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case.
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1. Introduction

Panelled web 4-manifolds are introduced in [1] which have a natural locally conformally flat (LCF) structure with negative
scalar curvature. The underlying smooth manifolds have the nice property that they can be used to produce self-dual metrics
with small signatures. See [2] for further information. In this paper we analyze complex and symplectic structures on these
type of manifolds. Summarizing Theorems 2.3, 2.4, 2.5 and 2.6 we obtain the following result.

Theorem A. The manifolds M1
g , M2

g,n, M3
g,n for g,n > 0 and M4

n for n > 1 are almost complex.1

Furthermore as an outcome of the search for a complex structure we get,

Theorem 4.2. The manifolds M1
g , M2

g,n, M3
g,n, M4

n do not admit any complex structure for all g,n > 0.

Finally, the search for a symplectic structure yields the following.

Theorem 3.2. The manifolds M1
g , M2

g,n, M3
g,n, M4

n do not admit any symplectic structure for all g,n > 0.

It follows from the above theorems that the non-simply connected 4-manifolds we investigated all carry almost complex
structures, but they are neither symplectic nor complex. The first kind of example of almost complex but noncomplex 4-
manifolds was constructed by A. Van de Ven. In his paper [15] he proves that for a 4-manifold M , if the Chern numbers
p = c2

1[M] and q = c2[M] belong to a restricted domain then there does not exist a complex structure. Combining this with
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1 Throughout the paper we have the assumption g > 0. Panelled 4-manifolds are built upon lower dimensional hyperbolic manifolds. These hyperbolic
manifolds are produced by some special Kleinian groups which results in this condition. See [11] for more information.
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Fig. 1. The panelled web 4-manifolds M1
g .

Milnor’s result [13], namely if p +q ≡ 0 (mod 12) then an almost complex compact manifold can be constructed with these
p, q; he constructs almost complex but noncomplex manifolds for special p and q’s which are non-simply connected and
reducible, i.e. of the form of a connected sum. Later on A. Howard [8] gave examples using the same method of simply
connected almost complex but noncomplex 4-manifolds. Shing-Tung Yau produces the first parallelizable manifolds of this
kind in [17] using Massey products, N. Brotherton provides more examples of parallelizable noncomplex almost complex
manifolds in [4] using the same techniques. These are basically constructed by taking the product of a 3-manifold with a
circle. They all depend on the fact that a compact complex 4-manifold with even first Betti number is Kähler, and the real
Massey products on a compact Kähler manifold vanish. So they construct compact manifolds with first even Betti numbers
and nonvanishing Massey products, so that there is no way for them to be complex. Here we also provide examples of
4-manifolds of this kind, namely almost complex, noncomplex and nonsymplectic manifolds. Ours have strictly negative
(hence nontrivial) Euler characteristics, so that they are not parallelizable. In higher dimensions the existence of almost
complex, noncomplex manifolds remains still as a conjecture. The reader may want to check [5] for symplectic, noncomplex
examples.

In Sections 2 and 4 we analyze the complex structures and in Section 3 we investigate symplectic structures on the
manifolds.

2. Almost complex structures

The following result is a guideline for us to understand almost complex structures on 4-manifolds, see [6] for references.

Lemma 2.1. ([7,16]) For a given 4-manifold X with signature τ (X) and Euler characteristic χ(X), for any element h ∈ H2(X;Z)

satisfying the equation h2 = 3τ (X)+ 2χ(X) and the congruence h ≡ w2 (mod 2) there is an almost complex structure J on T X with
h = c1(X; J ).

Also we will be using the following fact, see [6, p. 187] for details.

Lemma 2.2. Let X be an oriented 4-manifold (not necessarily compact). If H1(X;Z) has no 2-torsion then X is spin iff Q X is an even
form.

The first set of manifolds we want to work with are denoted by M1
g , and can be seen through Fig. 1. This is an instance

of a handlebody diagram. One can interpret the diagram as follows. Start with a blank page which stands for a copy of R3,
a part of S3 the three-dimensional sphere. The three-sphere bounds a 4-dimensional ball from one side. As you can notice,
the spheres in the picture appears in pairs. Through each pair we attach a 4-dimensional 1-handle, i.e. a copy of D1 × D3,
where Dk is a k-dimensional (closed) ball. After this process, we attach 4-dimensional 2-handles, i.e. D2 × D2 through the
curves in the picture, each of which is a copy of a circle. Notice that a boundary piece of the 2-handle is S1 × D2. After
these two types of attachments, we need to attach the 3 and 4-handles, but these are uniquely attached so we do not
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mention them. In [1] the reader can find out the motivation to work with these manifolds. There, LCF metrics on these
manifolds are considered. Here, we are only interested in the underlying smooth manifolds. Alternatively, for construction
one begins with Σg,2, the twice punctured genus g surface, then cross it with the interval I = [0,1] and then glue the
boundary cylinders with each other with a flip. Finally make the so-called complex twist. This way one obtains the panelled
web 3-manifold, and then by crossing this with S1 and identifying its boundary one obtains the panelled web 4-manifold.
A curious reader should check the reference to understand the relationship between the two constructions. These manifolds
have the following characteristics.

π1
(
M1

g

) = 〈
a1,b1, . . . ,ag,bg, c,d, e

∣∣ a−1
1 b−1

1 a1b1 · · ·a−1
g b−1

g agbgcd−1 = ede−1c−1 = df 3 = 1
〉
,

τ
(
M1

g

) = 0, Q M1
g
= H, χ

(
M1

g

) = −4g,

H1
(
M1

g;Z
) = Z

2g+2,

H2
(
M1

g;Z
) = Z⊕Z.

Here, the fundamental group is generated by 1-handles, and lowercase letters are used to denote the corresponding gener-
ators. As an application of Lemma 2.2 they are all spin since they have even intersection form and there is no 2-torsion in
H1(M1

g;Z). We will see that the lemma is also applicable for the rest of the manifolds we will consider, so that they will
be spin as well. Our first result is the following.

Theorem 2.3. The manifolds M1
g are almost complex for all g > 0.

Proof. We know H2(M1
g;Z) = Z ⊕ Z. Say h1 and h2 are generators of H2(M1

g;Z). Let (a,b) = ah1 + bh2 be an element of

H2(M1
g;Z). If (a,b) satisfies the above hypothesis we must have (a,b) ∪ (a,b) = 3τ (M1

g) + 2χ(M1
g) = 3(0) + 2(−4g) = −8g.

But since we know from the intersection form of M1
g , h2

1 = h2
2 = 0 and h1h2 = 1 we get (a,b) ∪ (a,b) = a2h1 ∪ h1 + b2h2 ∪

h2 + 2abh1 ∪ h2 = 2ab. So we must have 2ab = −8g , i.e. ab = −4g . Then for any fixed g , let a = −2g , b = 2 so that
h = −2gh1 + 2h2 ∈ H2(M1

g;Z). This gives an almost complex structure on T M1
g for any g . Note that the second condition in

Wu’s theorem, i.e. h ≡ w2 (mod 2) is automatically satisfied for this choice of h = (−2g,2), since we know that M1
g is spin

hence w2 = 0 and we have h = −2gh1 + 2h2 = 0 (mod 2). �
In fact, the number of almost complex structures (up to homotopy) on each manifold of this family and upcoming

families are finite. This is the consequence of that Lemma 2.1 is actually an if and only if statement, i.e. almost complex
structures are in correspondence with (or parametrized by) the elements of H2(M;Z) satisfying the two conditions. One
way to see this is that an almost complex structure turns the tangent bundle into a complex 2-bundle, and U (2) bundles
are determined by the first two Chern classes, the latter of which is equal to the Euler class that is fixed for the tangent
bundle so only c1 conditions are important. See pp. 29–31 of [6] for further information. For our family e.g. if g is a prime
number, then (±2g,∓2) and (±2,∓2g) are the only possibilities for h. In general h2 conditions, which is ab = −4g for this
family restricts the possibilities to the finite case and depends on the number of prime factors of g .

The second family of manifolds we want to work on are the manifolds M2
g,n . See Fig. 27 in [1] to see the explicit

handlebody diagram. As one compares to the first family, the number of CDE components is increased and the complex
twist handle (the F component) in the handlebody diagram for M1

g is omitted. The fundamental group and the other
topological invariants are computed as follows.

π1
(
M2

g,n

) = 〈
a1,b1, . . . ,ag,bg, c1,d1, e1, . . . , cn,dn, en

∣∣ a−1
1 b−1

1 a1b1 · · ·a−1
g b−1

g agbgc1 · · · cnd−1
n · · ·d−1

1

= eidie
−1
i c−1

i = 1
〉
,

τ
(
M2

g,n

) = 0, Q M2
g,n

= H, χ
(
M2

g,n

) = 4 − 4g − 4n,

H1
(
M2

g,n;Z
) = Z

2g+2n,

H2
(
M2

g,n;Z
) = Z⊕Z.

From this set of constructions we obtain the following.

Theorem 2.4. The manifolds M2
g,n are almost complex for all g,n > 0.

Proof. We know H2(M2
g,n;Z) = Z ⊕ Z. Say h1 and h2 are generators of H2(M2

g,n;Z). Let (a,b) = ah1 + bh2 be an element

of H2(M2
g,n;Z). If (a,b) satisfies the above hypothesis we must have (a,b) ∪ (a,b) = 3τ (M2

g,n) + 2χ(M2
g,n) = 3(0) + 2(4 −

4g − 4n) = 8 − 8g − 8n. But since we know from the intersection form of the manifold, h2
1 = h2

2 = 0 and h1h2 = 1 we get
(a,b)∪(a,b) = a2h1 ∪h1 +b2h2 ∪h2 +2abh1 ∪h2 = 2ab. So we must have 2ab = 8−8g −8n, i.e. ab = 4−4g −4n. Then for any
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fixed g , let a = 2 − 2g − 2n, b = 2 so that h = (2 − 2g − 2n)h1 + 2h2 ∈ H2(M2
g,n;Z). This gives an almost complex structure

on T M2
g,n for any g . Note that the second condition in Wu’s theorem, i.e. h ≡ w2 (mod 2) is automatically satisfied for this

choice of h = (2 − 2g − 2n,2), since we know that M2
g,n is spin hence w2 = 0 and we have h = (2 − 2g − 2n)h1 + 2h2 =

0 (mod 2). �
In the third sequence of manifolds M3

g,n in [1] seen in Fig. 29, CE-components are taken away and some new building
blocks, namely trivial I-bundles over punctured annuli Σ0,3 are attached through the handles Di . These manifolds have,

π1
(
M3

g,n

) = 〈
a1,b1, . . . ,ag,bg,k1, l1,m1, . . . ,kn, ln,mn

∣∣ a−1
1 b−1

1 a1b1 · · ·a−1
g b−1

g agbgc1 · · · cnd−1
n · · ·d−1

1 = 1
〉
,

τ
(
M3

g,n

) = 0, Q M3
g,n

= (n + 1)H, χ
(
M3

g,n

) = 4 − 4g − 4n,

H1
(
M3

g,n;Z
) = Z

2g+3n,

H2
(
M3

g,n;Z
) = Z

2+2n.

Our next result is the following.

Theorem 2.5. The manifolds M3
g,n are almost complex for all g,n > 0.

Proof. This time we have H2(M3
g,n;Z) = Z

2+2n , so that H2(M3
g,n) is generated by h1, . . . ,h2+2n with hi ∪ hi = 0 for any i,

and hi ∪ hi+1 = hi+1 ∪ hi = 1 for odd i’s. So for instance we may take h = 2h1 + 2h2 + 2h3 − 2gh4 + 2h5 − 2nh6. With this
choice of h, one can obtain h ∪ h = 8 − 8g − 8n = 3τ (M3

g,n) + 2χ(M3
g,n). Again since h is arranged to be even its mod 2

reduction is zero, which is the Stiefel–Whitney class of the spin manifold. �
In the last set of constructions of panelled web manifolds M4

n in [1] seen in Fig. 30, many copies of the new building
blocks are attached to each other as a chain. By this way it is found that,

π1
(
M4

n

) = 〈· · · gi,hi, ji,ki, li, . . . ,m
∣∣ kihik

−1
i gi = l−1

i jilihi = gihi ji = 1 for all i � n
〉
,

τ
(
M4

n

) = 0, Q M4
n
= nH, χ

(
M4

n

) = −2n,

H1
(
M4

n;Z) = Z
2n+1,

H2
(
M4

n;Z) = Z
2n.

Our next result is the following.

Theorem 2.6. The manifolds M4
n are almost complex for all n > 1 and do not admit any almost complex structure for n = 1.

Proof. We split the proof into the following cases.

Case 1: Assume n is even; We have H2(M4
n;Z) = Z

2n , so that H2(M4
n) is generated by h1, . . . ,h2n with hi ∪ h j = 0 for

j �= i +1 and hi ∪hi+1 = hi+1 ∪hi = 1 for odd i’s. So for n even we may take h = 2h1 +2h2 +2h3 −4h4 +2h5 +2h6 +
2h7 − 4h8 + · · · + 2h2n−3 + 2h2n−2 + 2h2n−1 − 4h2n so that the coefficients take the values (2,2,2,−4) repeatingly.
With this choice of h, one can obtain h ∪ h = −4n = 3τ (M4

n) + 2χ(M4
n) and h (mod 2) = w2 = 0. So, the hypothesis

of Wu’s theorem is satisfied.
Case 2: Assume n is odd, n �= 1 and n = 2k + 1 with k even (say k = 2t , t ∈ Z

+); Again say H2(M4
n) is generated by

h1, . . . ,h2n observe that 2n � 10 since with this choice of n, n � 5. This time let h = h1 + · · · + h2n−6 − 2h2n−5 +
2th2n−4 − 2h2n−3 + 2th2n−2 − 2h2n−1 + 2th2n so that the first (2n − 6) terms have coefficient 1, and the coefficients
for the last 6 terms appear as (−2,2t,−2,2t,−2,2t). Then h ∪ h = 1 + 1 + · · · + 1 − 4t − 4t − 4t − 4t − 4t − 4t =
2n − 6 − 24t = 2n − 6 − 3(8t) = 2n − 6 − 3(4k) = 2n − 6 − 3(2n − 2) = −4n = 3τ (M4

n) + 2χ(M4
n). Also, we know for

all i, hi �= 0 = w2 (mod 2) since hi ∪ hi+1 = 1 (mod 2) for odd i, but summing up (2n − 6) of them and adding the
last terms with coefficients a multiple of 2, guarantees the second condition in Wu’s theorem.

Case 3: Assume n is odd, n �= 1 and n = 2k + 1 with k odd (say k = 2t + 1, t ∈ Z); Let h = h1 + · · · + h2n−2 − 2h2n−1 + (6t +
4)h2n so that the first (2n − 2) terms have coefficient 1, and the coefficients for the last 2 terms are (−2,6t + 4).
Then h ∪ h = 1 + 1 + · · · + 1 − 12t − 8 − 12t − 8 = 2n − 2 − 24t − 16 = 2n − 2 − 12(2t + 1) − 4 = 2n − 2 − 12k − 4 =
2n − 2 − 6(2k + 1) + 2 = 2n − 2 − 6n + 2 = −4n = 3τ (M4

n) + 2χ(M4
n). Again we get h = 0 (mod 2).

This completes the proof for all n such that n �= 1. In fact for n = 1, M4
n are not almost complex since there cannot exist

any generator of H2(M4
n) satisfying the conditions of Wu’s theorem in that case. �
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3. Symplectic structures

Next we will investigate the symplectic structures on these manifolds. We follow the nice survey [9]. There is a classifi-
cation scheme for symplectic 4-manifolds similar to that of the Kodaira classification for complex surfaces. In the symplectic
case, first of all one needs to find a substitute for the canonical bundle of the complex surface. This is easily generalized.
Since associated to a symplectic manifold (M,ω), there is the contractible space of compatible almost complex structures.
Using any compatible almost complex structure J we define the symplectic Chern classes ck(M,ω) := ck(M, J ) and hence
the symplectic canonical class −c1(M,ω) denoted sometimes by −c1(ω) or Kω which lies in H2(M;Z). Next for a minimal
symplectic 4-manifold (M,ω) we define the Kodaira dimension in the following way. See [10,12].

κ(M,ω) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−∞ if c1(ω) · [ω] > 0 or c2
1(ω) < 0,

0 if c1(ω) · [ω] = 0 and c2
1(ω) = 0,

1 if c1(ω) · [ω] < 0 and c2
1(ω)2 = 0,

2 if c1(ω) · [ω] < 0 and c2
1(ω)2 > 0.

We will also make use of the following theorem.

Theorem 3.1. ([9]) Let M be a closed oriented smooth 4-manifold and ω a symplectic form on M compatible with the orientation of M.
If (M,ω) is symplectically minimal, then

1. The Kodaira dimension of (M,ω) is well-defined.
2. (M,ω) has Kodaira dimension −∞ if and only if it is rational or ruled.
3. (M,ω) has Kodaira dimension 0 if and only if c1(ω) is a torsion class.

Notice that since all the manifolds M1
g , M2

g,n , M3
g,n , M4

n have even intersection forms they cannot contain a sphere of
self-intersection −1, hence they are all minimal. Now we are ready to prove the following.

Theorem 3.2. None of the manifolds investigated above have symplectic structure for g,n > 0.

Proof. Assume that the manifolds M1
g , M2

g,n , M3
g,n , M4

n are symplectic, so that ω is a symplectic form on them. We have

c2
1(ω)

[
M1

g

] = (2χ + 3τ )
(
M1

g

) = −8g < 0,

c2
1(ω)

[
M2

g,n

] = 8 − 8g − 8n < 0,

c2
1(ω)

[
M3

g,n

] = 8 − 8g − 8n < 0 for g,n � 1

and

c2
1(ω)

[
M4

n

] = 3τ
(
M4

n

) + 2χ
(
M4

n

) = −2n < 0 for n � 1.

So all of the manifolds constructed must have Kodaira dimension −∞, hence by the above theorem they must be rational
or ruled if they are symplectic. If they were rational they should be S2 × S2 or CP2#kCP2 where k is any non-negative
integer. This cannot happen since the manifolds we consider are all non-simply connected. If they were ruled then they
should be of the form S2 × Σg #kCP2 where Σg is the surface of genus g and k is any integer. This also fails to occur since
the fundamental groups of M1

g, M2
g,n, M3

g,n, M4
n which are stated in the previous section are not equal to the fundamental

group of S2 × Σg #kCP2. Therefore, they are neither rational nor ruled. So, they cannot be symplectic. �
4. Complex structures

In this section we will study the complex structures on our manifolds. The answer comes in the negative. For this study
we will use the Enriques–Kodaira classification of surfaces. This classification is certainly an accumulation of works of many
people, see [3] or [14] for references.

Lemma 4.1 (Kodaira–Enriques classification). Every compact, complex and connected surface has a minimal model in exactly one of
the following classes (1) to (10).
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Class of X Kod b1 c2
1 c2

(1) Minimal rational surfaces −∞ 0 8 or 9 4 or 3
(2) Minimal surfaces of Kodaira’s class VII −∞ 1 � 0 � 0
(3) Ruled surfaces of genus � 0 −∞ 2g 8(1 − g) 4(1 − g)

(4) Enriques surfaces 0 0 0 12
(5) Bi-elliptic surfaces 0 2 0 0
(6) Kodaira surfaces 0 3 or 1 0 0
(7) K3 surfaces 0 0 0 24
(8) Tori 0 4 0 0
(9) Minimal properly elliptic surfaces 1 0 � 0

(10) Minimal surfaces of general type 2 even > 0 > 0

Next we will prove the following.

Theorem 4.2. The manifolds M1
g , M2

g,n, M3
g,n, M4

n do not admit any complex structure for all g,n > 0.

Proof. For all the manifolds M1
g , M2

g,n , M3
g,n , M4

n we have already cited their characteristics in Section 2, moreover we have

c2
1(M1

g) = −8g , c2
1(M2

g,n) = 8 − 8g − 8n, c2
1(M3

g,n) = 8 − 8g − 8n, c2
1(M4

n) = −2n which are all negative for n, g � 1. According
to the Kodaira–Enriques classification this can happen only when they are either in the second category i.e. a minimal
surface of Kodaira’s class VII or in the third category i.e. a ruled surface S2 × Σg′ #kCP2 of genus g′ � 0. The first case
cannot happen since minimal surfaces of Kodaira’s class VII have b1 = 1 which is not the case because b1(M1

g) = 2g + 2 �= 1,

b1(M2
g,n) = 2g + 2n �= 1, b1(M3

g,n) = 2g + 3n �= 1, b1(M3
n) = 2n + 1 �= 1 for n, g � 1 (for the Betti numbers stated we refer

to [1]). Finally, the ruled surface case is already ruled out as in the proof of Theorem 3.2. Hence, the manifolds M1
g , M2

g,n ,

M3
g,n , M4

n are not complex. �
Acknowledgements

We would like to thank Anar Akhmedov for useful discussions. Also thanks to the referee for useful comments which
improved the presentation. The figure is constructed by the IPE software of Otfried Cheong.

References

[1] S. Akbulut, M. Kalafat, Topology of non-simply connected Locally Conformally Flat (LCF) 4-manifolds, available at arXiv:0807.0837 [math.DG].
[2] H. Argüz, M. Kalafat, Y. Ozan, Self-dual metrics on non-simply connected 4-manifolds, preprint available at arXiv:1108.0433v1 [math.DG].
[3] W. Barth, K. Hulek, C. Peters, A.V. de Ven, Compact Complex Surfaces, 2nd edition, Springer-Verlag, Berlin, ISBN 3-540-00832-2, 2004, pp. xii+436.
[4] N. Brotherton, Some parallelizable four-manifolds not admitting a complex structure, Bull. Lond. Math. Soc. 10 (3) (1978) 303–304.
[5] M. Fernández, M. Gotay, A. Gray, Compact parallelizable four-dimensional symplectic and complex manifolds, Proc. Amer. Math. Soc. 103 (4) (1988)

1209–1212.
[6] R.E. Gompf, A.I. Stipsicz, 4-Manifolds and Kirby Calculus, American Mathematical Society, Providence, RI, 1999.
[7] F. Hirzebruch, H. Hopf, Felder von Flächenelementen in 4-dimensionalen Mannigfaltigkeiten, Math. Ann. 136 (1958) 156–172.
[8] Alan Howard, On the homotopy groups of an affine algebraic hypersurface, Ph.D. thesis, Brown Univ., 1965.
[9] Tian-Jun Li, The Kodaira dimension of symplectic 4-manifolds, in: Floer Homology, Gauge Theory, and Low-dimensional Topology, in: Clay Math. Proc.,

vol. 5, American Mathematical Society, Providence, RI, 2006, pp. 249–261.
[10] Tian-Jun Li, Symplectic 4-manifolds with Kodaira dimension zero, J. Differential Geom. 74 (2) (2006) 321–352.
[11] B. Maskit, Panelled web groups, in: Kleinian Groups and Related Topics, Oaxtepec, 1981, in: Lecture Notes in Math., vol. 971, Springer, Berlin–New

York, 1983, pp. 79–108.
[12] D. McDuff, D. Salamon, A survey of symplectic 4-manifolds with b+ = 1, Turkish J. Math. 20 (1) (1996) 47–60.
[13] J. Milnor, On the cobordism ring Ω∗ and a complex analogue, I and II, Amer. J. Math. 82 (1960) 505–521.
[14] A.I. Stipsicz, The geography problem of 4-manifolds with various structures, Acta Math. Hungar. 87 (4) (2000) 267–278.
[15] A. Van de Ven, On the Chern numbers of certain complex and almost complex manifolds, Proc. Natl. Acad. Sci. USA 55 (1966) 1624–1627.
[16] Wen-Tsun Wu, Sur les classes caractéristiques des structures fibrées sphériques, in: Publ. Inst. Math. Univ. Strasbourg 11, in: Actualités Sci. Ind.,

vol. 1183, Hermann & Cie, Paris, 1952, pp. 5–89, 155–156.
[17] S.T. Yau, Parallelizable manifolds without complex structure, Topology 15 (1) (1976) 51–53.


	Complex and symplectic structures on panelled web 4-manifolds
	1 Introduction
	2 Almost complex structures
	3 Symplectic structures
	4 Complex structures
	Acknowledgements
	References


