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Abstract

The authors characterize di-uniformities on a texture (S,S) in the sense of Özçağ and Brown (Di-uniform texture spaces, Appl.
Gen. Top. 4(1) (2003), 157–192) in terms of functions on the texturing S. This characterization enables quasi-uniformities in
the sense of Hutton (Uniformities on Fuzzy Topological Spaces, J. Math. Anal. Appl. 58 (1977) 559–571) to be regarded as di-
uniformities on the corresponding Hutton Texture, thereby revealing di-uniformities as a generalization of Hutton quasi-uniformities.
The effect of imposing a complementation on (S,S) is also considered and several important results established.
© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

Di-uniform texture spaces were introduced in [14], and their study continued in [15], where the relation with
classical uniformities and quasi-uniformities was considered. More recently, the concept of quasi-di-uniformity has
been introduced in [17]. The most useful representations to date have been the direlational and dicovering approaches,
although the use of dimetrics has also been considered. This paper is based on the direlational representation, which is
recalled below:

Definition 1.1 (Özçağ and Brown [14]). Let (S, S) be a texture and U a family of direlations on (S, S). If U satisfies
the conditions:

(1) (i, I ) � (d, D) for all (d, D) ∈ U. That is, U ⊆ RDR.
(2) (d, D) ∈ U, (e, E) ∈ DR and (d, D) � (e, E) implies (e, E) ∈ U.
(3) (d, D), (e, E) ∈ U implies (d, D) � (e, E) ∈ U.
(4) Given (d, D) ∈ U there exists (e, E) ∈ U satisfying (e, E) ◦ (e, E) � (d, D).
(5) Given (d, D) ∈ U there exists (c, C) ∈ U satisfying (c, C)← � (d, D).

then U is called a direlational uniformity on (S, S), and (S, S, U) is known as a direlational uniform texture space.
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Clearly, this definition is formally the same as the usual definition of diagonal uniformity, although the symmetry
condition (5) is of a different nature from the symmetry condition for entourages, and it is shown in [15] that a
direlational uniformity on the discrete texture (X, P(X )) corresponds not to a uniformity but to a quasi-uniformity, the
distinction between the two being a matter of complementation. When the symmetry condition (5) is removed, one
obtains a direlational quasi-uniformity [17].

In [11], Hutton gave the definition of uniformities and quasi-uniformities on a Hutton algebra LX that involves
functions on LX , and it is natural to ask if a similar representation is possible for di-uniformities and quasi di-uniformities.
It is the aim of this paper to give a positive answer to this question, showing in particular that di-uniformities stand in
the same relation to Hutton uniformities and quasi-uniformities as they do to uniformities and quasi-uniformities in the
classical sense.

The layout of the paper is as follows. In Section 2 we give a point-free representation of direlational uniformities,
called difunctional uniformities. Our motivation is from [11]. Specifically, Hutton considers functions g on a Hutton
algebra L (or LX , as in [11]) satisfying

(a1) � ≤ g(�) ∀� ∈ L,
(a2) g(

∨
j � j ) =

∨
g(� j ) for � j ∈ L, j ∈ J ,

uniformities and quasi-uniformities being appropriate subsets of the set Q of functions on L. We begin by showing
that functions on the texturing S of a general texture (S, S) satisfying conditions corresponding to (a1) and (a2) are in
one-to-one correspondence with the reflexive (textural) relations on (S, S), while functions satisfying conditions dual
to (a1), (a2) likewise characterize the reflexive corelations. This leads to the required representation, and by expressing
uniform bicontinuity in similar terms it is shown that we obtain a category that is concretely isomorphic with the
category of direlational uniformities and uniformly bicontinuous difunctions.

Section 3 presents various properties of difunctional uniformities and quasi-uniformities. In particular the uni-
form ditopology is characterized in difunctional terms, while a generalization of a result in [11] shows that an ar-
bitrary ditopological texture space is difunctionally quasi-uniformizable. This strengthens a result in [17], where
only plain ditopological texture spaces were shown to be direlationally quasi-uniformizable. In this section the ex-
istence of an open, coclosed base for a difunctional (quasi-) uniformity, separation and complementation are also
considered.

Finally, Section 4 looks at difunctional (quasi-) uniformities as (quasi-) di-uniformities on a complete, completely
distributive lattice L, thereby defining the notion of (quasi-) di-uniform Hutton space. The relations between the
category of quasi-di-uniform Hutton spaces and uniformly bicontinuous morphisms, and the category of difunctional
quasi-uniform texture spaces and uniformly bicontinuous difunctions are studied, and an alternative representation
of (quasi-) di-uniformities on L is obtained. This permits the quasi-uniformities of Hutton on L to be regarded as
di-uniformities on L, while the Hutton uniformities correspond to the complemented di-uniformities.

This section concludes with some basic definitions from the theory of ditopological texture spaces, and the reader is
referred to [3–7] for more background material on textures and [14–17,22] for di-uniformities. A modern introduction
to quasi-uniformities is [12]. Our standard reference for category theory is [1], while terms from lattice theory not
defined here may be found in [10].

Texture: A texturing on a set S is a point-separating, complete, completely distributive lattice S of subsets of S with
respect to inclusion, which contains S and ∅, and for which arbitrary meet coincides with intersection and finite joins
coincide with unions. The pair (S, S) is called a texture. For s ∈ S the sets

Ps =
⋂
{A ∈ S | s ∈ A} and Qs =

∨
{A ∈ S | s /∈ A}

are called, respectively, the p-sets and q-sets of (S, S). These sets are used in the definition of many textural concepts.
A texture need not be closed under set complementation. A mapping � : S → S satisfying �(�(A)) = A, ∀A ∈ S

and A ⊆ B =⇒ �(B) ⊆ �(A), ∀A, B ∈ S is called a complementation on (S, S) and (S, S, �) is then said to be a
complemented texture.

Examples:

(1) For any set X, (X, P(X ), �X ), �X (Y ) = X \ Y for Y ⊆ X , is the complemented discrete texture representing the
usual set structure of X. Clearly, Px = {x} and Qx = X \ {x} for all x ∈ X .
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(2) For I = [0, 1] define I = {[0, t] | t ∈ [0, 1]} ∪ {[0, t) | t ∈ [0, 1]}, �([0, t]) = [0, 1− t) and �([0, t)) = [0, 1− t],
t ∈ [0, 1]. Then (I, I, �) is a complemented texture, which we will refer to as the unit interval texture. Here
Pt = [0, t] and Qt = [0, t) for all t ∈ I .

Textures were introduced as a point-set setting for the study of fuzzy topology, and provide a unified setting for the
study of topology, bitopology and fuzzy topology. Some of the links with Hutton spaces, L-fuzzy sets and topologies
are expressed in a categorical setting in [4,5]. Let us recall that a Hutton algebra L is a complete, completely distributive
lattice with an order reversing involution ′. We denote by ML the set of molecules (non-zero join irreducible elements)
in L, set â = {m ∈ ML | m ≤ a} for a ∈ L and ML = {â | a ∈ L}. Then (ML, ML) is a simple texture. Moreover
�L : ML →ML defined by �L(â) = â′ is a complementation on (ML, ML). We will refer to (ML, ML, �L) as the Hutton
texture of (L, ′). Conversely every complemented simple texture (S, S, �) is the Hutton texture of (S, �), regarded as a
Hutton algebra.

Direlations: Let (S, S), (T, T) be textures. We denote by P(S)⊗ T the textural product of P(S) and T, and by P (s,t),
Q(s,t) the p-sets and q-sets, respectively, in the product texture (S × T, P(S)⊗ T). Then:

(1) r ∈ P(S)⊗ T is called a relation from (S, S) to (T, T) if it satisfies

R1 r�Q(s,t), Ps′�Qs =⇒ r�Q(s′,t).

R2 r�Q(s,t) =⇒ ∃s′ ∈ S such that Ps�Qs′ and r�Q(s′,t).

(2) R ∈ P(S)⊗ T is called a corelation from (S, S) to (T, T) if it satisfies
CR1 P (s,t)�R, Ps�Qs′ =⇒ P (s′,t)�R.

CR2 P (s,t)�R =⇒ ∃ s′ ∈ S such that Ps′�Qs and P (s′,t)�R.

A pair (r,R) consisting of a relation r and corelation R is now called a direlation.
(i,I) is called the identity direlation on (S, S) where

i = iS =
∨
{P (s,s) | s ∈ S} and I = IS =

⋂
{Q(s,s) | s ∈ S}.

A direlation (r,R) on (S, S) (that is, on (S, S) to (S, S)) is reflexive if r and R are reflexive, that is if (i, I ) � (r, R). Let
us denote by RR the set of reflexive relations and by RCR the set of reflexive corelations.

Now let (r,R) be a direlation from (S, S) to (T, T). The inverses of r and R are given by

r← =
⋂
{Q(t,s) | r�Q(s,t)}, R← =

∨
{P (t,s) | P (s,t)�R},

where R← is a relation and r← a corelation. The direlation (r, R)← = (R←, r←) from (T, T) to (S, S) is called the
inverse of (r,R).

For A ⊆ S the A-section of a relation r and A-section of a corelation R are defined by

r→A =
⋂
{Qt | ∀s, r�Q(s,t) =⇒ A ⊆ Qs},

R→A =
∨
{Pt | ∀s, P (s,t)�R =⇒ Ps ⊆ A}.

For B ⊆ T the B-presections of r and R are defined by

r←B =
∨
{Ps | ∀t, r�Q(s,t) =⇒ Pt ⊆ B} ∈ S,

R←B =
⋂
{Qs | ∀t, P (s,t)�R =⇒ B ⊆ Qt } ∈ S.

Let (S, S), (T, T), (U, U) be textures. If p is a relation on (S, S) to (T, T) and q a relation on (T, T) to (U, U) then their
composition is the relation q ◦ p on (S, S) to (U, U) defined by

q ◦ p =
∨
{P (s,u) | ∃t ∈ T with p�Q(s,t) and q�Q(t,u)}.

If P is a corelation on (S, S) to (T, T) and Q a corelation on (T, T) to (U, U) then their composition is the corelation
Q ◦ P on (S, S) to (U, U) defined by

Q ◦ P =
⋂
{Q(s,u) | ∃t ∈ T with P (s,t)�P and P (t,u)�Q}.
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The composition of the direlations (p,P), (q,Q) is the direlation

(q, Q) ◦ (p, P) = (q ◦ p, Q ◦ P).

A direlation (f,F) on (S, S) to (T, T) is called a difunction if it satisfies the following two conditions.

DF1 For s, s′ ∈ S, Ps�Qs′ =⇒ ∃t ∈ T with f �Q(s,t) and P (s′,t)�F .
DF2 For t, t ′ ∈ T and s ∈ S, f �Q(s,t) and P (s,t ′)�F =⇒ Pt ′�Qt .

2. A point-free characterization of di-uniformities

Definition 2.1. Let (S, S) be a texture.

(1) We denote by FR the family of functions � : S→ S satisfying

(i) �
(∨

j∈J A j

)
=∨

j∈J �(A j ), ∀A j ∈ S, j ∈ J

and by FRR those functions that satisfy (i) and

(ii) A ⊆ �(A), ∀A ∈ S.
(2) We denote by FCR the family of functions � : S→ S satisfying

(i) �
(⋂

j∈J A j

)
=⋂

j∈J �(A j ), ∀A j ∈ S, j ∈ J

and by FRCR those functions that satisfy (i) and

(ii) �(A) ⊆ A, ∀A ∈ S.

The following proposition shows that the elements of FR (FRR) correspond to the (reflexive) relations on (S, S),
and that dually those of FCR (FRCR) correspond to the (reflexive) corelations on (S, S).

Proposition 2.2. Let (S, S) be a texture.

(1) Let r be a relation on (S, S), and define the function �r : S→ S by �r (A) = r→A for all A ∈ S. Then �r ∈ FR,
while if r is reflexive then �r ∈ FRR.

Conversely, if � ∈ FR then r� ∈ P(S)⊗ S defined by

r� =
∨
{P (s,t) | ∃u, v ∈ S wi th Ps�Qu and Pv�Qt so that �(B) ⊆ Qv =⇒ B ⊆ Qu∀B ∈ S}

is a relation on (S, S), while if � ∈ FRR then it is a reflexive relation.
Moreover, �r�

= �, ∀� ∈ FR, and r�r
= r, ∀r ∈ R.

(2) Let R be a corelation on (S, S), and define the function �R : S → S by �R(A) = R→A for all A ∈ S. Then
�R ∈ FCR, while if R is a reflexive corelation then �R ∈ FRCR.

Conversely, if � ∈ FCR then R� ∈ P(S)⊗ S defined by

R� =
⋂
{Q(s,t) | ∃u, v ∈ S wi th Pu�Qs and Pt�Qv so that Pv ⊆ �(B) =⇒ Pu ⊆ B∀B ∈ S}

is a corelation on (S, S), while if � ∈ FRCR then it is a reflexive corelation.
Moreover, �R�

= �, ∀� ∈ FCR, and R�R
= R, ∀R ∈ CR.

Proof. We prove (1), leaving the proof of the dual statements (2) to the interested reader.
If r ∈ R then �r satisfies Definition 2.1(1(i)) by [5, Corollary 2.12(2)], while if r ∈ RR and A ∈ S, then A = �→S A ⊆

r→A = �r (A) since �S ⊆ r by the reflexivity of r, so �r also satisfies Definition 2.1(1(ii)) and hence �r ∈ FRR.
It is trivial to check conditions R1 and R2 of [5, Definition 2.1(1)] for �r , even if � is arbitrary, and we omit the

details. Suppose that � satisfies Definition 2.1(1(ii)). To prove the relation r� is reflexive suppose that �S�r�. Then
for some s, t ∈ S we have �S�Q(s,t) and P (s,t)�r�. The first result gives Ps�Qt , whence we may choose u, v ∈ S
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with Ps�Qu , Pu�Qv and Pv�Qt . But now for B ∈ S we have �(B) ⊆ Qv =⇒ Pu��(B) =⇒ B ⊆ �(B) ⊆ Qu by
Definition 2.1(1(ii)), so P (s,t) ⊆ r�, which is a contradiction. Hence r� is a reflexive relation, as required.

Now for � ∈ FR let us prove �r�
= �. To this end, suppose first that �r�

(A)��(A) for some A ∈ S. Then there

exists t ∈ S with �r�
(A)�Qt and Pt��(A). Now �r�

(A) = r→� A�Qt , whence by [5, Definition 2.5(1)] there exists

z ∈ S with r��Q(z,t) and A�Qz . By the definition of r� we now have t ′ ∈ S with P (z,t ′)�Q(z,t), and u, v ∈ S
satisfying Pz�Qu , Pv�Qt ′ for which

�(B) ⊆ Qv =⇒ B ⊆ Qu, ∀B ∈ S. (1)

Clearly Pt ⊆ Pt ′ ⊆ Pv , so Pt��(A) gives Pv��(A), whence �(A) ⊆ Qv . Applying the implication (1) with B = A
now gives A ⊆ Qu . Since Qu ⊆ Qz , this contradicts A�Qz .

Now suppose that �(A)��r�
(A) for some A ∈ S. Now we have t ∈ S with �(A)�Qt and Pt�r→� A, and hence

t ′ ∈ S with Pt�Qt ′ for which
r��Q(z,t ′) =⇒ A ⊆ Qz, ∀z ∈ S. (2)

Now choose v, t ′′ ∈ S satisfying Pt�Qv , Pv�Qt ′′ and Pt ′′�Qt ′ , and set

B0 =
∨
{B ∈ S | �(B) ⊆ Qv}.

By Definition 2.1(1(i)) we have �(B0) = ∨{�(B) | B ∈ S, �(B) ⊆ Qv} ⊆ Qv ⊆ Qt , whence �(A)��(B0). Again
using Definition 2.1(1(i)) we see that � preserves inclusion, so A�B0 and we may choose s, u ∈ S satisfying A�Qs ,
Ps�Qu and Pu�B0. We now obtain P (s,t ′′)�Q(s,t ′), Ps�Qu , Pv�Qt ′′ and for B ∈ S, �(B) ⊆ Qv =⇒ B ⊆ B0 ⊆ Qu ,
so r��Q(s,t ′). Finally, applying implication (2) with z = s gives A ⊆ Qs , which is a contradiction. This completes the
proof that �r�

= �. �
To obtain the second equality we note the following:

Lemma 2.3. If p, q ∈ R and �p, �q are the corresponding functions on S then p ⊆ q ⇐⇒ �p ≤ �q , where
�p ≤ �q ⇐⇒ �p(A) ⊆ �q (A) ∀A ∈ S.

Likewise, for P, Q ∈ CR we have P ⊆ Q ⇐⇒ �P ≤ �Q.

Proof. By [5, Lemma 2.7(1)] we have p ⊆ q ⇐⇒ (p→A ⊆ q→A ∀A ∈ S), and the right hand condition is just
�p ≤ �q . In just the same way, the second result follows from [5, Lemma 2.7(2)]. �

Replacing � by �r for r ∈ R in the equality �r�
= � gives �r�r

= �r , which by Lemma 2.3 is equivalent
to r�r

= r . �

In this paper we will be concerned mainly with reflexive relations and reflexive corelations, but we pause to note that
Proposition 2.2 establishes the important fact that a relation from (S, S) to (T, T) may be regarded as a join-preserving
mapping � : T→ S, and a corelation as a meet-preserving mapping � : T→ S. It follows that the category of textures
and relations is equivalent to the category of completely distributive lattices and join-preserving functions, while the
lattice of textures and corelations is equivalent to the category of completely distributive lattices and meet-preserving
functions.

These results should be compared with [6, Proposition 4.1] which shows that a difunction ( f, F) : (S, S)→ (T, T)
may be regarded as a complete lattice morphism 	 : T→ S, where f is a co-adjoint of 	 and F an adjoint of 	. This gives
a dual equivalence between dfTex, the category of textures and difunctions and the category of completely distributive
lattices and complete lattice morphisms, hence an equivalence between dfTex and the category of completely distributive
lattices and generalized order homomorphisms of Wang [20].

It is known [5] that the inverse of a relation is a corelation, so the above theorem implies the existence of a bijection
between FR and FCR. If r is reflexive then iS ⊆ r , whence r← ⊆ i←S by [5, Lemma 2.4(2)], and since i←S = IS we
have r← ⊆ IS , so r← is also reflexive. In just the same way, the inverse of a reflexive corelation is a reflexive relation.
Hence the above bijection will restrict to a bijection between FRR and FRCR. The following proposition makes this
explicit.
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Proposition 2.4. For � = �r ∈ FR define←−� : S→ S by←−� = �r← ∈ FCR. Then

←−� (A) =
∨
{B ∈ S | �(B) ⊆ A}, A ∈ S,

and if � ∈ FRR we have←−� ∈ FRCR.

Dually, for � = �R ∈ FCR define
←−
� : S→ S by

←−
� = �R← ∈ FR. Then

←−
� (B) =

⋂
{A ∈ S | B ⊆ �(A)}, B ∈ S,

and if � ∈ FRCR we have
←−
� ∈ FRR.

Proof. Take � = �r ∈ FR. By Proposition 2.2 we need only verify the formula←−� (A) = ∨{B ∈ S | �(B) ⊆ A}.
Clearly it is sufficient to show that B ⊆ ←−� (A) ⇐⇒ �(B) ⊆ A. Regarding the set S as a category in the usual way,←−� : S → S is an adjoint. Indeed, for B ∈ S, ([B,

←−� (�(B))],�(B)) is a←−� -universal arrow with domain B by [5,
Lemma 2.10]. It follows that if B ⊆←−� (A) then �(B) ⊆ A by the universal property.

B
[B,
←−� (�(B))] ��

[B,
←−� (A)]

���������������������� ←−� (�(B))

←−�
(

[�(B), A]
)

���
�
�
�
�

←−� (A)

Conversely, since B ⊆←−� (�(B)) then �(B) ⊆ A immediately gives B ⊆←−� (A).
This proves the first equality, and the proof of the second is dual and is omitted. �

Since (r←)← = r and (R←)← = R it is clear from Proposition 2.4 that
←−←−� = � and

←−←−
� = �. Since adjoints are

unique in the category S it follows that ��←−� is a bijection from FRR to FRCR with inverse ��
←−
� .

Finally, to give our point-free characterization of di-uniformities we require the following.

Lemma 2.5.

Let (S, S) be a texture, p, q ∈ RR and P, Q ∈ RCR.

(1) �p�q = �p ∧ �q , �P�Q = �P ∨ �Q , where ∧ denotes the greatest lower bound in (FRR,≤) and ∨ the least
upper bound in (FRCR,≤).

(2) �p◦q = �p ◦ �q , �P◦Q = �P ◦ �Q , where ◦ denotes functional composition in both FRR and FRCR.

Proof. (1) It is clear that since p and q are reflexive then so is p � q. Hence by [15, Proposition 1.9(1)] it is the greatest
lower bound of p, q in (RR,⊆). In view of Lemma 2.3 we deduce that �p�q is the greatest lower bound of �p, �q in
(FRR,≤). The proof for �P�Q follows in the same way from [15, Proposition 1.9(2)].

(2) It is easy to verify that p ◦ q is reflexive since p, q are. For A ∈ S we have

�p◦q (A) = (p ◦ q)→A = p→(q→A)) = �p(�q (A)) = (�p ◦ �q )(A)

by [5, Lemma 2.16(1)], whence �p◦q = �p ◦ �q as required. The proof for �P◦Q is dual, and is omitted. �

Since a direlational uniformity on (S, S) is a family of direlations we shall consider pairs (�, �), where � ∈ FRR,
� ∈ FRCR. Here we will write (�1, �1)≤(�2, �2) if and only if �1 ≤ �2 and �2 ≤ �1. Hence, by Lemma 2.3 we have

(r1, R1) � (r2, R2) ⇐⇒ (�r1
, �R1

)≤(�r2
, �R2

),

and so by Lemma 2.5(1), (r1, R1)� (r2, R2) in RDR corresponds to (�r1
, �R1

)∧ (�r2
, �R2

) in FRDR = FRR×FRCR.
Next we will set (�1, �1) ◦ (�2, �2) = (�1 ◦ �2, �1 ◦ �2) in FRDR, whence by Lemma 2.5(2), (r1, R1) ◦ (r2, R2) in
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RDR corresponds to (�r1
, �R1

) ◦ (�r2
, �R2

) in FRDR. For simplicity we set (�, �) ◦ (�, �) = (�, �)2. Finally we

will use (�, �)← to denote (
←−
� ,
←−� ), whence (�, �)← ∈ FRDR by Proposition 2.4. Clearly (r, R)← corresponds to

(�r , �R)←, so we will call (�, �) symmetric if (�, �)← = (�, �), that is if←−� = �, or equivalently,
←−
� = �.

The proof of the following lemma is now straightforward, and is omitted.

Lemma 2.6. Let (S, S, U) be a direlational uniform texture space and define UF ⊆ FRDR by

UF = {(�r , �R) | (r, R) ∈ U}.
Then UF is non-empty and has the following properties:

(1) (�, �) ∈ UF, (�, �)≤(�1, �1) ∈ FRDR =⇒ (�1, �1) ∈ UF.
(2) (�1, �1), (�2, �2) ∈ UF =⇒ (�1, �1) ∧ (�2, �2) ∈ UF.
(3) For (�, �) ∈ UF there exists (�1, �1) ∈ UF with (�1, �1)2 ≤ (�, �).
(4) For (�, �) ∈ UF there exists (�1, �1) ∈ UF with (�1, �1)←≤(�, �). �

Definition 2.7. Let (S, S) be a texture. A subset UF of FRDR that satisfies conditions (1)–(4) of Lemma 2.6 is called
a difunctional uniformity on (S, S), and the triple (S, S, UF) a difunctional uniform texture space.

The mapping U�UF defined above is clearly a bijection between the direlational uniformities U on (S, S) and the
difunctional uniformities UF on (S, S). To view this as a functor we need to characterize the uniformly continuous
difunctions in terms of difunctional uniformities. Given a difunction ( f, F) : (S, S)→ (T, T) and (�, �) ∈ FT

RDR let
us consider the following mappings on S:

(( f, F)−1(�))(A) = F←(�( f→A)), A ∈ S,

(( f, F)−1(�))(A) = f←(�(F→A)), A ∈ S.

Lemma 2.8. With the notation as above, ( f, F)−1(�) ∈ FS
RR and ( f, F)−1(�) ∈ FS

RCR.

Proof. For A ∈ S we have A ⊆ F←( f→A) ⊆ F←(�( f→A)) = (( f, F)−1(�))(A) by [5, Theorem 2.24(2a)] and
Definition 2.1(1a). Also, for A j ∈ S, j ∈ J , we have

(( f, F)−1(�))

⎛⎝∨
j∈J

A j

⎞⎠= F←
⎛⎝�

⎛⎝ f→
∨
j∈J

A j

⎞⎠⎞⎠ = F←
⎛⎝�

⎛⎝∨
j∈J

f→A j

⎞⎠⎞⎠
= F←

⎛⎝∨
j∈J

�( f→A j )

⎞⎠ =∨
j∈J

F←(�( f→A j ))

=
∨
j∈J

(( f, F)−1(�))(A j )

by [5, Corollary 2.12(2)], Definition 2.1(1b) and [5, Corollary 2.12(2)] again. This shows that ( f, F)−1(�) ∈ FS
RR,

and the proof of the second result is dual to this and therefore omitted. �

Setting ( f, F)−1(�, �) = (( f, F)−1(�), ( f, F)−1(�)) now gives an element of FS
RDR. Hence we have a mapping

from FT
RDR to FS

RDR, and we may make the following definition:

Definition 2.9. Let (S, S, UF), (T, T, VF) be difunctional uniform texture spaces and ( f, F) : (S, S, UF)→ (T, T, VF)
a difunction. Then (f,F) is called UF–VF uniformly bicontinuous if (�, �) ∈ VF =⇒ ( f, F)−1(�, �) ∈ UF.

In order to compare uniform bicontinuity for a difunction between direlational uniformities in the sense of [15,
Definition 5.9] with that for the same difunction between the corresponding difunctional uniformities it will suffice
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to compare the mapping ( f, F)−1 defined above with the mapping of the same name defined in [15] that maps the
reflexive direlations on (S, S) to those on (T, T).

Proposition 2.10. Let ( f, F) : (S, S)→ (T, T) be a difunction and (r,R) a reflexive direlation on (T, T). Then

( f, F)−1(�r , �R) = (�( f,F)−1(r ), �( f,F)−1(R)).

Proof. We show that ( f, F)−1(�r ) = �( f,F)−1(r ), leaving the dual proof of the second equality to the interested reader.
First suppose that for some A ∈ Swe have ( f, F)−1(�r )(A)��( f,F)−1(r )(A), that is F←(�r ( f→A))�( f, F)−1(r )→A,

where ( f, F)−1(r ) is given by [15, Definition 5.1]. Now we have s ∈ S with F←(�r ( f←A))�Qs , Ps�( f, F)−1(r )→A,
and it follows from [5, Definition 2.8(2)] that for some u ∈ S we have P (s,u)�F , �r ( f→A)�Qu , while from [5, Def-
inition 2.5(1)] we have Ps�Qs′ , s′ ∈ S with

( f, F)−1(r )�Q(z,s′) =⇒ A ⊆ Qz, ∀z ∈ S. (3)

Now from r→( f→A) = �r ( f→A)�Qu we have v ∈ S with r�Q(v,u), f→A�Qv; hence w ∈ S with f �Q(w,v),
A�Qw. By condition R2 for the relation f we may choose w′ ∈ S with Pw�Qw′ and f �Q(w′,v). Applying the
implication (3) with z = w we obtain ( f, F)−1(r ) ⊆ Q(w,s′), and Ps�Qs′ gives P (w,s)�( f, F)−1(r ). Now using [15,
Definition 5.1] we have t1, t2 ∈ S with P (w′,t1)�F , f �Q(s,t2) and P (t1,t2)�r .

By condition DF2 for the difunction (f,F), from P (s,u)�F , f �Q(s,t2) we obtain Pu�Qt2 , and from f �Q(w′,v),
P (w′,t1)�F we obtain Pt1�Qv . Since r is a relation and r�Q(v,u) we easily obtain r�Q(t1,t2), which gives the contra-
diction P (t1,t2) ⊆ r .

Now suppose that we have A ∈ S and s ∈ S with ( f, F)−1(r )→A�Qs and Ps�F←(r→( f→A)). The first statement
gives us u ∈ S with ( f, F)−1(r )�Q(u,s), A�Qu , and hence s′ ∈ S, u′ ∈ S with P (u,s′)�Q(u,s), Pu�Qu′ , for which

P (u′,t1)�F, f �Q(s′,t2) =⇒ r�Q(t1,t2), ∀t1, t2 ∈ T, (4)

by the comment following [15, Definition 5.1]. Applying condition DF1 for (f,F) to Pu�Qu′ gives w1 ∈ T with
f �Q(u,w1), P (u′,w1)�F , and we may choose w′1 ∈ T with P (u′,w1)�Q(u′,w′1) and P (u′,w′1)�F .

On the other hand the second statement gives v ∈ S, Ps�Qv , for which

P (v,t)�F =⇒ r→( f→A) ⊆ Qt , ∀t ∈ T . (5)

Applying condition DF1 for (f,F) to Ps�Qv gives w2 ∈ T with f �Q(s,w2), P (v,w2)�F , and we may choose w′2 ∈ T
with f �Q(s,w′2) and P (s,w′2)�Q(s,w2).

Setting t = w2 in (5) now gives r→( f→A) ⊆ Qw2 , and Pw′2�Qw2 so Pw′2�r→( f→A). Thus we have w′′2 ∈ T with

Pw′2�Qw′′2 for which

r�Q(z,w′′2) =⇒ f→A ⊆ Qz, ∀z ∈ T . (6)

Now P (u′,w′1)�F and f �Q(s,w′2), whence Ps′�Qs gives f �Q(s′,w′2) by R1, while Pw′2�Qw′′2 implies Qw′′2 ⊆ Qw′2
and hence f �Q(s′,w′′2). Now we may apply the implication (4) with t1 = w′1, t2 = w′′2 to give r�Q(w′1,w

′′
2), and then

(6) with z = w′1 to give f→A ⊆ Qw′1 . Since Pw1�Qw′1 we now have Pw1� f→A, and so there exists w ∈ T with

Pw1�Qw so that

f �Q(z,w) =⇒ A ⊆ Qz, ∀z ∈ S. (7)

However, f �Q(u,w1), and Pw1�Qw gives f �Q(u,w), so we may apply (7) with z=u to give the contradiction
A ⊆ Qu . �

Corollary 2.11. Let ( f, F) : (S, S)→ (T, T) be a difunction, U a direlational uniformity on (S, S) and V a direlational
uniformity on (T, T). Then (f,F) is U–V uniformly bicontinuous if and only if it is UF–VF uniformly bicontiuous.

Proof. Straightforward by Proposition 2.10. �
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Let us denote by A the category of direlational uniformities and uniformly bicontinuous difunctions in the sense
of [15, Definition 5.9], by B the category of difunctional uniformities and uniformly bicontinuous difunctions in the
sense of Definition 2.9, and define the functor F : A→ B by

F((S, S, U)
( f,F)−→(T, T, V)) = (S, S, UF)

( f,F)−→(T, T, VF).

It is immediate from Proposition 2.10 that F is an isomorphism. Moreover, both A and B may be regarded as concrete
categories over dfTex via the forgetful functors U : A → dfTex, V : B → dfTex, and it is clear that U = V ◦ F
whence F is a concrete isomorphism [1, Remark 5.10]. Hence we have proved:

Corollary 2.12. The categories A and B are concretely isomorphic.

In view of Corollary 2.12 we may extend the term di-uniformity to include also difunctional uniformities.
We recall from [17] that a direlational quasi-uniformity on (S, S) is defined by removing the symmetry condition

from the definition of direlational uniformity. In that paper characterizations of direlational quasi-uniformities were
given in terms of quasi-pseudodimetrics and in terms of a notion of dual dicover, the term quasi di-uniformity being
used to denote any of these equivalent concepts. It is clear that removing the symmetry condition (4) from the definition
of difunctional uniformity gives yet another characterization of direlational quasi-uniformities, so we extend the term
quasi di-uniformity to include difunctional quasi-uniformities also.

3. Properties of difunctional (quasi-) uniformities

In this section we characterize various concepts and results relating to (quasi) di-uniformities in terms of difunctional
uniformities.

The definition of a direlational (quasi-) uniformity U on (S, S) has been introduced in Definition 1.1. It will be noted
that this definition is formally the same as the usual definition of a diagonal uniformity, and the notions of base and
subbase may be defined in the obvious way.

We begin by recalling that by [15, Lemma 4.3], the uniform ditopology (
U, �U) of a direlational (quasi-) uniformity
U on (S, S) may be defined by the following conditions:

(i) G ∈ 
U ⇐⇒ (G�Qs =⇒ ∃(r, R) ∈ U with r [s] ⊆ G).
(ii) K ∈ �U ⇐⇒ (Ps�K =⇒ ∃(r, R) ∈ U with K ⊆ R[s]).

Here r [s] = r→Ps = �r (Ps), R[s] = R→Qs = �R(Qs), so the following gives the corresponding definition of the
uniform ditopology of a difunctional uniformity.

Definition 3.1. Let (S, S, UF) be a difunctional (quasi-) uniform texture space. Then the uniform ditopology (
UF
, �UF

)
of UF on (S, S) is characterized by:

(i) G ∈ 
UF
⇐⇒ (G�Qs =⇒ ∃(�, �) ∈ UF with �(Ps) ⊆ G).

(ii) K ∈ �UF
⇐⇒ (Ps�K =⇒ ∃(�, �) ∈ UF with K ⊆ �(Qs)).

When we speak of the ditopology of (S, S, UF) we will always mean the uniform ditopology.
In [17] it was shown that an arbitrary ditopology on a plain texture has a compatible direlational quasi-uniformity.

By adapting the construction used in the proof of [11, Theorem 7] we now show that we can omit the restriction to
plain textures, thus answering in the affirmative a question posed in [17].

Theorem 3.2. Every ditopological texture space (S, S, 
, �) is quasi-di-uniformizable.

Proof. For G ∈ 
, K ∈ � define �G , �K : S→ S by

�G(A) =
{

S if A�G,

G if A ⊆ G,
and �K (A) =

{
∅ if K�A,

K if K ⊆ A.
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It is trivial to verify that �G ∈ FRR, �K ∈ FRCR, whence (�G , �K ) ∈ FRDR. Moreover, (�G, �K )2 = (�G , �K ), so

{(�G, �K ) | G ∈ 
, K ∈ �}
is a subbase for a difunctional quasi-uniformity UF on (S, S). Clearly 
 ⊆ 
UF

, for if G ∈ 
 and G�Qs then Ps ⊆ G
so �G(Ps) = G.

On the other hand, take H ∈ 
UF
and H�Qs . Then we have (�, �) ∈ UF with �(Ps) ⊆ H and G1, G2, . . . , Gn ∈ 


with
�G1
∧ �G2

∧ · · · ∧ �Gn
≤ �. (8)

Now it is straightforward to verify that

(�G1
∧ �G2

)(A) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G1 ∩ G2 if A ⊆ G1 ∩ G2,

G1 if A ⊆ G1 \ G2,

G2 if A ⊆ G2 \ G1,

S otherwise,

with an obvious generalization for more terms, so (�G1
∧ �G2

∧ · · · ∧ �Gn
)(A) ∈ 
 for all A ∈ S. But,

Ps ⊆ (�G1
∧ �G2

∧ · · · ∧ �Gn
)(Ps) ⊆ �(Ps) ⊆ H

by (8) and we see that H ∈ 
 by [6, Theorem 3.2(1(iii))]. Thus 
 = 
UF
, and the proof of � = �UF

is dual and is
omitted. �

In the case where (S, S) is plain it is interesting to compare the quasi di-uniformity constructed above to that given
in [17], which is a direct generalization of the Pervin quasi-uniformity [18]. Using the formula for (r�G

, R�K
) given

in Proposition 2.2 a fairly straightforward calculation shows that

r�G
= (S × G) ∪ ((S \ G)× S) and R�K

= (S \ K )× K ,

whence they coincide [17, Example 2.3]. Hence the construction in the proof of Theorem 3.2 generalizes the Pervin
quasi-uniformity to general textures, and we will continue to call it the Pervin quasi di-uniformity on (S, S, 
, �). As
in the classical case we have:

Proposition 3.3. Bicontinuous difunctions between ditopological texture spaces are uniformly bicontinuous with re-
spect to the corresponding Pervin quasi di-uniformities.

Proof. Let ( f, F) : (S1, S1, 
1, �1) → (S2, S2, 
2, �2) be bicontinuous and denote the corresponding Pervin difunc-
tional quasi-uniformities on (S1, S1), (S2, S2) by UF1 , UF2 , respectively. We are to prove that ( f, F) : (S1, S1, UF1 )→
(S2, S2, UF2 ) is uniformly bicontinuous. Take G ∈ 
2, K ∈ �2. It will clearly suffice to show that ( f, F)−1(�G , �K ) ∈
UF1 . By bicontinuity F←G ∈ 
1, f←K ∈ �1, so (�F←G , � f←K ) ∈ UF1 and it will enough to verify that

(�F←G , � f←K ) � (F← ◦ �G ◦ f→, f← ◦ �K ◦ F←).

We prove �F←G(A) ⊆ F←(�G( f→A)) for all A ∈ S1, leaving the dual proof of the second inclusion to the interested
reader. Now

�F←G(A) =
{

F←G if A ⊆ F←G,

S1 otherwise,

F←(�G( f→A)) =
{

F←G if f→A ⊆ G,

F←S2 otherwise,

by [5, Proposition 2.28(c)] we have F←S2 = S1, while by [5, Theorem 2.24(2a)],

f→A ⊆ G =⇒ A ⊆ F←( f→A) ⊆ F←G.

Hence the required inclusion holds. �
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As in [17] we denote by dfQDiU the category of quasi di-uniform texture spaces and uniformly bicontinuous
difunctions, and as usual dfDitop is the category of ditopological texture spaces and bicontinuous difunctions. Since
uniformly bicontinuous difunctions are bicontinuous for the uniform bitopologies we have a functor F : dfQDiU→
dfDitop which associates to each quasi di-uniformity its uniform ditopology, and maps a uniformly bicontinuous
difunction to itself [17]. In view of Theorem 3.2 and Proposition 3.3 we may set up a functorP : dfDitop→ dfQDiU
which maps each ditopological texture space to the corresponding Pervin quasi di-uniform space, and each bicontinuous
difunction to itself. Clearly F ◦P is the identity functor on dfDitop.

A well known classical theorem says that (quasi-) uniformities have an open base and a closed base. Moreover, these
results make sense for both the diagonal and (dual) covering representations. In the case of (quasi-) di-uniformities we
currently have counterparts of these results for the dicovering representation only. Specifically, a dicovering uniformity
has a base of open, coclosed dicovers and a base of closed, co-open dicovers [14, Proposition 4.8]. Now we shall give
a meaning to (�, �) being “open, coclosed”, and then prove that difunctional uniformities also have a base of open,
coclosed elements. As yet the extension of the result for “closed, co-open” remains open.

Definition 3.4. Let (S, S, 
, �) be a ditopological texture space, � ∈ FRR and � ∈ FRCR. Then

(1) � is called open if �(A) ∈ 
 ∀A ∈ S.
(2) � is called closed if �(A) ∈ � ∀A ∈ S.
(3) (�, �) is called open, coclosed if � is open and � is closed.

Proposition 3.5. A difunctional uniformity on (S, S) has a base that is open, coclosed for the uniform ditopology.

Proof. There is no loss of generality in taking the difunctional uniformity in the form UF, where U is a direlational
uniformity on (S, S). Take (d, D) ∈ U and (e, E) ∈ U with (e, E)2 � (d, D). We recall the following two facts:

(i) For A ∈ S we have A =∨{Ps |A�Qs} by [5, Theorem 1.2(7)], whence for any relation r,

r→A = r→
(∨
{Ps |A�Qs}

)
=

∨
{r→Ps |A�Qs}

by [5, Corollary 2.12(2)].
(ii) For any A ∈ S,

G(L) =
∨
{Pu |∃(r, R) ∈ U with r→Pu ⊆ L} ∈ 
U,

while for a reflexive relation r, A ⊆ G(r→A) ⊆ r→A (see the proof of [15, Proposition 2.7]), and so A ⊆ ]r→A[.

For A ∈ S define �(A) = ∨{]d→Ps[|A�Qs}. Then �(A) ∈ 
U = 
UF
, that is � is open. Next, A ⊆ �(A) since

Ps ⊆]d→Ps[ by (ii) with A = Ps, r = d . Also, for A j ∈ S, j ∈ J , we clearly have �(
∨

j∈J A j ) =
∨

j∈J �(A j ).
Hence � ∈ FRR. Finally,

e→Ps ⊆]e→e→Ps[=]e2 Ps[⊆]d→Ps[⊆ d→Ps

by (ii) with A = e→Ps, r = e and [5, Lemma 2.16(1)]. Hence, by (i) with r = e, d we have, for A ∈ S,

e→A =
∨
{e→Ps |A�Qs} ⊆

∨
{]d→Ps[|A�Qs} ⊆

∨
{d→Ps |A�Qs} = d→A.

This gives �e ≤ � ≤ �d , and a dual proof shows the existence of a closed � ∈ FRCR satisfying �D ≤ � ≤ �E ,
whence UF has a base of open, coclosed elements, as required. �

Corollary 3.6. Let UF be a difunctional uniformity with uniform ditopology (
, �). Then for A ∈ S the interior ]A[
and closure [A] are given by

]A[=
∨
{B ∈ S|∃(�, �) ∈ UF wi th �(B) ⊆ A}, and

[A]= ⋂ {B ∈ S|∃(�, �) ∈ UF wi th A ⊆ �(B)},
respectively.
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Proof. We prove the first equality, leaving the dual proof of the second equality to the interested reader. Denote the
join on the right by A∗. Take B ∈ S with �(B) ⊆ A for some (�, �) ∈ UF. Since B ⊆ �(B) ⊆ A it is clear that
A∗ ⊆ A. By Definition 2.7(3) we have (�1, �1) ∈ UF with (�1, �1)2 � (�, �), and without loss of generality we may
take (�1, �1) to be open, coclosed by Proposition 3.5. Since B ⊆ �1(B) the join of the open sets �1(B) is a superset
of A∗, but since �1(B) satisfies �1(�1(B)) ⊆ A it is also a subset, so A∗ ∈ 
.

Finally, take G ∈ 
 with G ⊆ A and suppose that G�A∗. Then we have s ∈ S with G�Qs , Ps�A∗, and by
Definition 3.1(i) there exists (�, �) ∈ UF with �(Ps) ⊆ G. This gives �(Ps) ⊆ A, whence Ps ⊆ A∗ and we have a
contradiction. This establishes that A∗ is the interior of A. �

We now recall that a direlational uniformity U on (S, S) is called separated [14] if �(r,R)∈U(r, R) = (iS, IS). Calling
a difunctional uniformity separated if the corresponding direlational uniformity is, we see at once that

Proposition 3.7. The difunctional uniformity UF is separated if and only if∧
(�,�)∈UF

(�, �) = (�S, �S),

where �S : S→ S is the identity mapping.

We recall from [14, Theorem 4.16] that, exactly as in the classical case, a di-uniformity is separated if and only if its
uniform ditopology is T0.

Finally, let � : S→ S be a complementation. For � ∈ FRR let us define �′ : S→ S by �′ = � ◦ � ◦ �. It is trivial
to verify that �′ ∈ FRCR. Likewise, for � ∈ FRCR we have �′ = � ◦ � ◦ � ∈ FRR, and clearly (�′)′ = �, (�′)′ = �.
Hence, setting

(�, �)′ = (�′, �′)

gives us an involution on FRDR. We now link this with the involution (r, R)�(r, R)′ = (R′, r ′) on the family of
reflexive direlations.

Lemma 3.8.

(1) For r ∈ RR, R ∈ RCR we have (�r )′ = �r ′ and (�R)′ = �R′ . Hence, (�r , �R)′ = (�R′ , �r ′ ).
(2) For � ∈ FRR, � ∈ FRCR we have (r�)′ = R�′ and (R�)′ = r�′ . Hence, (r�, R�)′ = (r�′ , R�′ ).

Proof. Take r ∈ RR. Then (�r )′(A) = �(�r (�(A))) = �(r→�(A)), and by [5, Lemma 2.20(1)], �(r→�(A)) = (r ′)→A,
so (�r )′(A) = �r ′ since r ′ ∈ FRCR. This proves (�r )′ = �r ′ , and the second equality in (1) is proved likewise.

For (2), take � ∈ FRR and let r = r�, that is � = �r . By (1) �′ = (�r )′ = �r ′ , which gives R�′ = r ′ = (r�)′. The
second equality may be proved likewise. �

Recalling from [15, Theorem 2.3] that for a direlational uniformity U on (S, S), U′ = {(r, R)′|(r, R) ∈ U} is also a
direlational uniformity, called the complement of U, we likewise call the corresponding difunctional uniformity (U′)F
the complement of UF, and denote it by U′F. By Lemma 3.6 we clearly have

U′F = {(�, �)′|(�, �) ∈ UF}.
Again we will call a difunctional uniformity UF complemented if it is equal to its complement. It is shown in [15]
that on the discrete complemented texture (X, P(X ), �X ) the complemented di-uniformities correspond precisely to
the uniformities on X.

4. Applications to Hutton uniformities and Hutton quasi-uniformities

Hutton’s original setting for (quasi-) uniformities and topology was a Hutton algebra, that is a complete, completely
distributive lattice L on which is defined an order reversing involution ′. A topology 
 on L is then regarded as a family of
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open sets, the corresponding family of closed sets being obtained by applying the operation ′ to give � = 
′ = {�′|� ∈ L}.
If we regard (
, �) as a topological structure in which the open and closed sets have equal status, then it is natural to
call this a ditopology on L.

More generally, as in [21], we may dispense with ′ and consider arbitrary pairs (
, �) consisting of a topology and
cotopology on a complete, completely distributive lattice L, thereby producing the notion of Hutton dispace. Given
two Hutton dispaces (Li , 
i , �i ), i=1,2, a mapping � : L2 → L1 preserving arbitrary meets and joins is said to be
continuous if �[
2] ⊆ 
1, cocontinuous if �[�2] ⊆ �1, and bicontinuous if it is both continuous and cocontinuous. We
regard such a bicontinuous mapping as a morphism from (L1, 
1, �1) to (L2, 
2, �2), so defining the category diH of
Hutton dispaces and bicontinuous mappings.

If (L, 
, �) is a Hutton dispace and (ML, ML) the Hutton texture of L, we may set 
L = {̂�|� ∈ 
}, �L = {̂�|� ∈ �} to
give the Hutton ditopological texture space (ML, ML, 
L, �L) of (L, 
, �). A mapping 	 : L2 → L1 preserving arbitrary
meets and joins corresponds to the mapping 	̂ : ML2 → ML1 , 	̂(̂�) =̂	(�), which also preserves arbitrary meets

and joins, and hence by [6, Proposition 4.1] to the difunction ( f 	̂, F 	̂) : (ML1 , ML1 ) → (ML2 , ML2 ) characterized

by ( f 	̂)←�̂ =̂	(�) = (F 	̂)←�̂. Moreover, if 	 is bicontinuous then so is ( f 	̂, F 	̂), so we have a functor H : diH →
dfDitop.

In the opposite direction, if (S, S, 
, �) is a ditopological texture space then (S, 
, �) is a Hutton dispace. Moreover,
given a bicontinuous difunction ( f, F) : (S1, S1, 
1, �1)→ (S2, S2, 
2, �2), the mapping 	( f,F) : S2 → S1 defined in
[6] by 	( f,F)(B) = f←B = F←B, B ∈ S2 is clearly a diH-morphism, and we have a functor E : dfDitop→ diH.

In [21] it is shown that E is a co-adjoint with H the corresponding adjoint, and that moreover E and H define an
equivalence between the categories diH and dfDitop.

In view of this equivalence, all the pointfree aspects of the theory of ditopological texture spaces will have an
equivalent expression in the context of Hutton dispaces, and conversely. For example, Proposition 2.2 shows that a
direlation (r,R) on (S, S) corresponds to a pair of mappings (�r , �R) with �r ∈ FR, �R ∈ FCR, while the corresponding
representation for a difunction used above has been known for some time. In [21] a pointfree generalization of the notion
of real dicompactness is obtained and carried over to Hutton dispaces. The aim of this final section is to express the
notion of functional (quasi-) di-uniformity in this context, and tie this in with Hutton quasi-uniformities and uniformities
as given in [11].

Definition 4.1. Let L be a complete, completely distributive lattice. Denote by Q = QL the set of mappings g on L

satisfying:

(i) g(
∨

j∈J � j ) =
∨

j∈J g(� j ) ∀� j ∈ L, j ∈ J

(ii) � ≤ g(�) ∀� ∈ L,

and by P = PL the set of mappings h on L satisfying

(i) h(
∧

j∈J � j ) =
∧

j∈J h(� j ) ∀� j ∈ L, j ∈ J

(ii) h(�) ≤ � ∀� ∈ L.

Then a non-empty set U ⊆ QL × PL is called a di-uniformity on L if it satisfies

(1) (g, h) ∈ U, (g, h) ≤ (g1, h1) ∈ Q× P =⇒ (g1, h1) ∈ U,
(2) (g1, h1), (g2, h2) ∈ U =⇒ (g1, h1) ∧ (g2, h2) ∈ U,
(3) For (g, h) ∈ U∃(g1, h1) ∈ U with (g1, h1)2≤(g, h),
(4) For (g, h) ∈ U∃(g1, h1) ∈ U with (g1, h1)←≤(g, h).

Here the operations on the elements of Q× P are as described following Lemma 2.5. In case the symmetry condition
(4) is omitted, U is called a quasi-di-uniformity on L. Also, (L, U) is called a (quasi-) di-uniform Hutton space.

Let (L, U) be a (quasi-) di-uniform Hutton space, and set UL = {(ĝ, ĥ)|(g, h) ∈ U}. Then clearly (ML, ML, UL) is a
difunctional (quasi-) uniform texture space. Now let 	 : (L2, U2)→ (L1, U1) preserve arbitrary meets and joins, and

consider the corresponding difunction ( f 	̂, F 	̂) : (ML1 , ML1 , UL1 ) → (ML2 , ML2 , UL2 ). In order for this difunction
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to be uniformly bicontinuous we require that

(( f 	̂, F 	̂)−1(ĝ), ( f 	̂, F 	̂)−1(ĥ)) ∈ UL1

for all (g, h) ∈ U2. Now for (g, h) ∈ U2 we have (ĝ, ĥ) ∈ UL2 and

( f 	̂, F 	̂)−1(ĝ)(̂�) = (F 	̂)←(ĝ)(( f 	̂)→�̂), ( f 	̂, F 	̂)−1(ĥ)(̂�) = ( f 	̂)←(ĝ)((F 	̂)→�̂)

The following lemma will help us to represent ( f 	̂)→�̂ and (F 	̂)→�̂.

Lemma 4.2. Let ( f, F) : (S, S)→ (T, T) be a difunction and take A ∈ S. Then:

(1) f→A =⋂{B ∈ T|A ⊆ F←B},
(2) F→A =∨{B ∈ T| f←B ⊆ A}.

Proof. By [5, Theorem 2.24(2a)] we have A ⊆ F←( f→A), so⋂
{B ∈ T|A ⊆ F←B} ⊆ f→A.

On the other hand, if f→A�
⋂{B ∈ T|A ⊆ F←B} then there exists some B ∈ T with f→A�B and A ⊆ F←B. But

now f→A ⊆ f→(F←B) ⊆ B by [5, Theorem 2.24(2b)], which is a contradiction. Hence (1) holds, and the proof of
(2) is dual and hence omitted. �

These results justify the following definitions.

Definition 4.3. Let 	 : L2 → L1 be a mapping preserving arbitrary meets and joins. We define mappings 	�, 	� :
L1 → L2 by

	�u =
∧
{v ∈ L2|u ≤ 	(v)}, 	�u =

∨
{v ∈ L2|	(v) ≤ u}

for all u ∈ L1.

It is trivial to verify that ( f 	̂)→�̂ =̂	�� and (F 	̂)→�̂ =̂	��. On analogy with f→, F→ these mappings preserve
arbitrary joins, meets, respectively. Also, 	� is a co-adjoint and 	� an adjoint of 	.

Definition 4.4. Let (L1, U1), (L2, U2) be (quasi-) di-uniform Hutton spaces, 	 : L2 → L1 a mapping that preserves
arbitrary joins and meets. Then 	 is said to be U1–U2 uniformly bicontinuous provided (g, h) ∈ U2 =⇒ (	◦ g ◦	�, 	◦
h ◦ 	�) ∈ U1.

The following result is now clear from the definitions and the above discussion, and we omit the proof.

Proposition 4.5. With the notation of Definition 4.4, 	 is U1–U2 uniformly bicontinuous if and only if ( f 	̂, F 	̂) is
UL1–UL2 uniformly bicontinuous.

Denoting by diQUH the category of quasi-di-uniform Hutton spaces and morphisms 	 : (L1, U1)→ (L2, U2) which
are uniformly bicontinuous mappings 	 : (L2, U2) → (L1, U1), we now have a functor Hu : diQUH → dfQDiU
defined by

Hu((L1, U1)
	−→(L2, U2)) = (ML1 , ML1 , UL1 )

( f 	̂,F 	̂)−→ (ML2 , ML2 , UL2 ).

In the opposite direction, with a difunctional quasi-uniform texture space (S, S, UF) we may associate the quasi-di-
uniform Hutton space (S, UF). Corresponding to a difunction ( f, F) : (S, S, UF)→ (T, T, VF) we have the mapping
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	( f,F) : T → S which preserves arbitrary meets and joins. Note now that 	�
( f,F) A = f→A, 	�

( f,F) A = F→A, so for
(g, h) ∈ VF we have

(	( f,F) ◦ g ◦ 	�
( f,F), 	( f,F) ◦ h ◦ 	�

( f,F)) = ( f, F)−1(g, h)

which by Definition 2.9 and Definition 4.4 shows that (f,F) is uniformly bicontinuous if and only if 	( f,F) is uniformly
bicontinuous. Hence we have the functor Eu : dfQdiU→ diQUH defined by

Eu((S, S, UF)
( f,F)−→(T, T, VF)) = (S, UF)

	( f,F)−→ (T, VF).

Take (L, U) ∈ ObdiQUH and denote by e the morphism e : Eu(ML, ML, UL) = (ML, UL) defined by the bijection ���̂
from L to ML. Then it is trivial to verify that (ML, �L, UL, e) is a Eu-costructured arrow with codomain (L, U) which
is Eu-co-universal. Hence Eu is a co-adjoint, and since (ML, ML, UL) = Hu(L, U) we see that Hu is the corresponding
adjoint. Moreover,

Eu ◦ Hu ≡ iddiQUH and He ◦ Eu ≡ iddfQDiU,

so Hu and Eu are equivalences between the categories diQUH and dfQDiU.
Clearly these equivalences restrict to equivalences between diUH and dfDiU in the obvious way.
The main difference between the definition of (quasi-) di-uniformity on L and the notion of quasi-uniformity given

by Hutton in [11], is that the latter involves single mappings. We now develop a characterization of di-uniformities
which resolves this difference.

Let U be a (quasi-) di-uniformity on L, and consider the following non-empty sets of mappings:

U = {g ∈ Q|∃h ∈ PL with (g, h) ∈ U}, U = {h ∈ P|∃g ∈ QL with (g, h) ∈ U}.
We now have

Lemma 4.6. If U is a di-uniformity on L and U, U are as defined above:

U1 g ∈ U, g1 ∈ Q wi th g ≤ g1 =⇒ g1 ∈ U.

U2 g1, g2 ∈ U =⇒ g1 ∧ g2 ∈ U.

U3 g ∈ U =⇒ ∃g1 ∈ U wi th g2
1 ≤ g.

SYM g ∈ U ⇐⇒ ←−g ∈ U.

CU1 h ∈ U, h1 ∈ P wi th h1 ≤ h =⇒ h1 ∈ U.

CU2 h1, h2 ∈ U =⇒ h1 ∨ h2 ∈ U.

CU3 h ∈ U =⇒ ∃h1 ∈ U wi th h ≤ h2
1.

Proof. U1–U3 and CU1–CU3 follow trivially from Definition 4.1(1)–(3). To prove SYM take g ∈ U, whence we have
h with (g, h) ∈ U. Since a direlational uniformity has a base of symmetric direlations by [14, Lemma 3.2], the same is
true for di-uniformities on L, so we have (g1, h1) ∈ U symmetric with (g1, h1)≤(g, h). On analogy with the formula
in Proposition 2.4 we have←−g (�) = ∨{ ∈ L|g() ≤ �} so g1 ≤ g implies←−g ≤ ←−g 1, and by symmetry←−g 1 = h1,
whence←−g ∈ U, as required. The reverse implication can be established by a similar argument. �

Conversely

Lemma 4.7. Let U ⊆ Q, U ⊆ P be families of mappings satisfying the conditions of Lemma 4.6. Then

U = {(g, h)|g ∈ U, h ∈ U}
is a di-uniformity on L for which U = {g ∈ Q|∃h wi th (g, h) ∈ U} and U = {h ∈ P|∃g wi th (g, h) ∈ U}.

Proof. Straightforward. �

The above results show that a di-uniformity U on L can be uniquely represented by the sets U, U of mappings satisfying
the conditions of Lemma 4.6, and moreover by removing the symmetry condition SYM we have a corresponding
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representation of a quasi-di-uniformity. Indeed, it is only for quasi-di-uniformities that we actually require both sets
since SYM can be used to obtain U from U, and conversely.

Let us now look at the morphisms in this representation. The following is immediate, and we omit a detailed proof.

Proposition 4.8. 	 : (L, U) → (M, V) is a diQUH-morphism if and only if it is a mapping 	 : M → L preserving
arbitrary meets and joins that satisfies g ∈ V =⇒ 	 ◦ g ◦ 	� ∈ U and h ∈ V =⇒ 	 ◦ h ◦ 	� ∈ U.

In the case of a diUH-morphism one of these conditions suffices, as we now show.

Lemma 4.9. Let (L, U), (M, V) be di-uniform Hutton spaces, 	 : M→ L a mapping which preserves arbitrary meets
and joins. Then g ∈ V =⇒ 	 ◦ g ◦ 	� ∈ U if and only if h ∈ V =⇒ 	 ◦ h ◦ 	� ∈ U.

Proof. By SYM it will be sufficient to show that

←−−−−−−
	 ◦ g ◦ 	� = 	 ◦←−g ◦ 	� and

←−−−−−−
	 ◦ h ◦ 	� = 	 ◦←−h ◦ 	�.

We prove the first equality, leaving the dual second equality to the interested reader. Rather than give a direct proof we
verify the corresponding equality:

( f, F)−1(←−� ) =
←−−−−−−−
( f, F)−1(�)

for difunctional quasi-uniform texture spaces. Here ( f, F) : (S, S, UF) → (T, T, VF) and � ∈ FT
RR. There is no

loss of generality in writing � = �r , where r is a relation on (T, T). By definition←−�r = �r← , so ( f, F)−1(←−� ) =
( f, F)−1(�r← ) = �( f,F)−1(r←) by Proposition 2.10. However, ( f, F)−1(r←) = (( f, F)−1(r ))← by [14, Proposition

5.5], so �( f,F)−1(r←) =←−� ( f,F)−1(r ) =
←−−−−−−−−
( f, F)−1(�r ) by Proposition 2.10. �

As a result of the above discussion we see that we may represent a di-uniformity either as a non-empty family U ⊆ Q

satisfying U1–U3, and uniform bicontinuity of 	 given by g ∈ V =⇒ 	 ◦ g ◦ 	� ∈ U, or as a non-empty conjugate
family U ⊆ P satisfying CU1–CU3 and uniform bicontinuity given by h ∈ V =⇒ 	 ◦ h ◦ 	� ∈ U. Naturally, the
symmetry is not apparent in this case, but is easily reinstated when we wish to emphasize the connection with our
earlier representations.

In the case of a quasi-di-uniformity U generally both U and U are required and the two conditions for uniform
bicontinuity are no longer equivalent.

It is left to the interested reader to verify that these new representations lead to concretely isomorphic categories.
Finally, let us note that on analogy with Corollary 3.6, if (L, U) is a di-uniform Hutton space then the uniform

ditopology (
, �) may be defined in terms of an interior operator and a closure operator by

int(�)=
∨
{� ∈ L|∃g ∈ U with g(�) ≤ �},

cl(�)=
∧
{� ∈ L|∃h ∈ U with � ≤ h(�)}.

We are now in a position to give the promised relation with Hutton uniformities and quasi-uniformities. It is clear
that the set Q of functions on L defined in [11] is no other that the set Q = QL considered here, and that a Hutton
quasi-uniformity in the sense of [11, Definition 2] is a non-empty subset of Q satisfying U1–U3 of Lemma 4.6. Hence
we have a bijection between the di-uniformities on L and the Hutton quasi-uniformities on L, and the notion of uniform
bicontinuity is seen to coincide with that of uniform continuity for mappings 	 preserving arbitrary meets and joins.
Moreover, the uniform topology of a Hutton quasi-uniformity as defined in [11, Definition 4] is precisely the uniform
topology 
 defined above.

Now let us consider the case where L is equipped with an order reversing involution. Then the corresponding Hutton
texture has a complementation, and various terms relating to complementation will have their counterparts here. In
particular a complemented difunction is easily seen to correspond to a mapping 	 that as well as arbitrary meets and
joins preserves also the involution, that is 	(b′) = 	()′ for all  ∈ L. If U is a di-uniformity on L and for � : L→ L

we define �′ : L→ L by �′(�) = (�(�′))′, � ∈ L, then U′ = {(h′, g′)|(g, h) ∈ U} is also a di-uniformity on L and U is
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called complemented if U = U′ (see [15] for the corresponding concept in a textural setting). We now show that the
Hutton uniformities correspond to the complemented di-uniformities.

To see, this recall by [11, Definition 7] that a Hutton quasi-uniformity D is called a uniformity if � ∈ D =⇒ �−1 ∈ D.
Here �−1 : L→ L is given by

�−1(�) =
∧
{ ∈ L|�(′) ≤ �′}, � ∈ L.

It may be noted that when 	 preserves the involution ′ then 	−1 = 	�. On the other hand, for � : L→ L, � ∈ L,
←−
�′ (�)=

∧
{ ∈ L|� ≤ �′()} =

∧
{ ∈ L|� ≤ (�(′)′}

=
∧
{ ∈ L|�(′) ≤ �′} = �−1(�),

whence
←−
�′ = �−1. If U is a di-uniformity and U is a Hutton uniformity then g ∈ U =⇒ g′ ∈ U, and dually

h ∈ U =⇒ h′ ∈ U, so {(h′, g′)|(g, h) ∈ U} ⊆ U. Using the fact that the correspondence ���′ is an involution
we likewise obtain U ⊆ {(h′, g′)|(g, h) ∈ U}, and so U is complemented. The reader will note the analogy with the
correspondence between classical uniformities and complemented di-uniformities on a discrete texture (X, P(X ), �X )
given in [15].
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