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Asymptotic calculation of inviscidly absolutely unstable modes of
the compressible boundary layer on a rotating disk
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Abstract

In this work a long-wavelength asymptotic approach is used to analyze the region of absolute instability in the compressible
rotating disk boundary layer flow. Theoretically determined values of branch points for the occurrence of absolute instability in the
compressible flow are shown to match onto the ones which are obtained via a numerical solution of the linear inviscid compressible
Rayleigh equations.
c© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The flow over a rotating disk has attracteda great deal of attention over the lastdecade as regards the determination
of the character of instabilities in terms of their absolute as well as convective nature. This aspect is of crucial
significance since it is expected to shed light on the similar instabilities existing over real aircraft wings.

The convective nature of the instability of the rotating disk boundary layer flow has been investigated by a broad
investigator group; see for instance the experimental studies of [1] and [2], and the numerical and theoretical works
of [1,3] and [4], amongst many others. Since the pioneering work of [5] with regard to the existence of absolute
instability in fluid dynamic problems, see also [6,7] and [8], attention has been focused on research into the absolute
type of instability. Absolute instabilityoccurs simply when the small amplitude disturbancesintroduced into a system
start growing exponentially in time at every fixed position in space, while in convective instability growing wave
packets desert the place of excitation. Plane Poiseuille flow is an example of convective instability and Taylor–Couette
flow is an example of absolute instability.

The current study is devoted to the absolute rather than the convective instability of the rotating disk flow. This
instability was first explored by [9–11] and [12]; see also the recent study of [13]. Making use of the Briggs–Bers
criterion and assuming that the flow is parallel, the latter authors were able to show that the flow becomes both
inviscidly and viscously absolutely unstable. The main conclusion from this research is that the absolute instability
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mechanism found in this flow causes the disturbances to grow exponentially at a fixed radius, leading to an unbounded
linear response that would promote non-linearity followed by transition.

In the work of [14] the absolutely unstable inviscid regime was identified with the use of analytical tools, which
adequately matched with the numerical calculations of [10] and [12] when the compressibility was ignored. Therefore,
our maininterest in the present research is to extend the findings of [14] to cases in which the compressibility is
important. For this reason the analytical branch points generated using the long-wavelength analysis of [15] are
compared with the ones obtained from the Rayleigh solverin the case of wall insulation as well as heat transfer.
The criteria used for absolute or convective instability and the terminology usedthroughout closely follow the
derivation presented in [16]. The branch points where the group velocity tends to zero are searched for in the relevant
eigenvalue planes. The numerical calculations are done using a spectral collocation technique as well as a fourth-order
Runge–Kutta integrator. The stability characteristics of the Von K´armán velocity profile are then examined and the
absolute instability range associated with this profile is determined.

We adopt the following strategy in this work. First, governing equations for the fluid motion are given inSection 2
followed by the asymptotic expansion of flow quantities and their analysis in the regions identified. Second, analytical
and numerical results are compared inSection 3. Conclusions are finally drawn inSection 4.

2. Governing equations and the dispersion relation

Our concern here is with the motion of a three-dimensional inviscid compressible boundary layer flow adjacent to a
disk rotating about its axis of rotationz with a constant angular velocityωa . The flow haskinematic viscosityν∞, and
the cylindrical polar coordinates(r, θ, z) are made dimensionless with respect to a reference length scalel, followed
by non-dimensionalization of other flow variables usinglωa . The characterizing parameter, the Reynolds number of
the flow, which is based on the local angular velocity, is defined asRe = ωal2/ν∞, and itis assumed to be large for
the following analysis. The inviscid Rayleigh equations governing the evolution of long-wavelength perturbations are
then given by
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Here a prime denotes differentiation with respect to a scaled parameterY = Re
1
2 z that defines the boundary layer

coordinate. The perturbation quantitiesρ, u, v, w, p andT are respectively the density, instantaneous three-velocity
components, pressure and temperature. Moreover, the parametersΓ and M∞ are respectively the ratio of specific
heats and the free stream Mach number. Finally, the mean flow (the terms in Eq.(1) given by the suffixB) is disturbed
by perturbations proportional to ei(αr+βθ−Ω t), whereα andβ are disturbance wavenumbers andΩ the disturbance
frequency.

The generalized Von K´armán solution for the compressible three-dimensional mean velocityUB , pressurePB and
densityρB are given in the form

UB = (r F, r G, Re− 1
2 H ), PB = 1

Γ M2∞
, ρB = 1

TB
,

where thefunctionsF , G andH satisfy the following ordinary differential equations and boundary conditions:
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F2 − (G + 1)2 + F ′H − F ′′ = 0, 2F(G + 1) + G′H − G′′ = 0,

2F + H ′ = 0, F(0) = G(0) = H (0) = 0, F(∞) = 0, G(∞) = −1.
(2)

The basic temperature field can be written in terms of a viscous dissipation termf and a heat conducting termq;
see [17] and [18]. Assuming that an ideal fluid enables us to expressf andq in terms of the velocity components, see
for instance [19], the basic temperature field can be represented by

TB(Y ) = 1 − (Γ − 1)

2
M2 f (Y ) + (Tw − 1)q(Y ), (3)

whereM = r M∞ is the local Mach number andTw is the wall temperature value. The viscous dissipation termf is
found to bef = F2 + G2 − 1 for an insulated surface(q ≡ 0), and f = F2 + G2 + G for surface heat conduction.

The asymptotic analysis depends crucially on the properties of the basic flow near the wall where generally a critical
layer is situated. Therefore, we can write the basic velocity profiles near the surface of the rigid disk employing the
Taylor expansion

(F, G, ρB , TB) = (0, 0, R0, S0) + (λ1, µ1, R1, S1)Y + (λ2, µ2, R2, S2)Y
2 + · · · , (4)

where the coefficientsλ1, µ1, etc., depend uponr and the Mach number. For insulated wall conditions, we simply
haveR1 = S1 = 0, and if there is heat transfer through the surface, thenS1 �= 0. For further details of the basic flow
see [20].

Via a technique of dominant balance between the unsteady terms and viscous terms (of order of magnitudeR−1
e

on the right hand side of Eq.(1)), it can be concluded that a viscous layer of thickness ofO(R−1/2
e ) exists, which we

denote byh in what follows. Following next the works of [15,21], the wavenumbers and frequency can be sought for
in terms of this small parameterh as follows:

(α, β,Ω) = (α0, β0, 0)h + (α1, β1,Ω0)h
2 + (α2, β2,Ω1)h

3 + · · · . (5)

As implemented in [14], the long-wavelength analysis is based on the method of matched asymptotic expansions
for obtaining solutions to Eq.(1) as Re → ∞. Thus, in the main part of the boundary layer in which the flow is
viscous, flow variables are expanded inaccordance with the boundary layer scaleY as

(u, v,w, p, ρ, T ) = (ũ0, ṽ0, 0, 0, ρ̃0, T̃0) + h(ũ1, ṽ1, w̃0, p̃0, ρ̃1, T̃1) + · · · . (6)

Substituting these expansions into the linearized governing Eq.(1), we obtain the leading-order solutions depending
upon a displacement functioñA,

p̃0 = P̃0(r, θ), ũ0 = r ÃF ′, ṽ0 = r ÃG′, w̃0 = −i ÃŪB(Y ), ρ̃0 = Ãρ′
B, T̃0 = − TB

ρB
Ãρ′

B . (7)

To avoid the singularity occurring at the next-order solutions in the viscous layer, a wall layer is required whose
thickness isO(h), yielding a new coordinateȲ suchthatY = hȲ . Thus, in this zone the appropriate expansions are

(u, v,w, p, ρ, T ) = (ū0, v̄0, 0, 0, ρ̄0, T̄0) + h(ū1, v̄1, 0, p̄0, ρ̄1, T̄1) + · · · . (8)

Upon substitution of(8) into the governing Eq.(1) the leading-order solutionsp0 andw0 are obtained as follows:

p̄0 = P̄0(r, θ), w̄0 = − iγ 2

R0Λ1
p̄0 − i Ã(Λ1Ȳ − Ω0), (9)

whereγ 2 = α2
0 + β2

0
r2 andΛ1 = α0rλ1 + β0µ1. The boundary layer flow must also match with the potential flow

outside the boundary layer region, introducing a new coordinateY = Ŷ
h , and thus the flow quantities here expand as

(u, v,w, p, ρ, T ) = h(û0, v̂0, ŵ0, p̂0, ρ̂0, T̂0) + · · · , (10)
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Again substituting these into the linearized governing Eq.(1) gives solutions, some of which are
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ŵ1 = −i

[[
Ω0ν
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(11)

in which U∞ = α0r F∞ + β0G∞ andν2 = γ 2 − U2∞M2∞ (a subscript∞ indicates a free-stream value). For further
details on the solutions one can refer to [14].

Having found the solutions in each of the asymptotic regions, a analysis of matching between the pressurep and
thenormal velocityw is pursued, resulting in

Ω0 = γ 2U2∞
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0 , (12)
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]1/2(−i)1/2 comes in due to viscous correction through the Stokes layer, Chapman’s viscosity

law is adopted withµ(S0) = S0, and alsok andc are functions of(α0,Ω0) found to be
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It should be remarked here that the term sign(Λ1) arises from the jump condition in the linear critical layer theory.
Moreover, the parameters appearing in(13) involve integrals and are respectively given byI1 = ∫∞
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Finally, from the condition that the group velocity, which can be expanded from(5) as ∂Ω
∂α

= ∂Ω0
∂α

+ ∂Ω1
∂α

+ O(h3),
vanishes whenever absolute instability is present, a dispersion relation for the occurrence of branch points is obtained,
written implicitly in the form

F(α, β, M, Tw) = 0. (14)

3. Results and discussion

Although some interesting cases associated with the transonic (M → 1) and also with the hypersonic flow regimes
(M � 1) can be further investigated analytically through the relations(12)–(14), since the corresponding expressions
are rather lengthy, we prefer instead a straightforwardnumerical treatment to locate the branch points satisfying
the Briggs–Bers pinching criterion. By settingM = 0, R0 = 1 and R1 = 0 in (14), the results of [14] for the
incompressible flow case are easily recovered, which will also be shown graphically later.

Eq. (14) was next treated numerically with a Newton iteration technique. The effects of compression arising by
means of wall insulation and heat transfer on the long-wavelength perturbations which give rise to the absolute
instability are shown inFigs. 1and2. In these figures solid lines correspond to the numerical inviscid flow calculations
(which compare excellently with the numerical calculations of [19]) and dashed lines denote the asymptotic results.
The wave angle ε is defined byε = tan−1(

β
Real(α)

). It can be immediately seen that the long-wavelength limit of
the eigenvalues leading to absolute instability is captured to a considerable extent. In addition to this, in the case of
the incompressible limit perfect agreement is observed with the figures displayed in [14]. Fig. 1 emphasizes that the
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Fig. 1. Branch points are shown in the (a)αr , (b) αi , (c) Ωr , (d) Ωi versus the wave angleε planes, all for the insulated wall case and drawn for
M = 0, 3 and 5. Solid lines correspond to numerical data, broken lines to asymptotic values.

Fig. 2. Branch points are shown in the (a)αr , (b) αi , (c) Ωr , (d) Ωi versus the wave angleε planes, when the heat transfer is taken into account at
a fixed Mach number ofM = 1. Solid and broken lines are as inFig. 1.
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compressibility within the wall insulation has a suppressive effect on the amplitude of the absolute growth, though the
rangeof the instability is seen to enlarge. A similar effect can also be seen inFig. 2. Moreover, it is seen that the wall
cooling has a stabilizing effect, unlike the wake flows in the vicinity of trailing edges, see for instance [22], and also
the mixing layer flows, see for instance [23]; however, wall heating enhances the instability.

4. Conclusions

In this work we have analyzed the analytical dispersion relation which was previously obtained in [14] in the long-
wavelength limit. Using the singularities in the dispersion relationship, the modes that causelocal absolute instability
have been located and good agreement with the ones obtained from the numerical calculations of the inviscid Rayleigh
equations has been shown to exist. The current work carries importance owing to the fact that the presence of a local
absolute instability may contaminate the entire mean flow field, leading to anonlinearity and a possible transition to
turbulence. The results found in this work clearly indicate that the rotating disk boundary layer flow is subject to a
local absolute instability in some regions of the eigenvalues for insulated wall cases and, in particular, for the wall
heating.

Even though the present research emphasizes the local analysis with the effects of non-parallelism disregarded, the
results obtained here may be used in further study of a global analysis requiring the solution of full linearized stability
equations.
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