choosing $\mu$ small enough in the last inequality, we find

$$
\begin{equation*}
\left\|v_{k t}(t, s)\right\|_{L_{2}(\Omega)}+\left\|v_{k}(t, s)\right\|_{H_{0}^{1}(\Omega)} \leq c_{3}, \quad \forall t \geq s \tag{5.4}
\end{equation*}
$$

Multiplying both sides of $(5.1)_{1}$ by $v_{k t}$, integrating over $\left(\tau_{1}, \tau_{2}\right) \times \Omega$ and taking into account (5.4), we have

$$
\begin{gather*}
\int_{\tau_{1}}^{\tau_{2}}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2} d t \leq c_{4}+\int_{\tau_{1}}^{\tau_{2}}\left|\left\langle f_{k}^{\prime}(w(t)) w_{t}(t), v_{k}(t, s)\right\rangle\right| d t \leq c_{4}+ \\
+c_{5} \int_{\tau_{1}}^{\tau_{2}}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)} d t, \quad \forall \tau_{2} \geq \tau_{1} \geq s . \tag{5.5}
\end{gather*}
$$

On the other hand, by (2.4), we have

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} d t<\infty \tag{5.6}
\end{equation*}
$$

which together with (5.5) yields

$$
\begin{equation*}
\int_{\tau_{1}}^{\tau_{2}}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2} d t \leq c_{6}\left(1+\left(\tau_{2}-\tau_{1}\right)^{\frac{1}{2}}\right), \quad \forall \tau_{2} \geq \tau_{1} \geq s \tag{5.7}
\end{equation*}
$$

Multiplying both sides of $(5.1)_{1}$ by $-\Delta v_{k t}-\mu \Delta v_{k}(\mu \in(0,1))$, integrating over $\Omega$ and taking into account (5.4), we have

$$
\begin{align*}
& \frac{d}{d t}\left(\frac{1}{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\left\|\Delta v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle\nabla v_{k t}(t, s), \nabla v_{k}(t, s)\right\rangle\right)+ \\
& \quad+\left(\frac{1}{2}-c_{7} \mu\right)\left\|\Delta v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\left(\mu-\mu^{2}\right)\left\|\Delta v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2} \leq c_{7}+ \\
& \quad+c_{7}\left\|\sigma_{k}(w(t)) v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+c_{7}\left\|f_{k}(w(t))\right\|_{L_{2}(\Omega)}^{2}, \forall t \geq s \tag{5.8}
\end{align*}
$$

Now let us estimate the last two terms on the right side of (5.8). By (4.4) and (5.4), we find

$$
\begin{align*}
& \left\|\sigma_{k}(w(t)) v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2} \leq\left\|\sigma_{k}(w(t))\right\|_{L_{\frac{5}{2}}(\Omega)}^{2}\left\|v_{k t}(t, s)\right\|_{L_{10}(\Omega)}^{2} \leq \\
& \leq c_{8}\left\|\sigma_{k}(w(t))\right\|_{L_{\frac{5}{2}}(\Omega)}^{2}\left\|v_{k t}(t, s)\right\|_{H^{2}(\Omega)}^{\frac{2}{5}}\left\|v_{k t}(t, s)\right\|_{H^{1}(\Omega)}^{\frac{8}{5}} \leq \\
& \leq c_{9}\left\|\sigma_{k}(w(t))\right\|_{L_{\frac{5}{2}}(\Omega)}^{4}+c_{9}\left\|\Delta v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+ \\
& \quad+\frac{1}{3 c_{7}}\left\|\Delta v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}, \forall t \geq s \tag{5.9}
\end{align*}
$$

Also by the definitions of $\sigma_{k}(\cdot)$ and $f_{k}(\cdot)$, we have

$$
\begin{align*}
& \left\|\sigma_{k}(w(t))\right\|_{L_{\frac{5}{2}}(\Omega)}^{\frac{5}{2}}=\int_{\Omega}\left|\sigma_{k}(w(t, x))\right|^{\frac{5}{2}} d x \leq \\
& \leq \int_{\{x: x \in \Omega,|w(t, x)| \leq 2 m\}}\left|\sigma_{k}(w(t, x))\right|^{\frac{5}{2}} d x+\int_{\{x: x \in \Omega,|w(t, x)|>2 m\}}\left|\sigma_{k}(w(t, x))\right|^{\frac{5}{2}} d x \leq \\
& \leq c_{10} m^{4} \int_{\{x: x \in \Omega,|w(t, x)| \leq 2 m\}}\left(1+|w(t, x)|^{6}\right) d x+ \\
& +c_{10} k^{4} \int_{\{x: x \in \Omega,|w(t, x)|>2 m\}}|w(t, x)|^{6} d x \leq c_{11} m^{4}+ \\
& +c_{10} k^{4} \int_{\{x: x \in \Omega,|w(t, x)|>2 m\}}|w(t, x)|^{6} d x, \quad \forall k \in \mathbb{N}, \forall m \geq 1 \text { and } \forall t \in R .  \tag{5.10}\\
& \left\|f_{k}(w(t))\right\|_{L_{2}(\Omega)}^{2}=\int_{\Omega}\left|f_{k}(w(t, x))\right|^{2} d x \leq \\
& \leq c_{12} m^{4} \int_{\{x: x \in \Omega,|w(t, x)| \leq 2 m\}}\left(1+|w(t, x)|^{6}\right) d x+ \\
& +c_{12} k^{4} \int_{\{x: x \in \Omega,|w(t, x)|>2 m\}}|w(t, x)|^{6} d x \leq c_{13} m^{4}+
\end{align*}
$$

$$
\begin{equation*}
c_{12} k^{4} \int_{\{x: x \in \Omega,|w(t, x)|>2 m\}}|w(t, x)|^{6} d x, \quad \forall k \in \mathbb{N}, \forall m \geq 1 \text { and } \forall t \in R \tag{5.11}
\end{equation*}
$$

Now denote $w^{(m)}(t, x)=\left\{\begin{array}{cc}w(t, x)-m, & w(t, x)>m \\ 0, & |w(t, x)| \leq m \\ w(t, x)+m, & w(t, x)<-m\end{array}\right.$. Since,

$$
|w(t, x)|<2\left|w^{(m)}(t, x)\right|, \quad \forall(t, x) \in\{(t, x) \in R \times \Omega, \quad|w(t, x)|>2 m\}
$$

we have

$$
\begin{gather*}
\int_{\{x: x \in \Omega,}|w(t, x)|^{6} d x \leq 2^{6} \int_{\{x(t, x) \mid>2 m\}}\left|w^{m}(t, x)\right|^{6} d x \leq \\
\leq 2^{6} \int_{\Omega}\left|w^{m}(t, x)\right|^{6} d x \leq c_{14}\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}^{2}, \quad \forall t \in R \tag{5.12}
\end{gather*}
$$

So, by (5.8)-(5.12), it follows that

$$
\begin{gather*}
\frac{d}{d t}\left(\frac{1}{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\left\|\Delta v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle\nabla v_{k t}(t, s), \nabla v_{k}(t, s)\right\rangle\right)+ \\
+\left(\frac{1}{6}-c_{7} \mu\right)\left\|\Delta v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\left(\mu-\mu^{2}\right)\left\|\Delta v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2} \leq c_{15} m^{\frac{32}{5}}+ \\
\quad+c_{15}\left\|\Delta v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+ \\
\quad+c_{15} k^{\frac{32}{5}}\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}^{2}, \quad \forall k \in \mathbb{N}, \forall m \geq 1 \text { and } \forall t \geq s . \tag{5.13}
\end{gather*}
$$

On the other hand, testing (1.1) by $w^{(m)}$, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left\langle w_{t}(t), w^{(m)}(t)\right\rangle+\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}^{2}-\left\|w_{t}^{(m)}(t)\right\|_{L_{2}(\Omega)}^{2}+\left\langle\nabla w_{t}(t), \nabla w^{(m)}(t)\right\rangle= \\
& \quad=\left\langle g, w^{(m)}(t)\right\rangle-\left\langle\sigma(w(t)) w_{t}(t), w^{(m)}(t)\right\rangle-\left\langle f(w(t)), w^{(m)}(t)\right\rangle, \forall t \in R . \tag{5.14}
\end{align*}
$$

Let us estimate each term on the right hand side of (5.14). By the definition of $w^{(m)}$, we have

$$
\begin{aligned}
\left\langle g, w^{(m)}(t)\right\rangle \leq & \left(\int_{\{x: x \in \Omega,|w(t, x)|>m\}}|g(x)|^{\frac{6}{5}} d x\right)^{\frac{5}{6}}\left\|w^{(m)}(t)\right\|_{L_{6}(\Omega)} \leq \\
& \leq \frac{c_{16}}{m^{2}}\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}, \quad \forall t \in R .
\end{aligned}
$$

By (2.3), it follows that

$$
\left|\left\langle\sigma(w(t)) w_{t}(t), w^{(m)}(t)\right\rangle\right| \leq c_{17}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}, \quad \forall t \in R .
$$

Also by (2.3), we obtain

$$
\begin{gathered}
\left\langle f(w(t)), w^{(m)}(t)\right\rangle>-\lambda_{1}\left\langle w(t), w^{(m)}(t)\right\rangle \geq \\
\geq-\lambda_{1}\left(\int_{\{x: x \in \Omega,|w(t, x)|>m\}}|w(t, x)|^{\frac{6}{5}} d x\right)^{\frac{5}{6}}\left\|w^{(m)}(t)\right\|_{L_{6}(\Omega)} \geq
\end{gathered}
$$

$$
\geq-\frac{c_{18}}{m^{4}}\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}, \quad \forall t \in R
$$

for large enough $m$. Taking into account the last three inequalities in (5.14), we have

$$
\begin{gather*}
\frac{d}{d t}\left\langle w_{t}(t), w^{(m)}(t)\right\rangle+c_{19}\left\|\nabla w^{(m)}(t)\right\|_{L_{2}(\Omega)}^{2} \leq \\
\leq c_{20}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\frac{c_{20}}{m^{4}}, \quad \forall t \in R . \tag{5.15}
\end{gather*}
$$

for large enough $m$. Now multiplying (5.15) by $\frac{c_{15}}{c_{19}} k^{\frac{32}{5}}$, adding to (5.13) and then choosing $m=k^{\frac{8}{13}}$, we get

$$
\begin{gathered}
\frac{d}{d t} \Lambda_{k, s}(t)+\widehat{c}_{1} \Lambda_{k, s}(t) \leq \widehat{c}_{2} \Lambda_{k, s}(t)\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+ \\
+\widehat{c}_{2} k^{\frac{256}{65}}+\widehat{c}_{2} k^{\frac{32}{5}}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}+\widehat{c}_{2} k^{\frac{64}{5}}\left|\left\langle w_{t}(t), w^{\left(k^{\frac{13}{8}}\right)}(t)\right\rangle\right|^{2}, \quad \forall t \geq s
\end{gathered}
$$

for large enough $k$ and small enough $\mu$, where $\widehat{c}_{1}$ and $\widehat{c}_{2}$ are positive constants and $\Lambda_{k, s}(t):=\frac{1}{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\frac{1}{2}\left\|\Delta v_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle\nabla v_{k t}(t, s), \nabla v_{k}(t, s)\right\rangle+$ $\frac{c_{15}}{c_{16}} k^{\frac{32}{5}}\left\langle w_{t}(t), w^{\left(\frac{8}{13}\right)}(t)\right\rangle$. Since

$$
\begin{aligned}
\left|\left\langle w_{t}(t), w^{\left(k \frac{8}{13}\right)}(t)\right\rangle\right| \leq & \left\|w_{t}(t)\right\|_{L_{6}(\Omega)}\left(\int_{\left\{x: x \in \Omega,|w(t, x)|>k \frac{8}{13}\right\}}|w(t, x)|^{\frac{6}{5}} d x\right)^{\frac{5}{6}} \leq \\
& \leq \frac{\widehat{c}_{3}}{k^{\frac{32}{13}}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}, \quad \forall t \in R,}
\end{aligned}
$$

by the last differential inequality, we obtain

$$
\begin{aligned}
& \frac{d}{d t} \Lambda_{k, s}(t)+\widehat{c}_{1} \Lambda_{k, s}(t) \leq \widehat{c}_{2} \Lambda_{k, s}(t)\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+ \\
& \quad+\widehat{c}_{4} k^{\frac{256}{65}}+\widehat{c}_{4} k^{8}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2}, \quad \forall t \geq s
\end{aligned}
$$

Multiplying both sides of the above inequality by $e^{\int_{s}^{t}\left[\widehat{c}_{1}-\widehat{c}_{2}\left\|\nabla v_{k t}(\tau, s)\right\|_{L_{2}(\Omega)}^{2}\right] d \tau}$, integrating over $[s, T]$, multiplying both sides of the obtained inequality by $e^{-\int_{s}^{T}\left[\widehat{c}_{1}-\widehat{c}_{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}\right] d t}$ and taking into account (5.7), we find

$$
\begin{align*}
& \Lambda_{k, s}(T) \leq \widehat{c}_{5} k^{\frac{32}{5}}\left|\left\langle w_{t}(s), w^{(m)}(s)\right\rangle\right|+\widehat{c}_{5} k^{\frac{256}{65}}+ \\
& \quad+\widehat{c}_{5} k^{8} \int_{s}^{T}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} d t, \quad \forall T \geq s \tag{5.16}
\end{align*}
$$

for large enough $k$ and small enough $\mu$. On the other hand, since $\mathcal{A}_{\mathcal{H}}$ is compact subset of $\mathcal{H}$ and problem (1.1)-(1.3) admits a strict Lyapunov function, we have

$$
\begin{equation*}
w_{t}(t) \rightarrow 0 \text { strongly in } L_{2}(\Omega) \text { as } t \rightarrow-\infty \tag{5.17}
\end{equation*}
$$

Thus, by (5.6) and (5.17), for any $k \in \mathbb{N}$ there exists $T_{k}=T_{k}(\gamma)<0$ such that

$$
\widehat{c}_{5} k^{\frac{32}{5}}\left|\left\langle w_{t}(T), w^{(m)}(T)\right\rangle\right|+\widehat{c}_{5} k^{8} \int_{-\infty}^{T}\left\|\nabla w_{t}(t)\right\|_{L_{2}(\Omega)}^{2} d t \leq 1, \quad \forall T \leq T_{k}
$$

which together with (5.16) yields (5.3).
Lemma 5.2. Assume that conditions (2.1)-(2.3) are satisfied. Then there exists $k_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
\lim _{s \rightarrow-\infty}\left(\left\|u_{k_{0} t}(t, s)\right\|_{L_{2}(\Omega)}+\left\|u_{k_{0}}(t, s)\right\|_{H^{1}(\Omega)}\right)=0, \quad \forall t \leq T_{k_{0}} \tag{5.18}
\end{equation*}
$$

Proof. Multiplying both sides of $(5.2)_{1}$ by $u_{k t}+\mu u_{k}(\mu \in(0,1))$ and integrating over $\Omega$, we obtain

$$
\begin{align*}
& \frac{d}{d t}\left(E\left(u_{k}(t, s)\right)+\frac{\mu}{2}\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle u_{k t}(t, s), u_{k}(t, s)\right\rangle\right)+ \\
& +\left\|\nabla u_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}-\mu\left\|u_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2} \leq \\
& \leq\left\|\sigma(w(t))-\sigma_{k}(w(t))\right\|_{L_{\frac{3}{2}}(\Omega)}\left\|v_{k t}(t, s)\right\|_{L_{6}(\Omega)}\left\|u_{k t}(t, s)\right\|_{L_{6}(\Omega)}+ \\
& \quad+\mu\|\sigma(w(t))\|_{L_{\frac{3}{2}}(\Omega)}\left\|u_{k t}(t, s)\right\|_{L_{6}(\Omega)}\left\|u_{k}(t, s)\right\|_{L_{6}(\Omega)}+ \\
& +\mu\left\|\sigma(w(t))-\sigma_{k}(w(t))\right\|_{L_{\frac{3}{2}}(\Omega)}\left\|v_{k t}(t, s)\right\|_{L_{6}(\Omega)}\left\|u_{k}(t, s)\right\|_{L_{6}(\Omega)}+ \\
& \quad+\left\|f(w(t))-f_{k}(w(t))\right\|_{L_{\frac{6}{5}}(\Omega)}\left\|u_{k t}(t, s)\right\|_{L_{6}(\Omega)}+ \\
& \quad+\mu\left\|f(w(t))-f_{k}(w(t))\right\|_{L_{\frac{6}{5}}(\Omega)}\left\|u_{k}(t, s)\right\|_{L_{6}(\Omega)}, \quad \forall t \geq s . \tag{5.19}
\end{align*}
$$

Taking into account (2.4) in (5.19) and choosing $\mu$ small enough, we find

$$
\begin{gather*}
\frac{d}{d t}\left(E\left(u_{k}(t, s)\right)+\frac{\mu}{2}\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle u_{k t}(t, s), u_{k}(t, s)\right\rangle\right)+ \\
+c_{1}\left(E\left(u_{k}(t, s)\right)+\frac{\mu}{2}\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}+\mu\left\langle u_{k t}(t, s), u_{k}(t, s)\right\rangle\right) \leq \\
\quad \leq c_{2}\left\|\sigma(w(t))-\sigma_{k}(w(t))\right\|_{L_{\frac{3}{2}}(\Omega)}^{2}\left\|v_{k t}(t, s)\right\|_{L_{6}(\Omega)}^{2}+ \\
\quad+c_{2}\left\|f(w(t))-f_{k}(w(t))\right\|_{L_{\frac{6}{5}}(\Omega)}^{2}, \quad s \leq t \leq T_{k}, \tag{5.20}
\end{gather*}
$$

where $c_{1}$ and $c_{2}$ are positive constants. Now let us estimate the terms on the right side of (5.20). Since $H^{\frac{3}{2}+\varepsilon}(\Omega) \subset C(\bar{\Omega})$ and

$$
\|\varphi\|_{H^{\frac{3}{2}+\varepsilon}(\Omega)} \leq c_{3}(\varepsilon)\|\varphi\|_{H^{1}(\Omega)}^{\frac{1}{2}-\varepsilon}\|\varphi\|_{H^{2}(\Omega)}^{\frac{1}{2}+\varepsilon}, \quad \forall \varphi \in H^{2}(\Omega), \quad \forall \varepsilon \in\left(0, \frac{1}{2}\right]
$$

from (5.3) and (5.4) it follows that

$$
\left\|v_{k}(t, s)\right\|_{C(\bar{\Omega})} \leq \frac{1}{2} k, \quad s \leq t \leq T_{k}
$$

for large enough $k$. The last inequality together with (2.1)-(2.4) yields that

$$
\begin{aligned}
\| \sigma(w(t))- & \sigma_{k}(w(t)) \|_{L_{\frac{3}{2}}^{2}(\Omega)}^{\frac{3}{2}} \leq c_{4} \int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x \leq \\
& \leq c_{5}\left(\int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x\right)^{\frac{1}{4}} \leq \\
& \leq c_{5}\left(\int_{\left\{x: x \in \Omega,\left|u_{k}(t, s, x)\right|>\left|v_{k}(t, s, x)\right|\right\}}|w(t, x)|^{6} d x\right)^{\frac{1}{4}} \leq
\end{aligned}
$$

$$
\begin{gather*}
\leq c_{6}\left(\int_{\left\{x: x \in \Omega,\left|u_{k}(t, s, x)\right|>\left|v_{k}(t, s, x)\right|\right\}}\left|u_{k}(t, s, x)\right|^{6} d x\right)^{\frac{1}{4}} \leq \\
\leq c_{6}\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{\frac{3}{2}}, \quad s \leq t \leq T_{k} \tag{5.21}
\end{gather*}
$$

and

$$
\begin{align*}
& \left\|f(w(t))-f_{k}(w(t))\right\|_{L_{\frac{6}{5}}^{5}(\Omega)}^{\frac{6}{5}} \leq c_{7} \int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x \leq \\
& \leq c_{8}\left(\int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x\right)^{\frac{4}{5}} \times \\
& \times\left(\int_{\left\{x: x \in \Omega,\left|u_{k}(t, s, x)\right|>\left|v_{k}(t, s, x)\right|\right\}}|w(t, x)|^{6} d x\right)^{\frac{1}{5}} \leq \\
& \leq c_{9}\left(\int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x\right)^{\frac{4}{5}} \times \\
& \times\left(\int_{\left\{x: x \in \Omega,\left|u_{k}(t, s, x)\right|>\left|v_{k}(t, s, x)\right|\right\}}\left|u_{k}(t, s, x)\right|^{6} d x\right)^{\frac{1}{5}} \leq \\
& \leq c_{10}\left(\int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x\right)^{\frac{4}{5}}\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{\frac{6}{5}}, \quad s \leq t \leq T_{k}, \tag{5.22}
\end{align*}
$$

for large enough $k$. On the other hand, since $\mathcal{A}_{\mathcal{H}}$ is compact subset of $\mathcal{H}$ and $\left(w(t), w_{t}(t)\right) \in \mathcal{A}_{\mathcal{H}}$, we have

$$
\begin{equation*}
\sup _{t \in R} \int_{\{x: x \in \Omega,|w(t, x)|>k\}}|w(t, x)|^{6} d x \rightarrow 0 \text { as } k \rightarrow \infty \tag{5.23}
\end{equation*}
$$

Thus choosing $\mu$ small enough, $k$ large enough and taking into account (5.21)-(5.23) in (5.20), we obtain

$$
\frac{d}{d t} \widetilde{\Lambda}_{k, s}(t)+\widehat{c}_{1} \widetilde{\Lambda}_{k, s}(t) \leq \widehat{c}_{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2} \widetilde{\Lambda}_{k, s}(t), s \leq t \leq T_{k}
$$

where $\widehat{c}_{1}$ and $\widehat{c}_{2}$ are positive constants and $\widetilde{\Lambda}_{k, s}(t)=E\left(u_{k}(t, s)\right)+\frac{\mu}{2}\left\|\nabla u_{k}(t, s)\right\|_{L_{2}(\Omega)}^{2}$ $+\mu\left\langle u_{k t}(t, s), u_{k}(t, s)\right\rangle$. Now multiplying both sides of the last inequality by $e^{\int_{s}^{t}\left[\widehat{c}_{1}-\widehat{c}_{2}\left\|\nabla v_{k t}(\tau, s)\right\|_{L_{2}(\Omega)}^{2}\right] d \tau}$, integrating over $\left[s, T_{k}\right]$ and multiplying both sides of the obtained inequality by $e^{-\int_{s}^{T_{k}}\left[\widehat{c}_{1}-\widehat{c}_{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}\right] d t}$, we find

$$
\widetilde{\Lambda}_{k, s}(T) \leq \widetilde{\Lambda}_{k, s}(s) e^{-\int_{s}^{T_{k}}\left[\widehat{c}_{1}-\widehat{c}_{2}\left\|\nabla v_{k t}(t, s)\right\|_{L_{2}(\Omega)}^{2}\right] d t}, s \leq t \leq T_{k}
$$

which together with (5.7) yields (5.18).

By Lemma 5.1 and Lemma 5.2, we have $\left(w\left(T_{k_{0}}\right), w_{t}\left(T_{k_{0}}\right)\right) \in \mathcal{H}_{1}$ and

$$
\left\|w_{t}\left(T_{k_{0}}\right)\right\|_{H^{1}(\Omega)}+\left\|w\left(T_{k_{0}}\right)\right\|_{H^{2}(\Omega)} \leq \widehat{r}_{0}
$$

where $\widehat{r}_{0}$ is independent of $\left(w_{0}, w_{1}\right)$. Now since $w(t, x)$ satisfies (1.1)-(1.3) on $\left(T_{k_{0}}, \infty\right) \times \Omega$, with initial data $\left(w\left(T_{k_{0}}\right), w_{t}\left(T_{k_{0}}\right)\right)$, applying Lemma 4.1 and taking into account the last inequality, we find $\left(w_{0}, w_{1}\right) \in\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$ and

$$
\left\|\left(w_{0}, w_{1}\right)\right\|_{H^{2}(\Omega) \times H^{1}(\Omega)} \leq R_{0},
$$

where the positive constant $R_{0}$ is independent of $\left(w_{0}, w_{1}\right)$. So $\mathcal{A}_{\mathcal{H}}$ is a bounded subset of $\left(H^{2}(\Omega) \cap H_{0}^{1}(\Omega)\right) \times H_{0}^{1}(\Omega)$ and that is why it coincides with $\mathcal{A}_{\mathcal{H}_{1}}$.

Acknowledgments. The author is grateful to the referees for their many helpful comments and suggestions.

## REFERENCES

[1] A. V. Babin and M. I. Vishik, "Attractors of Evolution Equations," Studies in Mathematics and its Applications, 25, North-Holland Publishing Co., Amsterdam, 1992.
[2] A. N. Carvalho and J. W. Cholewa, Attractors for strongly damped wave equations with critical nonlinearities, Pacific J. Math., 207 (2002), 287-310.
[3] I. Chueshov and S. Kolbasin, Long-time dynamics in plate models with strong nonlinear damping, arXiv:1010. 4991.
[4] I. Chueshov and I. Lasiecka, Long-time behavior of second order evolution equations with nonlinear damping, Memoirs of AMS, 195 (2008).
[5] M. Conti and V. Pata, On the regulariaty of global attractors, Discrete Contin. Dynam. Systems, 25 (2009), 1209-1217.
[6] B. Duffy, P. Freitas and M. Grinfeld, Memory driven instability in a diffusion process, SIAM J. Math. Anal., 33 (2002), 1090-1106.
[7] V. Kalantarov, Attractors for some nonlinear problems of mathematical physics, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 152 (1986), 50-54.
[8] V. Kalantarov and S. Zelik, Finite-dimensional attractors for the quasi-linear strongly-damped wave equation, J. Diff. Equations, 247 (2009), 1120-1155.
[9] A. Kh. Khanmamedov, Global attractors for 2-D wave equations with displacement-dependent damping, Math. Methods Appl. Sci., 33 (2010), 177-187.
[10] A. Kh. Khanmamedov, Remark on the regularity of the global attractor for the wave equation with nonlinear damping, Nonlinear Analysis, 72 (2010), 1993-1999.
[11] A. Kh. Khanmamedov, A strong global attractor for 3-D wave equations with displacement dependent damping, Appl. Math. Letters, 23 (2010), 928-934.
[12] J.-L. Lions and E. Magenes, "Non-homogeneous Boundary Value Problems and Applications," 1, Springer-Verlag, New York-Heidelberg, 1972.
[13] W. E. Olmstead, S. H. Davis, S. Rosenblat and W. L. Kath, Bifurcation with memory, SIAM J. Appl. Math., 46 (1986), 171-188.
[14] V. Pata and M. Squassina, On the strongly damped wave equation, Commun. Math. Phys., 253 (2005), 511-533.
[15] V. Pata and S. Zelik, Smooth attractors for strongly damped wave equations, Nonlinearity, 19 (2006), 1495-1506.
[16] V. Pata and S. Zelik, Global and exponential attractors for 3-D wave equations with displacement dependent damping, Math. Methods Appl. Sci., 29 (2006), 1291-1306.
[17] R. Temam, "Infinite-Dimensional Dynamical Systems in Mechanics and Physics," Applied Mathematical Sciences, 68, Springer-Verlag, New York, 1988.
[18] J. Simon, Compact sets in the space $L_{p}(0, T ; B)$, Annali Mat. Pura Appl., 146 (1987), 65-96.
[19] C. Sun, D. Cao and J. Duan, Non-autonomous wave dynamics with memory-asymptotic regularity and uniform attractor, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 743-761.
[20] M. Yang and C. Sun, Attractors for strongly damped wave equations, Nonlinear Analysis: Real World Applications, 10 (2009), 1097-1100.
[21] S. Zelik, Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent, Commun. Pure Appl. Anal., 3 (2004), 921-934.
[22] S. Zhou, Global attractor for strongly damped nonlinear wave equations, Funct. Diff. Eqns. 6 (1999), 451-470.

Received March 2010; revised December 2010
E-mail address: azer@hacettepe.edu.tr; azer_khan@yahoo.com


[^0]:    2000 Mathematics Subject Classification. 35B41, 35L05, 35L75.
    Key words and phrases. Attractors, strongly damped wave equations.

