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Abstract 

In this paper it is shown that the lattice of intuitionistic subsets of a set X in the sense of D. Goker may be represented as 
a special type of texture space, called an intuitionistic texture on X, and various characterizations are given. It is established 
that intuitionistic topologies are mapped to ditopologies on the corresponding texture, and some notions of compactness and 
stability are considered. (~) 1998 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

The notion o f  a texture space, under the name of  
fuzzy structure, was introduced by the first author at 
the 2nd BUFSA Conference on Fuzzy Systems and 
Artificial Intelligence held at Trabzon University in 
1992. One motivation for the introduction of  these 
spaces is to provide a point-set based setting for the 
study of  fuzzy sets, and the reader may consult [6] 
for various characterizations, in terms of  textures, o f  
fuzzy lattices, L-fuzzy sets and generalized fuzzy sets 
in the sense o f  Nakajima [13]. 

The concept o f  a dichotomous topology, or ditopol- 
ogy for short, on a tex~tre space is a natural gener- 
alization o f  a bitopology on the one hand, and of  a 
fuzzy topology on the other. In particular, the study of  
ditopologies makes it possible to extend much of  the 
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theory o f  bitopological spaces to a fuzzy topological 
setting. Some results in this direction may be found in 
[3,5,8]. 

Our aim in the present paper is to show that the 
lattice o f  intuitionistic sets on a set X [7] may be re- 
garded as a texture space, to characterize those tex- 
ture spaces which arise in this way and to give some 
topological results. Although some basic notions relat- 
ing to ditopological texture spaces were presented in 
[2,3], we will recall all necessary definitions and re- 
sults for the benefit of  the reader. 

Definition 1.1. Let S be a set. Then 50 C_ ~ ( S )  is 
called a texturin 9 of  S, and S is said to be textured 
by 50 if 
(1) (50, C_) is a complete lattice containing S and 

and for any index set I and ./1iE50 , iEI, the 
meet Aiel  Ai and the join Vie1Ai in 5 ° are re- 
lated with the intersection and union in ~ ( S )  by 
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the equalities 

A Ai = r-] Ai 
iEl iEl 

for all I, while 

V Ai = U Ai 
i@l iCl 

for all finite I. 
(2) 50 is completely distributive. 
(3) L,e separates the points of S. That is, given sl ~4 s2 

in S we have LEL, e with sl eL,  s2 ~ L, or LEoL# 
with szEL, Sl ~ L. 

If S is textured by Lf then (S, L,e) is called a texture 
space, or simply a texture. 

Remark. As we shall see, the texturings corre- 
sponding to lattices of intuitionistic sets will turn 
out to be closed under arbitrary unions as well 
as intersections, so the second equality in Defini- 
tion 1.1(1) will also hold for arbitrary I. In the 
general case an infinite union may fail to belong 
to the texturing, in which case the join will be 
strictly larger than the union. A simple example 
would be the texturing 5 ¢ = { ( 0 , r ] l r E [ 0 , 1 ] }  of 
s=(0, 1]. 

and characterizations of L-fuzzy sets in the sense of 
Goguen [1 1] and generalized fuzzy sets in the sense 
of Nakajima [13] are given within the class of  com- 
plemented simple textures. 

Intuitionistic sets were introduced by ffoker [7] as 
a special case of the notion of fuzzy intuitionistic 
set defined by Atanassov [1]. If X is a crisp set, an 
intuitionistic subset of X may be regarded as a pair 
(A,B) of subsets of X satisfying A MB = 0. A partial 
order, denoted by _C, on the set 

Q(X)= {(A,B)IA,BE~(X), AnB=O} 

of intuitionistic subsets of X is defined by 

(A,B)C-(C,D) ~, AC_CandDC_B. 

It is clear that (U(X), C_ ) is a complete lattice, the meet 
(j oin) of (A i, Bi ), i E I, being denoted by N i el (A i, Bi ) 
(Uicl(Ai,Bi)) and equal to (r']i~iAi, Ui~lBi) 
((Ui~I Ai, NiclBi)), respectively. The largest intui- 
tionistic subset of X is __X= (X, 0), and the smallest 
_~ = (0,X). There is also a natural complement given 
by the operation t" ~(X)---~ B(X), (A,B) ~ (A,B)', 
defined by (A,B )' = (B,A ). 

The mapping s--+Ps= N{LE501sEL} is a nat- 
ural embedding of S in 50. Recall that an element 
M ~ 0  of 50 is a molecule if MOLl  U L 2 ~ M C L 1  
or M C_ L2 for all L1, L2 E ~q~. Clearly, {Ps] s E S} is a 
set of molecules in 50 which is a base for ~ in the 
sense that 

 =Vn=Un 
sEL sEL 

for all L C 5¢ [10]. We call L~ a simple if every molecule 
of 5 ° belong to the set {PsIsES}. 

A mapping 7 : 50 ~ 50 is called a complementation 
if  7 2 ( p ) = P  for all P E 5 0  and PC_Q in 50 implies 
7(Q) C_ 7(P). A complementation is necessarily bijec- 
tive. A texture with a complementation is said to be 
complemented. 

For 50 = ~ ( S )  and 7(P) = S\P we obtain a comple- 
mented simple texture which represents the crisp set 
structure of S. It is shown in [6] that fuzzy lattices cor- 
respond precisely to complemented simple textures, 

2. Representation theorems 

Our aim in this section is to show that the lattice 
D(X) of intuitionistic subsets of a set X may be rep- 
resented as a texture, and to obtain the characteristic 
properties of such a texture. 

Theorem 2.1. Let X be a set and D(X) the lat- 
tice of intuitionistic subsets of X. Define Ix = 
( X x { 0 } ) U ( X x { 1 } )  and let ¢ p : O ( X ) ~ ( I x )  be 
defined by 

qg((A,B))=(A x {0})U((X\B)  x {1}) 

for all (A,B) E D(X). Then J x  = ~o(D(X)) C_ ~ (S )  is a 
simple complemented texturin9 of Ix. 

Proof. Take {Lil i E I } c i x .  Then we have {(Ai, Bi)l 
iCI} C_ D(X) with Li=~o((Ai,Bi))=(Aix {0})U 
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((X\Bi) × {1}). Hence, 

U L, = U (A, × {o}) u ( (x \B, )  × { 1 }) 
i C 1 icl 

\ \ i E l  iEl / /  

Therefore, UiEILiE,~x  . In exactly the same way 
Ni61LiEJx, which establishes that (/x, J x )  is a 
complete lattice with 

V L i = U L  i and A L i = N L i  
iEl iE1 iEl iE1 

for Li E i x ,  i E I, and all index sets I. In view of these 
equalities, (Ix, J x )  is clearly completely distributive, 
and we also have 

& = q~((x, 0)) = ~o(X) E J x  

and 

0 = ~o((O,x)) = ~o(0) E Jx.  

Next J x  separates the points of Ix. Indeed, let 
Sl,S2EIx and St ~S2. There are three cases to con- 
sider: 

Case 1: Sl =(x,  1), xEX.  For L=q~((O,Xk{x})= 
{(x, 1)} E J x  we have sl EL and s2 ¢ L. 

Case 2:s2 =(x,  1), xEX.  Proof as for Case 1 with 
st and s2 interchanged. 

Case 3: s t = ( x , 0 ) ,  s2=(y ,0 ) ,  x, yEX,  x ¢ y .  
Since {x} M(X\{x} )=0 ,  L =  qg(({x},Xk{x}))= 
{(x, 0), (x, 1 )} E J x  and sl EL and s2 ~ L. 

To show that (Ix, J x )  is simple, note that from 
the above we clearly have P~x,1)={(x, 1)} and 
P~,o)={(x,O),(x, 1)}. Hence if L=(A × {0})A 
((X\B) × { 1 } ) E J x  it must contain (x, 1) for some 
xEX.  Take y E X  with y ¢ x  and define 

L, = ( ( A \ { x } )  x {O})U((X\(BU{x})) x {1}) ,  

L2 = ( ( A \ { y } )  x {O})U((Xk(BU{y})) x {1}). 

ThenL C_LI UL2 andL ~L1. If  yEA o ry  £ B we also 
have L ~ L2. Hence, ifL is a molecule it cannot contain 
(y, 0) or (y, 1 ) for x ~ y, and so must have the form 

L={ (x ,  1 ) } = P ( x j ) o r  L={(x,O),(x, 1)}=P(x,O) as 
required. 

Finally, to show that (Ix, i x )  is complemented, 
consider the function ix : J x  --~ J x  defined by 

tx(L) = ~o((B, A)), 

where L = q~((A,B)), (A,B)E D(X). 
Clearly, ~x satisfies z2(L) = L for each L E i x .  Take 

L,L 'EJx  with LC_L'. We may write L=(A × {0}) 
u ( ( x \ B )  × {1}), L ' = ( A '  × {0})u( (X\~ ' )  × {1}). 
Since L C_L' then A CA' and X \ B C X \ B  ~. There- 
fore B'C_B and X \ W C X \ A ,  from which we 
deduce tx(L')C_ Ix(L). Thus tx is a complementation. 

[] 

The texture (Ix, i x ,  tx) will be called the intuition- 
istic texture on X. 

We turn now to the question of characterizing those 
textures which are an intuitionistic texture on some X. 
Since we can only expect to be able to do this up to 
isomorphism, we must first make explicit the notion 
of isomorphism between textures. 

Definition 2.2. Let (S, L,e) and (S', ~ ' )  be textures. 
A function ~ : S ~ S t is a textural isomorph&m from 
(S, 56) to (S', 56') if 

(i) ¢ is bijective. 
(ii) VLE& ,a we have ¢(L)E ~ ' .  

(iii) L ~ ¢(L) is a bijection ¢ : Lf ~ d ' .  
We say (S, ~2') and (S ~, 56 ~) are isomorphic if there 
exists an isomorphism between them. We denote this 
by (S, 56) = (S', £f').  

If (S, 5(', 7) and (S', L* a', 7') are complemented tex- 
tures and ff satisfies the additional property 

VL E L~ we have ~k(y(L)) = 7'(~k(L)) 

then ~k is called a complemented textural isomor- 
phism. When such an isomorphism exists we write 
(S, Le, y) ~- (S ' ,~ ' , y ) .  

As expected, a textural isomorphism preserves 
arbitrary meets and joins: 

Proposition 2.3. Let ~9 be a textural isomorphism 
from (S ,~)  to (S',~-cP'), and {Li l i E I} C_ LP. Then 

(i) ~I (N iE1L i )=  NiEI I~(Li), and 
(ii) ¢(V/EILi)= Vi~l t~(Li). 
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Proof.  (i) Trivial since ~, : 50 -~ 50' preserves inclu- 
sion and g, : S ~ S' is injective. 

(ii) The inclusion ViEl~k(Li)C_~(ViElLi) is 
immediate since ~b: 50--~50' preserves inclusion. 
By Definition 2.2(iii) we have L E 5 0  with ~O(L)= 
Vi~l~b(Li). Then LiC_L for all iEI.  Indeed, if 
Li~:L then L i N L # L i  and so ~(L iML)#~(L) ,  
since ~ :50 - -~50 '  is injective. By (i), ~,(LiML)= 
~(Li) M ~k(L), which contradicts ~,(Li) C_ ~b(L). We 
now have ViE~ Li C_ L, whence ~9(Vi~ 1Li) C_ ~(L ) = 
Vie1 ~(Li). [] 

Definition 2.4. (S, 50, 7) is said to be an &tuition&- 
tic texture if  there exists a set X with (S, 5 °, 7) ~ 
(Ix, J x ,  tx). 

The following theorem gives various characteriza- 
tions of  intuitionistic textures. 

Theorem 2.5. The following are equivalent for a 
complemented texture (S, 50, 7): 

(i) (S, 50, 7) is an intuition&tic texture. 
(ii) There exists T E 50 satisfying 

(a) 7(T) = T, 
(b) P t = { t }  VtET, and 
(c) 7(Pt)=S\Pt  VtES\T .  

(iii) For every maximal molecule M in 50 there ex- 
ists a unique molecule NM with NM C M and 7 
satisfies 
(a) 7(NM)=NM U(S\M) ,  and 
(b) 7(M) = S \ M  for all maximal molecules M. 

(iv) There exists a set T C_S and a bijection 
f : T --~ S \ T  such that 
(a) 50={AUB[AC_T,  BC_f(A)} ,and 
(b) 7 ( A U B ) = S \ ( f ( A ) U  f - I ( B ) ) ,  A C T and 

BC_f(A). 

Proof.  (i) =~ (ii). Let ~b be a complemented textural 
isomorphism from (S,50,7) to (Ix, J x ,  tx). Since 
X x {1} = ~p(0,0) is an element of  J ( X )  invariant 
under ix, it is immediate that T = ~b- 1 (X × { 1 } )  E 50 
satisfies 7 ( T ) = T ,  so establishing (a). For (b), 
take tET.  Then ~p(t)=(x, 1) for some x E X  so 
{t} = f f - l ({(x,  1)}) = ~- l (~o(0 ,X\{x}) )  E 50, which 
verifies Pt = {t}. The proof  of  (c) is left to the reader. 

(ii) ~ (iii). Suppose that (S, 50, 7) has the properties 
given in (ii). We begin by showing that for s E S \ T  
we have P~ = {s, t} for some t E T. 

1. P s A ( S \ T ) = { s } .  For suppose s l E P s n ( S \ T )  
with sl # s. Then, since 50 separates points in S, 
s E P s n ( S \ P s , ) a P s ,  while P s n ( S \ P s , ) = P s n  
7(Ps, )E 50, which contradicts the definition of Ps. 

2. Ps M T # O. Indeed T c_ S\Ps = 7(Ps) E 50 ~ Ps = 
72(ps)C_ 7 ( T ) =  T, which is impossible as sEPs 
and s ~ T. 

3. For t E P s n T  we have 7(Pt)=S\{s} .  Indeed, 
Pt = {t} C_ Ps n T ~ S\{s}  = (S\Ps) U T = 7(Ps) U 
7(T) = 7(P~ M T) C_ 7(Pt) C S, from which the re- 
sult follows at once. 

4. Ps N T = {t}. Immediate from (3) and the injectiv- 
ity of  7. 

From (1) and (4) we have Ps = {s,t}. On the other 
hand, given t E T we have s E S \  T with Ps = {s, t}. To 
see this, note that T C 7(Pt )C S so we may choose 
s E S\7(Pt). By the above, P~ = {s, tl } for some 
tl E T. Using (3) we may verify tl = t and hence that 
Ps = {s, t}. 

Now let NC_ T be a molecule in 50 and take 
tEN.  By the above, we may choose s E S \ T  with 
Ps = {s, t}. Suppose we have tl E N  with tl # t. Then 
N ~NMT(Ps)E50 , N ~PsE50  b u t N  C(NMV(Ps)) 
UPs, which is impossible. Hence N = { t } = P t .  
In the same way if  M is a molecule with M Z T 
then M = P s  for some s ES \ T .  Hence, the maxi- 
mal molecules have the form M = P s = { s , t } ,  and 
there is a unique molecule N M = P t = { t }  satis- 
fying NM C m.  Finally 7 (m)  = V(Ps) = S\Ps = S \ M  
and 7(NM) = 7(Pt) = S\{s}  = {t} U (S\{s , t} )=NM U 
(S \M)  by (3). 

(iii) ~ (iv). Let N be a non-maximal molecule. 
Since the set of  molecules containing N is clearly 
inductive, by Zom's  Lemma there is a maximal 
molecule M with N C M. If  t E N then Pt C_ N C M 
N = MN = Pt, while Pt = {t} since 50 separates the 
points of  S. 

In much the same way we may verify that for a 
maximal molecule M we have s, t E S with M = Ps = 
{s,t}. 

Define T = {t [Pt = {t}}. For t E T the molecule Pt 
is contained in a maximal molecule M = Ps---{s, t}. 
Moreover s is unique, for if M1 ={S l , t }  then 
NM =NM, = {t}, whence 7(NM) = 7(NM, ) ~ NM U 
(S \M)=NM,  U ( S \ M ] ) ~  S \ { s }  = S \ { s ] }  ~ s=s l .  
Hence, setting f ( t ) = s ~ t E T and { s, t} is a maximal 
molecule, defines a function f : T --+S\T. Clearly, 
f is bijective. 
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For LE50 define A=LrqT and B=LN(S\T) .  
Clearly L=AUB and ACT.  Also sEB implies 
Ps={s,t}C_L. Hence tETNL and s=f ( t ) ,  so 
B C_ f(A). Conversely, take A C_ T and B C_ f(A). 
Clearly, A U B =  U{Pt It EA} U U{Ps Is EB} e 50, and 
we have verified that 50 = {A UBIA  c_c_ T, B C_ f (A)} .  

Finally, for L = A U B = Utc~ Pt u UsEB Ps E 50 
we have 

y(L) = N 7(P,) N R 7(P~) 
tEA sEB 

= N [{t}O(S\{f(t),t})]M N (S\{s , f - ' (s)})  
tEA sEB 

: s\(U(A) U f- ' (B)) .  

(iv) ~ (i). Let X = S\T and define ¢:S---*/x by 

( f ( t ) ,  1), tET, 
¢(s)  = (s,0),  sEX.  

Clearly, qJ is bijective. Also, if  L : A U B E 50, A C_ T 
and BC_f(A), then f f (L )= (B  × { 0 } ) U ( f ( A )  × 
{ 1 } ) E ~p(9(X)), so it is easy to verify that ¢ : 50 ~ J x  
is also bijective. It remains to show that tx o ¢ 
=lp  o 7. But for L = A U B ,  A C T  and BC_f(A), 
we have 

Example 2.6. In a scheme for part-time home em- 
ployment, each married woman in the region is eli- 
gible for employment, as is any man whose wife is 
working for the scheme. Under these circumstances, 
the set of  all possible patterns of  employment forms an 
intuitionistic texture on the set of  potential employees. 
To see this let E = W U M, where W is the set of  mar- 
ried women and M the set of married men in the re- 
gion. I f  for w E W we denote by h(w) the husband of w, 
the mapping h : W ~ M is a bijection. IfA is the set of  
women and B the set of  men employed on the scheme, 
we have B C h(A) by hypothesis so the set A UB of 
employees belongs to ~ = {A UB I A c_ W, B C_ h(A)}, 
which is an intuitionistic texturing of the set E of po- 
tential employees (cf. Theorem 2.5(iv)). The comple- 
ment of A U B in this texturing is E\(h(A)U h-l(B)), 
which represents the pattern of employment in 
which a wife whose husband did not work has 
employment, as does a husband whose wife did 
not work. 

If  we wish to express the pattern of  employment as 
an intuitionistic subset (U, V) of  the set X of eligible 
families in the region, an examination of Theorem 2.1 
shows that we must take U to be the set of families in 
which the husband is working for the scheme, and V 
the set of  families in which the wife is not employed 
under the scheme. 

lx(¢(L))  = lx((B x { 0 } ) U ( f ( A )  x {1})) 

= ( ( X \ f ( A ) )  x { 0 } ) U ( ( X \ B )  x {1}) 

= ¢ ( f - ~ ( X \ B )  U ( X \ f ( A ) ) )  

= ¢,(~,(A UB)) 

= ~h(7(L)). 

This verifies that qJ is a complemented textural iso- 
morphism of (S, 50,7) with (Ix, Jx,  tx), so (S, 50,7) 
is an intuitionistic texture. [] 

The reader may refer to [6] for a corollary to 
Theorem 2.5 which puts intuitionistic sets in a fuzzy 
setting by showing that they are essentially L-fuzzy 
sets onX,  where L is the fuzzy lattice {0, 1, 1}. 

We now present an example which shows that in- 
tuitionistic textures may arise naturally in everyday 
life. 

3. Ditopological intuitionistic textures 

In general, a texture is not closed under set comple- 
mentation, and this has led to the consideration in [2] 
of the notion of a dichotomous topology (ditopology) 
on (S, 5°). Specifically, (t, x) is called a ditopology 
on (S, 50) if 
(1) t c_ 50 satisfies 

a. S, 0 E ~ ,  
b. GI,G2Ez ~ Glf-qG2Er, 
c. G~ E r, ~ E A ::> V~ G~ E r for arbitrary index 

set A, and 
(2) ~c C_ 50 satisfies 

a. S , 0 E  ~:, 
b. F1,F2EK =~ FI UFzE~c, 
c. F~ E ~c, ~ EA : : ~ / ~  F~ E tc for arbitrary index 

set A. 
Hence a ditopology resembles a topology, ex- 
cept that the open sets (i.e. elements of t )  may 
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be defined independently of the closed sets (i.e. 
elements of x). In the case of a complemented 
texture (S, 5e, y) it might be that r and ~¢ are con- 
nected by the relation x =  {7(G) I GEv}, and in that 
case we speak of a complemented ditopology. By 
Proposition 2.3 it is clear that a (complemented) 
textural isomorphism maps a (complemented) di- 
topology to a (complemented) ditopology. 

An intuitionistic topology on X is a subset ~-- 
of D(X) containing _0 and __X, and closed under arbi- 
trary unions and finite intersections (see [8] for the 
corresponding notion for intuitionistic fuzzy sets). 
The proof of the following theorem is straightforward, 
and is omitted. 

Theorem 3.1. Let X be a set and (Ix, J x ,  tx) the 
intuitonistic texture on X. Then 
(1) I f  J-  is an intuition&tic topology on X, z = 

{~o(T) l TEY}, x-- {~o(G')l GEJ-} defines a 
complemented ditopology on (Ix, J x ,  ~x ). 

(2) I f  (z,~:) is a complemented ditopology on 
( Jx ,  Jx ,  tx) then ~--={~o-1(G)IGEz} is an 
intuitionistic topology on X. 

Let (S, 5¢, V) be an intuitionistic texture and (z, x) 
a complemented ditopology on S. By Definition 2.4 
we have a set X and a complemented textural iso- 
morphism ~:S---+Ix of (S,~C~a,7) with (Ix, J x ,  tx). 
If J- is the intuitionistic topology on X correspond- 
ing to the complemented ditopology (~k(~),~k(x)) 
on (Ix, i x ,  tx), as in Theorem 3.1, we will say that 
(X, 9"-) is an intuitionistic topological space corre- 
sponding to (S, cp, ?, ~, x), or that (S, ~e, 7, z, x)  is 
a complemented ditopological intuitionistic texture 
corresponding to (X, J-). 

We turn now to the question of compactness. First, 
we give some definitions and results applicable to 
general ditopological textures, before specializing to 
intuitionistic textures and their relation with intuition- 
istic topological spaces. On (S,~(S))  a ditopology 
is formally equivalent to a bitopology, z being one 
of the topologies and re'= { S \ F ] F E x }  the other. 
In the general case this formal link fails because a 
texturing need not be closed under set theoretic com- 
plement, but even so many bitopological concepts 
may be suitably redefined to apply to ditopological 
textures. With some changes in terminology the fol- 
lowing notions reflect Kopperman's subdivision of 

bitopological joint compactness into compactness and 
stability properties [ 12]. 

Definition 3.2. Let (z, x) be a ditopology on the tex- 
ture (S, ~ ) .  Then (S, ~q, z, ~c) is called 

(i) Compact if whenever S =  Viii Gi, GiET, iEI,  
there is a finite subset J o f / w i t h  Ujcj  Gj =S .  

(ii) Co-compact if w h e n e v e r  NiE1 Fi : 0, Fi E x, 
iEI ,  there is a finite subset J of I with 
NjEj  Fj =0 .  

(iii) Stable if every K E x with K ~ S is compact, i.e. 
whenever K C ViEiGi, GiEz, iEI ,  there is a 
finite subset J o f / w i t h  K C Ujs j  Gj. 

(iv) Co-stable if every G E t  with G ~ 0  is co- 
compact, i.e. whenever (']i~IFiC_G, FiEx,  
iE1, there is a finite subset J of I with 
f~j~, Fj c_ G. 

Proposition 3.3. Let (z, x) be a complemented di- 
topology on (S, ~ ,  7). Then 
(1) (S, ~-~, 7, z, x) is compact i f  and only i f  it is 

co-compact. 
(2) (S, ~a, y, z, x) is stable i f  and only i f  it is co- 

stable. 

ProoL Immediate. [] 

In order to state the next theorem we require the 
following concepts. 

Definition 3.4. Let (z, x) be a ditopology on (S, ~ ) .  
(1) A set ~ C ~ × &,e is called a difamily on (S, &o). 

A difamily ~ satisfying ~ C z × x is open and 
co-closed, one satisfying ~ C x × z is closed and 
co-open. 

(2) A difamily ~ has the finite exclusion property 
(fep) [2] if whenever (Fi, G i )E~ ,  i=  1,2 . . . . .  n 

n n 
we have [~i=l Fi ~ gi=l Gi. 

(3) A closed, co-open difamily ~ with ( ' ]{FIFE 
d o m e }  ~ V(G [ GEr a n ~ }  is said to be bound 
in (S, ~ ,  z, x). 

(4) A difamily 9 =  { (Gi ,F i ) l iEI}  is called a di- 
cover [4] of (S, ~q~a) if for all partitions 11, 12 of I 
(including the trivial partitions) we have 

iEll iEI2 
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We may now give 

Theorem 3.5. The following are equivalent for a di- 
topological texture ( S, S ,  z, ~c ). 
(1) (S,£q,z,K) is compact, co-compact, stable and 

co-stable. 
(2) Every closed, co-open difamily with the finite 

exclusion property is bound. 
(3) Every open, co-closed dicover has a finite sub- 

dicover. 

Proof. ( 1 ) ~ (2). Suppose that ( 1 ) holds, but that we 
have a closed, co-open difamily 9~ = {(Fi, Gi) [ iEI} 
with the fep, which is not bound in (S, '~,z,1¢). 
Let F = ~iei Fi, so that F E ~c and F C_ Vi~l Gi. 
According as F ~ S or F = S we may use stability 
or compactness, respectively, to show the existence 
of a finite subset J1 of I with F C Uj~j, Gj. Now 

let G =  UjEjI Gj, so that G Ez and NielFi c_ G. 
According as G ¢ 0  or G = 0  we may use co- 
stability or co-compactness, respectively, to show that 
NjEJ2 Fj C_ G for some finite subset J2 o f / .  Since now 

NjEJ, uj :Fj  C_ UjEJ ' U j  2 Gj we have a contradiction 
to the fact that ~ has the fep. 

(2) =:> (3). This was established in [4], but for the 
sake of completeness we outline the proof. Suppose 
that cg = { (Gi, Fi) ] i E I} is an open, co-closed dicover 
with no finite sub-dicover. For J _C I write J = J1 td 
if {J1,J2} is a partition of J and define 

~ j = { ( J , , J 2 ) l J = J l  I_J J2 } 

and 

~5~a7 = { (JI'J2)E'~J jEj,N Fj ~:: jEJ2V Gj } " 

By hypothesis ~j* 

~ 7 "  = {(Jl,J2) E 

~(K1,K2) 

0 for all finite J C I. Now define 

~ *  [ VK finite, J c K C I, 

E ~'~ wi thJnKl=J~,  l=1 ,2} .  

It may be verified that ~ a * * ¢  0 for all finite J C l 
[4, Lemma]. Now, consider the set f f  of functions f 
satisfying 
(1) dom f is a set of finite subsets of I. 
(2) 'qJ E domf ,  f ( J ) = ( f l ( J ) , f 2 ( J ) ) E ~ f f * .  
(3) Jl . . . . .  J ,  E d o m f  :::> J1U -..  UJ,  Edomf .  

(4) J, K E d o m f ,  J C _ K ~ f t ( J ) = J M f I ( K ) ,  1= 
1,2. 

We see that ~,~ ¢ 0. We define a partial order on ~ by 

f <<, g c# dom f C_ dom g and J E dom f 

=> f ( J )  = g(J). 

It is easy to verify that (if,  ~< ) is inductive. Hence, 
by Zom's Lemma we may choose a maximal g E 
Using the maximality of g it may be proved that 

U dom g = I. 

Now consider the family ~ = Uj .2(J) 
Gj) I JEdomg}.  It is easy to show that ~ has the fep, 
so by (2) we have 

JEdom# \ j E # I ( J )  ] JEdomg jCg2( ) 
Let 11 = U { g 1 (J)  I J E dom g }, I2 = I \ l l .  Then (I1,12) 
is a partition o f / ,  and I2 C U{g: (J )  ] J E dora g}. This 
gives us 

n (nq 
JEdom g \ jEgl(J) ,] i¢ll 

iEl2 JEdom g jE,q2( ) 

which is a contradiction. 
(3) =~ (1). First take GiEz, iEI,  with S = ViE1 Gi. 

For iE l  let Fi=O. Then cg={(Gi,Fi)l iEI } is an 
open, co-closed dicover, so has a finite sub-dicover 
{(Gj,Fj) [ jEJ} .  For the partition J1 = 0, J2 = J  of J ,  

s-- NF C U 
jEJI jEJ2 

whence S =  UjcjGj,  and (£P,z,~c) is compact. 
Co-compactness is proved in an analogous way. 

To establish stability take F E~, F ¢ S  and 
Gi E z, i E I, with F C_ Vi~l Gi. Define cg = {(S, F)} U 
{(Gi,0) [ iEI}. It is clear that cg is an open, co-closed 
dicover, and hence has a finite sub-dicover Cgl. If 
cgl = { (G j , 0 ) [ jEJ} ,  J finite, then the fact that oK1 is 
a dicover implies UjeJ Gj = S, whence F C_ Uj~j Gj. 
On the other hand, if (S, F ) E  cgl then we again obtain 
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F C_ Uj~j Gj as required. Co-stability can be proved 
in a similar way. [] 

The condition in Theorem 3.5(2) was called com- 
pactness in [2-4] .  It corresponds to the very im- 
portant bitopological property of joint compactness 
(compactness of  the joint topology). In the case of  a 
complemented ditopology, Proposition 3.3 shows that 
Theorem 3.5(1) may be weakened to require one 
of  compact, co-compact together with one of  stable, 
co-stable. 

Compactness in intuitionistic topological spaces 
is defined in the obvious way, and the proof  of  the 
following proposition is trivial and is omitted. 

x =  (7(G) I G E v }  then (z ,x)  is a complemented 
ditopology on (S, £P, 7). I f  S = Vi~i Gi -~ Uic l  Gi, 
Gi E z, then for some i E I we have Gi -~ S since, for ex- 
ample, ¼ES\G(r)  Vr, 0~<r~<l. Hence (S, oW,7,z,x ) 
is compact. On the other hand it is not stable. 
To see this note that 7 ( G ( r ) ) = [ r / 2 , 1 ) U ( 1 , 2 -  r] 
so in particular F = 7 ( G ( I ) ) = [ ½ , 1 ) C x .  Hence, 

F_C Vn~__zG(1 - 1/n) since Vn~2G(1 - l / n ) =  

G(1 - A,~=2 l / n ) =  G ( 1 ) =  [0, 1)U(~,2] .  However, 
F is not contained in any finite union of  the sets 
G(1 - 1/n). 

References 

Proposition 3.6. Let (X, ~--) be an intuitionistic topo- 
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The following example shows that compact- 
ness does not imply stability, even for intuitionistic 
textures. 

Example 3.7. Let S = [0, 1 ) U ( 1,2], T = [0, 1 ), and 
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Using Theorem 2.5(iv), we may verify that 5 ¢ :  
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