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a b s t r a c t

We study the long-time behavior of solutions of the one dimensional wave equation with
nonlinear damping coefficient. We prove that if the damping coefficient function is strictly
positive near the origin then this equation possesses a global attractor.
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1. Introduction

In this paper, we consider the following Cauchy problem:

utt + σ(u)ut − uxx + λu + f (u) = g(x), (t, x) ∈ (0, ∞) × R, (1.1)
u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ R, (1.2)

where λ is a positive constant, g ∈ L1(R) + L2(R) and nonlinear functions f (·) and σ(·) satisfy the following conditions:

f ∈ C1(R), f (u)u ≥ 0, ∀u ∈ R, (1.3)
σ ∈ C(R), σ (0) > 0, σ (u) ≥ 0, ∀u ∈ R. (1.4)

As wasmentioned in [1], Eq. (1.1) describes amodel for a vibrating string in a viscousmedium. In particular, u represents
the displacement from equilibrium, ut is the velocity, and σ(u)ut is a resistance force. Applying Galerkin’s method and using
techniques of [2, Proposition 2.2], it is easy to prove the following existence and uniqueness theorem:

Theorem 1.1. Assume that conditions (1.3) and (1.4) hold. Then for any T > 0 and (u0, u1) ∈ H := H1(R)×L2(R) problem (1.1)
and (1.2) has a unique weak solution u ∈ C([0, T ];H1(R)) ∩ C1([0, T ]; L2(R)) ∩ C2([0, T ];H−1(R)) on [0, T ] × R such that

‖(u(t), ut(t))‖H ≤ c(‖(u0, u1)‖H ), ∀t ≥ 0,

where c : R+ → R+ is a nondecreasing function. Moreover if v ∈ C([0, T ];H1(R)) ∩ C1([0, T ]; L2(R)) ∩ C2([0, T ];H−1(R)) is
also a weak solution to (1.1) and (1.2) with initial data (v0, v1) ∈ H , then

‖u(t) − v(t)‖L2(R) + ‖ut(t) − vt(t)‖H−1(R) ≤c(T ,R)(‖u0 − v0‖L2(R) + ‖u1 − v1‖H−1(R)), ∀t ∈ [0, T ],

wherec : R+ × R+ → R+ is a nondecreasing function with respect to each variable andR = max{‖(u0, u1)‖H , ‖(v0, v1)‖H }.
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Thus, by Theorem 1.1, under conditions (1.3) and (1.4) the solution operator S(t)(u0, u1) = (u(t), ut(t)) of problem (1.1)
and (1.2) generates a weakly continuous (in the sense that if ϕn → ϕ strongly then S(t)ϕn → S(t)ϕ weakly) semigroup in
H .

The attractors for Eq. (1.1) in the finite interval were studied in [1], assuming the positivity of σ(·). For the two
dimensional case, the attractors for the wave equation with displacement dependent damping were investigated in [3]
under conditions

σ ∈ C1(R), 0 < σ0 ≤ σ(u) ≤ c(1 + |u|q), ∀u ∈ R, 0 ≤ q < ∞,

and

|σ ′(u)| ≤ c[σ(u)]1−ε, ∀u ∈ R, 0 < ε < 1, (1.5)
on the damping coefficient. Recently, in [4], condition (1.5) has been improved as

|σ ′(u)| ≤ cσ(u), ∀u ∈ R.
For the three dimensional bounded domain case, the existence of a global attractor for thewave equationwith displacement
dependent damping was proved in [2] when σ(·) is a strictly positive and globally bounded function. When σ(·) is not
globally bounded, but equal to a positive constant in a large enough interval, the existence of a global attractor has been
established in [5].

In the articles mentioned above, the existence of global attractors was proved under the positivity or strict positivity
condition on the damping coefficient function σ(·). In this paper, we study a global attractor for problem (1.1) and (1.2)
under weaker conditions on σ(·) and prove the following theorem:

Theorem 1.2. Under conditions (1.3) and (1.4) a semigroup {S(t)}t≥0 generated by problem (1.1) and (1.2) possesses a global
attractor in H .

2. Proof of Theorem 1.2

To prove this theorem we need the following lemma:

Lemma 2.1. Let conditions (1.3) and (1.4)hold and let B be a bounded subset of H . Then for any ε > 0 there exist Tε = Tε(B) > 0
and rε = rε(B) > 0 such that

‖S(t)ϕ‖H1(R\(−rε ,rε))×L2(R\(−rε ,rε)) < ε, ∀t ≥ Tε, ∀ϕ ∈ B. (2.1)

Proof. Let (u0, u1) ∈ B and S(t)(u0, u1) = (u(t), ut(t)). Multiplying (1.1) by ut and integrating over (0, t) × R, we obtain

‖ut(t)‖2
L2(R) + ‖u(t)‖2

H1(R) +

∫ t

0

∫
R
σ(u(τ , x))u2

t (τ , x) dx dτ ≤ c1, ∀t ≥ 0. (2.2)

Let η ∈ C1(R), 0 ≤ η(x) ≤ 1, η(x) =


0, |x| ≤ 1
1, |x| ≥ 2 , ηr(x) = η

 x
r


and Σ(u) =

 u
0 σ(s) ds. Multiplying (1.1) by η2

r Σ(u),
integrating over (0, t) × R and taking into account (2.2), we have∫ t

0

∫
R
η2
r (x)σ (u(τ , x))u2

x(τ , x) dx dτ + λ

∫ t

0

∫
R
η2
r (x)Σ(u(τ , x))u(τ , x) dx dτ

≤ c2


1 +

√
t +

t
r

+ t ‖g‖L1(R\(−r,r))+L2(R\(−r,r))


, ∀t ≥ 0, ∀r > 0. (2.3)

By (1.4), there exists l > 0 such that

σ(0)
2

≤ σ(s) ≤ 2σ(0), ∀s ∈ [−l, l]. (2.4)

Using the embedding H
1
2 +ε(R) ⊂ L∞(R) and taking into account (2.2) and (2.4), we find∫ t

0

∫
R
η2
r (x)u

2(τ , x) dx dτ ≤
2

σ(0)

∫ t

0

∫
{x:|u(τ ,x)|≤l}

η2
r (x)Σ(u(τ , x))u(τ , x) dx dτ

+ c3

∫ t

0

∫
{x:|u(τ ,x)|>l}

η2
r (x) |u(τ , x)| dx dτ

≤
2

σ(0)

∫ t

0

∫
{x:|u(τ ,x)|≤l}

η2
r (x)Σ(u(τ , x))u(τ , x) dx dτ

+
2c3

σ(0)l

∫ t

0

∫
{x:|u(τ ,x)|>l}

η2
r (x)Σ(u(τ , x))u(τ , x) dx dτ
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and consequently∫ t

0
‖ηru(τ )‖5

L∞(R) dτ ≤ c4

∫ t

0
‖ηru(τ )‖2

L2(R) dτ ≤ c5

∫ t

0

∫
R
η2
r (x)Σ(u(τ , x))u(τ , x) dx dτ , (2.5)

for r ≥ 1. So by (2.2), (2.3) and (2.5), we get∫ t

0


‖η2rσ

1
2 (u(τ ))ut(τ )‖2

L2(R) + ‖η2rσ
1
2 (u(τ ))ux(τ )‖2

L2(R)

+ λ‖η2rσ
1
2 (u(τ ))u(τ )‖2

L2(R) + ‖ηru(τ )‖5
L∞(R)


dτ ≤ c6


1 +

√
t +

t
r

+ t ‖g‖L1(R\(−r,r))+L2(R\(−r,r))


, ∀t ≥ 0, ∀r ≥ 1. (2.6)

Now define

Φr(u(t)) :=
1
2

‖ηrut(t)‖2
L2(R) +

1
2

‖ηrux(t)‖2
L2(R) + µ ⟨ηrut(t), ηru(t)⟩

+
λ

2
‖ηru(t)‖2

L2(R) + ⟨ηrF(u(t)), ηr⟩ + ⟨ηrg, ηru(t)⟩ ,

where µ = min


λ
2 ,

σ(0)
5 , λ

4σ(0)


, ⟨u, v⟩ =


R u(x)v(x) dx and F(u) =

 u
0 f (s) ds. By (2.4) and (2.6), it follows that for any

δ > 0 there existTδ = Tδ(B) > 0, r1,δ = r1,δ(B) > 1 and t∗δ ∈ [0,Tδ] such that

Φr(u(t∗δ )) < δ, ∀r ≥ r1,δ. (2.7)

Again by (2.2), we have

‖ηru(t)‖L2(R) ≤
ηru(t∗δ )


L2(R)

+

∫ t

t∗δ

‖ηrut(s)‖L2(R) ds ≤
ηru(t∗δ )


L2(R)

+ c7(t − t∗δ )

and consequentlyηr u(t)
3
L∞(R) ≤ c8

ηr u(t)

L2(R)

≤ c9


Φr(u(t∗δ )) + c8 ‖g‖L1(R\(−r,r))+L2(R\(−r,r))
 1

2 + t − t∗δ


< c9

δ

1
2 + ‖g‖

1
2
L1(R\(−r,r))+L2(R\(−r,r)) + t − t∗δ


, ∀t ≥ t∗δ , ∀r ≥ r1,δ.

Denoting T ∗

δ = t∗δ +
l3
3c9

and choosing δ ∈ (0, l6

9c29
), by the last inequality, we can say that there exists r2,δ ≥ 2r1,δ such that

‖u(t)‖L∞(R\(−r2,δ ,r2,δ)) < l, ∀t ∈ [t∗δ , T ∗

δ ]. (2.8)

Now, multiplying (1.1) by η2
r (ut + µu), integrating over R and taking into account (2.4) and (2.8), we obtain

d
dt

Φr(u(t)) + c10Φr(u(t)) ≤ c11


1
r

+ ‖g‖L1(R\(−r,r))+L2(R\(−r,r))


, ∀t ∈ [t∗δ , T ∗

δ ],

and consequently

Φr(u(t)) ≤ Φr(u(t∗δ )) e−c10(t−t∗δ )
+ c11


1
r

+ ‖g‖L1(R\(−r,r))+L2(R\(−r,r))


1 − e−c10(t−t∗δ )

c10
∀r ≥ r2,δ. (2.9)

By (2.7) and (2.9), there exists r3,δ ≥ r2,δ such that

Φr(u(t)) < δ ∀r ≥ r3,δ, ∀t ∈ [t∗δ , T ∗

δ ].

Hence denoting by nδ the smallest integer number which is not less than 3c9Tδ
l3

and applying above procedure at most nδ

times, we find

Φr(u(Tδ)) < δ, ∀r ≥ r4,δ,

for some r4,δ ≥ 2nδ r1,δ . From the last inequality it follows that for any ε > 0 there existTε = Tε(B) > 0 andrε =rε(B) > 0
such thatS(Tε)ϕ


H1(R\(−rε ,rε))×L2(R\(−rε ,rε)) < ε, ∀ϕ ∈ B.
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Since, by (2.2), B0 = ∪t≥0 S(t)B is a bounded subset of H , for any ε > 0 there exist Tε = Tε(B) > 0 and rε = rε(B) > 0 such
that

‖S(Tε)ϕ‖H1(R\(−rε ,rε))×L2(R\(−rε ,rε)) < ε, ∀ϕ ∈ B0.

Taking into account the positive invariance of B0, from the last inequality we obtain (2.1). �

By (2.1) and (2.4), for any bounded subset B of H there existTB > 0 andrB > 0 such that

σ(u(t, x)) ≥
σ(0)
2

, ∀t ≥ TB, ∀ |x| ≥rB, (2.10)

where u(t, x) is the weak solution of problem (1.1) and (1.2) with initial data from B. Hence using techniques of [6,
Lemma 3.3] one can prove the asymptotic compactness of the semigroup {S(t)}t≥0, which is included in the following
lemma:

Lemma 2.2. Assume that conditions (1.3) and (1.4) hold and B is a bounded subset of H . Then every sequence of the form
{S(tn)ϕn}

∞

n=1, {ϕn}
∞

n=1 ⊂ B, tn → ∞, has a convergent subsequence in H .

By (2.10) and the unique continuation result of [7], it is easy to see that problem (1.1) and (1.2) has a strict Lyapunov
function (see [8] for definition). Thus according to [8, Corollary 2.29] the semigroup {S(t)}t≥0 possesses a global attractor.

Remark 1. We note that, for the problem considered in [1], from compact embedding H1
0 (0, π) ⊂ C[0, π], it immediately

follows that σ(u(t, x)) ≥
σ(0)
2 , ∀t ≥ 0, ∀x ∈ [0, ε] ∪ [π − ε, π], for some ε ∈


0, π

2


. So a global attractor still exists if one

replaces the positivity condition on σ(·) by the (1.4).
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