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Abstract

In this work, we study the asymptotic behavior of solutions for the plate equation with a critical expoREnt in
We prove the existece of a global attractor ikNZZ(R”) x L2(RM).
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The subject of investigation of this work is the existence of a global attractor for the following plate
equation inR":

Ut + aly +A2U + AU+ f(u) = g(x)

wherea anda are positive constantg(-) is a given tinction andf (-) is anonlinear function satisfying
some growth conditions.

The existence of a global attractor for this equation in a bounded domain, when the grofwth of
is subcritical, vas studied ing]. The long-time behavior of solutions for the semilinear wave equations
with interior dissipation and a critical exponent in a bounded domain was investigat@d4nand
references therein. In bounded domains, the asymptotic compactness of the solutions, which plays an
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important role for the existence of a global attractor, is obtained by compactness of Sobolev embeddings
This method does not apply to unbounded domains since the embeddings are no longer compact.

The existence of a global attractor for the semilinear wave equations with critical and supercritical
exponents in an unbounded domain was studied]][In these articles, the asymptotic compactness
has been established using finite speed of propagation and specific estimates for the linear wave equatior
in R", whichdo not seem to apply to the plate equation.

The main goal of the present work is to prove the asymptotic compactness of solutions, which,
together with the results of], implies the existeneof a gbbal attractor.

2. Preliminaries

We oonsider the following Cauchy problem:

Uit + ot +AZu+au+ f(u) =g(x),  (t,Xx) € Ry x R", (1)

u(0, X) = up(x), Ut (0, X) = ug(x), x e R", (2)
wherea > 0,1 > 0,9 € L2(R") and f (-) satisfies the following conditions:

feCc'®, Ifwl<cl+uP), p>0  (-4p<4 3)

f(uy-u=0 for everyu € R. (4)

Denote the spaced;(R") andLo(R") by H3(s # 0) andH resgectively. The norms irH® and H

are denoted by - ||s and| - || respectively. We also use the spadés = H2+2 x HZS (s # 0) and
H = H? x H. In thespaceH we introduce a linear closed opera®as follows:

D(A) = HE, Aw = (wo, N w1 — AW — dwW?2), w = (w1, wp) € D(A).

Using the substitutiofi(t) = (u(t), u(t)), we reduce problemX) and @) to theproblem

%G(t) = At) +FO®M), teR,
0(0) = 6o

whereF (6(t)) = (0, — f (u(t)) + ), 6o = (Uo, Uz).
It is easy to show tha is an infinitesinal generator o€p-semigroup &* (see B]) and as in 1] there
existM > 0 andw > 0 such hat fors € [—1, 1]

1AL rs < Me™™, Kt >0 (6)

whereH° meansH.

Since the nonlinear operatdi(-) : H —> H saisfies the local Lipschitz condition (thanks to
(3)), using the results of9], we find tha for any 6p € H the poblem &) has aunique solution
0(-) € C([0, +o0); H); moreover if g € HL, thend(-) € CL([0, +00); H) N C([0, +o0); HL).
Therefore, we have the strongly continuous nonlinear semigfup)} =0y, whered(t) = U (t)6p
is the solution of problems].

(5)

Lemma 1. Let us assume that conditio(® and(4) are satisfied. Then
(i) for all 6o € H

SU(I)OIIU (D60l = cllfoll+), (7)
=
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where ¢-) is a monotone increasing function;
(i) if 6m — 6 wealy in H, then br every t> 0,

U (t)6m — U (t)0 wealy in H. (8)
Proof. (i) Multiplying (1) by u; and integrating ovelrr, t] x R" we obtain
t
Ew®.u®) + [ st - [ goout.odx+a [ uids
RN RN T

= E(u(r),ut(r))+/ d(u(r, x))dx—f gxXu(r, x)dx, (9)
Rn Rn

whereE(u(), ur(t)) = 2uc®l? + 21 Au® 1% + llu®)[12, &(s) = [5 f(x)dr. (9), together with B)

and @), yields (7).
(ii) Since 6y, — 6 weakly inH, the sguence{fn} is bounded inH. Thus from {) the sguence

{U (t)6m} and consequently also, by the conditi@®), the sguence{F (U (1)6)} are both bounded in
Lo (O, T; H). From this, ad the fact thatU (t)8y, is the solution of §)1, it follows thatthe seuence
{%U (1)6m} is bounded inL o, (0, T; H~1). Then we have aubsequencgny} such that

U (t)fm, — 6(1) weakly inL2(0, T; H)
FU®)6bm) — x weakly inL2(0, T; H) (10)

%U(t)@mk —> %e(t) weakly inLo(0, T; H™1).

From (LO) we obtain thaty = F(6(t)) (see for exampl€el]0, p. 12]) andd (t) is a soltion of problem 9)
with 6o = 6. By theuniqueness of solutions, we ha¥g) = U (t)0. This shows that any subsequence of
{(U®)Om, %U (1)6m)} has a weakly convergent subsequende4(0, T; H x H~1) and the limit of any
such subsequence is equal(td(t)o, %U (1)6). Therdore the £quencd (U (t)6p, d%U (1)6m)} weakly
converges tauU ()6, %U(t)@) in Lo(0, T; H x H~1) and consequently for evetye [0, T] we have

U (t)8m — U ()0 weakly in7{~1. On the other hand, according t@)( for everyt € [0, T] the sguence
{U (t)0mn} is bounded irH. Thus we obtaing). O

Lemma 2. Let us assume that the conditiof® and(4) are satisfied and B is a bounded subsetof
Then for anye > 0 there «ist f = tp(e, B) and rp = rg(e, B) such that for every & to, r > rg and
everyd € B wehave

1t )
?/o ”U(S)e||W22(R”\B(O,r))><LZ(R”\B(O,r))dSS € (11)

where BO,r) = {x € R"/|x| <r}.
Proof. Using the notatiom(t) = d%@(t), from (5) we obtain that

d
an(t) = An(t) + Fu(0), 1(0) = no,

whereFy(t) = (0, — f’(u)uy) andng = (U1, —auy —A2ug — Aug — f (ug) + g). From @) and () we
have

IF1(®) -1 = callue (O, Ft=0. 12)
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Taking into account®) and (L2) in
t
n(t) = %o + / eI (Fy(s))ds
0
for everyt > 0 weobtain
t
It < Me Inllyes + Mey /O &9 (9) |ds,
which yields

t ) M2 ) t s 2
fo 912,105 = ~—[lnollZ + 2 /O ( /O e—w@-ﬂnut(f)ndf) ds. (13)

On the other hand,

t s 2 t s s
/(/ e‘“(ST)nut(r)ndr) dsg/ (/ e‘“(Sf)dr) (/ ew(5f>||ut(r)||2dr)ds
0 0 0 0

0
1 t S 1 t t
—/ / ew<5f>||ut(r)||2drds=—/ e“”||ut(t)||2</ e“’sds) dr
w Jo Jo w Jo T

1 t
<= [ Iuo i (14)
w= Jo

and thus from9), (13) and (L4) we have

A

t
/O (U@ + e @I2)dr < s ¥t 0. (15)

Letp(-) € C*(R") be such that

1, IX] > 2

Multiplying (1) by ¢(*)u(t, x), integrding over[0, t] x R" and taking into accoun#j, (7) and (5),
we obtain

t
t
2 2 2
/O (”Au”Lz(R“\B(o,zr)) + ||U||L2<R“\B(o,2r>)) ds = ¢4 (1 tot t”g”Lz(R"\B(o,r))) ’
which, together with15), yields 11). O

Lemma 3. Assume that the conditioif3) and (4) are satisfied, and B is a bounded subsetioff {6;}
is a s@uence in B, weakly convergingdadn H, then br anys > 0 there ists a § = To(e, B) such
that whenever T> Ty

limsup(|U(T)fm —U(M)0llx <& (16)

m—>00

holds.

Proof. Let fm = (Ugm, Uim); thenU (1)8m = U™ ), u™ (t)), whereu™, -) is the solution of Eq.
(1) subject to the conditiona™(0, x) = ugm(x) anduf"(0, X) = uim(x). Multiplying (1) by (ut + 34,
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integrating ovef0, T] x R" and taking into accoun8) and (7), we obtain that for everyT > 0

r

Similarly to the case forl(7), sinceB is bounded ir{ andé,, € B, for everyT > 0,

E(u(t),ut(t))—i-/ f(u(t,x))u(t,x)dx—/ g(x)u(t,x)dx] dt
i R R

< Cs. a7

<G (18)

T
/ E(u<m>(t),u§’“)(t))+/ f(u(m)(t))u(m)(t)dx—f g(x)u(m)(t)dx] dt
0 L RN Rn

holds. From @) and (L7),

T T
E(u(T),ut(T))+f @(u(T,x))dx—/ g(x)u(T,x)dx+g/ / ||ut||2dsdt
RN RN T Jo Jt

17 Cs
> —/ / [2(u(t, x)) — fuct, x)u(t, x)ldxdt — —. (19)
T O Rn T
In a similar way, from @) and (8) we find

E(u(m)(T),ut(m)(T))+f qﬁ(u(m)(T,x))dx—/ gu™ (T, x)dx
RN RN

a (T[T (m) 2
—I——/ / lug ™ || “dsdt
T Jo Jt

T
<1 [ [ o™ - fume o™ e o + 2. (20)
T Jo Jgrn T
By (3) and 8) and compct embedding theorems, we have

lim f HU™ (T, x))dx :f d(u(T, x))dx
B(O,r)

m— 00 B(O,r)

1 (7 17
lim —/ / HUM(t, x))dx = —/ / P(u(t, x))dx (21)
m—co T Jo Jr) T Jo Jeon

1 (7 17
lim —/ / f ™, x)u™t, x)dx = —/ / f (U(t, x))u(t, X)dx
m=oo T Jo Jaor T Jo Jeon

for everyT > 0 andr > 0. Sinced(-) > 0, (21); yields

liminf | &u™ (T, x))dx > / S(U(T, x))dx, for ¥ T > 0. (22)

m—oo RN R!

On the other hand, by8] and (1), for anys > 0 there existy = tg(e, B) andrg = rg(e, B) such that
for everyT > tg, 1 > ro,

.
l/ / [BU™ (t, X)) + (U, ))u(t, x)]dxdt < . (23)
T Jo JrnBoON) 2

Taking into account®) and (L9), (21)2, (213, (22) and @3) in (20) andpassing to thdimit we get
Cs+C ¢

lim supEU™ (T), ul™(T)) < Eu(T), u(T)) +

m—so0 T 2

which, together with§), gives 0). O
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3. Asymptotic compactnessand the global attractor

In this section, we shall show the existence lué global attractor. To this end, we first prove the
asymptotic compactness 0f(t) in H.

Theorem 1. Assume that condition) and (4) hold. Then for any bounded subset B79f the set
{U (tm)Om}m_, is relatively compact i, where f, — oo and{m}_; C B.

Proof. Since B is bounded, byLemma 1we have sup, supg lU(t)0]n < oo. Therdore there
exists abounded subsd of H such thatJ ()0 e By, for everyt > 0 andd € B. Thus{U (tm)fm}m_;
has a subsequenbg = U (tm,)0m, weakly converging ir{ to ana. From Lemma 3we know that,
if {¢v}72, C Bo andeg, — ¢ weakly inH, then br anye > 0 there exists o = To(e, Bo)
such that

limsup|U(To)py — U (To)elln < e. (24)

V—>00
Fortm, > To, sinceU (tm, — To)0m, € Bo, there is a sBbsequencék, } such that{U (tm,, — To)0m,, }
weakly converges to somein H. Then byLemma 1 the sguenceby, := {U(To)U (tm,, — To)0m,, }
weakly converges t&J (Tg)p in H. Herce from the uniqueness of the limit we get= U (Tp)g.
Taking ¢, = U(tm, — To)fm,, in (24) we obtain limsup__, , [lbk, — allx < & and consequently
liminfx_  llbx — all» = 0. In other words, the sequenfé (tn)fm},,_, has a subsequence strongly
convergent in#. It can be seen in a similar way that every subsequenc)otm)fm}r,_; has a
subsequence strongly convergentinThus the setU (tm)0m},_; is relatively compactirt{. [

Since the problem1) and @) admits a “good” Lyapunov functiori (u, uy) := E(u(t), us(t)) +
fRn d(u(t, x))dx — fRn g(x)u(t, x)dx and since by4) the set of stationary solutions is boundedHR
(even inH%), using he results of 7] we can formulate oumain result.

Theorem 2. Assume that3) and(4) hold. Then problenil) and(2) has a global attractor irf{, which
is invariantand compact.
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