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GENERALIZED SEMICOMMUTATIVE RINGS
AND THEIR EXTENSIONS

MusITTIN BASER, ABDULLAH HARMANCI, AND TAa1 KEuUN KwAk

ABstrRACT. For an endomorphism a of a ring R, the endomorphism « is
called semicommutative if ab = 0 implies aRa(b) =0 fora € R. Aring R
is called a-semicommutative if there exists a semicommutative endomor-
phism « of R. In this paper, various results of semicommutative rings
are extended to a-semicommutative rings. In addition, we introduce the
notion of an a-skew power series Armendariz ring which is an extension
of Armendariz property in a ring R by considering the polynomials in the
skew power series ring R[[z;a]]. We show that a number of interesting
properties of a ring R transfer to its the skew power series ring R[[z; a]]
and vice-versa such as the Baer property and the p.p.-property, when
R is a-skew power series Armendariz. Several known results relating to
a-rigid rings can be obtained as corollaries of our results.

1. Introduction

Throughout this paper R denotes an associative ring with identity and «
denotes a nonzero non identity endomorphism of a given ring, unless specified
otherwise.

Recall that a ring is reduced if it has no nonzero nilpotent elements. Lambek
[13] called a ring R symmetric provided abc = 0 implies ach = 0 for a,b,c €
R, Habeb [3] called a ring R zero commutative if R satisfies the condition:
ab = 0 implies ba = 0 for a,b € R, while Cohn [4] used the term reversible
for what is called zero commutative. A generalization of a reversible ring is a
semicommutative ring. A ring R is semicommutative if ab = 0 implies aRb = 0
for a,b € R. Historically, some of the earliest results known to us about
semicommutative rings (although not so called at the time) was due to Shin
[15]. He proved that (i) R is semicommutative if and only if rr(a) is an ideal
of R where rg(a) = {b € R | ab = 0} [15, Lemma 1.2]; (ii) every reduced ring is
symmetric [15, Lemma 1.1] (but the converse does not hold [1, Example IL.5]);
and (iii) any symmetric ring is semicommutative but the converse does not
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hold ([15, Proposition 1.4 and Example 5.4(a)]. Semicommutative rings were
also studied under the name zero insertive by Habeb [5].

Another generalization of a reduced ring is an Armendariz ring. Rege and
Chhawchharia [14] called a ring R Armendariz if whenever any polynomials
f(z) =ap+ a1z + -+ anz™, g(z) = by + iz + -+ + b,z™ € R[z] satisfy
f(z)g(z) = 0, then a;b; = 0 for each i and j. The Armendariz property of a
ring was extended to one of the skew polynomial ring in [7]. For an endomor-
phism « of a ring R, a skew polynomial ring (also called an Ore extension of
endomorphism type) R[z; o] of R is the ring obtained by giving the polynomial
ring over R with the new multiplication zr = a(r)z for all » € R, while R[[z; o]
is called a skew power series ring. A ring R is called a-skew Armendariz |7,
Definition] if for p = ag + a1z + -+ + amaz™ and ¢ = bg + b1z + - + bpz™
in R[z;a], pg = 0 implies a;a*(h;) = 0forall 0 < i <mand 0 < j < n.
Recall that an endomorphism a of a ring R is called rigid [12] if aa(a) = 0
implies @ = 0 for a € R. If R is an o-rigid ring then for p = 32 a;z* and
g = Z;io bz’ in R[[z;q]], pg = 0 if and only if a;b; = 0 forall 0 < 4,0 < j
[6, Proposition 17]; and R is an a-rigid ring if and only if a skew power series
ring R[[z; a]] of R is reduced and « is monomorphism [6, Corollary 18].

Motivated by the above, we introduce the notion of an a-semicommutative
ring with the endomorphism « (see Definition 2.1 in Section 2), as both a gen-
eralization of a-rigid rings and an extension of semicommutative rings, and
study characterizations of a-semicommutative rings and their related proper-
ties. And then for some condition with respect to ¢, say a-sps Armendariz
property, in a skew power series ring R[[z; a]] of R which is an extension of the
Armendariz property of a ring R, the relationship between R and R[[z;q]] is
studied, and the existence of strong connections among such rings and their
various properties are also investigated. Moreover, we show that a number of
interesting properties of a ring R satisfying a-sps Armendariz property trans-
fer to its the skew power series ring R[[z;a]] and vice-versa such as the Baer
property and the p.p.-property. Several known results relating to a-rigid rings
can be obtained as corollaries of our results.

2. a-semicommutative rings and related rings

Our focus in this section is to introduce the concept of an a-semicommutative
ring and study its properties. Observe that the notion of a-semicommutative
rings not only generalizes that of a-rigid rings, but also extends that of semi-
commutative rings. We also investigate connections to other related conditions.
Examples to illustrate the concepts and results are included. We start with the
following definition.

Definition 2.1. An endomorphism « of a ring R is called semicommuta-
tive if whenever ab = 0 for a,b € R, aRa(b) = 0. A ring R is called a-
semicommutative if there exists a semicommutative endomorphism a of R.
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It is clear that a ring R is semicommutative if R is Ir-semicommutative,
where I is the identity endomorphism of R. It is easy to see that every subring
S with a(S) C S of an a-semicommutative ring is also a-semicommutative.

Remark 2.2. Let R be an o-semicommutative ring with ab = 0 for a,b € R.
Then aRa(b) = 0 and, in particular, aa(b) = 0. Since R is a-semicommutative,
we get aRa?(b) = 0. So, by induction hypothesis, we obtain aRa*(b) = 0 and
aa®(b) = 0 for any positive integer k.

Notice that in general the reverse implication in the above definition does not
hold by the following example which also shows that there exists an endomor-
phism « of a semicommutative ring R such that R is not a-semicommutative.

Example 2.3. Let Zs be the ring of integers modulo 2 and consider a ring
R = 7y ® Z» with the usual addition and multiplication. Then R is semicom-
mutative, since R is commutative reduced. Now, let o : R - R be defined by
a((a,b)) = (b,a). Then « is an automorphism of R. For a = (1,0) = b € R,
aRa(b) = 0 but ab = (1,0) # 0. Moreover, R is not a-semicommutative: In
fact, for (1,0),(0,1) € R, (1,0){(0,1) = (0,0) but (0,0) # (1,0)(1,1)a((0,1)) €
(1,0)Ra((0, 1)).

Theorem 2.4. A ring R is a-rigid if and only if R is a reduced a-semicommut-
ative ring and « 15 a monomorphism.

Proof. Let R be an o-rigid ring. Then R is reduced and « is a monomorphism
by [6, p.218]. Assume that ab = 0 for a,b € R. Let r be an arbitrary element
of R. Then ba = 0 and ara(b)a(ara(b)) = ara(ba)a(r)e? (b) = 0. Since R is
a-rigid, ara(b) = 0 and so aRa(b) = 0. Thus R is a-semicommutative.
Conversely, assume that aa(a) = 0 for a € R. Since R is reduced and a-
semicommutative, a(a)a = 0 and so a(a)Ra(a) = 0. Hence a(a?) = 0 and
so a = 0, since o is a monomorphism of a reduced ring R. Therefore R is
a-rigid. O

The following example shows that the conditions “R is a reduced ring” and
“r is a monomorphism” in Theorem 2.4 cannot be dropped respectively.

Example 2.5. (1) Let Z be the ring of integers. Consider a ring R =
{(a%)|a,beZ}. Let @ : R — R be an endomorphism defined by a ((g %)) =
(8 ‘ab). Note that a is an automorphism. Clearly, R is not 10duced and
hence R is not a-rigid. Let AB = O for A = (2%),B = (§9) € R. Then
ac = 0 and ad + bc = 0. For an arbitrary (%) € R, (32) (hk)a((5?)) =
(he ~ahdtaketbhe) Since ac = 0,a =0or ¢ = 0. If a = 0 then be = 0. So
ARa(B) = 0. If ¢ = 0 then ad = 0. Again ARa(B) = 0. Thus R is an
a-semicommutative ring.

(2) Let F be a field and R = F[z] the polynomial ring over F. Define
a: R — Rby o(f(x)) = f(0) where f(z) € R. Then R is a commutative
domain (and so reduced) and « is not a monomorphism. If f(z)g(x) = 0 for
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f(z),9(z) € R then f(z
Hence f(z)R a(g(z))

not a-rigid, since za(zx)

) =0or g(z) =0, and so f(z) = 0 or a(g(z)) = 0.
0, and thus R is a-semicommutative. Note that R is
=0for0#2z € R.

Observe that if R is a domain then R is both semicommutative and a-semi-
commutative for any endomorphism ¢ of B. Example 2.5(1) also shows that
there exists an a-semicommutative ring R which is not a domain.

Proposition 2.6. Let R be an a-semicommutative ring. Then

(1) a(1) = 1 where 1 is the identity of R if and only if a(e) = e for any
e’ =e€R.

(2) If (1) = 1, then R is abelian (i.e., all its idempotents are central).

Proof. (1) Suppose that a(1) = 1. If e2 = e € R, then we get e(1 —¢) =0
and {1 —e)e = 0. Then eRa(l —¢) = 0 and (1 — e)Ra(e) = 0 because R
is a-semicommutative. Hence ea(l —e) = 0 implies e(1 — a(e)) = 0 and so
ea(e) = e. From (1 — e)a(e) = 0, we get a(e) = eale) and so a(e) = e, since
ea(e) = e. The converse is obvious.

(2) Assume that a(1) = 1. Let e be an arbitrary idempotent in R. By the
same method as in (1), we get eRa(l —e) = 0 and (1 — e)Ra(e) = 0, and so
eR(1—e)=0and (1-¢e)Re=0by (1). Hence er(1—¢€) =0and (1-e)re =0
for all r € R. So er = ere = re. Therefore R is an abelian ring. O

The concepts of a-semicommutative rings and abelian rings are independent
on each other by Example 2.3 and Example 2.7 which also shows that the
condition “a(1) = 1” in Proposition 2.6(2) is not superfluous.

Example 2.7. Let Z be the ring of integers. Consider aring R = {(&8%) | a,b,c
€ Z}. Let @ : R — R be an endomorphism defined by o ((¢%)) = (89). For
A=(2%),B= (0 C)ER,lfAB O then we obtain aa’ = 0, and so a =0
or ' = 0. This implies ARa(B) = O, and thus R is an a-semicommutative
ring. Note that a(1) # 1 and R is not abelian.

Corollary 2.8. Semicommutative rings ore abelian.

Given a ring R and an (R, R)-bimodule M, the trivial extension of R by
M is the ring T(R, M) = R & M with the usual addition and the following
multiplication: (rq,mq)(rg,ms) = (rira,rime + myry). This is isomorphic to
the ring of all matrices (g ), where r € R and m € M and the usual matrix
operations are used.

For an endomorphism « of a ring R and the trivial extension T'(R, R) of R,

T(R,R) » T(R,R) defined by a ((8 %)) = (ag“) g((z))) is an endomorphism

of T(R, R). Since T(R,0) is isomorphic to R, we can identify the restriction of
a by T(R,0) to a.

Notice that the trivial extension of a semicommutative ring is not semicom-
mutative by [8, Example 11]. Now, we may ask whether the trivial extension
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T(R,R) is a-semicommutative if R is a-semicommutative. But the following
example erases the possibility, in general.

Example 2.9. Consider an a-semicommutative ring R = {(3%)|a,be Z}

with an endomorphism a defined by a((¢ %)) = (2 7) in Example 2.5(1).

For
_ () (1) _(Ga) (1)
=@ '60) o= ) erem
(10) (00) .
we have AB = Q. However, for C = ((gé) (g §)> € T(R, R), we obtain
0+ (gg%g EEED — ACa(B) € AT(R, R)a(B),

and therefore T'(R, R) is not @&-semicommutative.
However we have the following:

Proposition 2.10. Let R be a reduced ring. If R is an a-semicommutative
ring, then T(R, R) is an a-semicommutative ring.

Proof. We freely use the condition that R is reduced a-semicommutative and
the fact that reduced rings are semicommutative. Note that R is a reduced
ring if and only if for any a,b € R, ab®* = 0 implies ab = 0. Let AB =
Ofor 4 =(8%),B = (5% € T(R,R). Then ac = 0 and ad + be = 0.
So 0 = ad + bc = (ad + be)e = be? implies be = 0, and so ad = 0. Then
aRa(c) = 0,bRa(c) = 0 and aRa(d) = 0. Thus for any C = (k%) € T(R, R),
ACa(B) = (ah%(c‘) aha(d)+s}l:g((z))+bha(c)) = (. Hence AT(R, R)a(B) = O, and
thus T(R, R) is a-semicommutative. O

Corollary 2.11. If R is an a-rigid ring, then T(R, R) is an a@-semicommuta-
tive ring.

Proof. 1t follows from Theorem 2.4 and Proposition 2.10. O

The trivial extension T'(R, R) of a ring R is extended to

a b ¢
S3(R) = 0 a d] |abecdeR
0 0 a

and an endomorphism « of a ring R is also extended to the endomorphism &
of S3(R) defined by a((ai;)) = (a(aij)). There exists a reduced ring R such
that S3(R) is not a-semicommutative by the following example.

Example 2.12. We consider the commutative reduced ring R = Zy & Z» and
the automorphism «a of R defined by a((a,b)) = (b, a), in Example 2.3. Then
S3(R) is not @-semicommutative. For, let
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(L,0) (0,0) (0,0) (0,1) (0,0) (0,0)
A=[(0,00 (1,0) (0,0)] and B={(0,0) (0,1) (0,0)) € Ss(R)
((070) (0,0) (1,0) (0,0) (0,0) (0,1)

Then AB = O, but AAa(B) = A # O. Thus AS;(R)a(B) # O, and therefore

S3(R) is not a-semicommutative.

However, we obtain that S3(R) is @-semicommutative for a reduced a-
semicommutative ring R by the similar method to the proof of Proposition
2.10 as follows:

Proposition 2.13. Let R be o reduced ring. If R is an a-semicommutative

ring, then
a b ¢
S3(R) = 0 ¢ d)|abc,deR
(I

18 an a-semicommutative Ting.

Proof, Let AB =0 for A = (8 z 2) B = (% 0 21) ¢ S3(R). Then we have
a 00 ad

the following equations:

(1) aad =0,

(2) ab’ 4+ ba’' =0,

(3) ac' +bd +ca' =0,

4) ad' +da' = 0.

From Eq.(1), we get aRa(a’') = 0. In Eq.(2), 0 = (ab’ + ba')a’ = ba'?, and so
ba' = 0 and ab’ = 0. Similarly, from Eq.(4), we have da’ = 0 and ad' = 0. Also,
in Eq.(3), 0 = (ac¢’ + bd' + ca')a’ = ca'® implies ca’ = 0 and a¢’ +bd’ = 0. Then
0 = a(ac’ +bd') = a®c’, and so ac’ = 0 and bd’ = 0. Hence, these yield that
aRa(a') = 0,aRa(b') = 0,bRa(a’) = 0,aRa(c) = 0,aRa(d') = 0,bRa(d) =
0,cRa(a’') =0, and dRa(a’) = 0. Thus ASs(R)a(B) = O, and therefore S3(R)
is an @-semicommutative ring. O

Corollary 2.14 ([11, Proposition 1.2]). Let R be a reduced ring. Then Ss(R)
s a semicommutative Ting.

For an a-rigid ring R and n > 2, let

a a2 a1z - Qin
0 a ay - a2
Sn(R) = 00 a - a3 a,a;; € R

3

S
S
S
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From Proposition 2.13, we may suspect that S,(R) may be a-semicommutative
for n > 4. But the possibility is eliminated by the next example.

Example 2.15. Let R be an o-rigid ring and

a a2 113 Q14

_ 0 a ay axy -
Si(R) = 0 0 a agl|®% €ER
0 0 0 a

Note that if R is an a-rigid ring, then a(e) = e for ? = e € R by [6, Proposition
5]. In particular a(1) = 1. For

(¢}

i

0

we obtain AB = 0. But w
0001 0000

o7 (§ihe) - acamesmuoo= (Ji1) esim
Q000 0000

)

Thus AS;(R)&(B) # O and so S4(R) is not a-semicommutative. Similarly, it
can be proved that S,(R) is not a-semicommutative for n > 5.

Y (3
8)7 B= (0001) € S4(R),
Co000

0
0
00

OO ==

have

e

Observe that let B; be a ring and «a; an endomorphism of R; for each ¢ € T.
Then, for the product Ly R; of R; and the endomorphism & : W;er Ry —
M;ecr R; defined by a((a;)) = (ai(a;)), ierR; is a@-semicommutative if and
only if each R; is a;-semicommutative.

3. Related topics

Following [14], a ring R is called Armendariz if whenever two polynomials
flz) = S0, axt, g(z) = E?:o bjz) € Rlz] satisfy f(z)g(x) = 0 we have
a;b; = 0 for every { and j. We extend the Armendariz property of a ring R to
the skew power series ring R[[z;a]] of R. In [6, Proposition 17 and Corollary
18], if R is an a-rigid ring, then for p = Y7 a;z* and ¢ = Py b;z? in
R{[z; o]], pg = 0 if and only if a;b; = 0 for all 0 < i, 0 < j; and the skew power
series ring R[[z; @]] is reduced.

Hence, we define the following:

Definition 3.1. Let o be an endomorphism of a ring R. A ring R is called
a skew power series Armendariz ring with the endomorphism o (simply, an a-
sps Armendariz ring) if whenever pg = 0 for p = > 0 a;x, g = Z;io bial €
R|[[z; o], then a;b; = 0 for all 7 and j.

It can be easily checked that if R is an a-rigid ring then R is a-sps Armen-
dariz by [6, Proposition 17], and that every subring S with a(S) C S of an
a-sps Armendariz ring is also a-sps Armendariz. We remark that in general
the reverse implication in the above definition does not hold by the following
example.
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Example 3.2. Let R = Z2® Z, where Z, is the ring of integers modulo 2, and
a: R = R be an endomorphism defined by a((a, b)) = (b,a) as in Example 2.3.
Then for p = (1,0)z and ¢ = (0, 1) in R[[z; a]], we have (1,0)(0,1) = (0,0) € R,
but pg # 0. Moreover, R is not a-sps Armendariz: In fact, for p = (1,0) +
(1,0)z and ¢ = (0,1) + (1,0)z in R[[z;a]], pg = 0 but (1,0)(1,0) # (0,0) € R.

Theorem 3.3. Let R be a ring. Then we have the following.
(1) R is an a-rigid ring if and only if R is a reduced a-sps Armendariz ring.
(2) If R[[z;]] is a semicommutative ring, then R is an a-semicommutative
ring.
(3) Let R be an a-sps Armendariz ring. Then
(i) if R is a-semicommutative, then R[[x;al] is semicommutative;
(ii) 4f ab =0 for a,b € R, then a(a)b = 0 for any positive integer n;
(iii) #f aa™(b) =0 for a,b € R and some positive integer m, then ab = 0.

Proof. (1) Tt is enough to show that R is a-rigid when R is a reduced a-sps
Armendariz ring. Assume aa(a) =0 for a € R. Then for p =az and ¢ = a in
R[[z;q]], pg = aza = aa{a)z = 0. Since R is a-sps Armendariz, a*> = 0. Thus
a = 0 because R is reduced. Therefore R is an a-rigid ring.

(2) Assume that R[[z; a]] is a semicommutative ring. Let ab = 0for a,b € R.
Then aR|[[z;a]]b = 0. Thus arzb = 0 for any r € R. Hence ara(b)z = 0 and
so aRa(b) = 0. Therefore R is a-semicommutative.

(3) Let R be an a-sps Armendariz ring. (1) Assume that R is a-semicommu-
tative. First we show that R is semicommutative. Let ab = 0, then aRa(b) = 0
since R is a-semicommutative. Let f = arz and g = b € R[[z; ]| for any r € R.
Then fg = arzb = ara(b)z = 0 since aRa(b) = 0, and so arb = 0 since R is a-
sps Armendariz. Therefore aRb = 0, and thus R is semicommutative. Now, let
pg=0forp= Y2 aiz’, g =352y bja? € R[z;e]]. Then a;b; =0 for all i, 4,
since R is a-sps Armendariz. Hence a; Ra(b;) = 0 and so a;Ra*(b;) = 0 for all
i,7 and positive integer k& because R is a-semicommutative. This implies that
for izt € Rl[r;al], plesst)g = (5520 aiwt)exat (D20 bia?) = apera® (bo)a*
+ (apera® (by) + ar aler)a+1(bg))zF+! + .- = 0, since a;Ra*(b;) = 0 for all
1,7 and positive integer k. By this fact and R is semicommutative, we get
phq = 0 for all h € R[[z;a]]. Therefore pR[[z;a]]qg = 0, and so R[[z;a]] is a
semicommutative ring. (ii) Suppose that ab = 0 for a,b € R. It is enough
to show that a(a)b = 0. Let p = aa)z and ¢ = bz in R[[z;a]]. Then pg =
a(a)a(b)z? = alab)z? = 0. Since R is a-sps Armendariz, a(a)b = 0. (iii)
Suppose that aa™(b) = 0 for some positive integer m. Let p = az™ and q = bz
in R[[z;a]]. Then pg = aa™(b)z™*! = 0, and thus ab = 0 since R is a-sps
Armendariz. O

It can be easily checked that if R is an a-sps Armendariz ring, then « is
always a monomorphism and aa(b) = 0 for a,b € R implies a(a)b = 0 by
Theorem 3.3(3)(ii) and (iii). Moreover, we have the following.
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Corollary 3.4. If R is an a-sps Armendariz ring, then a(l) = 1, where 1 is
the identity of R. In this case, a(e) = ¢ for any e =e € R.

Proof. (1 —a(1))a(l) = 0 implies a(1 — a(1))a(1) = 0 by Theorem 3.3(3)(ii).
Hence we have (a(1) — a{a(1)))a(l) =0, and so a(l) = a(a(1)). Since a is a
monomorphism, a(1) = 1.

Now, let €2 = e € R. Then e(1 —e) = 0 implies a(e)(1 —e) = 0 by Theorem
3.3(3)(ii). Hence a(e) = afe)e. Similarly, (1 — e)e = 0 implies ¢ = afe)e.
Consequently, a(e) = e. 0

Lemma 3.5. Let R be an a-sps Armendariz ring. Then the set of all idem-
potents in R[[x;a]] coincides with the set of all idempotents of R and R|[[x; o]
is abelian.

Proof. Let €* = e € R[[z;0]], wheree = Y o e;x. Since e(1—e) = 0 = (1—e)e,
we have (eg + ez + - -+ e, 2" +---)((1—€e) —eyz — - ~ex” —---) =0
and ((1 —ep) —erx—---—epz™ —---)(eg+ ez +---+eyz™ +--+) = 0. Since
R is an a-sps Armendariz ring, eg(1 —¢g) = 0, ege; = 0 and (1 — eg)e; = 0 for
1<i. Thuse; =0for 1 <7, and so e = ey = e2.

Now, we claim that R is abelian. Note that a(e) = e for any > = e € R
by Corollary 3.4. We adapt the method in the proof of [7, Proposition 20].
For idempotents ¢ and e’ € R, ee’R[\(1 — €')(1 — e)a(R) = 0. Suppose that
0#ee'(—t) = (1—-¢€)1—-e)a(s) € ee’ R(1~¢')(1 —e)a(R) for some s,t € R.
Then ((1 - €'Yz +e)(e'tz + (1 —e)s) = (1 — e )ale't)z® + (ee't + (1 — ' )a((1 —
e)s)z+e(l—e)s = (1—ee'a(t)z? + (ee't +(1—e') (1 —e)a(s))r+e(l—e)s = 0,
since a(e') = ¢’ and a(l — e¢) = 1 — e. But ece't # 0; which is a contradiction
since R is a-sps Armendariz. Furthermore, suppose that e’e = 0. Then ee’ =
(1-e)Y1—-e)(—€e)=(1-¢€)1-e)(~ale)) €eee’'’RN(1-€')(1—e)a(R) =0.
Thus, for any idempotent e € R and any r € R, ¢’ = e + er(1 —¢) is an
idempotent in R with (1 — e)e’’ = 0. Hence €'{1 —¢) = 0 and so er(1 —e) = 0,

ie., er = ere. Similarly, "' = (1 — e) + (1 - e)re is an idempotent in R with
ee" = 0. Thus e"’e = 0 and so (1 —e)re = 0. i.e., re = ere. Hence, er = re for
any r € R and so R is abelian. Therefore R[[z;«]] is abelian. a

Now we turn our attention to the relationship between the Baerness and
p.p.-property of a ring R and these of the skew power series ring R[[z:«]] in
case R is a-sps Armendariz.

In [10], Kaplansky introduced the concept of Baer rings as rings in which the
right (left) annihilator of every nonempty subset is generated by an idempotent.
According to Clark [3], a ring R is called quasi-Baer if the right annihilator
of each right ideal of R is generated (as a right ideal) by an idempotent. It is
well-known that these two concepts are left-right symmetric.

A ring R is called a right (resp., left) p.p.-ring if the right (resp., left) annihi-
lator of an element of R is generated by an idempotent. R is called a p.p.-ring
if it is both a right and left p.p.-ring.
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On the other hand, Birkenmeier, Kim and Park [2] called R a right (resp.,
left) principally quasi-Baer (or simply right (resp., left) p.q.-Baer) ring if the
right (resp., left) annihilator of a principal right (resp., left) ideal of R is gen-
erated by an idempotent. R is called a p.q.-Baer ring if it is both right and
left p.q-Baer. The class of p.q.-Baer rings has been extensively investigated
by them [2]. This class includes all biregular rings, all (quasi-) Baer rings and
all abelian p.p.-rings. Various extensions of Baer, quasi-Baer, p.q.-Baer and
p.p.-rings have been studied by many authors {2, 6, 7, 8].

For a nonempty subset A of a ring R, we write rr(A) = {c € R | dc =0 for
any d € A} which is called the right annihilator of X in R.

Theorem 3.6. Let R be an a-sps Armendariz ring.

(1) R is a Baer (vesp., quasi-Baer) ring if and only if R[[z;a]] is a Baer
(resp., quasi-Baer) ring.

(2) If R[[z; a]] is a right p.p.-ring, then R is a right p.p.-ring.

Proof. (1) Assume that R is Baer. Let 4 be a nonempty subset of R{[z;a]] and
A* be the set of all coefficients of elements of A. Then A* is a nonempty subset
of R and so rg(A*) = eR for some idempotent e € R. Since e € rgjg;a)(4)
by Corollary 3.4, we get eR[[z;a]] C rg(je;a(4). Now, we let 0 # ¢ = bo +
bz + -+ b’ + -+ € rr{s;a)(A). Then Ag = 0 and hence pg = 0 for any
p € A. Since R is a-sps Armendariz, by, b1,...,b,... € rr(A*) = eR. Hence
there exists cg,c1,...,Ct,... € R such that ¢ = eco + ec1z +--- + ez’ +--- =
e(co+crz+...+ext+---) € eR[[z; ). Consequently eR[[z; a]] = 7R{[e;a))(4),
and therefore R[[z;]] is Baer.

Conversely, assume that R[[z;a]] is Baer. Let B be a nonempty subset of
R. Then rgjza)(B) = eR[[z; a]] for some idempotent e € R by Lemma 3.5.
Thus rg(B) = rg{(s;a))(B) N R = eR[[z;a]] N R = eR, and therefore R is Baer.

The proof for the case of the quasi-Baer property follows in a similar fashion:
In fact, for any right ideal A of R[[z;a]], take A* as the right ideal generated
by all coefficients of elements of A.

(2) Assume that R[[z;q]] is a right p.p.-ring. Let a € R, then there exists
an idempotent e € R such that rg((.;ay(a) = eR[[z;o]] by Lemma 3.5. Hence
rr(a) = eR, and therefore R is a right p.p.-ring. O

As a consequence we obtain:

Corollary 3.7 ([6, Theorem 21]). Let R be an a-rigid ring. Then R is a Baer
ring if and only if R[[z;a]] is a Baer ring.

There exists an o-sps Armendariz and right p.q.-Baer ring R such that
R[[z; a]] is not right p.q.-Baer by the next example.

Example 3.8 ([6, p.225]). For a field F, let

R= {(an) € H F, | a, is eventually constant} ,

n=1
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which is the subring of Hnoozl F,, where F,, = F for n = 1,2,3.... Then
R is right p.q.-Baer and Ig-rigid (and so Ig-sps Armendariz), where Iy is the
identity endomorphism of R. But R|[[z; Iz]] is not right p.q.-Baer. Furthermore,
R|[z; Ig]] is neither right p.p. nor left p.p..

Finally, we have the following result which can be compared with Lemma 3.5.

Proposition 3.9. If R is an a-semicommutative ring with a(1) = 1, then the
set of all idempotents in R[[z; a]] coincides with the set of all idempotents of R
and R[[z;o]] is abelian.

Proof. Note that R is an abelian ring with a{e) = e for any > = e € R by
Proposition 2.6. Let p? = p € R[[z;a]], where p = ey + 1z + epz% + -+ - Since
ale) = e for any e = e € R, p? = p implies the following system of equations:

e =eo;

eoe; + ercr{ep) = ey ;

epes + erafer) + exa(eg) = ey ;

eoer +erafer_1) + ... +ex_108 Her) + epat(eg) = e ;

From e = eg, we see that eg is an idempotent of R, so eg is central. Then we
get the following:

(5) ege) +ereg = e;
(6) egey + eyaer) + esep = e
(7 eoer +erafer_y) + ... +er_10¥ 7 (ey) + erep = ex

From Eq.(5)x (1 — eg), we obtain e;(1 —eg) = 0, and so e; = e1ep = 0. Hence
Eq.(6) becomes 2egea = ey. Similarly, 2ege2(1 — eg) = es(1 — o) implies
ez = 0. Continuing this procedure yields e; = 0 for i > 1. Consequently
p=eo = e2 € R and also R][z;a]] is abelian by Proposition 2.6. 0

Corollary 3.10. If a ring R has one of the following such that R|[z; o] is a
right p.p.-ring;

(1) R is an a-sps-Armendariz ring,

(2} R is an a-semicommutative ring with o{1) = 1.
Then R[[z;al] is semicommutative.

Proof. If R has one of the conditions, then R is abelian by Lemma 3.5 and
Proposition 3.9, respectively. Note that abelian right p.p.-rings are semicom-
mutative by [2, Proposition 1.14]. O
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Observe that the following example shows that the converse of Theorem
3.3(2) does not hold; and the condition “R is a-sps Armendariz” in Theorem
3.3(3) and the condition “a(1) = 1”7 in Proposition 3.9 cannot be dropped,
respectively.

Example 3.11. Consider the a-semicommutativering R = {(8%) | a,b,c € Z}
in Example 2.7, where a ((§%)) = (§3). Then a(1) # 1, and so R is not a-
sps Armendariz by Corollary 3.4. Moreover, R[[z; ¢]] is not semicommutative,
either: In fact, Forp= (5 ')+ (31)z and ¢ = (§}) in R[[z;0]] and (}1) €
Rllz; o}, pg = 0 but p(§ 1) g # 0 and so pR[z; allg # 0. Thercfore R{[z;al]
is not semicommutative. Note that let f = (39) + (59)z € Rl[z;q]], then
f2 = f € R[[z;a]], but f ¢ R. Finally, for A = (} 3*),B = (31), and
C =(}9) € R, we get AB = O but a™(4)B # O for any positive integer n
and BC # O even if Ba(C) = O.
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