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1. Introduction

All spaces are assumed to be regular. For all undefined notions we refer the reader to [9, 16, 19, 21]. R denotes

the space of real numbers with the Euclidean topology. Consider N as the discrete space of all finite ordinals

and NN as the Baire space with the Tychonoff product topology. P (N), the collection of all subsets of N , is

the union of [N]∞ and N<∞ , where [N]∞ denotes the family of infinite subsets of N and N<∞ denotes the

family of finite subsets of N . Identify P (N) with the Cantor space {0, 1}N , using characteristic functions.

Define the quasiorder, i.e. reflexive and transitive relation, ≤∗ on NN by f ≤∗ g if f(n) ≤ g(n) for all

but finitely many n ∈ N . A subset D of NN is dominating if for each g ∈ NN there exists f ∈ D such that

g ≤∗ f . A subset B of NN is unbounded if for all g ∈ NN there is a member f ∈ B such that f ̸≤∗ g ; otherwise,

it is called a bounded set.

Define the quasiorder ⊆∗ on P (N) by A ⊆∗ B if A \B is finite. A pseudointersection of a family F is

an infinite subset A such that A ⊆∗ F for all F ∈ F . A tower of cardinality κ is a set T ⊆ [N]∞ that can be

enumerated bijectively as {xα : α < κ} , such that for all α < β < κ , xβ ⊆∗ xα . The tower number t is the

minimal cardinality of a tower that has no pseudointersection.

We denote the cardinality of the continuum by c . Recall that b (d) is the minimal cardinality of

unbounded (dominating) subsets of NN . It is known that t ≤ b ≤ d ≤ c [8].

A subset of a Polish space is analytic if it is a continuous image of the space P of irrationals. We denote

by Σ1
1 the family of analytic subsets of a Polish space. For a Polish space X , a set A ⊆ X is coanalytic if

X \A is analytic [19]. We denote by Π1
1 the family of coanalytic subsets of X . More generally, for n ≥ 1 the

families Σ1
n , Π

1
n are known as projective classes; for details, see Section 37 in [19]. Since there is a connection

between the projective hierarchy and the Lévy hierarchy of formulas, the family of analytic subsets is classified

according to the logical complexity of the formula defining it. Let A2 denote the second-order arithmetic. A
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set A ⊆ NN is Σ1
1 if it can be written as A = {x ∈ NN : A2 |= ϕ(x)} where ϕ of the form ∃1y ψ and ψ is an

arithmetical formula, i.e. it is a formula in which all quantifiers range over N . Then a set A ⊆ NN is Π1
1 if it

can be written as A = {x ∈ NN : A2 |= ϕ(x)} where ϕ is of the form ∀1y ψ and ψ is an arithmetical formula;

see the section entitled “The Definability Context” in [18], and also [20].

A subset of R is called perfect if it is nonempty, closed, and has no isolated points. By a set of reals,

we mean a separable, metrizable space that is homeomorphic to a subset of R . An uncountable subset of

reals is totally imperfect if it includes no uncountable perfect set. Let κ be an infinite cardinal. X ⊆ R is

κ-concentrated on a set Q if, for each open set U containing Q , | X \ U |< κ .

The theory of selection principles in mathematics is a study of diagonalization processes and its root

goes back to Cantor. The oldest well-known selection principles are the Menger, Hurewicz, and Rothberger

properties; the first two are generalizations of σ -compactness.

In 1924, Menger [23] introduced a topological property for metric spaces, which was referred to as

“property E”. A space with property E was called “property M”(in honor of Menger) by Miller and Fremlin

[26]. Soon thereafter, Hurewicz [15] reformulated property E as the following and nowadays it is called the

Menger property : a topological space X satisfies the Menger property if, given any sequence {Un}n∈N of open

covers of X , there exist finite subsets Vn of Un such that
∪

n∈N Vn covers X . By the following standard

terminology, Sfin(O,O) denotes the Menger property. Menger [23] made the following conjecture:

Menger’s Conjecture. A metric space X satisfies the Menger property if and only if X is σ -compact.

In 1925, Hurewicz [14] introduced a stronger property than the Menger property, which today is called

the Hurewicz property : for any sequence {Un}n∈N of open covers of X one may pick finite set Vn ⊂ Un in such

a way that {
∪
Vn : n ∈ N } is a γ -cover of X . An infinite open cover U is a γ -cover if for each x ∈ X the set

{U ∈ U : x ̸∈ U } is finite. The collection of γ -covers of X is denoted by Γ. Following standard terminology

let Ufin(O,Γ)) denote the Hurewicz property. Hurewicz [14] made the following conjecture and also posed the

question of whether the Menger property is strictly weaker than the Hurewicz property [14, 15].

Hurewicz’s Conjecture. A metric space X satisfies the Hurewicz property if and only if X is σ -compact.

It was observed that Menger’s conjecture is false, if one assumes the continuum hypothesis [15]. It was

only recently that the conjecture was disproved by Miller and Fremlin in ZFC [26]. After that, many authors

used different methods (topological, combinatorial) to settle Menger’s conjecture (e.g., see [5, 17, 41]).

In 1938, Rothberger [31] introduced the following selection principle: a topological space X satisfies the

Rothberger property if for every sequence {Un}n∈N of open covers of X , there exists a Vn ∈ Un such that∪
n∈N Vn covers X . It is clear that every Rothberger space is Menger. By the following standard terminology

S1(O,O) denotes the Rothberger property. There is a critical cardinal bound for the Rothberger property.

cov(M) is the minimal cardinality of a covering of the real line by meager sets. It is also known to be the

minimum cardinality of a set of reals that fails to have the Rothberger property [26].

In this paper, we add a new aspect to Menger’s and Hurewicz’s conjectures by using the family Π1
1 of

coanalytic sets. In Section 2, we construct a coanalytic unbounded tower, assuming V = L . In Section 3, using

critical cardinalities, we present many algebraic definable examples that show the connection between Menger,

Hurewicz, and Rothberger properties if V = L holds.
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2. Coanalytic sets with selection principles

We assume a general background about set theory. Gödel defined the class of constructible sets L =
∪

α∈ON Lα ,

where the sets Lα are defined by recursion on α (for details, see, e.g., [21]). The axiom of constructibility V = L

says that all sets in the universe are constructible, i.e. ∀x∃α(x ∈ Lα). It is well known that V = L implies

AC .

Now assuming V = L , we will employ an encoding argument that was first used by Erdös, Kunen, and

Mauldin [10]. A general method was given by Miller [25]. It was also mentioned in [26].

Theorem 2.1 V = L implies there is a coanalytic unbounded tower.

Proof Assume V = L . It is well known that there is a well-ordering <L on L . By using <L one can construct

a Σ1
2 set of the reals ([18, Theorem 13.9]. Let X be defined by x ∈ X if and only if ∃z ∈ NN [ (Mz is well-

founded and extensional) ∧ ( πz(Mz) |= (ZF − P + V = L) ∧ ( ∃n ∈ N ((πz(n) = x) ∧ πz(Mz) |= ∀y <L x

∃m(πz(m) = y))) ] where πz denotes Mostowski’s collapse by a real number z and Mz denotes the countable

elementary submodel coded by a real number z . Proposition 13.8 in [18] shows that X is a Σ1
2 subset of

NN . Therefore, there is a coanalytic set B ⊆ NN × NN such that p(B) = X where p is the projection map

on the first coordinate [19, Section 37.A]. By Kondô’s uniformization theorem [18, Theorem 12.3], there exists

a coanalytic set C ⊂ B that is a graph of a function f such that the domain of f is X . The importance of

the uniformization is that for each x ∈ X there exists exactly one y such that f(x) = y and (x, f(x)) ∈ C .

By using an arithmetical coding, we can obtain a coanalytic set of reals. For each (x, f(x)) in C, define

cx(i) =

{
1, if f(x)(i) ∈ ran(x)
0, otherwise

where ran(x) denotes the length of the sequence defined as zn = πz(n) = x . Notice that C ′ = { cx : x ∈ X }
can be defined as

cx ∈ C ′ if and only if ∀xψ(cx, x) where ψ is the formula above in which all quantifiers are defined over

N . Therefore, C ′ is a coanalytic set of reals.

Since all Lα are increasing in L , we can enumerate X by using the countable levels of L . This implies

that C ′ can be enumerated as C ′ = { cα : xα ∈ X } . For each α < β < ω1 , cβ ⊆∗ cα , because ran(xβ)\ran(xα)
is finite by the formula defining the set X . On the other hand, for each g ∈ NN there is an ordinal δ < ω1 such

that g ∈ Lδ . Pick xξ ∈ X such that ran(xξ) ⊆∗ ran(g) and ran(xξ) ⊆∗ ran(xδ). Then g(m) ≤ cξ(m) for all

but finitely many m ∈ N , and so cξ ̸≤∗ g . 2

We remark that this encoding method to construct a coanalytic set does not work for all Σ1
2 sets. Under

V = L there is a Luzin set, which cannot be encoded by using this method. See Miller’s paper [25] for more

details.

By using semifilters, Tsaban and Zdomskyy [41] introduced a general combinatorial method to disprove

Menger’s conjecture. Simplified versions of this method are described nicely in Tsaban’s paper [39]. To

investigate a definable version of Menger’s conjecture, Tall and Tokgöz used a combinatorial method from

[39] and obtained the following result, which was mentioned in [26]:

Theorem 2.2 ([36]) V = L implies there is a coanalytic Menger set of reals that is not σ -compact.
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However, we have a stronger result:

Gerlits and Nagy [13] introduced a covering property that satisfies all of the former selection principles

mentioned above. An open cover U is called an ω -cover of X if for each finite F ⊆ X there is U ∈ U such

that F ⊆ U . A topological space X satisfies the γ -property if for every sequence {Un}n∈N of open ω -covers

of X , there exists a Vn ∈ Un such that {Vn}n∈N is a γ -cover for X . Following standard terminology S1(Ω,Γ)

denotes the γ -property. γ -spaces that are homeomorphic to sets of reals are called γ -sets.

Let p be the minimal cardinality of a family F of infinite subsets of N that is closed under finite

intersections and has no pseudointersection. It is well known that ℵ1 ≤ p ≤ t [8].

We note that any γ -set is totally imperfect [17]. By the Cantor–Bendixon theorem, every uncountable

σ -compact set of reals contains a perfect set. Therefore, uncountable γ -sets are never σ -compact.

Theorem 2.3 V = L implies there is an uncountable coanalytic γ -set.

Proof Following Theorem 2.1, there is an unbounded coanalytic tower T of size ℵ1 . Note that p = ℵ1 since

V = L . Define X = T ∪N<∞ . Then X satisfies the γ -property [29]. It is known that the family of coanalytic

sets Π1
1 contains all Borel sets and is closed under countable unions [19, pp. 242]. Therefore, X is a coanalytic

set. 2

3. Algebraic coanalytic sets of reals

Question 1 Is the Menger (Hurewicz) conjecture true for coanalytic topological groups?

We will show that under V = L Menger’s conjecture and Hurewicz’s conjecture are not true for

coanalytic topological groups. Tall [35] proved that the axiom of coanalytic determinacy affirmatively settles

both conjectures.

Tall and Tokgöz [36] reproved Miller and Fremlin’s result [26] that the axiom of coanalytic determinacy

implies that Menger coanalytic sets of reals are σ -compact. After that, Tall proved:

Theorem 3.1 ( [35]) The axiom of coanalytic determinacy implies that every Menger coanalytic topological

group is σ -compact.

However, under V = L , we can disprove Menger’s conjecture.

In the following observation we add a new ingredient to obtain a coanalytic set, stronger than the earlier

result in [29].

Theorem 3.2 V = L implies there is a coanalytic γ -subgroup.

Proof By Theorem 2.3, there is an uncountable coanalytic γ -set, called H . Since the γ -property is linearly

σ -additive, hereditary for closed subsets, and preserved by continuous images, there is a subgroup of reals that

satisfies the γ -property [29]. For the reader’s convenience we reproduce the subgroup in [37].

Let H0 = H , and Hn = Hn−1 × H for n ≥ 1. For each natural number n , let Ψαn : Hn → R be

defined by Ψαn((g1, g2, . . . , gn)) = Σn
i=1αigi for all (g1, g2, . . . , gn) ∈ Hn , where αn = (α1, α2, . . . , αn) and

{α1, α2, . . . , αn } is a linearly independent subset of the set Z of integers. Now, for each natural number n , set

Gn = {Σn
i=1αigi : {α1, α2, . . . , αn } ⊆ Z is linearly independent and (g1, g2, . . . , gn) ∈ Hn } . Let GH denote

the subgroup <H> . Since GH =
∪

nGn , GH satisfies the γ -property [29, Theorem 5.2].
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Claim. GH is coanalytic.

Recall that a map f : X → Y between two topological spaces X and Y is Borel (measurable) if the

inverse image of a Borel (equivalently, open or closed) set is Borel. It is well known that the family Π1
1 is

closed under Borel preimages [19, pp. 242]. Obviously, any continuous map on topological space is a Borel map.

Note that Hn is coanalytic for each natural number n , since H is a coanalytic set and each Hn is the Borel

preimage of Hn−1 under the first coordinate projection. Clearly, each Ψαn is a linear homeomorphism onto

its image, so Ψαn : Hn → Ψαn(Hn) is a Borel isomorphism [19, pp. 71]. This implies that each image of Hn

under Ψαn is coanalytic due to Ψαn(Hn) = (Ψ−1
αn)−1(Hn). Since αn is an n -tuple, we have countably many

αn for each natural number n . Then Gn is coanalytic, as the countable union of continuous images of Hn .

Therefore, GH =
∪

nGn is coanalytic. 2

A topological space is productively Lindelöf if its product with every Lindelöf space is Lindelöf [4]. A

Michael space is a Lindelöf space M such that M × P is not Lindelöf. Michael spaces can be constructed from

many axioms such as d = ℵ1 , MA (see, e.g., [2, 3, 30]). Today it is still an open problem whether they can

be constructed outright in ZFC. On the other hand, there is a close connection between productively Lindelöf

spaces and Michael spaces. It is known that if there is no Michael space, then there is a productively Lindelöf

metrizable space that is not σ -compact, and if there is a Michael space, then productively Lindelöf spaces are

Menger [30]. Recently Tall [35] showed that there is a Michael space if and only if every productively Lindelöf

Čech-complete space is σ -compact.

It is well known that V = L implies CH. Michael [24] proved that CH implies that every productively

Lindelöf metrizable space is σ -compact. Therefore, a stronger statement of Theorem 3.2 can be given in the

following:

Corollary 3.3 V = L implies there is a coanalytic γ -subgroup of reals that is not productively Lindelöf.

The first uncountable ordinal in L is denoted by ω1
L . Since ω1

L is an ordinal of the universe, in general,

it satisfies ω1
L ≤ ω1 . Clearly, V = L implies ω1

L = ω1 . However, in some other models of ZFC, the inequality

could be strict, since the notion of cardinality is not absolute. In fact, more generally:

The Gödel constructibility was generalized by Levy and Shoenfield to relative constructibility, which gives

a transitive model L[a] of ZFC for any set a .

Theorem 3.4 Suppose ω1
L[a] = ω1 for some a ∈ NN . If p > ℵ1 , then there is a coanalytic γ -subgroup of reals

that is not productively Lindelöf.

Proof It is known that ω1
L = ω1 implies there is a coanalytic set of reals without perfect set property [18,

Theorem 13.12]. In analogy with L , the inner model L[a] has a well-ordering <L[a] , and Theorem 13.12 in [18]

relativizes to produce corresponding results about L[a] and Π1
1(a) [18, pp. 171]. Then there is a coanalytic

totally imperfect set of reals T of size ℵ1 . Any set of reals of size < p is a γ -set [12]. Therefore, T is a γ -set.

Consider the topology on the real line generated by the base B = {U : U is open in R } ∪ { p : p ∈ R \ T } ,
denoted by R∗ . Clearly, R∗ is Lindelöf and contains R . Since T ×R∗ is not normal, T cannot be productively

Lindelöf [24]. By using a similar argument as in Theorem 3.2, we can obtain a coanalytic γ -subgroup of reals

denoted by GT . Notice that T is a closed subset of GT (see [37]) and not productively Lindelöf . Every closed

subset of a productively Lindelöf space is productively Lindelöf. Thus, GT cannot be productively Lindelöf. 2

Therefore, even if CH fails we have a model:
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TOKGÖZ/Turk J Math

Corollary 3.5 It is consistent that CH fails and there is a coanalytic γ -subgroup of reals that is not produc-

tively Lindelöf.

Proof Start with the constructible universe L , and force MA + 2ℵ0 = ℵ2 via a countable chain condition

iteration. By Theorem 2.1 and Theorem 2.3, in L , there is a coanalytic tower T of cardinality of ℵ1 , and

T ∪ N<∞ is a coanalytic γ -set. It is known that MA implies p = t = b = c [6] and countable chain condition

iterations preserve cardinality [16]. Since p > ℵ1 in the extension, T ∪N<∞ remains a γ -set [12]. Then, using

Theorem 3.4, one can obtain a coanalytic γ -subgroup of reals that is not productively Lindelöf. 2

We can also separate the Hurewicz and the Rothberger properties under V = L . In the following

observation we modify the argument in [39], but we obtain a stronger definable version:

Theorem 3.6 V = L implies there is a coanalytic Rothberger subgroup of reals that is not Hurewicz.

Proof By Theorem 2.1, there is a coanalytic unbounded tower S . By using elements of S we will construct

a coanalytic Rothberger set of reals that is not Hurewicz.

Notice that we can identify elements x ∈ [N]∞ with increasing elements of NN by letting x(n) be the

nth element in the increasing enumeration of x [41, Lemma 2.4]. Then S is both dominating (under V=L) and

well-ordered by ≤∗ . Fix S = { sα : α < d } ⊆ N↑N where N↑N denotes the collection of all increasing elements

of NN . For each α < d , pick aα ∈ N↑N such that:

(1) acα ∈ N↑N , i.e. the complement of the image of aα is infinite;

(2) aα ≰∗ sα ;

(3) acα ≰∗ sα .

Now define A = { aα : α < d } .
Claim. A is coanalytic.

A is defined recursively in the second-order arithmetic from the set S by a coanalytic formula. Indeed,

a ∈ A if and only if ∀sψ(a, s) where ψ states the formula given by (1), (2), and (3). Since ψ is arithmetical,

A is coanalytic. Therefore, A ∪ N<∞ is coanalytic as a union of two coanalytic subsets.

Notice that by (3) A ∪ N<∞ is unbounded, and it cannot be Hurewicz [15]. Since A is d-concentrated

on N<∞ , A∪N<∞ satisfies the Rothberger property [39]. Then by a similar argument to Theorem 3.2, we can

obtain a coanalytic Rothberger (Menger) non-Hurewicz subgroup of reals. 2

It is well known that the additive group of R with the usual topology is Borel, in fact σ -compact. Then it

is a coanalytic Hurewicz group of reals. Notice that every closed subset of a Rothberger space is Rothberger [17,

Theorem 3.1]. Also, every uncountable closed subset of reals contains a perfect subset by the Cantor–Bendixson

result [28, 2A.1]. Therefore, R cannot be Rothberger, since every Rothberger space is totally imperfect [22].

Theorem 3.7 V = L implies there is a coanalytic totally imperfect Hurewicz subgroup of reals that is not

Rothberger.

Proof Borel [7] introduced the notation of a strong measure zero set (or strongly null). A set of reals X

has strong measure zero property if for each sequence {ϵn}n∈N of positive reals, there exists a cover {In}n∈N

of X such that diam(In) < ϵn for all n . By using a modification of Theorem 2.1 in [38], we can code a
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coanalytic Hurewicz set of reals that is not Rothberger: an unbounded set {fα : α < b} is called a b-scale if

the enumeration is increasing with respect to ≤∗ . V = L implies b = d . Then there is a b -scale [39], called

H = { sα : α < b } . A set A is called strongly unbounded if for each f ∈ NN , | {sα ∈ A : sα ≤∗ f} |< | A | .
Notice that H is strongly unbounded since it is dominating.

Let SMZ denote the collection of strong measure zero subsets of the real line, and non(SMZ) denote the

minimal cardinality for a set of reals that does not have strong measure zero. Under V = L , non(SMZ) = ℵ1 = b

[32], and then there is a set of reals Y = { yα : α < b } that is not strong measure zero. Without loss

of generality, we may assume that Y ⊆ {0, 1}N (see, e.g., [40]). Define H ′ = { s′α : α < b } , where

s′α(n) = 2sα(n) + yα(n) for all n . Then H ′ is also strongly unbounded and b -scale. The mapping ϕ : H ′ → Y

defined by s′(n) → s′(n) (mod 2) for all n is a continuous and surjective map [38]. We adopt the notation

from [41]. Since N↑N = N↑N ∪N<∞ and H ′ ⊆ N↑N [41], ϕ can be extended to a surjective continuous mapping

ϕ∗ : H ′ ∪ N<∞ → Y ∪ N<∞ [9, Corollary 3.6.6].

Since the collection of all infinite sets of natural numbers [N]ℵ0 is a semifilter, ϕ∗(H ′∪N<∞) satisfies the

Hurewicz property [41, Theorem 2.14]. On the other hand, since the property of having strong measure zero

is hereditary [38] and ϕ∗(H ′) = ϕ(H ′) does not have strong measure zero, ϕ∗(H ′ ∪N<∞) does not have strong

measure zero, and then it does not satisfy Rothberger property [26].

For each y ∈ Y is defined by the arithmetical formula ∀n(y(n) = s′(n) (mod 2)), and so Y is coanalytic.

Thus, Y ∪N<∞ is co-analytic. By following a similar argument as in Theorem 3.2, one can obtain a coanalytic

totally imperfect Hurewicz subgroup of reals that is not Rothberger. 2

It is not obvious that there is a coanalytic Menger subgroup of reals that is neither Hurewicz nor

productively Lindelöf in ZFC. Tall [35] proved that, assuming there is a Michael space and CH holds, there is

no such space.

We also have:

Corollary 3.8 Suppose ω1
L[a] = ω1 for some a ∈ NN . If d > b = ℵ1 , then there is a coanalytic Menger

subgroup of reals that is neither Hurewicz nor productively Lindelöf.

Proof By the discussion in Theorem 3.4, there is a coanalytic set of reals S of size ℵ1 that does not contain

a perfect subset. The assumption d > b = ℵ1 implies S is Menger but not Hurewicz [15]. Moreover, using the

same argument as in Theorem 3.4, S cannot be productively Lindelöf, since S ×R∗ is not normal [24]. Thus,

we can construct a coanalytic Menger subgroup of reals that is neither Hurewicz nor productively Lindelöf. 2

Corollary 3.9 It is consistent that CH fails and there is a coanalytic Menger subgroup of reals that is neither

Hurewicz nor productively Lindelöf.

Proof There is a model of set theory satisfying these two hypotheses in Corollary 3.8. Start with the con-

structible universe L . Take any regular cardinal κ > ℵ1 such that κℵ0 = κ . Then, in the Cohen extension L[G]

via Cohen forcing C(κ), we have d > b = ℵ1 [11]. Also, notice that Cohen forcing preserves the cardinality ℵ1 ,

since forcings with countable chain condition (abbreviated c.c.c.) preserve cardinalities [33]. 2

4. Comments on productivity

Let P be a property (or class) of spaces. A space X is called productively P if X × Y has the property P for

each space Y satisfying P . Productively P properties have been studied by many authors (see, e.g., [3, 27, 34]).
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It is known that b = ℵ1 implies every productively Lindelöf space is Menger [1], but this implication is

not reversible:

Following Theorem 2.3, under the assumption V = L , there is an uncountable coanalytic γ -set X . Thus,

X is Menger. On the other hand, X is not σ -compact, and so X is not productively Lindelöf.

Note also that one can obtain a productively Menger set by using a nonproductively Menger set in the

constructible universe L : clearly, every unbounded tower of size b is a scale (see, e.g., [39]) under V = L .

Theorem 2.1 and [27, Theorem 6.2] imply that there is a coanalytic productively Menger but nonproductively

Lindelöf set of reals, but d-concentrated sets satisfy the Menger property [39] and then any unbounded tower

(under V=L) is not productively Menger by Theorem 4.8 in [34].
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[5] Bartoszyński T, Shelah S. Continuous images of sets of reals, Topol Appl 2001; 116: 243-253.

[6] Blass A. Combinatorial cardinal characteristics of the continuum. In Handbook of Set Theory, M. Foreman and A.

Kanamori, eds. Springer, Berlin, 2010.

[7] Borel E. Sur la lcassification des ensembles de mesure nulle, Bulletin de la Societe Mathematique de France 1919;

47: 97-125.

[8] van Douwen EK. The integers and topology. In : K. Kunen and J. E. Vaughan (Eds.) Handbook of Set-Theoretic

Topology, North-Holland, Amsterdam, 1984, pp. 111-167.

[9] Engelking R. General Topology. Monografie Matematyczne, Vol. 60. PWN-Polish Scientific Publishers, Warsaw,

1977.

[10] Erdös P, Kunen K, Mauldin R D. Some additive properties of sets of real numbers, Fund Math 1981; 113: 187-199.

[11] Frankiewicz R, Zbierski P. Hausdorff Gaps and Limits. Studies in logic and the foundations of mathematics, vol.

132, North-Holland, Amsterdam, 1994.

[12] Galvin F, Miller AW. γ -sets and other singular sets of real numbers, Topol Appl 1984; 17: 145-155.

[13] Gerlits J, Nagy Zs. Some properties of C(X), I, Topol Appl 1982; 14: 151-161.
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