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Abstract

Let M be a left module over a ring R and I an ideal of R. We call (P,f ) a projective I -cover of M

if f is an epimorphism from P to M , P is projective, Kerf ⊆ IP , and whenever P = Kerf + X, then
there exists a summand Y of P in Kerf such that P = Y + X. This definition generalizes projective covers
and projective δ-covers. Similar to semiregular and semiperfect rings, we characterize I -semiregular and
I -semiperfect rings which are defined by Yousif and Zhou using projective I -covers. In particular, we
consider certain ideals such as Z(RR), Soc(RR), δ(RR) and Z2(RR).
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

As is well known, projective covers play an important role in characterizing semiperfect and
semiregular rings. Recently some authors have worked with various extensions of these rings (see
for example [1,9,11,12,14,15]). Zhou calls a ring R δ-semiperfect (δ-semiregular) if for a (finitely
generated) left ideal I of R, I = Rf ⊕S where f 2 = f ∈ R and S ⊆ δ(RR), and also by defining
projective δ-cover, he characterizes these rings. After that, Yousif and Zhou extend semiperfect
and semiregular rings to I -semiperfect and I -semiregular rings by taking an ideal I instead of
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δ(RR). Next, Nicholson and Zhou study I -semiperfect and I -semiregular rings by introducing
strongly lifting ideals. A module theoretic version of these extensions is studied in [1,12]; also
by defining projective Soc-covers, Soc-semiperfect modules are characterized in [12].

The purpose of this paper is to characterize I -semiregular and I -semiperfect rings by defining
general projective covers.

In Section 2, we prove that any direct sum of I -semiregular modules is I -semiregular for an
ideal I .

In Section 3, we introduce the notion of DM submodules and use this to define projective
I -covers which are a generalization of some well-known projective covers. A submodule N of
M is called DM in M if there is a summand S of M such that S � N and M = S + X, whenever
N + X = M for a submodule X of M . A pair (P,f ) is called a projective I -cover of M if P

is projective and f is an epimorphism from P to M such that Kerf ⊆ IP and Kerf is DM
in P . After investigating some properties of DM submodules, we prove that a module M has
a projective J (R)-cover if and only if M has a projective cover (Proposition 3.6). M is called
DM for I if any submodule of IM is DM in M . A ring R is called a left DM ring for I if for
any finitely generated free left R-module is DM for I . We generalize Bass’s Lemma (see [10,
Lemma B.15]): for an ideal I and a projective module M , if M/N has a projective I -cover, then
M = Y ⊕ X for some submodules Y and X with Y ⊆ N and X ∩ N ⊆ IM . The converse is true
when M is DM for I (Lemma 3.10). Then we give some equivalent statements for I -semiregular
rings when R is a left DM ring for I .

The last section is concerned with the characterization of I -semiperfect rings with a projective
I -cover or a projective I -semicover. But first, we get a generalization of one of Azumaya’s
Theorems [3, Theorem 4] (Theorem 4.4). After that we prove that if R is a left DM-ring for I ,
then R is I -semiperfect if and only if every finitely generated left R-module has a projective
I -cover. In addition, they are equivalent to the fact that every simple factor module of RR has
a projective I -cover when R is DM for I with C3 (Theorem 4.8). In the last two sections, we
have satisfactory characterizations of I -semiregular and I -semiperfect rings when I is δ(RR),
Soc(RR), Z(RR) or Z2(RR) because some of the conditions can be omitted for these ideals.

Throughout this paper, R denotes an associative ring with unit and M denotes a unitary left
R-module. We write Rad(M), Soc(M), Z(M) and Z2(M) for the Jacobson radical, the socle, the
singular submodule and the second singular submodule of M respectively. J (R) is the Jacobson
radical of R, and I will be any ideal in the paper. We write M∗ for Hom(M,R).

2. I -semiregular modules

Nicholson [8] calls an element x of a module M semiregular if Rx = A ⊕ B where A is
a projective summand of M and B ⊆ Rad(M). A module is called semiregular if each of its
elements is semiregular. For a module M , this concept was extended in [1] to the notion of
U -semiregular elements by taking any fully invariant submodule U of M instead of Rad(M).

In this section, we consider the fully invariant submodule IM for an ideal I . We use
“I -semiregular” instead of “IM-semiregular” and we want to prove that if M = ⊕

i∈I Mi , then
M is I -semiregular if and only if each Mi is I -semiregular.

Lemma 2.1. (See [1, Proposition 2.2].) Let M be a module. The following are equivalent for any
element m in M .



M. Alkan et al. / Journal of Algebra 319 (2008) 4947–4960 4949
(i) There exists a decomposition M = P ⊕ Q where P is projective, P ⊆ Rm and Rm ∩ Q ⊆
IM .

(ii) There exists λ ∈ M∗ such that mλ = e = e2 and (1 − e)m ∈ IM .
(iii) There exits γ 2 = γ ∈ End(RM) such that Mγ is projective and m − mγ ∈ IM .

An element m of a module M is called I -semiregular if it satisfies the conditions in
Lemma 2.1, and M is called an I -semiregular module if every element of M is I -semiregular.
In [1], it is named by “IM-semiregular” but we use “I -semiregular” in this note for short. A ring
R is called I -semiregular if RR is an I -semiregular module. Note that I -semiregular rings are
left–right symmetric by [14].

For an ideal I of a ring R, IM is a fully invariant submodule of an R-module M . Hence
another characterization of I -semiregular modules is given by the following theorem.

Theorem 2.2. (See [1, Theorem 2.3].) The following are equivalent for a module M .

(i) M is I -semiregular.
(ii) If N ⊆ M is finitely generated, there exists γ :M → N such that γ 2 = γ and Mγ is projec-

tive and N(1 − γ ) ⊆ IM .
(iii) If N ⊆ M is finitely generated, there exists a decomposition M = P ⊕ Q such that P is

projective, P ⊆ N and N ∩ Q ⊆ IM .

Now we give some lemmas to prove our result.

Lemma 2.3. Let m ∈ M . If there exists λ ∈ M∗ such that mλ = e = e2 and (1 − e)m is
I -semiregular, then m is I -semiregular.

Proof. Since (1 − e)m is I -semiregular choose β ∈ M∗ such that f = ((1 − e)m)β is an idem-
potent and (1 − f )(1 − e)m ∈ IM . Then ef = 0 so g = e + f − f e is an idempotent in R and
(1 − g)m ∈ IM . Since M∗ is a right R-module, define α ∈ M∗ by α = λ + (β − λ · mβ)(1 − e).
Then (1 − g)m = (1 − f )(1 − e)m ∈ IM , and

mα = mλ + m(β − λ · mβ)(1 − e) = e + [mβ − e · mβ](1 − e) = e + f (1 − e) = g.

Thus m is I -semiregular by Lemma 2.1. �
Lemma 2.4. Let M = N ⊕ K and m = n + k where n ∈ IM and k ∈ K . If k is I -semiregular
in K then m is I -semiregular in M .

Proof. Let λ :K → R satisfy kλ = e = e2 and (1 − e)k ∈ IK . Extend λ to M → R by defining
Nλ = 0. Then mλ = kλ = e and (1 − e)m = (1 − e)n + (1 − e)k ∈ (1 − e)IM + IK ⊆ IM . �
Lemma 2.5. Let M = N ⊕ K and let n ∈ N . Then n is I -semiregular in N if and only if n is
I -semiregular in M .

Proof. If n is I -semiregular in N , let λ :N → R satisfy nλ = e = e2 and (1 − e)n ∈ IN . Then
define α :M → R by (n + k)α = nλ. Then nα = e and (1 − e)n ∈ IM .
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Conversely, let γ :M → R satisfy nγ = e = e2 and (1 − e)n ∈ IM . Define λ = γ|N :N → R.
Then nλ = e and (1−e)n ∈ N ∩ IM , so it remains to show that N ∩ IM ⊆ IN . Let x ∈ N ∩ IM ,
say x = ∑

aimi , ai ∈ I,mi ∈ M . For each i, write mi = ni + ki , ni ∈ N,ki ∈ K . Then x =∑
aini + ∑

aiki ∈ N ⊕ K so, since x ∈ N , x = ∑
aini ∈ IN , as required. �

Now we may prove our result which is a generalization of [8, Theorem 1.10].

Theorem 2.6. Let M = ⊕
i∈Λ Mi be a left R-module for any index set Λ. Then M is

I -semiregular if and only if each Mi is I -semiregular.

Proof. The forward implication follows from Lemma 2.5. Conversely, assume that each Mi

is I -semiregular. Since each element of M is in a finite sum of the Mi , we may assume by
Lemma 2.5 that Λ is finite and so by induction that M = N ⊕ K , where both N and K are
I -semiregular. If m ∈ M write m = n + k,n ∈ N,k ∈ K . Let α :N → R satisfy nα = e = e2 and
(1 − e)n ∈ IN . Define λ :M → R by (n + k)λ = nα. Then (m)λ = e = e2 so, by Lemma 2.3, it
suffices to show that (1 − e)m is I -semiregular in M . But (1 − e)m = (1 − e)n + (1 − e)k where
(1 − e)k is I -semiregular in K by hypothesis, it is I -semiregular in M by Lemma 2.4. This is
what we wanted. �
3. I -semiregular rings and projective I -covers

Zhou extends the notion of small submodules to δ-small submodules in [15]. A submodule
K of an R-module M is called δ-small in M (notation K �δ M) if K + L 	= M for any proper
submodule L of M with M/L singular. Also by [15, Lemma 1.2], K �δ M if and only if M =
X ⊕ Y for a projective semisimple submodule Y with Y ⊆ K whenever X + K = M . Then he
defines and characterizes δ-semiregular rings and δ-semiperfect rings.

Zhou also consider the following fully invariant submodule of a module M .

δ(M) =
⋂

{K � M: M/K is singular simple}.

Then δ(M) is the sum of all δ-small submodules of M . If M is projective, then Soc(M) ⊆ δ(M)

[15, Lemma 1.9].
Özcan and Alkan prove in [12, Proposition 2.12] that Rad(M/Soc(M)) = δ(M)/Soc(M) for

a projective module M . In particular, for a projective module M , δ(M) = M if and only if M is
semisimple.

Now we extend the notion of δ-small submodules to study a generalization of δ-semiregular
rings and δ-semiperfect rings.

Definition 3.1. Let I be an ideal of a ring R, and N be a submodule of an R-module M . We say
that

(a) N decomposes M (briefly N is DM in M) if there is a summand S of M such that S � N

and M = S + X, whenever N + X = M for a submodule X of M ,
(b) N is SDM in M if there is a summand S of M such that S � N and M = S ⊕ X, whenever

N + X = M for a submodule X of M ,
(c) M is DM for I if any submodule of IM is DM in M ,
(d) R is a left DM ring for I if for any finitely generated free left R-module is DM for I .
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Clearly any SDM submodule of a module M is DM. Any δ-small submodule of M is SDM in
M , but there exists a module M such that Soc(M) is SDM but not δ-small (see Example 4.13).
Any summand of M is DM in M . On the other hand, any module is DM for Soc(RR). Moreover,
any semisimple module is DM for any ideal I , and any finitely generated module is DM for a
δ-small ideal I and so does a ring R.

Nicholson and Zhou in [11] define a strongly lifting left ideal that is a generalization of an
idempotent lifting left ideal. A left ideal I of a ring R is called strongly lifting if a2 − a ∈ I , then
there exists e2 = e ∈ Ra such that e − a ∈ I . They characterize I -semiregular and I -semiperfect
rings by using strongly lifting ideals I . For an ideal I , R is I -semiregular if and only if R/I

is regular and I is strongly lifting [11, Theorem 28]. R is I -semiperfect if and only if R/I is
semisimple and I is strongly lifting [11, Theorem 36].

Now if I is strongly lifting left ideal, then I is a DM left ideal in R. For, let R = I +X for some
left ideal X. Then 1 = a +x where a ∈ I , x ∈ X. Since x2 −x ∈ I , there exists e2 = e ∈ Rx such
that e−x ∈ I . Hence we have that R = R(1−e)+X where R(1−e) ⊆ I . But the converse is not
true in general, because for example J (R) is DM but not strongly lifting in general. Therefore,
the concept of DM is a generalization of the notion of δ-small submodules and of strongly lifting
ideals.

If every submodule of M is DM in M , then M is called refinable (see [5]). By using DM sub-
modules, modules with the finite exchange property (see [6] for the definition) are characterized
in [5]. Let M be a self-projective module. Then every submodule of M is DM in M if and only
if M has the finite exchange property [5, 11.31].

Now we study some properties of submodules having DM.

Lemma 3.2. Let N be a summand of a module M and A be a submodule of N . Then A is DM in
N if and only if A is DM in M .

Proof. Let M = N ⊕ K for a submodule K of M . Assume that A is DM in N . Let M = A + L

for any submodule L of M . Then N = A + (L ∩ N) and by assumption there is a summand S of
N such that N = S + (L ∩ N) and S � A. Let x ∈ M and write x = a + l where a ∈ A � N and
l ∈ L. Since a = s + k where s ∈ S and k ∈ L ∩ N , k + l ∈ L and so x = s + (k + l) ∈ S + L. It
follows that M = S + L and S is a summand of M . Hence A is DM in M .

Conversely, assume that A is DM in M . Let N = A + L for any submodule L of N . Then
M = A + (L + K) and so there is a summand S of M such that M = S + (L + K) and S � A.
It follows that N = S + L and S is a summand of N . This completes the proof. �
Corollary 3.3. Let M be an R-module. If M is DM for an ideal I of R, then any summand of M

is DM for I .

Proof. Let M = N ⊕ K and A be a submodule of IN . Then A � IM and so A is DM in M .
Since N is a summand of M , A is DM in N . �

By Corollary 3.3, we have that R is a left DM ring for an ideal I if and only if any finitely
generated projective left R-module is DM for I .

Proposition 3.4. Let M = ⊕
i∈Λ Mi where Λ is any index set. If Ni is DM in Mi for all i in a

finite subset F of Λ, then
⊕

Ni is DM in M .
i∈F
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Proof. Let Ni be DM submodule in Mi for all i = 1, . . . , n. Let M = ⊕n
i=1 Ni + L for any

submodule L of M . Since by Lemma 3.2, N1 is DM in M , there is a decomposition M1 = S1 ⊕K1
for a submodule K1 of M1 such that S1 � N1 and

M = S1 + (N2 + · · · + Nn + L) = N2 + (S1 + · · · + Nn + L).

Then similarly, we get a decomposition M2 = S2 ⊕ K2 for a submodule K2 of M2 such that
M = S2 + (S1 + N3 + · · · + Nn + L) and S2 � N2. Hence

M = S1 ⊕ S2 ⊕ K1 ⊕ K2 ⊕
( ⊕

i∈Λ\{1,2}
Mi

)
.

After finite steps, we find the summands Si of Mi such that M = (
⊕n

i=1 Si)+L. This completes
the proof since

⊕n
i=1 Si ⊆ ⊕n

i=1 Ni and it is a summand of M . �
Now we recall some projective covers. A module M is said to have a projective cover

(δ-cover [15], Soc-cover [12], respectively) if there exists an epimorphism f :P → M such that
P is projective and Kerf � P (Kerf �δ P , Kerf ⊆ Soc(P ), respectively). Here we consider
some generalizations of these covers.

Definition 3.5. Let I be an ideal of a ring R and M be an R-module.

(a) A pair (P,f ) is called a projective I -semicover of M if P is projective and f is an epimor-
phism from P to M such that Kerf ⊆ IP .

(b) A pair (P,f ) is called a projective I -cover of M if (P,f ) is a projective I -semicover and
Kerf is DM in P .

Hence Soc-covers will be called Soc(RR)-semicovers from now on. But since Kerf is DM
in P whenever Kerf ⊆ Soc(RR)P = Soc(P ), we have that a projective Soc(RR)-semicover is
the same as a projective Soc(RR)-cover. Also for δ(RR) and J (R) we have the following result
which shows that a projective I -cover is a generalization of a projective cover and a projective
δ-cover.

Proposition 3.6. A module M has a projective δ(RR)-cover ( projective J (R)-cover, respec-
tively) if and only if M has a projective δ-cover ( projective cover, respectively).

Proof. It is enough to prove the necessity. Let P be a projective module and f :P → M an
epimorphism such that Kerf ⊆ δ(P ) and Kerf is DM in P . We claim that Kerf �δ P . Let X be
a submodule of P such that P = Kerf +X. Since Kerf is DM in P , there exists a summand S of
P such that S ⊆ Kerf and P = S +X. Write P = S ⊕S′. Then δ(P ) = δ(S)⊕ δ(S′). Since S ⊆
δ(P ), we have that S = δ(S). Since S is projective, S is semisimple by [12, Proposition 2.12].
Then there exists a summand Y of P such that Y ⊆ S and P = Y ⊕ X. Hence Kerf �δ P by
[15, Lemma 1.2].

If Kerf ⊆ Rad(P ) and Kerf is DM in P , in the above proof we have that S = Rad(S). But
since S is projective, S = 0. Then we have that P = X and hence Kerf � P . �

Clearly a module M has a projective 0-cover if and only if M is projective.
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Note that the projective J (R)-semicover was studied in [3,13] under the name “generalized
projective cover.” Also the projective ρ(RR)-semicover was defined by Nakahara [7] and named
by “projective ρ-semicover” for any precover ρ.

We extend some well-known theorems about projective modules (see [2]).

Proposition 3.7. Let I be an ideal of a ring R, a module M has a projective I -semicover and
IM = M . Then

(i) if I is δ-small in RR, then M is semisimple and projective,
(ii) if I is small or singular in RR, then M = 0.

Proof. Let IM = M and f be an epimorphism from P to M such that Kerf ⊆ IP . Then
P = IP .

(i) Assume that I is δ-small in RR. Then P = IP ⊆ δ(RR)P = δ(P ). By [12, Proposi-
tion 2.13], P is semisimple and so do M . On the other hand, P = Kerf ⊕ L for a submodule L

of P and so M ∼= P/Kerf ∼= L is projective.
(ii) For any nonzero projective module P , Rad(P ) 	= P and Z(P ) 	= P . �

Now we note another result about I -semicovers without a proof.

Proposition 3.8. Let N be a submodule of a projective module M . If M has a decomposition
M = P ⊕ Q such that P ⊆ N and N ∩ Q ⊆ IM , then M/N has a projective I -semicover.

Lemma 3.9. Let {Mi}ni=1 be a finite collection of modules such that each Mi has a projective
I -cover. Then

⊕n
i=1 Mi has a projective I -cover.

Proof. Let fi be an epimorphism from a projective module Pi to Mi such that Kerfi is DM
in Pi and Kerfi ⊆ IPi , i = 1, . . . , n. Then Ker(

⊕n
i=1 fi) = ⊕n

i=1 Kerfi ⊆ ⊕n
i=1(IPi) =

I (
⊕n

i=1 Pi) and also Ker(
⊕n

i=1 fi) is DM in
⊕n

i=1 Pi by Proposition 3.4. Hence
⊕n

i=1 fi is
a projective I -cover of

⊕n
i=1 Mi . �

Clearly, in this lemma we may consider any direct sum of submodules for a projective
I -semicover. The following lemma is a key result for our work.

Lemma 3.10. Let I be an ideal of a ring R and M be a projective module and N � M . Consider
the following conditions:

(i) M/N has a projective I -cover,
(ii) M = Y ⊕ X for some submodules Y and X with Y ⊆ N and X ∩ N ⊆ IM .

Then (i) ⇒ (ii), and (ii) ⇒ (i) if M is DM for I .
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Proof. (i) ⇒ (ii) Let N be a submodule of M . Assume f is an epimorphism from a projective
module Q to M/N such that Kerf ⊆ IQ and Kerf is DM in Q. Let p be the projection map
from M to M/N . Since M is projective, we have the following commutative diagram:

M

h
p

Q
f

M/N 0.

Since (M)h + Kerf = Q and Kerf is DM in Q, there is a summand K of Q such that Q =
(M)h + K and K ⊆ Kerf . By [8, Lemma 1.16], we have Q = A ⊕ K for a submodule A

of (M)h, and so (M)h = A ⊕ S where S = K ∩ (M)h ⊆ Kerf . On the other hand, (M)h ∼=
M/Kerh and so there is a decomposition M/Kerh = B/Kerh ⊕ Y/Kerh such that B/Kerh ∼=
A and Y/Kerh ∼= S. Then there exists a homomorphism g :A → B such that gh = 1A. Let
X = (A)g. Then B = X ⊕ Kerh, and so B + Y = X + Y = M . Since X ∩ Y ⊆ B ∩ Y = Kerh,
we have that M = X ⊕ Y . Let y ∈ Y . Since (y)h ∈ S, it follows that (y)p = (y)hf = 0 and
so y ∈ N . Thus Y ⊆ N . Now let x ∈ N ∩ X, and so x = (t)g for some t ∈ A. Then (t)f =
(t)ghf = (x)hf = (x)p = 0, and so t ∈ Kerf ⊆ IQ ∩ A = IA. Therefore, x = (t)g ∈ IM .
Hence N ∩ X ⊆ IM .

(ii) ⇒ (i) Let M = Y ⊕ X for some Y and X with Y ⊆ N and X ∩ N ⊆ IM . Since M is
assumed to be DM for I , it follows that X ∩ N is DM in X. Now define f :X → M/N be such
that f (x) = x + N . Then f is an epimorphism with Kerf = X ∩ N . Hence f is a projective
I -cover of M/N . �

With Lemma 3.10, we can give the following characterization of I -semiregular rings related
to projective I -covers.

Theorem 3.11. Let I be an ideal of a ring R. Consider the following conditions:

(i) every finitely presented left R-module has a projective I -cover,
(ii) for every finitely generated left ideal K of R, R/K has a projective I -cover,

(iii) every cyclically presented left R-module has a projective I -cover,
(iv) R is I -semiregular.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv), and (iv) ⇒ (i) if R is a left DM ring for I .

Proof. (i) ⇒ (ii) ⇒ (iii) They are clear.
(iii) ⇒ (iv) Let K be a cyclic left ideal of R. Then R/K has a projective I -cover, and so by

Lemma 3.10 R is I -semiregular.
(iv) ⇒ (i) Let M be a finitely presented left R-module. Then M ∼= R(n)/K where K is a

finitely generated submodule of R(n) for some n. Since R is I -semiregular, R(n) is I -semiregular
by Theorem 2.6. By hypothesis, RR(n) is DM for I . Hence M has a projective I -cover by
Lemma 3.10. �

If I ⊆ δ(RR), then R is a left DM ring for I by [15, Lemma 1.5(4)], and so the condi-
tions in Theorem 3.11 are equivalent. Hence if I = δ(RR), we have the characterization of



M. Alkan et al. / Journal of Algebra 319 (2008) 4947–4960 4955
δ(RR)-semiregular rings given in [15, Theorem 3.5]. Note that δ-semiregular rings of Zhou [15]
are exactly the δ(RR)-semiregular rings.

If I = J (R), then Theorem 3.11 gives the characterization of semiregular rings (see [10]).
As for the singular ideal, it can be easily seen that Z(RR) ⊆ J (R) if and only if Z(RR) is

SDM in R if and only if Z(RR) is DM in R if and only if R is a left DM ring for Z(RR). Also
Z(RR) ⊆ δ(RR) if and only if Z(RR) ⊆ J (R) by [1, Proposition 3.1]. Therefore, there is a ring
R which is not DM for Z(RR). But if R is Z(RR)-semiregular, then Z(RR) = J (R) ⊆ δ(RR)

by [9, Theorem 2.4] or [1, Theorem 3.2]. Hence if R is Z(RR)-semiregular, then every finitely
presented left R-module has a projective Z(RR)-cover by Theorem 3.11. Thus we have the
following result.

Corollary 3.12. The following are equivalent for a ring R.

(i) R is Z(RR)-semiregular.
(ii) Every cyclically presented left R-module has a projective Z(RR)-cover.

(iii) For every finitely generated left ideal K of R, R/K has a projective Z(RR)-cover.
(iv) Every finitely presented left R-module has a projective Z(RR)-cover.

Similarly, if I ⊆ Soc(RR), then R is a left DM ring for I . Note that R is Soc(RR)-semiregular
if and only if R/Soc(RR) is regular (see [4]). Hence,

Corollary 3.13. The following are equivalent for a ring R.

(i) R is Soc(RR)-semiregular.
(ii) Every cyclically presented left R-module has a projective Soc(RR)-cover.

(iii) For every finitely generated left ideal K of R, R/K has a projective Soc(RR)-cover.
(iv) Every finitely presented left R-module has a projective Soc(RR)-cover.

4. I -semiperfect rings and projective I -covers

In this section, we study I -semiperfect rings related with projective I -semicovers and pro-
jective I -covers for an ideal I . First we generalize one of Azumaya’s Theorems [3, Theorem 4]
on projective J (R)-semicover. After that we give a characterization of I -semiperfect rings and
consider certain ideals I such as δ(RR), Soc(RR), Z(RR) and Z2(RR).

Proposition 4.1. (See [12, Proposition 2.1].) Let I be an ideal of a ring R. The following are
equivalent for a module M .

(i) For every submodule K of M , there is a decomposition K = A⊕B such that A is a projective
summand of M and B ⊆ IM .

(ii) For every submodule K of M , there is a decomposition M = A⊕B such that A is projective,
A ⊆ K and K ∩ B ⊆ IM .

A module M is said to be I -semiperfect if it satisfies the conditions of Proposition 4.1. In [12],
it is named by “τ -semiperfect” for the preradical τ where IM = τ(M) = ∑{f (IM) | f :M →
M} but we use “I -semiperfect” in this note for short.
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By our definitions, any I -semiperfect module is I -semiregular for an ideal I . If M is a pro-
jective module with Rad(M) � M , then M is J (R)-semiperfect if and only if M is semiperfect
(i.e. every factor module of M has a projective cover).

First we generalize Azumaya’s Theorem [3, Theorem 4] to projective I -semicovers where
I ⊆ δ(RR). We need some lemmas.

Lemma 4.2. Let I be an ideal of a ring R and S be a simple R-module having a projective
I -semicover. Then S is M-projective for every R/I -module M .

Proof. Let f :P → S be a projective I -semicover of S. If IP = P , then S = f (P ) = If (P ) =
IS. Then since any homomorphism from S to an R/I -module M is zero, S is M-projective
for every R/I -module M . If IP 	= P , then Kerf = IP . Then P/IP ∼= S is a projective R/I -
module by [2, p. 191]. Hence the proof is completed. �
Lemma 4.3. Let I be an ideal of a ring R. If every proper submodule of a module M is contained
in a maximal submodule and every simple factor module of M has a projective I -semicover, then
M/IM is semisimple.

Proof. Let M̄ = M/IM and C = Soc(M̄). If C 	= M̄ , then there exists a maximal submodule
D of M̄ such that C ⊆ D ⊆ M̄ . Then M̄/D is a simple factor module of M̄ whence of M ,
and so has a projective I -semicover and satisfies I (M̄/D) = 0. Thus by Lemma 4.2, M̄/D is a
projective R/I -module. This implies that D is a summand of M̄ . So M̄ = D ⊕ D′ for some D′.
This implies that D′ ⊆ C ⊆ D, a contradiction. �

We can now prove Theorem 4.4, which restates Azumaya’s Theorem.

Theorem 4.4. Let I be an ideal of a ring R such that I ⊆ δ(RR). Then the following are equiv-
alent for a module M .

(i) Every factor module of M has a projective I -semicover.
(ii) Every proper submodule of M is contained in a maximal submodule and every simple factor

module of M has a projective I -semicover.

Proof. (i) ⇒ (ii) Let U be a proper submodule of M and f :P → M/U be a projective I -
semicover of M/U . If δ(P ) 	= P , then P has an essential maximal submodule V by [15,
Lemma 1.9]. Then Kerf ⊆ δ(RR)P = δ(P ) ⊆ V . This implies that (V )f is a maximal sub-
module of M/U . If δ(P ) = P , P and hence M/U is semisimple. It follows that M/U has a
maximal submodule.

(ii) ⇒ (i) By Lemma 4.3, M̄ = M/IM is semisimple. Then M/IM = ⊕
i∈Λ Si where

each Si is simple and Λ is any index set. Let fi :Pi → Si be a projective I -semicover of Si .
Then f := ⊕

i∈Λ fi :
⊕

i∈Λ Pi → M̄ is an epimorphism and P = ⊕
i∈Λ Pi is projective. Let

g :M → M̄ be the canonical epimorphism. Then there exists a homomorphism h :P → M such
that hg = f . Then we have that M = (P )h + IM . Since IM �δ M by [15, Lemma 1.5], there
exists a semisimple projective submodule X of M such that M = (P )h⊕X. Since h :P → (P )h

is a projective I -semicover, we have that M has a projective I -semicover. The hypotheses of the
theorem are also satisfied for any factor module of M . Hence every factor module of M has a
projective I -semicover. �
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Corollary 4.5. (See [3, Theorem 4].) Let M be an R-module. Then the following are equivalent.

(i) Every factor module of M has a projective J (R)-semicover.
(ii) Every proper submodule of M is contained in a maximal submodule and every simple factor

module of M has a projective J (R)-semicover.

From now on we consider projective I -covers to characterize I -semiperfect rings. First we
prove the following theorem which shows that the projectivity condition in [12, Theorem 2.10]
is removable by a similar proof.

Theorem 4.6. Let M = M1 ⊕M2 a direct sum of modules M1, M2 such that Mi is I -semiperfect
for i = 1,2. Then M is I -semiperfect.

Proof. Let L ⊆ M . We show that there exists a decomposition M = A ⊕ B such that A ⊆ L is
projective and L ∩ B ⊆ IM .

Case (1). If M1 ∩ (L + M2) = 0, then L ⊆ M2. Since M2 is I -semiperfect, there exists a
decomposition M2 = B1 ⊕ B2 such that B1 ⊆ L is projective and L ∩ B2 ⊆ IM2. Hence M =
M1 ⊕ B1 ⊕ B2 and L ∩ (M1 ⊕ B2) = L ∩ B2 ⊆ IM2 ⊆ IM .

Case (2). If M1 ∩ (L + M2) 	= 0, then M1 has a decomposition M1 = A1 ⊕ A2 such that A1
is projective, A1 ⊆ M1 ∩ (L + M2) and M1 ∩ (L + M2) ∩ A2 = A2 ∩ (L + M2) ⊆ IM1 ⊆ IM .
Then M = A1 ⊕ A2 ⊕ M2 = L + (M2 ⊕ A2).

Assume M2 ∩ (L + A2) = 0. Since L ∩ A2 ⊆ A2 and A2 is I -semiperfect, A2 has a decom-
position A2 = C1 ⊕ C2 such that C1 ⊆ L ∩ A2 is projective and L ∩ A2 ∩ C2 = L ∩ C2 ⊆ IM1.
Then M = (A1 ⊕ C1) ⊕ (C2 ⊕ M2) = L + (C2 + M2). Since A1 ⊕ C1 is projective, there exists
a summand L′ of M such that L′ ⊆ L and M = L′ ⊕ (C2 ⊕ M2) (see [6, Lemma 4.47]). Then L′
is projective. Since M2 ∩ (L + A2) = 0, we have L ∩ (C2 ⊕ M2) = L ∩ C2 � IM1.

Assume M2 ∩ (L + A2) 	= 0. Then M2 has a decomposition M2 = B1 ⊕ B2 such that B1 �
M2 ∩ (L+A2) is projective and B2 ∩ (L+A2) ⊆ IM2. Then M = L+ (A2 +B2) = (A1 ⊕B1)⊕
(A2 ⊕B2). Since A1 ⊕B1 is projective, there exists L′ ⊆ L such that M = L′ ⊕A2 ⊕B2 and then
L′ is projective. To show that L ∩ (A2 ⊕ B2) ⊆ IM , take 0 	= l = a + b ∈ L ∩ (A2 ⊕ B2) where
l ∈ L,a ∈ A2, b ∈ B2. Then l − b = a ∈ A2 ∩ (L + M2) � IM and l − a = b ∈ B2 ∩ (L + A2) ⊆
IM and so l ∈ IM . Hence M is I -semiperfect. �

A module M is said to have C3 if, whenever M1 and M2 are summands of M such that
M1 ∩ M2 = 0, then M1 ⊕ M2 is also a summand of M [6].

Theorem 4.7. Let I be an ideal of a ring R and M be a finitely generated projective R-module.
If every simple factor module of M has a projective I -cover and either IM is SDM in M or M

is DM for I with C3, then M is I -semiperfect.

Proof. Let N be a submodule of M . Since by Lemma 4.3, M/IM is semisimple, M/(IM + N)

is semisimple. Hence it is a finite direct sum of simple modules Si , i ∈ F where F is finite. Let
fi :Pi → Si be a projective I -cover of Si (i ∈ F). Then f = ⊕

i∈F fi :
⊕

i∈F Pi → M/(IM +
N) is a projective I -cover of M/(IM + N) by Lemma 3.9. Hence by Lemma 3.10, there is a
decomposition M = A⊕B such that IM +N = A⊕ (B ∩ (IM +N)) and B ∩ (IM +N) ⊆ IM .

If IM is SDM in M , then since M = IM + N + B , M = C ⊕ (N + B) for a submodule C

of IM . On the other hand, since N + B is projective and B is a summand of N + B , there is a
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submodule K of N such that N +B = K ⊕B and so M = C ⊕K ⊕B . It follows that N = K ⊕
((C +B)∩N), and since (C +N)∩B ⊆ (IM +N)∩B ⊆ IM , we have that (C +B)∩N ⊆ IM .
Hence M is I -semiperfect.

Now assume that M is DM for I with C3. Since M = IA+N +B and IA is DM in M , there
is a summand C of IA such that M = C + B + N . Since C ∩ B = 0 and M has C3 we have
C + B is a summand of M , and so there is a submodule K of N such that M = C ⊕ K ⊕ B . It
follows that N = K ⊕ ((C + B) ∩ N) and (C + B) ∩ N ⊆ (C + N) ∩ B + (N + B) ∩ C ⊆ IM .
The proof is completed. �

Now we state our main result of this section which shows the relationship between projective
I -covers and I -semiperfect rings.

Theorem 4.8. Let I be an ideal of a ring R. Consider the following conditions:

(i) every finitely generated left R-module has a projective I -cover,
(ii) every factor module of RR has a projective I -cover,

(iii) for every countably generated left ideal L of R, R/L has a projective I -cover,
(iv) R is I -semiperfect,
(v) every simple factor module of RR has a projective I -cover.

Then (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) and (ii) ⇒ (v); (iv) ⇒ (i) if R is a left DM ring for I ; and
(v) ⇒ (iv) if either I is SDM in RR or RR is DM for I with C3.

Proof. (i) ⇒ (ii) ⇒ (iii) It is obvious.
(iii) ⇒ (iv) By Theorem 3.11, R is I -semiregular. By the proof of [12, Theorem 2.19 (3 ⇒ 1)],

R/I is Noetherian and hence semisimple. By [11, Theorems 28 and 36], R is I -semiperfect.
(ii) ⇒ (v) It is obvious.
(iv) ⇒ (i) Assume that R is a left DM ring for I and R is an I -semiperfect ring. Let M be

a finitely generated left R-module. Then there exists an epimorphism f :F → M where F is a
finitely generated free module. Since F is I -semiperfect by Theorem 4.6 or [12, Corollary 2.11],
F = F1 ⊕ F2 where F1 ⊆ Kerf and F2 ∩ Kerf ⊆ IF . Now f |F2 :F2 → M is an epimorphism
and Ker(f |F2) = F2 ∩ Kerf is DM in F2 since R is a left DM ring for I . Hence M has a
projective I -cover.

(v) ⇒ (iv) By Theorem 4.7. �
If I ⊆ δ(RR), then the conditions of Theorem 4.8 are equivalent because R is a left DM ring

for I and I is SDM in RR. Hence if I = δ(RR), we have the characterization of δ-semiperfect
rings which is proven by Zhou [15, Theorem 3.6]. Note that the δ-semiperfect rings of Zhou are
exactly the δ(RR)-semiperfect rings.

If I = J (R), then Theorem 4.8 gives the characterization of semiperfect rings (see [10]).
If I = Soc(RR), then we have [12, Corollary 2.24].
For the singular ideal, if R is Z(RR)-semiperfect, then Z(RR) = J (R) by [9, Theorem 2.4] or

[1, Theorem 3.2] and hence Z(RR) is SDM. If every simple factor module of RR has a projective
Z(RR)-cover, then by Lemma 3.10 and [12, Theorem 2.12] Z(RR) = J (R). Then by the remark
above of Theorem 3.12 we have the following corollary.
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Corollary 4.9. The following are equivalent for a ring R.

(i) Every finitely generated module M has a projective Z(RR)-cover.
(ii) Every factor module of RR has a projective Z(RR)-cover.

(iii) For every countably generated submodule L of RR, R/L has a projective Z(RR)-cover.
(iv) R is Z(RR)-semiperfect.
(v) Every simple factor module of RR has a projective Z(RR)-cover.

Since any strongly lifting ideal is DM as a left and right ideal in R, by [11, Theorem 36]
and Lemma 4.3, we can characterize I -semiperfect rings by using projective I -semicovers as
follows.

Corollary 4.10. Let I be a strongly lifting ideal of a ring R. Then the following are equivalent.

(i) R is I -semiperfect.
(ii) R/I is semisimple.

(iii) Every finitely generated left (right) R-module has a projective I -semicover.
(iv) Every factor module of RR(RR) has a projective I -semicover.
(v) Every simple factor module of RR(RR) has a projective I -semicover.

Although Z2(RR) is not strongly lifting in general (see [11, Example 52]), it is proved in [11,
Theorem 49] that R is Z2(RR)-semiperfect if and only if R/Z2(RR) is semisimple.

Theorem 4.11. The following are equivalent for a ring R.

(i) R is Z2(RR)-semiperfect.
(ii) R/Z2(RR) is semisimple.

(iii) Every finitely generated left R-module has a projective Z2(RR)-semicover.
(iv) Every factor module of RR has a projective Z2(RR)-semicover.
(v) Every simple factor module of RR has a projective Z2(RR)-semicover.

Proof. (i) ⇔ (ii) By [11, Theorem 49].
(i) ⇒ (iii) By a proof similar to Theorem 4.8 ((iv) ⇒ (i)).
(iii) ⇒ (iv) ⇒ (v) They are obvious.
(v) ⇒ (ii) By Lemma 4.3, R/Z2(RR) is semisimple. �
If Z2(RR) ⊆ δ(RR), then Z2(RR)-semiperfect rings are semisimple rings as the following

corollary shows.

Corollary 4.12. Let R be a ring with Z2(RR) ⊆ δ(RR). The following are equivalent.

(i) R is Z2(RR)-semiperfect.
(ii) For every countably generated submodule L of RR, R/L has a projective Z2(RR)-

semicover.
(iii) R is semisimple.
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Proof. (i) ⇔ (ii) By Theorem 4.8.
(i) ⇒ (iii) If R is Z2(RR)-semiperfect, then RR = Z2(RR) ⊕ L for a semisimple left ideal L

by [11, Theorem 49]. Since Z2(RR) is δ-small in R, it follows that it is semisimple and so is R.
(iii) ⇒ (i) By [11, Theorem 49]. �

Example 4.13. Let R = [
F F
0 F

]
be the ring of upper triangular matrices over a field F . Then

N = [ 0 F
0 F

]
is a projective left ideal, L = [

F F
0 0

]
is a maximal left ideal and I = [ 0 F

0 0

]
is an ideal

of R. Consider the R-module M = N ⊕ R/L. Then Soc(RM) = [ 0 F
0 0

] ⊕ R/L is SDM but not
δ-small because 0 ⊕ R/L is not δ-small in M .
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