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Abstract. In this paper the long time behaviour of the solutions of the 3-D
strongly damped wave equation is studied. It is shown that the semigroup
generated by this equation possesses a global attractor in H1

0 (Ω)× L2(Ω) and

then it is proved that this is also a global attractor in (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω).

1. Introduction. We consider the following initial-boundary value problem for the
strongly damped wave equation:

wtt −∆wt + σ(w)wt −∆w + f(w) = g(x) in (0,∞)× Ω, (1.1)

w = 0 on (0,∞)× ∂Ω, (1.2)

w(0, ·) = w0 , wt(0, ·) = w1 in Ω, (1.3)

where Ω ⊂ R3 is a bounded domain with sufficiently smooth boundary and g ∈
L2(Ω).

As shown in [6] and [13], equation (1.1) is related to the following reaction-
diffusion equation with memory:

wt(t, x) =

t∫

−∞

K(t, s)∆w(s, x)ds − f(w(t, x)) + g(x). (1.4)

Namely, if K(t, s) = 1−α
λ

e−
t−s
λ + 2αδ(t− s) then (1.4) can be transformed into

λwtt − αλ∆wt + (1 + λf ′(w))wt −∆w + f(w) = g,

where λ > 0, α ∈ [0, 1) and δ is a Dirac delta function. This equation is interesting
from a physical viewpoint as a model describing the flow of viscoelastic fluids (see
[6] and [13] for details).

When σ(·) ≡ 0 the equation (1.1) becomes

wtt −∆wt −∆w + f(w) = g. (1.5)

The long time behaviour (in terms of attractors) of solutions in this case has been
studied by many authors (see [2], [5], [7], [14], [15], [19], [22] and references therein).
In [14] the existence of a global attractor for (1.5) with critical source term (i.e. in
the case when the growth of f is of order 5) was proved. However, the regularity of
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the global attractor in that article was established only in the subcritical case. For
the critical case, the regularity of the global attractor of (1.5) was proved in [15],
under the assumptions

f ∈ C1(R), |f ′(s)| ≤ c(1 + |s|4), ∀s ∈ R and lim inf
|s|→∞

f ′(s) > −λ1 (1.6)

or

f ∈ C2(R), |f ′′(s)| ≤ c(1 + |s|3), ∀s ∈ R and lim inf
|s|→∞

f(s)

s
> −λ1, (1.7)

where λ1 is a first eigenvalue of −∆ with zero Dirichlet data. In that article the
authors obtained a regular estimate for wtt (when w(t, x) is a weak solution of (1.5))
and then proved the asymptotic regularity of the solution of the non-autonomous
equation

−∆wt −∆w + f(w) = g − wtt.

In [5] and [19], the regularity of the global attractor of (1.5) was proved under the
following weaker condition on the source term:

f ∈ C(R), |f(u)−f(v)| ≤ c(1+ |u|4+ |v|4)|u−v|, ∀u, v ∈ R and lim inf
|s|→∞

f(s)

s
> −λ1.

In [8], the authors investigated the weak attractor for the quasi-linear strongly
damped equation

wtt −∆wt −∆w + f(w) = ∇ · ϕ′(∇w) + g

under the following conditions on the nonlinear functions f and ϕ:

f ∈ C1(R), − C + a1 |s|q ≤ f ′(s) ≤ C |s|q , ∀s ∈ R,

ϕ ∈ C2(R3, R), a2 |η|p−1 |ξ|2 ≤
3∑

i,j=1

∂2ϕ(η)

∂ηi∂ηj
ξiξj ≤ a3(1 + |η|p−1

) |ξ|2 , ∀ξ, η ∈ R3,

for some ai > 0, (i = 1, 2, 3), C > 0, q > 0 and p ∈ [1, 5). When ∂2ϕ
∂ηi∂ηj

= 0,

(i, j = 1, 2, 3), the strong attractor has also been studied. Recently, in [3], the
authors have studied the global attractor for the strongly damped abstract equation

wtt +D(w,wt) +Aw + F (w) = 0.

However, the approaches of the articles mentioned above, in general, do not seem
to be applicable to (1.1). The difficulty is caused by the term σ(w)wt , when the
function σ(·) is not differentiable and the growth condition imposed on σ(·) is crit-
ical. In this paper we prove the existence of the global attractors for (1.1)-(1.3)
in H1

0 (Ω) × L2(Ω) and (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω). Then using the embedding

H
3
2+ε(Ω) ⊂ C(Ω) we show that these attractors coincide.

2. Well-posedness and the statement of the main result. We start with the
conditions on nonlinear terms f and σ.

• f ∈ C(R), |f(s)− f(t)| ≤ c(1 + |s|4 + |t|4) |s− t| , ∀s, t ∈ R, (2.1)

• lim inf
|s|→∞

f(s)

s
> −λ1, where λ1 = inf

ϕ∈H1
0(Ω),ϕ 6=0

‖∇ϕ‖2L2(Ω)

‖ϕ‖2L2(Ω)

, (2.2)

• σ ∈ C(R), σ(s) ≥ 0, |σ(s)| ≤ c(1 + |s|4), ∀s ∈ R. (2.3)

By the standard Galerkin’s method it is easy to prove the following existence the-
orem:
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Theorem 2.1. Let conditions (2.1)-(2.3) hold. Then for every T > 0 and every
(w0, w1) ∈ H := H1

0 (Ω)× L2(Ω), the problem (1.1)-(1.3) admits a weak solution

w ∈ C([0, T ];H1
0 (Ω)), wt ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H

1
0(Ω)),

which satisfies the following energy equality

E(w(t)) +

t∫

s

‖∇wt(τ)‖2L2(Ω) dτ +

t∫

s

〈σ(w(τ))wt(τ), wt(τ)〉 dτ + 〈F (w(t)), 1〉 −

− 〈g, w(t)〉 = E(w(s)) + 〈F (w(s)), 1〉 − 〈g, w(s)〉 , 0 ≤ s ≤ t ≤ T, (2.4)

where E(w(t)) = 1
2 (‖∇w(t)‖2L2(Ω)+‖wt(t)‖2L2(Ω)), 〈u, v〉 =

∫
Ω

u(x)v(x)dx and F (w) =

w∫
0

f(u)du.

Now using the method of [16, Proposition 2.2] let us prove the following unique-
ness theorem:

Theorem 2.2. Let conditions (2.1)-(2.3) hold. If w(t, ·) and ŵ(t, ·) are the weak
solutions of (1.1)-(1.3), determined by Theorem 2.1, with initial data (w0, w1) and
(ŵ0, ŵ1) respectively, then

‖w(T )− ŵ(T )‖2H1(Ω) + ‖wt(T )− ŵt(T )‖2H−1(Ω) ≤

≤ c(T,R)
(
‖w0 − ŵ0‖H1(Ω) + ‖w1 − ŵ1‖H−1(Ω)

)

where c : R+ ×R+ → R+ is a nondecreasing function with respect to each variable
and R = max {‖(w0, w1)‖H , ‖(ŵ0, ŵ1)‖H}.
Proof. By (2.1)-(2.4), it follows that

‖(w(t), wt(t))‖H + ‖(ŵ(t), ŵt(t))‖H ≤ c1(R), ∀t ≥ 0.

Denote u(t, ·) = w(t, ·)− ŵ(t, ·) and û(t, ·) =
t∫
0

u(τ, ·)dτ . Integrating (1.1) for w(t, ·)

and ŵ(t, ·) on [0, t] and taking the difference, we have

ut −∆u+Σ(w) − Σ(ŵ)−∆û +

t∫

0

(f(w(τ, )) − f(ŵ(τ, ))) dτ =

= Σ(w0)− Σ(ŵ0)−∆(w0 − ŵ0) + w1 − ŵ1, ∀t ≥ 0, (2.5)

where Σ(w) =
w∫
0

σ(s)ds. Testing (2.5) by u and taking into account (2.1), (2.3),

(2.4) and monotonicity of Σ(·), we find

d

dt
E(û(t)) +

1

2
‖∇u(t)‖2L2(Ω) ≤

≤ c2(R)
(
‖∇(w0 − ŵ0)‖2L2(Ω) + ‖w1 − ŵ1‖2H−1(Ω)

)
+

+ c2(R)t

t∫

0

‖∇u(τ)‖2L2(Ω) dτ, ∀t ≥ 0 (2.6)

and consequently

d

dt
Ê(û(t)) ≤ c2(R)

(
‖w0 − ŵ0‖2H1(Ω) + ‖w1 − ŵ1‖2H−1(Ω)

)
+ 2c2(R)tÊ(û(t)),
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where Ê(û(t)) = E(û(t))+ 1
2

t∫
0

‖∇u(τ)‖2L2(Ω) dτ . Applying Gronwall’s lemma to the

last inequality, we get

Ê(û(t)) ≤ c3(R)ec2(R)t2
(
‖w0 − ŵ0‖2H1(Ω) + ‖w1 − ŵ1‖2H−1(Ω)

)
(2.7)

By (2.1), (2.3), (2.4) and (2.7), it follows that
∣∣∣∣
d

dt
E(û(t))

∣∣∣∣ ≤ |〈ut(t), u(t)〉|+ |〈∇û(t),∇u(t)〉| ≤

≤ c4(R)
(
‖u(t)‖L2(Ω) + ‖∇û(t)‖L2(Ω)

)
≤

≤ c5(R)e
c2(R)t2

2

(
‖w0 − ŵ0‖H1(Ω) + ‖w1 − ŵ1‖H−1(Ω)

)
, ∀t ≥ 0.

Taking into account (2.7) and the last inequality in (2.6), we obtain

‖∇u(t)‖2L2(Ω) ≤ c6(R)(1 + t)ec2(R)t2
(
‖w0 − ŵ0‖H1(Ω) +

+ ‖w1 − ŵ1‖H−1(Ω)

)
, ∀t ≥ 0.

Now, from (2.5), we have

‖ut(t)‖H−1(Ω) ≤ ‖∇u(t)‖L2(Ω) + ‖∇û(t)‖L2(Ω) + ‖Σ(w(t)) − Σ(ŵ(t))‖H−1(Ω) +

+

t∫

0

‖f(w(τ, )) − f(ŵ(τ, ))‖H−1(Ω) dτ + ‖Σ(w0)− Σ(ŵ0)‖H−1(Ω) +

+ ‖∇(w0 − ŵ0)‖L2(Ω) + ‖w1 − ŵ1‖H−1(Ω) ,

which due to the above inequalities gives

‖ut(t)‖2H−1(Ω) ≤ c7(R)(1 + t)ec2(R)t2
(
‖w0 − ŵ0‖H1(Ω) +

+ ‖w1 − ŵ1‖H−1(Ω)

)
, ∀t ≥ 0.

Thus by Theorem 2.1 and Theorem 2.2, it follows that by the formula S(t)(w0, w1)
= (w(t), wt(t)), problem (1.1)-(1.3) generates a weakly continuous (in the sense, if
ϕn → ϕ strongly then S(t)ϕn → S(t)ϕ weakly) semigroup {S(t)}t≥0 in H, where

w(t, ·) is a weak solution of (1.1)-(1.3), determined by Theorem 2.1, with initial data
(w0, w1). To show the strong continuity of {S(t)}t≥0 we firstly prove the following
lemma:

Lemma 2.1. Let ϕ ∈ C(R) and |ϕ(x)| ≤ c(1 + |x|r) for every x ∈ R and some
r ≥ 1. If vn → v strongly in Lq(Ω) for q ≥ r, then ϕ(vn) → ϕ(v) strongly in L q

r
(Ω).

Proof. By the assumption of the lemma, there exists a subsequence {vnk
} such that

vnk
→ v a.e. in Ω. Then by Egorov’s theorem, for any ε > 0 there exists a subset

Aε ⊂ Ω such that mes(Aε) < ε and vnk
→ v uniformly in Ω\Aε. Hence for large

enough k

|vnk
(x)| ≤ 1 + |v(x)| in Ω\Aε

and consequently

|ϕ(vnk
(x))| ≤ c1(1 + |v(x)|r) in Ω\Aε.
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Applying Lebesgue’s theorem we get

lim
k→∞

‖ϕ(vnk
)− ϕ(v)‖L q

r
(Ω\Aε)

= 0. (2.8)

On the other hand since we have

lim
k→∞

‖vnk
‖Lq(Aε)

= ‖v‖Lq(Aε)
,

the inequality

lim sup
k→∞

‖ϕ(vnk
)‖

q

r

L q

r
(Aε)

< c3(ε+ ‖v‖qLq(Aε)
)

is satisfied. The last inequality together with (2.8) implies that

lim sup
k→∞

‖ϕ(vnk
)− ϕ(v)‖

q
r

L q
r
(Ω) ≤ c4 lim

ε→0
(ε+ ‖v‖qLq(Aε)

) = 0.

Theorem 2.3. Under conditions (2.1)-(2.3) the semigroup {S(t)}t≥0 is strongly
continuous in H.

Proof. Let (w0n, w1n) → (w0, w1) strongly in H. Denoting (wn(t), wtn(t)) =
S(t)(w0n, w1n), (w(t), wt(t)) = S(t)(w0, w1) and un(t) = wn(t) − w(t), by (1.1) we
have

untt −∆unt + σ(wn)wnt − σ(w)wt −∆un + f(wn(τ)) − f(w(t)) = 0.

Since, by Theorem 2.1, every term of the above equation belongs to L2(0, T ;H
−1(Ω)),

testing it by unt, we obtain

E(un(t)) ≤ E(un(0)) + c ‖σ(wn)− σ(w)‖2C([0,T ];L 3
2
(Ω)) + c

t∫

0

E(un(s))ds, ∀t ∈ [0, T ].

Applying Gronwall’s lemma we have

E(un(T )) ≤
(
E(un(0)) + c ‖σ(wn)− σ(w)‖2C([0,T ];L 3

2
(Ω))

)
ecT , ∀T ≥ 0. (2.9)

By Theorem 2.2, it follows that

lim
n→∞

‖wn − w‖C([0,T ];L6(Ω)) = 0.

Now applying Lemma 2.1 it is easy to see that

lim
n→∞

‖σ(wn)− σ(w)‖C([0,T ];L 3
2
(Ω)) = 0,

which together with (2.9) yields that S(T )(w0n, w1n) → S(T )(w0, w1) strongly in
H, for every T ≥ 0.

Now let us recall the definition of a global attractor.
Definition ([17]). Let {V (t)}t≥0 be a semigroup on a metric space (X, d). A
compact set A ⊂ X is called a global attractor for the semigroup {V (t)}t≥0 iff

• A is invariant, i.e. V (t)A = A, ∀t ≥ 0;
• lim

t→∞
sup
v∈B

inf
u∈A

d(V (t)v, u) = 0 for each bounded set B ⊂ X.

Our main result is as follows:
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Theorem 2.4. Under the conditions (2.1)-(2.3), the semigroup {S(t)}t≥0 gener-
ated by the problem (1.1)-(1.3) possesses a global attractor A in H, which is also a
global attractor in H1 := (H2(Ω) ∩H1

0 (Ω)) ×H1
0 (Ω).

Remark 2.1. We note that if the condition (2.3) is replaced by

σ ∈ C(R), σ(s) ≥ 0, |σ(s)| ≤ c(1 + |s|p), 0 ≤ p < 4, ∀s ∈ R,

then using the methods of [5] , [19] and [21] one can prove Theorem 2.4. If we
assume

σ ∈ C1(R), σ(s) ≥ 0, |σ′(s)| ≤ c(1 + |s|), ∀s ∈ R,

instead of (2.3), then the method of [15] can be applied to (1.1)-(1.3). In this case,
as in [20], one can show that a global attractor A attracts every bounded subset of
H in the topology of H1

0 (Ω)×H1
0 (Ω).

Remark 2.2. We also note that problem (1.1)-(1.3), in 3-D case, without the
strong damping −∆wt was considered in [11] and [16]. In this case, when σ(·) is
not globally bounded, the existence of a global attractor in the strong topology of H
and the regularity of the weak attractor remain open (see [11] and [16] for details).

3. Existence of the global attractor in H. We start with the following asymp-
totic compactness lemma:

Lemma 3.1. Let conditions (2.1)-(2.3) hold and B be a bounded subset of H. Then
every sequence of the form {S(tn)ϕn}∞n=1, {ϕn}∞n=1 ⊂ B, tn → ∞, has a convergent
subsequence in H.

Proof. By (2.4), we have




sup
t≥0

sup
ϕ∈B

‖S(t)ϕ‖H < ∞,

sup
ϕ∈B

∞∫
0

‖PS(t)ϕ‖2H1
0 (Ω) dt < ∞,

(3.1)

where P : H →L2(Ω) is a projection map, i.e. Pϕ = ϕ2, for every ϕ = (ϕ1, ϕ2) ∈ H.
So for any T0 ≥ 1 there exists a subsequence {nk}∞k=1 such that tnk

≥ T0 and
{

wk → w weakly star in L∞(0,∞;H1
0 (Ω)),

wkt → wt weakly in L2(0,∞;H1
0 (Ω)),

(3.2)

for some w ∈ L∞(0,∞;H1
0 (Ω)) ∩ W 1,∞(0,∞;L2(Ω)) ∩ W

1,2
loc (0,∞;H1

0 (Ω)), where
(wk(t), wkt(t)) = S(t+ tnk

− T0)ϕnk
. Now multiplying the equality

(wk − wm)tt −∆(wkt − wmt) + σ(wk)wkt − σ(wm)wmt −∆(wk − wm) +

+f(wk)− f(wm) = 0

by (wkt − wmt +
λ1

2 (wk − wm)) and integrating over (s, T )× Ω, we obtain

1

2
E(wk(T )− wm(T )) + λ1

T∫

s

E(wk(t)− wm(t))dt+

+

T∫

s

〈σ(wk(t))wkt(t)− σ(wm(t))wmt(t), wkt(t)− wmt(t)〉 dt+
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+
λ1

2

〈
Σ̂(wk(T )) + Σ̂(wm(T )), 1

〉
− λ1

2

T∫

s

〈σ(wk(t))wkt(t), wm(t)〉 dt

−λ1

2

T∫

s

〈σ(wm(t))wmt(t), wk(t)〉 dt+ 〈F (wk(T )) + F (wm(T )), 1〉−

−
T∫

s

〈f(wk(t)), wmt(t)〉 dt−
T∫

s

〈f(wm(t)), wkt(t)〉 dt+

+
λ1

2

T∫

s

〈f(wk(t))− f(wm(t)), wk(t)− wm(t)〉 dt ≤

≤ (
3

2
+ λ1)E(wk(s)− wm(s)) +

λ1

2

〈
Σ̂(wk(s)) + Σ̂(wm(s)), 1

〉
+

+ 〈F (wk(s)) + F (wm(s)), 1〉 , 0 ≤ s ≤ T,

where Σ̂(w) =
w∫
0

sσ(s)ds. Integrating the last inequality with respect to s from 0 to

T we find

T

2
E(wk(T )− wm(T )) + λ1

T∫

0

sE(wk(s)− wm(s))ds+

+

T∫
s

0

〈σ(wk(s))wkt(s)− σ(wm(s))wmt(s), wkt(s)− wmt(s)〉 ds+

+
λ1

2
T
〈
Σ̂(wk(T )) + Σ̂(wm(T )), 1

〉
− λ1

2

T∫

0

s 〈σ(wk(s))wkt(s), wm(s)〉 ds

−λ1

2

T∫

0

s 〈σ(wm(s))wmt(s), wk(s)〉 ds+ T 〈F (wk(T )) + F (wm(T )), 1〉−

−
T∫

0

s 〈f(wk(s)), wmt(s)〉 ds−
T∫

0

s 〈f(wm(s)), wkt(s)〉 ds+

+
λ1

2

T∫

0

s 〈f(wk(s))− f(wm(s)), wk(s)− wm(s)〉 dt ≤

≤ (
3

2
+ λ1)

T∫

0

E(wk(s)− wm(s))ds +

T∫

0

〈
F (wk(s)) +

λ1

2
Σ̂(wk(s)), 1

〉
ds+

+

T∫

0

〈
F (wm(s)) +

λ1

2
Σ̂(wm(s)), 1

〉
ds, ∀T ≥ 0. (3.3)



126 A. KH. KHANMAMEDOV

By (3.1)1, it follows that

(
3

2
+ λ1)

T∫

0

E(wk(s)− wm(s))ds ≤ c1+

+
λ1

2

T∫

3+2λ1
λ1

sE(wk(s)− wm(s))ds, ∀T ≥ 3 + 2λ1

λ1
. (3.4)

Since for every ε > 0 the embedding H1(Ω) ⊂ H1−ε(Ω) is compact (see for example
[12, Theorem 16.1]), applying [18, Corollary 1] to (3.2), we have

wk → w strongly in C([0, T ];H1−ε(Ω)).

Applying Lemma 2.1 it yields that
{

σ(wk) → σ(w) strongly in C([0, T ];L 3
2−ε(Ω)),

σ
1
2 (wk) → σ

1
2 (w) strongly in C([0, T ];L3−ε(Ω)),

for small enough ε > 0. The last approximation together with (2.3) and (3.2)2
implies that

{
σ(wk)wkt → σ(w)wt weakly in L2([0, T ];L 6

5
(Ω)),

σ
1
2 (wk)wkt → σ

1
2 (w)wt weakly in L2([0, T ];L2(Ω)),

by which we obtain

lim inf
m→∞

lim inf
k→∞

T∫

0

s 〈σ(wk(s))wkt(s)− σ(wm(s))wmt(s), wkt(s)− wmt(s)〉 ds =

= lim inf
k→∞

T∫

0

s
∥∥∥σ 1

2 (wk(s))wkt(s)
∥∥∥
2

L2(Ω)
ds+ lim inf

m→∞

T∫

0

s
∥∥∥σ 1

2 (wm(s))wmt(s)
∥∥∥
2

L2(Ω)
ds−

− 2

T∫

0

s
∥∥∥σ 1

2 (w(s))wt(s)
∥∥∥
2

L2(Ω)
ds ≥ 0, (3.5)

lim
m→∞

lim
k→∞

T∫

0

s 〈σ(wk(s))wkt(s), wm(s)〉 ds =
T∫

0

s 〈σ(w(s))wt(s), w(s)〉 ds =

= T

T∫

0

〈
Σ̂(w(s)), 1

〉
ds−

T∫

0

〈
Σ̂(w(s)), 1

〉
ds (3.6)

and

lim
m→∞

lim
k→∞

T∫

0

s 〈σ(wm(s))wmt(s), wk(s)〉 ds =
T∫

0

s 〈σ(w(s))wt(s), w(s)〉 ds =

= T

T∫

0

〈
Σ̂(w(s)), 1

〉
ds−

T∫

0

〈
Σ̂(w(s)), 1

〉
ds (3.7)
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Also applying Fatou’s lemma and using (2.1), (2.2), (2.3), (3.2), we have




lim inf
k→∞

〈
Σ̂(wk(T )), 1

〉
≥

〈
Σ̂(w(T )), 1

〉
,

lim inf
k→∞

〈F (wk(T )), 1〉 ≥ 〈F (w(T )), 1〉 ,

lim inf
k→∞

T∫
0

s 〈f(wk(s)), wk(s)〉 ds ≥
T∫
0

s 〈f(w(s)), w(s)〉 ds.
(3.8)

Taking into account (3.4)-(3.8) in (3.3), we obtain

T

2
lim inf
m→∞

lim inf
k→∞

E(wk(T )−wm(T ))+
λ1

2
lim inf
m→∞

lim inf
k→∞

T∫

0

sE(wk(s)−wm(s))ds ≤ c1+

+ 2lim inf
k→∞

T∫

0

〈
F (wk(s)) +

λ1

2
Σ̂(wk(s))− F (w(s)) − λ1

2
Σ̂(w(s)), 1

〉
ds, (3.9)

for T ≥ 3+2λ1

λ1
. Now let us estimate the right hand side of (3.9). By (2.1), (3.1)1

and (3.2), we find that

T∫

0

|〈F (wm(s))− F (w(s)), 1〉| ds ≤ c2

T∫

0

‖wm(s)− w(s)‖H1
0 (Ω) ds ≤ c3+c4(ε) log(T )+

+ε

T∫

1

s ‖wm(s)− w(s)‖2H1
0 (Ω) ds ≤ c3 + c4(ε) log(T )+

+ εlim inf
k→∞

T∫

0

s ‖wm(s)− wk(s)‖2H1
0 (Ω) ds, ∀T ≥ 1, ∀ε > 0. (3.10)

By the same way, we have

T∫

0

∣∣∣
〈
Σ̂(wm(s))− Σ̂(w(s)), 1

〉∣∣∣ ds ≤ c5 + c6(ε) log(T )+

+ εlim inf
k→∞

T∫

0

s ‖wm(s)− wk(s)‖2H1
0 (Ω) ds, ∀T ≥ 1, ∀ε > 0. (3.11)

Now, choosing ε small enough, by (3.9)-(3.11), we obtain

lim inf
m→∞

lim inf
k→∞

E(wk(T )− wm(T )) ≤ c7(1 + log(T ))

T
, ∀T ≥ max

{
1,

3 + 2λ1

λ1

}
.

Choosing T = T0 in the last inequality we find

lim inf
n→∞

lim inf
m→∞

‖S(tn)ϕn − S(tm)ϕm‖H ≤ c8

√
(1 + log(T0))

T0
,

and passing to the limit as T0 → ∞ we have

lim inf
n→∞

lim inf
m→∞

‖S(tn)ϕn − S(tm)ϕm‖H = 0.

Similarly one can show that

lim inf
k→∞

lim inf
m→∞

‖S(tnk
)ϕnk

− S(tnm
)ϕnm

‖H = 0, (3.12)
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for every subsequence {nk}∞k=1. Now if the sequence {S(tn)ϕn}∞n=1 has no conver-
gent subsequence in H, then there exist ε0 > 0 and a subsequence {nk}∞k=1, such
that

‖S(tnk
)ϕnk

− S(tnm
)ϕnm

‖H ≥ ε0, k 6= m.

The last inequality contradicts (3.12).

Now since, by (2.4), the problem (1.1)-(1.3) has a strict Lyapunov function
L(w(t)) := E(w(t)) + 〈F (w(t)), 1〉 − 〈g, w(t)〉, according to [4, Corollary 2.29] we
have the following theorem:

Theorem 3.1. Under conditions (2.1)-(2.3), the semigroup {S(t)}t≥0 possesses a
global attractor AH in H.

4. Existence of the global attractor in H1. To prove the existence of a global
attractor in H1 we need the following lemmas:

Lemma 4.1. Let conditions (2.1)-(2.3) hold and B be a bounded subset of H1.
Then

sup
t≥0

sup
ϕ∈B

‖S(t)ϕ‖H1
< ∞. (4.1)

Proof. We use the formal estimates which can be justified by Galerkin’s approx-
imations. Multiplying both sides of (1.1) by −∆wt and integrating over Ω, we
obtain

d

dt

(
1

2
‖∇wt(t)‖2L2(Ω) +

1

2
‖∆w(t)‖2L2(Ω) + 〈g,∆w(t)〉

)
+

+
1

2
‖∆wt(t)‖2L2(Ω) ≤ ‖f(w(t))‖2L2(Ω) +

+ ‖σ(w(t))wt(t)‖2L2(Ω) , ∀t ≥ 0. (4.2)

By (2.1) and (2.3), we have

‖f(w(t))‖2L2(Ω) + ‖σ(w(t))wt(t)‖2L2(Ω) ≤ c1

(
1 + ‖w(t)‖10L10(Ω) + ‖wt(t)‖2L2(Ω)

)
+

+ c2 ‖w(t)‖8L10(Ω) ‖wt(t)‖2L10(Ω) , ∀t ≥ 0. (4.3)

On the other hand, by the embedding and interpolation theorems, we find

‖ϕ‖L10(Ω) ≤ c2 ‖ϕ‖
H

6
5 (Ω)

≤ c3 ‖ϕ‖
1
5

H2(Ω) ‖ϕ‖
4
5

H1(Ω) , ∀ϕ ∈ H2(Ω). (4.4)

Taking into account (2.4), (4.3) and (4.4) in (4.2) and applying Gronwall’s lemma,
we obtain

‖(w(t), wt(t))‖H1
≤ C(t, r)(1 + ‖(w0, w1)‖H1

), ∀t ≥ 0, (4.5)

where C : R+×R+ → R+ is a nondecreasing function with respect to each variable
and r = sup

ϕ∈B

‖ϕ‖H. Since the embedding H1 ⊂ H is compact, by (4.5), it follows

that the set ∪
0≤t≤T

S(t)B is a relatively compact subset of H, for every T > 0. This

together with Lemma 3.1 implies the relative compactness of ∪
t≥0

S(t)B in H. Now

using this fact let us estimate ‖w(t)‖L10(Ω):

‖w(t)‖10L10(Ω) ≤ m10mes(Ω) +

∫

{x:x∈Ω, |w(t,x)|>m}

|w(t, x)|10 dx ≤



GLOBAL ATTRACTORS 129

≤ m10mes(Ω) +




∫

{x:x∈Ω, |w(t,x)|>m}

|w(t, x)|6 dx




1
3

‖w(t)‖8L12(Ω) ≤

≤ m10mes(Ω) + c4




∫

{x:x∈Ω, |w(t,x)|>m}

|w(t, x)|6 dx




1
3

‖w(t)‖2H2(Ω) ‖w(t)‖
6
H1(Ω) .

So for any ε > 0 there exists cε > 0 such that

‖w(t)‖L10(Ω) ≤ ε ‖∆w(t)‖
1
5

L2(Ω) + cε, ∀t ≥ 0,

which together with (4.2)-(4.4) yields

d

dt

(
1

2
‖∇wt(t)‖2L2(Ω) +

1

2
‖∆w(t)‖2L2(Ω) + 〈g,∆w(t)〉

)
+

1

4
‖∆wt(t)‖2L2(Ω) ≤

≤ c5 ‖∇wt(t)‖2L2(Ω) ‖∆w(t)‖2L2(Ω) + ε ‖∆w(t)‖2L2(Ω) + c̃ε + c5, ∀t ≥ 0.

Now multiplying both sides of (1.1) by −µ∆w (µ ∈ (0, 1)) and integrating over Ω,
we obtain

d

dt

(
1

2
µ ‖∆w(t)‖2L2(Ω) + µ 〈∇wt(t),∇w(t)〉

)
+ µ ‖∆w(t)‖2L2(Ω) ≤

≤ µ ‖g‖L2(Ω) ‖∆w(t)‖L2(Ω)+µ ‖∇wt(t)‖2L2(Ω)+µ ‖σ(w(t))wt(t)‖L2(Ω) ‖∆w(t)‖L2(Ω)

+µ ‖f(w(t))‖L2(Ω) ‖∆w(t)‖L2(Ω) , ∀t ≥ 0.

Taking into account the relative compactness of ∪
t≥0

S(t)B, similar to the argument

done above, we can say that for any ε > 0 there exists ĉε > 0 such that

‖f(w(t))‖2L2(Ω) + ‖σ(w(t))wt(t)‖2L2(Ω) ≤ ε
(
‖∆w(t)‖2L2(Ω) + ‖∆wt(t)‖2L2(Ω)

)
+

+ĉε ‖∆w(t)‖2L2(Ω) ‖∇wt(t)‖2L2(Ω) + ĉε, ∀t ≥ 0.

By the last three inequalities we have

d

dt

(
1

2
‖∇wt(t)‖2L2(Ω) +

1

2
(1 + µ) ‖∆w(t)‖2L2(Ω) + µ 〈∇wt(t),∇w(t)〉 + 〈g,∆w(t)〉

)

+(
1

4
− µc6 − ε) ‖∆wt(t)‖2L2(Ω) + (

1

4
µ− 2ε) ‖∆w(t)‖2L2(Ω) ≤

≤ (c5 + ĉε) ‖∆w(t)‖2L2(Ω) ‖∇wt(t)‖2L2(Ω) + c6 + ĉε + c̃ε, ∀t ≥ 0.

Choosing µ small enough and ε ∈ (0, 18µ), we obtain

d

dt
Φ(t) + c7Φ(t) ≤ c8 ‖∇wt(t)‖2L2(Ω) Φ(t) + c8(1 + ‖∇wt(t)‖2L2(Ω)), ∀t ≥ 0,

where Φ(t) = 1
2 ‖∇wt(t)‖2L2(Ω) +

1
2 (1 + µ) ‖∆w(t)‖2L2(Ω) + µ 〈∇wt(t),∇w(t)〉 +

+ 〈g,∆w(t)〉. Multiplying both sides of the last inequality by

e

t∫

0

(c7−c8‖∇wt(τ)‖
2
L2(Ω))dτ

, integrating over [0, T ] and multiplying both sides of ob-

tained inequality by e
−

T∫

0
[c7−c8‖∇wt(t)‖

2
L2(Ω)]dt

, we find

Φ(T ) ≤ Φ(0)e
−

T∫

0

(c7−c8‖∇wt(t)‖
2
L2(Ω))dt

+
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+c8

T∫

0

(1 + ‖∇wt(t)‖2L2(Ω))e
−

T∫

t

(c7−c8‖∇wt(τ)‖
2
L2(Ω))dτ

dt, ∀T ≥ 0,

which together with (2.4) yields (4.1).

Lemma 4.2. Let conditions (2.1)-(2.3) hold and B be a bounded subset of H1.
Then every sequence of the form {S(tn)ϕn}∞n=1, {ϕn}∞n=1 ⊂ B, tn → ∞, has a
convergent subsequence in H1.

Proof. Let us decompose {S(t)}t≥0 as S(t) = U(t) + C(t), where U(t) is a linear
semigroup generated by the problem





utt −∆ut −∆u = 0, in (0,∞)× Ω,
u = 0, on (0,∞)× ∂Ω,
u(0, ·) = w0 , ut(0, ·) = w1, in Ω,

(4.6)

C(t) is a solution operator of




vtt −∆vt −∆v = g(x)− f(w)− σ(w)wt , in (0,∞)× Ω,
v = 0, on (0,∞)× ∂Ω,
vk(0, ·) = 0 , vt(0, ·) = 0, in Ω

(4.7)

(i.e. (u(t), ut(t)) = U(t)(w0, w1) and (v(t), vt(t)) = C(t)(w0, w1)) and (w(t), wt(t))=
S(t)(w0, w1). Multiplying (4.6)1 by (ut − 1

2∆u − µ∆ut − νt∆ut) and integrating
over Ω, we obtain

d

dt

(
E(u(t)) +

1

4
‖∆u(t)‖2L2(Ω) −

1

2
〈ut,∆u〉+ 1

2
(µ+ νt) ‖∇ut(t)‖2L2(Ω) +

+
1

2
(µ+ νt) ‖∆u(t)‖2L2(Ω)

)
+

1

2
(1− ν) ‖∇ut(t)‖2L2(Ω) +

1

2
(1 − ν) ‖∆u(t)‖2L2(Ω) +

+(µ+ νt) ‖∆ut(t)‖2L2(Ω) = 0, ∀t ≥ 0.

Choosing (µ, ν) = (1, 0) and (µ, ν) = (0, 1) in the last equality, we find

‖U(t)‖L(H1,H1)
≤ Me−ωt, ∀t ≥ 0, (4.8)

and

‖U(t)‖L((H2(Ω)∩H1
0 (Ω))×L2(Ω),H1)

≤ M√
t
, ∀t > 0, (4.9)

respectively, where M > 0 and ω > 0. Also applying Duhamel’s principle to (4.7),
we have

C(t)(w0, w1) =

t∫

0

U(t− s)(0,Φ(w0,w1)(s))ds, (4.10)

where Φ(w0,w1)(s) = g−f(w(s))−σ(w(s))wt(s). By Lemma 4.1 and equation (1.1),

it follows that the set of functions
{
Φ(w0,w1)(s) : (w0, w1) ∈ B

}
is precompact in

C([0, t];L2(Ω)). So, from (4.9) and (4.10) we obtain that the operator C(t) : H1 →
H1, t ≥ 0, is compact. Since

S(tn)ϕn = U(T )S(tn − T )ϕn + C(T )S(tn − T )ϕn

for tn ≥ T , by (4.1), (4.8) and the compactness of C(t), we obtain that the sequence
{S(tn)ϕn}∞n=1 has a finite ε-net in H, for every ε > 0. This completes the proof.

Now by Lemma 4.2, similar to Theorem 3.1, we obtain the following theorem:
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Theorem 4.1. Under conditions (2.1)-(2.3), the semigroup {S(t)}t≥0 possesses a
global attractor AH1 in H1.

5. Regularity of the AH. To prove the regularity of AH we will use the method
used in [9] and [10]. Since AH is invariant, by [1, p. 159], for every (w0, w1) ∈ AH

there exists an invariant trajectory γ = {W (t) = (w(t), wt(t)), t ∈ R} ⊂ AH such
that W (0) = (w0, w1). By an invariant trajectory we mean a curve γ = {W (t),
t ∈ R} such that S(t)W (τ) = W (t + τ) for t ≥ 0 and τ ∈ R (see [1, p. 157]). Let
us decompose w(t) as w(t) = uk(t, s) + vk(t, s), where




vktt −∆vkt + σk(w)vkt −∆vk + fk(w) = g(x), in (s,∞)× Ω,
vk = 0, on (s,∞)× ∂Ω,
vk(s, s, ·) = 0 , vkt(s, s, ·) = 0, in Ω

, (5.1)





uktt −∆ukt + σ(w)wt − σk(w)vkt −∆uk =
= fk(w) − f(w), in (s,∞)× Ω,
uk = 0, on (s,∞)× ∂Ω,
uk(s, s, ·) = w(s, ·) , ukt(s, s, ·) = wt(s, ·), in Ω

, (5.2)

fk(s) =





f(k), s > k,

f(s), |s| ≤ k,

f(−k), s < −k

, σk(s) =





σ(k), s > k,

σ(s), |s| ≤ k,

σ(−k), s < −k

and k ∈ N.

Now let us prove the following lemmas:

Lemma 5.1. Assume that conditions (2.1)-(2.3) are satisfied. Then
(vk(t, s), vkt(t, s)) ∈ H1 and for any k ∈ N there exists Tk < 0 such that

‖vkt(t, s)‖H1(Ω) + ‖vk(t, s)‖H2(Ω) ≤ r0k
128
65 , ∀s ≤ t ≤ Tk, (5.3)

where the positive constant r0 is independent of k and (w0, w1).

Proof. Multiplying both sides of (5.1)1 by vkt + µvk (µ ∈ (0, 1)) and integrating
over Ω, we obtain

d

dt

(
E(vk(t, s)) +

µ

2
‖∇vk(t, s)‖2L2(Ω) + µ 〈vkt(t, s), vk(t, s)〉

)
+

+
1

2
‖∇vkt(t, s)‖2L2(Ω) −µ ‖vkt(t, s)‖2L2(Ω) +(µ− c1µ

2) ‖∇vk(t, s)‖2L2(Ω) ≤ c2, ∀t ≥ s.

Choosing µ small enough in the last inequality, we find

‖vkt(t, s)‖L2(Ω) + ‖vk(t, s)‖H1
0 (Ω) ≤ c3, ∀t ≥ s. (5.4)

Multiplying both sides of (5.1)1 by vkt, integrating over (τ1, τ2)×Ω and taking into
account (5.4), we have

τ2∫

τ1

‖∇vkt(t, s)‖2L2(Ω) dt ≤ c4 +

τ2∫

τ1

|〈f ′
k(w(t))wt(t), vk(t, s)〉| dt ≤ c4+

+ c5

τ2∫

τ1

‖∇wt(t)‖L2(Ω) dt, ∀τ2 ≥ τ1 ≥ s. (5.5)

On the other hand, by (2.4), we have
∞∫

−∞

‖∇wt(t)‖2L2(Ω) dt < ∞, (5.6)
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which together with (5.5) yields

τ2∫

τ1

‖∇vkt(t, s)‖2L2(Ω) dt ≤ c6(1 + (τ2 − τ1)
1
2 ), ∀τ2 ≥ τ1 ≥ s. (5.7)

Multiplying both sides of (5.1)1 by −∆vkt − µ∆vk (µ ∈ (0, 1)), integrating over Ω
and taking into account (5.4), we have

d

dt

(
1

2
‖∇vkt(t, s)‖2L2(Ω) +

1

2
‖∆vk(t, s)‖2L2(Ω) + µ 〈∇vkt(t, s),∇vk(t, s)〉

)
+

+(
1

2
− c7µ) ‖∆vkt(t, s)‖2L2(Ω) + (µ− µ2) ‖∆vk(t, s)‖2L2(Ω) ≤ c7+

+ c7 ‖σk(w(t))vkt(t, s)‖2L2(Ω) + c7 ‖fk(w(t))‖2L2(Ω) , ∀t ≥ s. (5.8)

Now let us estimate the last two terms on the right side of (5.8). By (4.4) and
(5.4), we find

‖σk(w(t))vkt(t, s)‖2L2(Ω) ≤ ‖σk(w(t))‖2L 5
2
(Ω) ‖vkt(t, s)‖

2
L10(Ω) ≤

≤ c8 ‖σk(w(t))‖2L 5
2
(Ω) ‖vkt(t, s)‖

2
5

H2(Ω) ‖vkt(t, s)‖
8
5

H1(Ω) ≤

≤ c9 ‖σk(w(t))‖4L 5
2
(Ω) + c9 ‖∆vkt(t, s)‖2L2(Ω) ‖∇vkt(t, s)‖2L2(Ω) +

+
1

3c7
‖∆vkt(t, s)‖2L2(Ω) , ∀t ≥ s. (5.9)

Also by the definitions of σk(·) and fk(·), we have

‖σk(w(t))‖
5
2

L 5
2
(Ω) =

∫

Ω

|σk(w(t, x))|
5
2 dx ≤

≤
∫

{x:x∈Ω, |w(t,x)|≤2m}

|σk(w(t, x))|
5
2 dx+

∫

{x:x∈Ω, |w(t,x)|>2m}

|σk(w(t, x))|
5
2 dx ≤

≤ c10m
4

∫

{x:x∈Ω, |w(t,x)|≤2m}

(1 + |w(t, x)|6)dx+

+c10k
4

∫

{x:x∈Ω, |w(t,x)|>2m}

|w(t, x)|6 dx ≤ c11m
4+

+ c10k
4

∫

{x:x∈Ω, |w(t,x)|>2m}

|w(t, x)|6 dx, ∀k ∈ N, ∀m ≥ 1 and ∀t ∈ R. (5.10)

‖fk(w(t))‖2L2(Ω) =

∫

Ω

|fk(w(t, x))|2 dx ≤

≤ c12m
4

∫

{x:x∈Ω, |w(t,x)|≤2m}

(1 + |w(t, x)|6)dx+

+c12k
4

∫

{x:x∈Ω, |w(t,x)|>2m}

|w(t, x)|6 dx ≤ c13m
4+
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c12k
4

∫

{x:x∈Ω, |w(t,x)|>2m}

|w(t, x)|6 dx, ∀k ∈ N, ∀m ≥ 1 and ∀t ∈ R. (5.11)

Now denote w(m)(t, x) =





w(t, x) −m, w(t, x) > m

0, |w(t, x)| ≤ m

w(t, x) +m, w(t, x) < −m

. Since,

|w(t, x)| < 2
∣∣∣w(m)(t, x)

∣∣∣ , ∀(t, x) ∈ {(t, x) ∈ R× Ω, |w(t, x)| > 2m} ,

we have ∫

{x:x∈Ω, |w(t,x)|>2m}

|w(t, x)|6 dx ≤ 26
∫

{x:x∈Ω, |w(t,x)|>2m}

|wm(t, x)|6 dx ≤

≤ 26
∫

Ω

|wm(t, x)|6 dx ≤ c14

∥∥∥∇w(m)(t)
∥∥∥
2

L2(Ω)
, ∀t ∈ R. (5.12)

So, by (5.8)-(5.12), it follows that

d

dt

(
1

2
‖∇vkt(t, s)‖2L2(Ω) +

1

2
‖∆vk(t, s)‖2L2(Ω) + µ 〈∇vkt(t, s),∇vk(t, s)〉

)
+

+(
1

6
− c7µ) ‖∆vkt(t, s)‖2L2(Ω) + (µ− µ2) ‖∆vk(t, s)‖2L2(Ω) ≤ c15m

32
5 +

+c15 ‖∆vkt(t, s)‖2L2(Ω) ‖∇vkt(t, s)‖2L2(Ω) +

+ c15k
32
5

∥∥∥∇w(m)(t)
∥∥∥
2

L2(Ω)
, ∀k ∈ N, ∀m ≥ 1 and ∀t ≥ s. (5.13)

On the other hand, testing (1.1) by w(m), we obtain

d

dt

〈
wt(t), w

(m)(t)
〉
+
∥∥∥∇w(m)(t)

∥∥∥
2

L2(Ω)
−
∥∥∥w(m)

t (t)
∥∥∥
2

L2(Ω)
+
〈
∇wt(t),∇w(m)(t)

〉
=

=
〈
g, w(m)(t)

〉
−
〈
σ(w(t))wt(t), w

(m)(t)
〉
−
〈
f(w(t)), w(m)(t)

〉
, ∀t ∈ R. (5.14)

Let us estimate each term on the right hand side of (5.14). By the definition of
w(m), we have

〈
g, w(m)(t)

〉
≤




∫

{x:x∈Ω, |w(t,x)|>m}

|g(x)|
6
5 dx




5
6 ∥∥∥w(m)(t)

∥∥∥
L6(Ω)

≤

≤ c16

m2

∥∥∥∇w(m)(t)
∥∥∥
L2(Ω)

, ∀t ∈ R.

By (2.3), it follows that
∣∣∣
〈
σ(w(t))wt(t), w

(m)(t)
〉∣∣∣ ≤ c17 ‖∇wt(t)‖L2(Ω)

∥∥∥∇w(m)(t)
∥∥∥
L2(Ω)

, ∀t ∈ R.

Also by (2.3), we obtain
〈
f(w(t)), w(m)(t)

〉
> −λ1

〈
w(t), w(m)(t)

〉
≥

≥ −λ1




∫

{x:x∈Ω, |w(t,x)|>m}

|w(t, x)|
6
5 dx




5
6 ∥∥∥w(m)(t)

∥∥∥
L6(Ω)

≥
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≥ − c18

m4

∥∥∥∇w(m)(t)
∥∥∥
L2(Ω)

, ∀t ∈ R,

for large enough m. Taking into account the last three inequalities in (5.14), we
have

d

dt

〈
wt(t), w

(m)(t)
〉
+ c19

∥∥∥∇w(m)(t)
∥∥∥
2

L2(Ω)
≤

≤ c20 ‖∇wt(t)‖2L2(Ω) +
c20

m4
, ∀t ∈ R. (5.15)

for large enough m. Now multiplying (5.15) by c15
c19

k
32
5 , adding to (5.13) and then

choosing m = k
8
13 , we get

d

dt
Λk,s(t) + ĉ1Λk,s(t) ≤ ĉ2Λk,s(t) ‖∇vkt(t, s)‖2L2(Ω) +

+ĉ2k
256
65 + ĉ2k

32
5 ‖∇wt(t)‖2L2(Ω) + ĉ2k

64
5

∣∣∣∣
〈
wt(t), w

(k
13
8 )(t)

〉∣∣∣∣
2

, ∀t ≥ s,

for large enough k and small enough µ, where ĉ1 and ĉ2 are positive constants

and Λk,s(t) :=
1
2 ‖∇vkt(t, s)‖2L2(Ω) +

1
2 ‖∆vk(t, s)‖2L2(Ω) + µ 〈∇vkt(t, s),∇vk(t, s)〉 +

c15
c16

k
32
5

〈
wt(t), w

(k
8
13 )(t)

〉
. Since

∣∣∣∣
〈
wt(t), w

(k
8
13 )(t)

〉∣∣∣∣ ≤ ‖wt(t)‖L6(Ω)




∫

{
x:x∈Ω, |w(t,x)|>k

8
13

}
|w(t, x)|

6
5 dx




5
6

≤

≤ ĉ3

k
32
13

‖∇wt(t)‖L2(Ω) , ∀t ∈ R,

by the last differential inequality, we obtain

d

dt
Λk,s(t) + ĉ1Λk,s(t) ≤ ĉ2Λk,s(t) ‖∇vkt(t, s)‖2L2(Ω) +

+ĉ4k
256
65 + ĉ4k

8 ‖∇wt(t)‖2L2(Ω) , ∀t ≥ s.

Multiplying both sides of the above inequality by e

t∫

s

[ĉ1−ĉ2‖∇vkt(τ,s)‖
2
L2(Ω)]dτ

, inte-
grating over [s, T ], multiplying both sides of the obtained inequality by

e
−

T∫

s

[ĉ1−ĉ2‖∇vkt(t,s)‖
2
L2(Ω)]dt

and taking into account (5.7), we find

Λk,s(T ) ≤ ĉ5k
32
5

∣∣∣
〈
wt(s), w

(m)(s)
〉∣∣∣+ ĉ5k

256
65 +

+ ĉ5k
8

T∫

s

‖∇wt(t)‖2L2(Ω) dt, ∀T ≥ s, (5.16)

for large enough k and small enough µ. On the other hand, since AH is compact
subset of H and problem (1.1)-(1.3) admits a strict Lyapunov function, we have

wt(t) → 0 strongly in L2(Ω) as t → −∞ (5.17)

Thus, by (5.6) and (5.17), for any k ∈ N there exists Tk = Tk(γ) < 0 such that

ĉ5k
32
5

∣∣∣
〈
wt(T ), w

(m)(T )
〉∣∣∣+ ĉ5k

8

T∫

−∞

‖∇wt(t)‖2L2(Ω) dt ≤ 1, ∀T ≤ Tk,
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which together with (5.16) yields (5.3).

Lemma 5.2. Assume that conditions (2.1)-(2.3) are satisfied. Then there exists
k0 ∈ N such that

lim
s→−∞

(
‖uk0t(t, s)‖L2(Ω) + ‖uk0(t, s)‖H1(Ω)

)
= 0, ∀t ≤ Tk0 (5.18)

Proof. Multiplying both sides of (5.2)1 by ukt + µuk (µ ∈ (0, 1)) and integrating
over Ω, we obtain

d

dt

(
E(uk(t, s)) +

µ

2
‖∇uk(t, s)‖2L2(Ω) + µ 〈ukt(t, s), uk(t, s)〉

)
+

+ ‖∇ukt(t, s)‖2L2(Ω) + µ ‖∇uk(t, s)‖2L2(Ω) − µ ‖ukt(t, s)‖2L2(Ω) ≤
≤ ‖σ(w(t)) − σk(w(t))‖L 3

2
(Ω) ‖vkt(t, s)‖L6(Ω) ‖ukt(t, s)‖L6(Ω) +

+µ ‖σ(w(t))‖L 3
2
(Ω) ‖ukt(t, s)‖L6(Ω) ‖uk(t, s)‖L6(Ω) +

+µ ‖σ(w(t)) − σk(w(t))‖L 3
2
(Ω) ‖vkt(t, s)‖L6(Ω) ‖uk(t, s)‖L6(Ω) +

+ ‖f(w(t)) − fk(w(t))‖L 6
5
(Ω) ‖ukt(t, s)‖L6(Ω) +

+ µ ‖f(w(t))− fk(w(t))‖L 6
5
(Ω) ‖uk(t, s)‖L6(Ω) , ∀t ≥ s. (5.19)

Taking into account (2.4) in (5.19) and choosing µ small enough, we find

d

dt

(
E(uk(t, s)) +

µ

2
‖∇uk(t, s)‖2L2(Ω) + µ 〈ukt(t, s), uk(t, s)〉

)
+

+c1

(
E(uk(t, s)) +

µ

2
‖∇uk(t, s)‖2L2(Ω) + µ 〈ukt(t, s), uk(t, s)〉

)
≤

≤ c2 ‖σ(w(t)) − σk(w(t))‖2L 3
2
(Ω) ‖vkt(t, s)‖

2
L6(Ω) +

+ c2 ‖f(w(t)) − fk(w(t))‖2L 6
5
(Ω) , s ≤ t ≤ Tk, (5.20)

where c1 and c2 are positive constants. Now let us estimate the terms on the right

side of (5.20). Since H
3
2+ε(Ω) ⊂ C(Ω) and

‖ϕ‖
H

3
2
+ε(Ω)

≤ c3(ε) ‖ϕ‖
1
2−ε

H1(Ω) ‖ϕ‖
1
2+ε

H2(Ω) , ∀ϕ ∈ H2(Ω), ∀ε ∈ (0,
1

2
],

from (5.3) and (5.4) it follows that

‖vk(t, s)‖C(Ω) ≤
1

2
k, s ≤ t ≤ Tk,

for large enough k. The last inequality together with (2.1)-(2.4) yields that

‖σ(w(t)) − σk(w(t))‖
3
2

L 3
2
(Ω) ≤ c4

∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx ≤

≤ c5




∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx




1
4

≤

≤ c5




∫

{x:x∈Ω,|uk(t,s,x)|>|vk(t,s,x)|}

|w(t, x)|6 dx




1
4

≤
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≤ c6




∫

{x:x∈Ω,|uk(t,s,x)|>|vk(t,s,x)|}

|uk(t, s, x)|6 dx




1
4

≤

≤ c6 ‖∇uk(t, s)‖
3
2

L2(Ω) , s ≤ t ≤ Tk, (5.21)

and

‖f(w(t)) − fk(w(t))‖
6
5

L 6
5
(Ω) ≤ c7

∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx ≤

≤ c8




∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx




4
5

×

×




∫

{x:x∈Ω,|uk(t,s,x)|>|vk(t,s,x)|}

|w(t, x)|6 dx




1
5

≤

≤ c9




∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx




4
5

×

×




∫

{x:x∈Ω,|uk(t,s,x)|>|vk(t,s,x)|}

|uk(t, s, x)|6 dx




1
5

≤

≤ c10




∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx




4
5

‖∇uk(t, s)‖
6
5

L2(Ω) , s ≤ t ≤ Tk, (5.22)

for large enough k. On the other hand, since AH is compact subset of H and
(w(t), wt(t)) ∈ AH, we have

sup
t∈R

∫

{x:x∈Ω,|w(t,x)|>k}

|w(t, x)|6 dx → 0 as k → ∞ (5.23)

Thus choosing µ small enough, k large enough and taking into account (5.21)-(5.23)
in (5.20), we obtain

d

dt
Λ̃k,s(t) + ĉ1Λ̃k,s(t) ≤ ĉ2 ‖∇vkt(t, s)‖2L2(Ω) Λ̃k,s(t), s ≤ t ≤ Tk,

where ĉ1 and ĉ2 are positive constants and Λ̃k,s(t) = E(uk(t, s))+
µ
2 ‖∇uk(t, s)‖2L2(Ω)

+ µ 〈ukt(t, s), uk(t, s)〉. Now multiplying both sides of the last inequality by

e

t∫

s

[ĉ1−ĉ2‖∇vkt(τ,s)‖
2
L2(Ω)]dτ

, integrating over [s, Tk] and multiplying both sides of the

obtained inequality by e
−

Tk∫

s

[ĉ1−ĉ2‖∇vkt(t,s)‖
2
L2(Ω)]dt

, we find

Λ̃k,s(T ) ≤ Λ̃k,s(s)e
−

Tk∫

s

[ĉ1−ĉ2‖∇vkt(t,s)‖
2
L2(Ω)]dt

, s ≤ t ≤ Tk,

which together with (5.7) yields (5.18).
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By Lemma 5.1 and Lemma 5.2, we have (w(Tk0), wt(Tk0)) ∈ H1 and

‖wt(Tk0)‖H1(Ω) + ‖w(Tk0)‖H2(Ω) ≤ r̂0,

where r̂0 is independent of (w0, w1). Now since w(t, x) satisfies (1.1)-(1.3) on
(Tk0 ,∞) × Ω, with initial data (w(Tk0 ), wt(Tk0)), applying Lemma 4.1 and tak-
ing into account the last inequality, we find (w0, w1) ∈ (H2(Ω) ∩H1

0 (Ω)) ×H1
0 (Ω)

and

‖(w0, w1)‖H2(Ω)×H1(Ω) ≤ R0,

where the positive constant R0 is independent of (w0, w1). So AH is a bounded
subset of (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω) and that is why it coincides with AH1 .
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