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Existence of a global attractor for the plate equation with a critical
exponent in an unbounded domain
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Abstract

In this work, we study the asymptotic behavior of solutions for the plate equation with a critical exponent inRn.
We prove the existence of a global attractor inW2

2 (Rn) × L2(Rn).
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The subject of investigation of this work is the existence of a global attractor for the following plate
equation inRn:

utt + αut +�2 u + λu + f (u) = g(x)

whereα andλ are positive constants,g(·) is a given function andf (·) is a nonlinear function satisfying
some growth conditions.

The existence of a global attractor for this equation in a bounded domain, when the growth off (·)
is subcritical, was studied in [1]. The long-time behavior of solutions for the semilinear wave equations
with interior dissipation and a critical exponent in a bounded domain was investigated in [2–4] and
references therein. In bounded domains, the asymptotic compactness of the solutions, which plays an
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important role for the existence of a global attractor, is obtained by compactness of Sobolev embeddings.
This method does not apply to unbounded domains since the embeddings are no longer compact.

The existence of a global attractor for the semilinear wave equations with critical and supercritical
exponents in an unbounded domain was studied in [5,6]. In these articles, the asymptotic compactness
has been established using finite speed of propagation and specific estimates for the linear wave equations
in Rn, whichdo not seem to apply to the plate equation.

The main goal of the present work is to prove the asymptotic compactness of solutions, which,
together with the results of [7], implies the existence of a global attractor.

2. Preliminaries

We consider the following Cauchy problem:

utt + αut +�2 u + λu + f (u) = g(x), (t, x) ∈ R+ × Rn, (1)

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Rn, (2)

whereα > 0, λ > 0, g ∈ L2(Rn) and f (·) satisfies the following conditions:

f ∈ C1(R), | f ′(u)| ≤ c(1 + |u|p), p > 0, (n − 4)p ≤ 4 (3)

f (u) · u ≥ 0 for everyu ∈ R. (4)

Denote the spacesWs
2(Rn) andL2(Rn) by Hs(s �= 0) andH respectively. The norms inHs andH

are denoted by‖ · ‖s and‖ · ‖ respectively. We also use the spacesHs = H2+2s × H2s (s �= 0) and
H = H2 × H . In thespaceH we introduce a linear closed operatorA as follows:

D(A) = H1, Aw = (w2,−�2 w1 − λw1 − αw2), w = (w1, w2) ∈ D(A).

Using the substitutionθ(t) = (u(t), ut (t)), we reduce problem (1) and (2) to theproblem


d

dt
θ(t) = Aθ(t) + F(θ(t)), t ∈ R+

θ(0) = θ0

(5)

whereF(θ(t)) = (0,− f (u(t)) + g), θ0 = (u0, u1).
It is easy to show thatA is an infinitesimal generator ofC0-semigroup et A (see [8]) and as in [1] there

existM > 0 andω > 0 such that fors ∈ [−1, 1]
‖et A‖L(Hs,Hs) ≤ Me−ωt , � t ≥ 0 (6)

whereH0 meansH.
Since the nonlinear operatorF(·) : H −→ H satisfies the local Lipschitz condition (thanks to

(3)), using the results of [9], we find that for any θ0 ∈ H the problem (5) has aunique solution
θ(·) ∈ C([0,+∞);H); moreover if θ0 ∈ H1, then θ(·) ∈ C1([0,+∞);H) ∩ C([0,+∞);H1).
Therefore, we have the strongly continuous nonlinear semigroup{U(t)}(t≥0), whereθ(t) = U(t)θ0
is the solution of problem (5).

Lemma 1. Let us assume that conditions(3) and(4) are satisfied. Then

(i) for all θ0 ∈ H
sup
t≥0

‖U(t)θ0‖H ≤ c(‖θ0‖H), (7)
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where c(·) is a monotone increasing function;
(ii) if θm → θ weakly in H, then for every t> 0,

U(t)θm → U(t)θ weakly in H. (8)

Proof. (i) Multiplying (1) by ut and integrating over[τ, t] × Rn we obtain

E(u(t), ut (t)) +
∫

Rn
Φ(u(t, x))dx −

∫
Rn

g(x)u(t, x)dx + α

∫ t

τ

‖ut‖2ds

= E(u(τ ), ut(τ )) +
∫

Rn
Φ(u(τ, x))dx −

∫
Rn

g(x)u(τ, x)dx, (9)

whereE(u(t), ut(t)) = 1
2‖ut (t)‖2 + 1

2‖�u(t)‖2 + λ
2‖u(t)‖2, Φ(s) = ∫ s

0 f (τ )dτ . (9), together with (3)
and (4), yields (7).

(ii) Since θm → θ weakly inH, the sequence{θm} is bounded inH. Thus from (7) the sequence
{U(t)θm} and consequently also, by the condition (3), the sequence{F(U(t)θm)} are both bounded in
L∞(0, T;H). From this, and the fact thatU(t)θm is the solution of (5)1, it follows that the sequence
{ d

dt U(t)θm} is bounded inL∞(0, T;H−1). Then we have asubsequence{mk} such that


U(t)θmk → θ(t) weakly in L2(0, T;H)

F(U(t)θmk) → χ weakly in L2(0, T;H)

d

dt
U(t)θmk → d

dt
θ(t) weakly in L2(0, T;H−1).

(10)

From (10) weobtain thatχ = F(θ(t)) (see for example [10, p.12]) andθ(t) is a solution of problem (5)
with θ0 = θ . By theuniqueness of solutions, we haveθ(t) = U(t)θ . This shows that any subsequence of
{(U(t)θm, d

dt U(t)θm)} has a weakly convergent subsequence inL2(0, T;H×H−1) and the limit of any
such subsequence is equal to(U(t)θ, d

dt U(t)θ). Therefore the sequence{(U(t)θm, d
dt U(t)θm)} weakly

converges to(U(t)θ, d
dt U(t)θ) in L2(0, T;H × H−1) and consequently for everyt ∈ [0, T ] we have

U(t)θm → U(t)θ weakly inH−1. On the other hand, according to (7), for everyt ∈ [0, T ] the sequence
{U(t)θm} is bounded inH. Thus we obtain (8). �
Lemma 2. Let us assume that the conditions(3) and (4) are satisfied and B is a bounded subset ofH.
Then for anyε > 0 there exist t0 = t0(ε, B) and r0 = r0(ε, B) such that for every t≥ t0, r ≥ r0 and
everyθ ∈ B wehave

1

t

∫ t

0
‖U(s)θ‖2

W2
2 (Rn\B(0,r ))×L2(Rn\B(0,r ))

ds ≤ ε (11)

where B(0, r ) = {x ∈ Rn/|x| ≤ r }.
Proof. Using the notationη(t) = d

dt θ(t), from (5) weobtain that

d

dt
η(t) = Aη(t) + F1(t), η(0) = η0,

whereF1(t) = (0,− f ′(u)ut) andη0 = (u1,−αu1 −�2 u0 − λu0 − f (u0) + g). From (3) and (7) we
have

‖F1(t)‖H−1 ≤ c1‖ut (t)‖, � t ≥ 0. (12)
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Taking into account (6) and (12) in

η(t) = et Aη0 +
∫ t

0
e(t−s)A(F1(s))ds

for everyt ≥ 0 weobtain

‖η‖H−1 ≤ Me−ωt ‖η0‖H−1 + Mc1

∫ t

0
e−ω(t−s)‖ut (s)‖ds,

which yields
∫ t

0
‖η(s)‖2

H−1ds ≤ M2

ω
‖η0‖2

H−1 + c2

∫ t

0

(∫ s

0
e−ω(s−τ)‖ut(τ )‖dτ

)2

ds. (13)

On the other hand,∫ t

0

(∫ s

0
e−ω(s−τ)‖ut (τ )‖dτ

)2

ds ≤
∫ t

0

(∫ s

0
e−ω(s−τ)dτ

)(∫ s

0
e−ω(s−τ)‖ut(τ )‖2dτ

)
ds

≤ 1

ω

∫ t

0

∫ s

0
e−ω(s−τ)‖ut (τ )‖2dτds = 1

ω

∫ t

0
eωτ‖ut (τ )‖2

(∫ t

τ

e−ωsds

)
dτ

≤ 1

ω2

∫ t

0
‖ut (τ )‖2dτ, (14)

and thus from (9), (13) and (14) we have∫ t

0
(‖ut(τ )‖2 + ‖utt (τ )‖2

−2)dτ ≤ c3, � t ≥ 0. (15)

Let ϕ(·) ∈ C∞(Rn) be such that

0 ≤ ϕ(x) ≤ 1 and ϕ(x) =
{

1, |x| ≥ 2
0, |x| ≤ 1.

Multiplying (1) by ϕ( x
r )u(t, x), integrating over[0, t] × Rn and taking into account (4), (7) and (15),

we obtain∫ t

0

(
‖�u‖2

L2(Rn\B(0,2r )) + ‖u‖2
L2(Rn\B(0,2r ))

)
ds ≤ c4

(
1 + t

r
+ t‖g‖2

L2(Rn\B(0,r ))

)
,

which, together with (15), yields (11). �

Lemma 3. Assume that the conditions(3) and(4) are satisfied, and B is a bounded subset ofH. If {θm}
is a sequence in B, weakly converging toθ in H, then for anyε > 0 there exists a T0 = T0(ε, B) such
that whenever T≥ T0

lim sup
m−→∞

‖U(T)θm − U(T)θ‖H ≤ ε (16)

holds.

Proof. Let θm = (u0m, u1m); thenU(t)θm = (u(m)(t), u(m)
t (t)), whereum(t, ·) is the solution of Eq.

(1) subject to the conditionsum(0, x) = u0m(x) andum
t (0, x) = u1m(x). Multiplying (1) by (ut + α

2u),
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integrating over[0, T ] × Rn and taking into account (3) and (7), weobtain that for everyT ≥ 0∣∣∣∣
∫ T

0

[
E(u(t), ut(t)) +

∫
Rn

f (u(t, x))u(t, x)dx −
∫

Rn
g(x)u(t, x)dx

]
dt

∣∣∣∣ ≤ c5. (17)

Similarly to the case for (17), sinceB is bounded inH andθm ∈ B, for everyT ≥ 0,∣∣∣∣
∫ T

0

[
E(u(m)(t), u(m)

t (t)) +
∫

Rn
f (u(m)(t))u(m)(t)dx −

∫
Rn

g(x)u(m)(t)dx

]
dt

∣∣∣∣ ≤ c6 (18)

holds. From (9) and (17),

E(u(T), ut (T)) +
∫

Rn
Φ(u(T, x))dx −

∫
Rn

g(x)u(T, x)dx + α

T

∫ T

0

∫ T

t
‖ut‖2dsdt

≥ 1

T

∫ T

0

∫
Rn

[Φ(u(t, x)) − f (u(t, x))u(t, x)]dxdt − c5

T
. (19)

In a similar way, from (9) and (18) we find

E(u(m)(T), u(m)
t (T)) +

∫
Rn

Φ(u(m)(T, x))dx −
∫

Rn
g(x)u(m)(T, x)dx

+ α

T

∫ T

0

∫ T

t
‖u(m)

t ‖2dsdt

≤ 1

T

∫ T

0

∫
Rn

[Φ(u(m)(t, x)) − f (u(m)(t, x))u(m)(t, x)]dxdt + c6

T
. (20)

By (3) and (8) and compact embedding theorems, we have


lim
m→∞

∫
B(0,r )

Φ(u(m)(T, x))dx =
∫

B(0,r )
Φ(u(T, x))dx

lim
m→∞

1

T

∫ T

0

∫
B(0,r )

Φ(u(m)(t, x))dx = 1

T

∫ T

0

∫
B(0,r )

Φ(u(t, x))dx

lim
m→∞

1

T

∫ T

0

∫
B(0,r )

f (u(m)(t, x))u(m)(t, x)dx = 1

T

∫ T

0

∫
B(0,r )

f (u(t, x))u(t, x)dx

(21)

for everyT > 0 andr > 0. SinceΦ(·) ≥ 0, (21)1 yields

lim inf
m−→∞

∫
Rn

Φ(u(m)(T, x))dx ≥
∫

Rn
Φ(u(T, x))dx, for � T ≥ 0. (22)

On the other hand, by (3) and (11), for anyε > 0 there existt0 = t0(ε, B) andr0 = r0(ε, B) such that
for everyT ≥ t0, r ≥ r0,

1

T

∫ T

0

∫
Rn\B(0,r )

[Φ(u(m)(t, x)) + f (u(t, x))u(t, x)]dxdt ≤ ε

2
. (23)

Taking into account (8) and (19), (21)2, (21)3, (22) and (23) in (20) andpassing to thelimit we get

lim sup
m−→∞

E(u(m)(T), u(m)
t (T)) ≤ E(u(T), ut(T)) + c5 + c6

T
+ ε

2

which, together with (8), gives (20). �
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3. Asymptotic compactness and the global attractor

In this section, we shall show the existence of the global attractor. To this end, we first prove the
asymptotic compactness ofU(t) in H.

Theorem 1. Assume that conditions(3) and (4) hold. Then for any bounded subset B ofH, the set
{U(tm)θm}∞m=1 is relatively compact inH, where tm → ∞ and{θm}∞m=1 ⊂ B.

Proof. Since B is bounded, byLemma 1we have supt≥0 supθ∈B ‖U(t)θ‖H < ∞. Therefore there
existsa bounded subsetB0 of H such thatU(t)θ ∈ B0, for everyt ≥ 0 andθ ∈ B. Thus{U(tm)θm}∞m=1
has a subsequencebk := U(tmk)θmk weakly converging inH to ana. FromLemma 3we know that,
if {ϕν}∞ν=1 ⊂ B0 and ϕν → ϕ weakly in H, then for any ε > 0 there exists aT0 = T0(ε, B0)

such that

lim sup
ν−→∞

‖U(T0)ϕν − U(T0)ϕ‖H ≤ ε. (24)

For tmk ≥ T0, sinceU(tmk − T0)θmk ∈ B0, there is a subsequence{kν} such that{U(tmkν
− T0)θmkν

}
weakly converges to someϕ in H. Then byLemma 1, the sequencebkν := {U(T0)U(tmkν

− T0)θmkν
}

weakly converges toU(T0)ϕ in H. Hence from the uniqueness of the limit we geta = U(T0)ϕ.
Taking ϕν = U(tmkν

− T0)θmkν
in (24) we obtain lim supν−→∞ ‖bkν − a‖H ≤ ε and consequently

lim inf k−→∞ ‖bk − a‖H = 0. In other words, the sequence{U(tm)θm}∞m=1 has a subsequence strongly
convergent inH. It can be seen in a similar way that every subsequence of{U(tm)θm}∞m=1 has a
subsequence strongly convergent inH. Thus the set{U(tm)θm}∞m=1 is relatively compact inH. �

Since the problem (1) and (2) admits a “good” Lyapunov functionL(u, ut) := E(u(t), ut(t)) +∫
Rn Φ(u(t, x))dx − ∫

Rn g(x)u(t, x)dx and since by (4) the set of stationary solutions is bounded inH2

(even inH4), using the results of [7] we can formulate ourmain result.

Theorem 2. Assume that(3) and(4) hold. Then problem(1) and(2) has a global attractor inH, which
is invariantand compact.
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