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Abstract: In this paper we call a ring R δr -clean if every element is the sum of an idempotent and an element in δ(RR)

where δ(RR) is the intersection of all essential maximal right ideals of R . If this representation is unique (and the

elements commute) for every element we call the ring uniquely (strongly) δr -clean. Various basic characterizations and

properties of these rings are proved, and many extensions are investigated and many examples are given. In particular,

we see that the class of δr -clean rings lies between the class of uniquely clean rings and the class of exchange rings, and

the class of uniquely strongly δr -clean rings is a subclass of the class of uniquely strongly clean rings. We prove that R

is δr -clean if and only if R/δr(RR) is Boolean and R/Soc(RR) is clean where Soc(RR) is the right socle of R .
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1. Introduction

Clean rings have been studied by many ring and module theorists since 1977, and it is still a very popular

subject. They were defined by Nicholson as a subclass of exchange rings. An associative ring with unity is

called clean if every element is the sum of an idempotent and a unit [14]. If this representation is unique for

every element, Nicholson and Zhou [17] call the ring uniquely clean. They proved that a ring R is uniquely

clean if and only if for all a ∈ R there exists a unique idempotent e ∈ R such that a− e ∈ J(R) where J(R)

is the Jacobson radical of R (we call the ring with this property uniquely J -clean). Chen et al. [7] call a ring

uniquely strongly clean if every element can be written uniquely as the sum of an idempotent and a unit that

commute. They proved that R is uniquely strongly clean if and only if for every a ∈ R , there exists a unique

idempotent e ∈ R such that a − e ∈ J(R) and ae = ea (we call the ring with this property uniquely strongly

J -clean). Recently, Chen [6] defined strongly J -clean rings. A ring R is called strongly J -clean if for all a ∈ R

there exists an idempotent e ∈ R such that a − e ∈ J(R) and ea = ae [6]. Note that strongly J -clean rings

are strongly clean but the converse need not be true [6, Proposition 2.1 and Example 2.2].

These results motivate us to define the class of uniquely δ(RR)-clean and uniquely strongly δ(RR)-clean

rings where δ(RR) is the ideal defined by Zhou [21]. These classes of rings give some new classes of uniquely

clean and uniquely strongly clean rings and also give some ideas on the cleanness of R/Soc(RR) where Soc(RR)

is the right socle of R . Firstly basic properties of δ(RR)-clean rings are given in Section 2. Interestingly we see

that the class of δ(RR)-clean rings lies between the class of uniquely clean rings and exchange rings. We also
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prove that if R is δ(RR)-clean, then R/Soc(RR) is clean and partially unit regular, i.e. every regular element

is unit regular. In Section 3, uniquely δ(RR)-clean rings are studied. We see that any uniquely δ(RR)-clean

ring is uniquely clean. Contrary to the result in [17] saying that R is uniquely clean if and only if R[[x]] is

uniquely clean, just the necessity is true for uniquely δ(RR)-clean rings. Section 4 is devoted to uniquely

strongly δ(RR)-clean rings (USDC for short). Any uniquely δ(RR)-clean ring is USDC, and any USDC ring is

uniquely strongly clean. We prove that if R is a commutative ring, then R is USDC if and only if the ring of

2× 2 upper triangular matrices, T2(R), is USDC. In the last section δ(RR)-cleanness of the formal triangular

matrix ring is investigated.

Recall some definitions. Following [21], a submodule N of a module M is called δ–small in M (denoted

by N ≪δ M ) if N +K ̸= M for any submodule K of M with M/K singular. Denote δ(M) to be the sum

of all δ–small submodules of M (see [21, Lemma 1.5]). We use δr (or δr(R)) for δ(RR) for a ring R . Clearly

J(R) ⊆ δr(R) ≪δ RR . If S is simple and M is essential, then S ∩ M must equal S (as it cannot be zero).

Since every simple right ideal is contained in every essential right ideal, then Sr := Soc(RR) ⊆ δr(R) (see also

[21, Lemma 1.9]). By view of [21, Corollary 1.7], J(R/Sr) = δr/Sr ; in particular, R is semisimple if and only

if δ(RR) = R .

A ring R is an exchange ring if, for every a ∈ R , there exists an idempotent e ∈ aR such that

1 − e ∈ (1 − a)R (see [14]). For example, (von Neumann) regular rings and clean rings are exchange. If I

is a left ideal of a ring R , idempotents lift modulo I if, given a ∈ R with a2 − a ∈ I , there exists e2 = e ∈ R

such that a− e ∈ I [14]. Note that R is an exchange ring if and only if idempotents lift modulo every left ideal

of R [14, Corollary 1.3]. A ring R is called δ -semiregular if R/δr is a regular ring and idempotents lift modulo

δr [21, Theorem 3.5]. A ring R is called abelian if every idempotent of R is central.

Throughout this article, all rings are associative with unity and all modules are unitary. We denote

Sr = Soc(RR) and Zr = Z(RR) for the right socle and the right singular ideal of a ring R . We write J (or

J(R)) for the Jacobson radical of R . U (R) is the set of all units in R . The ring of integers modulo n is

denoted by Zn , and we write Mn(R) (resp. Tn(R)) for the rings of all (resp., all upper triangular) n × n

matrices over the ring R .

2. δr -clean rings

Chen [6] calls a ring R strongly J -clean if for every element a ∈ R there exists an idempotent e ∈ R such that

a− e ∈ J and ea = ae . Call a ring R J -clean if for any element a ∈ R , there exists an idempotent e ∈ R such

that a− e ∈ J .

Any J -clean ring is clean. Let a ∈ R and a = e + w where e2 = e ∈ R , w ∈ J . Then a =

(1− e) + (2e− 1 +w). Since (2e− 1)2 = 1 we see that a− (1− e) ∈ U(R) (see [6, Proposition 2.1]). It is easy

to give an example of a ring that is clean but not J -clean (e.g., Z3 ). Now we introduce the notion of δr -clean

rings.

Definition 2.1 A ring R is called δr -clean if for every element a ∈ R there exists an idempotent e ∈ R such

that a− e ∈ δr .

The class of δr -clean rings contains Boolean rings, semisimple rings, and J -clean rings. Clearly, R is

δr -clean if and only if R/δr is Boolean and idempotents lift modulo δr . Note that there exists a ring R with

R/δr is Boolean but such that idempotents do not lift modulo δr . There is a ring R with R/J(R) Boolean
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but such that idempotents do not lift modulo J(R) (see [13, Example 15]). In this ring, idempotents do not lift

modulo δr , for, if they did, then R would be δr -clean and therefore exchange, by Theorem 2.2 below. Then

idempotents would lift modulo J(R), a contradiction.

On the other hand, if R is δr -clean, then R/J need not be a Boolean ring. For example, Z3 is semisimple

but not Boolean.

Theorem 2.2 If R is a δr -clean ring, then

1) R/Sr is a semiregular ring, i.e. R is δr -semiregular;

2) R is an exchange ring;

3) R/Sr is a clean ring;

4) Zr ⊆ J .

Proof 1) Since R/δr is a Boolean ring and idempotents lift modulo δr , R is δ -semiregular. By [19, Theorem

1.4], R is δr -semiregular if and only if R/Sr is semiregular.

2) If R/Sr is semiregular, then R is exchange by [19, Corollary 1.5].

3) If R is δr -clean, then R/Sr is J(R/Sr)-clean since J(R/Sr) = δr/Sr . Any J -clean ring is clean. We thus

conclude that R/Sr is a clean ring.

4) Since R is δr -semiregular, Zr ⊆ δr by [16, Theorem 1.2]. Then Zr is δ -small in R . This gives that Zr is

small in R . Hence, Zr ⊆ J . 2

Example 2.3 If R is a semisimple ring that is not a Boolean ring (e.g., Z3 ), then R is δr -clean but not

J -clean since J = 0 and δr = R .

Example 2.4 There exist clean rings that are not δr -clean.

Proof 1) Let VD be a nonzero vector space over a division ring D and let R =EndD(V ). Then R is regular

(see [1, Exercise 15.13]) and clean [15, Lemma 1] (see also [3, Lemma 3.1]) and Sr = Sl = {f ∈ R | rankf < ∞}
(see [1, Exercise 18.4]). Since J(R/Sr) = δr/Sr and R is regular, we have that δr = Sr .

Now assume that VD is a countably infinite dimensional vector space and let {v1, v2, . . .} be a basis of

V . Define the shift operator f on V by f(vn) = vn+1 for n = 1, 2, 3, . . . . Thenf2 − f ̸∈ Sr . This shows that

R/Sr = R/δr is not Boolean. Hence, R is not δr -clean.

2) Let p be a prime integer and consider the local ring Z(p) = {m
n |m,n ∈ Z, (m,n) = 1, p ∤ n} . Since

Z(p) is not semisimple, J = δr = pZ(p) . Then Z(p) is clean but not δr -clean, because Z(p)/δr is not Boolean. 2

Note that any clean ring is exchange [14, Proposition 1.8]. Bergman’s example is an example of an ex-

change ring that is not clean. We prove below that this ring is not δr -clean, and so we pose the following question.

Question: Is any δr -clean ring clean?

Example 2.5 (Bergman) Let F be a field with char(F ) ̸= 2, and A = F [[x]] . Let Q be the field of fractions

of A . Define

R = {r ∈ EndF (A) | ∃q ∈ Q and ∃n > 0 with r(a) = qa for all a ∈ xnA} .
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Then R is a regular (so exchange) ring [10], but not clean [4]. There is also an epimorphism θ : R → Q given

by r 7→ q , where r agrees with q on xnA for some n > 0 with Kerθ = Sr = δr (see [12, Example 1]). Now

assume that R is δr -clean. Then, for any r ∈ R , there exists an idempotent e ∈ R such that r − e ∈ δr . This

gives that θ(r − e) = θ(r) − θ(e) = 0 and θ(r) = θ(e) is an idempotent in Q . Since Q is a field, θ(r) = 0 or

1, which contradicts the fact that θ is an epimorphism. Therefore, R is not δr -clean.

Thus we conclude that

{ Boolean } ⫋ { J -clean} ⫋ { δr -clean } ⫋ { exchange } .

Now we give a few conditions for a δr -clean ring to be clean or J -clean. First note that Baccella [2]

proved the important fact that idempotents lift modulo Sr for any ring R .

Proposition 2.6 Any δr -clean ring R is J -clean if

1) R/J is Boolean, or 2) Sr ⊆ J .

Proof 1) Assume that R is δr -clean and R/J is Boolean. Let a ∈ R . Then a2 − a ∈ J . By Theorem 2.2,

idempotents lift modulo J . Hence, there exists an idempotent e ∈ R such that a− e ∈ J .

2) Assume that R is δr -clean. If Sr ⊆ J , then J/Sr = J(R/Sr) = δr/Sr , and we have that J = δr . Hence, R

is J -clean. 2

Proposition 2.7 If R is δr -clean and R/J is abelian, then R is clean.

Proof Assume that R is δr -clean. According to Theorem 2.2, R is exchange and so R/J is exchange and

idempotents lift modulo J by [14, Corollary 1.3]. Thus, R/J is abelian exchange and it is clean by [14, Propo-

sition 1.8]. By [9, Proposition 6], R is clean. 2

Recall that a ring R is called right quasi-duo if every maximal right ideal is a 2-sided ideal. If R is an

exchange ring, then R/J is right quasi-duo iff R/J is reduced iff R/J is abelian [20, Proposition 4.1]. Hence,

the following corollary is immediate.

Corollary 2.8 If R is δr -clean and right (or left) quasi-duo, then R is clean.

Proposition 2.9 Let R be a ring with only trivial idempotents (e.g., a local ring). Then R is δr -clean if and

only if R is either a division ring or R/J(R) ∼= Z2 .

Proof Assume that R is δr -clean. Then R is exchange by Theorem 2.2. Since R is exchange and has only

trivial idempotents, R is local. Then either J(R) = 0 or J(R) = δr . If J(R) = 0, then R is a division ring. If

J(R) = δr , then R is J -clean and so R is strongly J -clean by hypothesis. Hence, R/J(R) ∼= Z2 by [6, Lemma

4.2]. Conversely, if R is a division ring, then R is semisimple and so R is δr -clean. If R/J(R) ∼= Z2 , then R

is J -clean by [17, Theorem 15] and so R is δr -clean. 2

A characterization of δr -clean rings can be given as follows.

Theorem 2.10 Let R be a ring. The following statements are equivalent.

1) R is δr -clean.

2) R/Sr is J -clean.
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3) R/δr is Boolean and R/Sr is clean.

Proof Since J(R/Sr) = δr/Sr , (1) ⇔ (2). By Theorem 2.2, (1) ⇒ (3).

(3) ⇒ (1) Let a ∈ R . Then a2 − a ∈ δr . Since R = R/Sr is clean, idempotents of R/J(R) lift to idempotents

of R . By [19, Lemma 1.3], idempotents of R/δr lift to idempotents of R . Hence, there exists e2 = e ∈ R such

that a− e ∈ δr . Thus, R is δr -clean. 2

Bergman’s example (see Example 2.5) also shows that if R/Sr is a clean ring, then R need not be clean

[12, Example 1].

Recall that a ring R is said to have stable range 1, written sr(R) = 1, if given a, b ∈ R for which

aR + bR = R , there exists a y ∈ R such that a + by ∈ U (R). It is obvious that sr(R) = 1 if and only if

sr(R/J) = 1.

Lemma 2.11 Let R be a ring. Then sr(R/δr) = 1 if and only if sr(R/Sr) = 1 .

Proof It can be easily seen by the fact that J(R/Sr) = δr/Sr . 2

Recall that an element a of a ring R is called regular (resp., unit regular) if there exists u ∈ R (resp.,

u ∈ U (R)) such that a = aua . A ring R is called partially unit regular if every regular element of R is unit

regular. These rings are also called IC -ring in [11].

Theorem 2.12 If R is a δr -clean ring, then R/Sr is partially unit regular.

Proof Since R/δr is a Boolean ring, sr(R/δr) = 1. By Theorem 2.2, R is an exchange ring. Hence, by

Lemma 2.11 and [5, Theorem 3], R/Sr is partially unit regular. 2

The following example shows that if R is δr -clean, then R/Sr need not be a regular ring in general.

Example 2.13 Let R = Z8 . Then Soc(R) = 4R and J = 2R . It is clear that R is J -clean, but since

J ̸⊆ Soc(R) , R/Soc(R) is not regular.

3. Uniquely δr -clean rings

Definition 3.1 A ring R is called uniquely δr -clean if for every element a ∈ R there exists a unique idempotent

e ∈ R such that a− e ∈ δr .

Let I be an ideal of R . Then idempotents lift uniquely modulo I if whenever a2 − a ∈ I , there exists a

unique idempotent e ∈ R such that e − a ∈ I [17]. This condition implies that if e − f ∈ I , e2 = e , f2 = f ,

then e = f ; in particular, 0 is the only idempotent in I .

Clearly, R is uniquely δr -clean if and only if R/δr is Boolean and idempotents lift uniquely modulo δr .

Theorem 3.2 If R is uniquely δr -clean, then the following hold.

1) δr = J .

2) R is uniquely clean.
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Proof 1) Since idempotents lift uniquely modulo δr , by the remark above, the only idempotent in δr is 0.

Now let a ∈ δr . Then there exists a semisimple right ideal Y of R such that R = (1−a)R⊕Y by [21, Theorem

1.6]. Since Y ⊆ Sr ⊆ δr , we have that Y = 0. Hence 1− a is right invertible in R , and so a ∈ J .

2) It is clear by (1) and [17, Theorem 20]. 2

Note that any uniquely clean ring is abelian by [17, Lemma 4].

Examples 3.3 1) No semisimple ring is uniquely δr -clean, for, if R is a semisimple ring, then δr = R and

for any a ∈ R , a− 0 ∈ R and a− 1 ∈ R .

2) If R ≇ Z2 , then R/J ∼= Z2 if and only if R is local uniquely δr -clean, for, if R/J ∼= Z2 , then J = δr

and R is uniquely clean by [17, Theorem 15] and so R is uniquely δr -clean. The converse is also true by

Proposition 2.9.

Therefore, for example, the rings R = {
[

a b
0 a

]
| a, b ∈ Z2} , R = {

[
x y
0 x

]
| x ∈ Z4, y ∈ Z4 ⊕ Z4} ,

or R = Z2n where 1 ̸= n ∈ N are uniquely δr -clean.

Uniquely clean rings need not be uniquely δr -clean.

Example 3.4 1) Z2 is uniquely clean but not uniquely δr -clean.

2) Let R =
∏∞

i=1 Ri where Ri
∼= Z2 for all i = 1, 2, . . . . Then R is a Boolean ring with Sr = ⊕∞

i=1Ri .

Since R/Sr is Boolean, J(R/Sr) = 0 and so Sr = δr . Clearly R is uniquely J -clean, that is, uniquely clean

but not uniquely δr -clean.

It is easy to see that every uniquely clean ring is δr -clean by the fact that R is uniquely clean if and

only if R is uniquely J -clean [17, Theorem 20]. But if R is a semisimple ring that is not Boolean, then R is

δr -clean but not uniquely clean (see Example 2.3).

Thus, we conclude that

{ uniquely δr -clean} ⫋ { uniquely clean } ⫋ { δr -clean } ⫋ { exchange } .

If Sr ⊆ J for a ring R , then J/Sr = J(R/Sr) = δr/Sr and so J = δr . Hence, Proposition 3.5 below is

obvious by Proposition 2.6.

Proposition 3.5 If R is a uniquely clean ring with Sr ⊆ J , then R is uniquely δr -clean.

By [17, Theorem 20] we know that R is uniquely clean if and only if R/J is Boolean, R is abelian, and

idempotents lift modulo J . However, this result cannot be restated for δr in general. The following theorem

and examples prove our claim.

Theorem 3.6 Let R be a ring and consider the following conditions.

1) R is uniquely δr -clean.

2) R/δr is Boolean, R is abelian, and idempotents lift modulo δr .

3) R/δr is Boolean, R/Sr is abelian, and idempotents lift modulo δr .
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4) R/Sr is uniquely clean.

Then (1) ⇒ (2) ⇒ (3) ⇔ (4) .

Proof (1) ⇒ (2) Since R is uniquely clean, it is abelian by [17, Lemma 4].

(2) ⇒ (3) Since idempotents always lift modulo Sr , it is clear.

(3) ⇔ (4) It is by [17, Theorem 20]. Note that idempotents lift modulo J(R/Sr) if and only if idempotents lift

modulo δr [19, Lemma 1.3]. 2

In Theorem 3.6, (2) ̸⇒ (1) in general.

Example 3.7 We consider again the ring R =
∏∞

i=1 Ri where Ri
∼= Z2 , i = 1, 2, . . . (see Example 3.4). Since

R is uniquely clean, R is abelian and δr -clean. But R is not uniquely δr -clean.

In Theorem 3.6, (4) ̸⇒ (2) in general.

Example 3.8 Let R =

[
Z2 Z2

0 Z2

]
. Then Sr = δr =

[
0 Z2

0 Z2

]
and R/Sr

∼= Z2 is Boolean. Obviously R is

δr -clean but not abelian.

Theorem 3.9 If R is uniquely δr -clean and e2 = e ∈ R , then eRe is uniquely δr -clean.

Proof Since R is abelian, δr(eRe) = eδre by [18, Theorem 3.11]. By Theorem 3.2, δr = J , so we have

that J(eRe) = eJe = δr(eRe). If R is uniquely δr -clean, then R is uniquely clean by Theorem 3.2. By [17,

Corollary 6], eRe is uniquely clean. By [17, Theorem 20], eRe is uniquely δr -clean. 2

Although every factor ring of a uniquely clean ring is uniquely clean [17, Theorem 22], the same property

does not hold for uniquely δr -clean.

Remark 3.10 1) If R is a uniquely δr -clean ring, then factor rings of R need not be uniquely δr -clean in

general. For example, if R ≇ Z2 and R/J ∼= Z2 , then R is uniquely δr -clean by Example 3.3, but R/J is not

uniquely δr -clean.

(2) Since matrix ring Mn(R) and upper triangular matrix ring Tn(R) are not abelian for n ≥ 2, they

are not uniquely δr -clean by Theorem 3.2.

Let R be a ring and V an (R,R)-bimodule that is a general ring (possibly with no unity) in which

(vw)r = v(wr), (vr)w = v(rw), and (rv)w = r(vw) hold for all v, w ∈ V and r ∈ R . Then the ideal-

extension (also called the Dorroh extension) I(R;V ) of R by V is defined to be the additive abelian group

I(R;V ) = R⊕ V with multiplication (r, v)(s, w) = (rs, rw + vs+ vw).

Uniquely clean ideal-extensions are considered in [17, Proposition 7]. Now we deal with uniquely δr -clean

ideal-extensions.

Proposition 3.11 An ideal-extension S = I(R;V ) is uniquely δr -clean if the following conditions are satisfied:

1) R is uniquely δr -clean;

2) if e2 = e ∈ R then ev = ve for all v ∈ V ;

3) if v ∈ V then v + w + vw = 0 for some w ∈ V .
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Proof Assume that (1), (2), and (3) are satisfied. Since R is uniquely δr -clean, R is uniquely clean by

Theorem 3.2 and so S is uniquely clean by [17, Proposition 7]. Then S is δr -clean. Note by the proof of

[17, Proposition 7] that any idempotent in S is of the form (e, 0) where e2 = e ∈ R . Now suppose that

(e, 0) + (u, v) = (e1, 0) + (u1, v1) in S where (e, 0) and (e1, 0) are idempotents and (u, v), (u1, v1) ∈ δr(S).

Then e + u = e1 + u1 in R where e and e1 are idempotents in R and u, u1 ∈ δr(R) by the following result,

and so (e, 0) = (e1, 0) by (1).

Claim. If (u, v) ∈ δr(S) then u ∈ δr(R).

Proof. Let (u, v) ∈ δr(S). Then (u, 0) ∈ δr(S) because (0, V ) ⊆ J(S) ⊆ δr(S) by (3). Let L be a right

ideal of R such that uR + L = R . It is enough to show that L is a direct summand of R by [21, Theorem

1.6]. Since (u, 0)S + (L⊕ V ) = S and (u, 0) ∈ δr(S), we have that L⊕ V is a direct summand of S and so is

generated by an idempotent (e, 0) ∈ S where e2 = e ∈ R . Then we see that L = eR , and hence L is a direct

summand of R , as desired. 2

Example 3.12 Let R be a uniquely δr -clean ring and let S = {[aij ] ∈ Tn(R) | a11 = . . . = ann} . Then S is

uniquely δr -clean and is noncommutative if n ≥ 3 .

Proof If V = {[aij ] ∈ Tn(R) | a11 = . . . = ann = 0} , then S ∼= I(R;V ). The conditions in Proposition 3.11

hold as in [17, Example 8]. 2

If R is a ring and σ : R → R is a ring endomorphism, let R[[x, σ]] denote the ring of skew formal

power series over R , that is, all formal power series in x with coefficients from R with multiplication defined

by xr = σ(r)x for all r ∈ R . In particular, R[[x]] = R[[x, 1R]] is the ring of formal power series over R . Since

R[[x, σ]] ∼= I(R;< x >) where < x > is the ideal generated by x , the proof of [17, Example 9] and Proposition

3.11 give the next results.

Corollary 3.13 Let R be a ring and σ : R → R a ring endomorphism and e = σ(e) for all e2 = e ∈ R . If R

is uniquely δr -clean, then R[[x, σ]] is uniquely δr -clean

Corollary 3.14 If R is a uniquely δr -clean ring, then R[[x]] is uniquely δr -clean.

Corollary 3.14 can be proven by using Proposition 3.15 below, for, if R is uniquely δr -clean, then R[[x]]

is a uniquely clean ring by Theorem 3.2 and [17, Corollary 10]. By Proposition 3.15, J(R[[x]]) = J(R)+ <

x >⊆ δr(R[[x]]) ⊆ δr(R)+ < x > . Then since J(R) = δr(R) by Theorem 3.2(1), J(R[[x]]) = δr(R[[x]]) . Hence,

R[[x]] is a uniquely δr -clean ring.

Proposition 3.15 Let R be a ring. Then δr(R[[x]]) ⊆ δr(R)+ < x > .

Proof Let f(x) = a0 + a1x + a2x
2 + . . . ∈ δr(R[[x]]) . Since < x >⊆ J(R[[x]]) , a0 ∈ δr(R[[x]]) . Let L be

a right ideal of R such that a0R + L = R . It is enough to show that L is a direct summand of R by [21,

Theorem 1.6]. Since a0R[[x]] + L[[x]] = R[[x]] and a0 ∈ δr(R[[x]]) , we have that L[[x]] is a direct summand of

R[[x]] and so is generated by an idempotent e(x) = e0 + e1x+ e2x
2 + . . . ∈ R[[x]] . Then e0 is an idempotent

in R and it can be seen that L = e0R . Thus, a0 ∈ δr(R), as desired. 2

Note that J(Z2[[x]]) = δr(Z2[[x]]) ⊊ δr(Z2)+ < x >= Z2[[x]] .
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Corollary 3.16 If R[[x]] is δr -clean, then R is δr -clean.

Proof Let a ∈ R . Then there exist e(x)2 = e(x) ∈ R[[x]] and w(x) ∈ δr(R[[x]]) such that a = e(x) + w(x)

and so w(0) ∈ δr(R) by Proposition 3.15. Thus, a = e(0) + w(0) where e(0)2 = e(0) ∈ R , as asserted. 2

If R[[x]] is uniquely δr -clean, then R need not be uniquely δr -clean. For example, Z2 is not uniquely

δr -clean but since Z2[[x]]/J(Z2[[x]]) ∼= Z2 , Z2[[x]] is uniquely δr -clean by Example 3.3(2).

4. Uniquely strongly δr -clean rings

Uniquely strongly clean rings were studied in [7]. A ring R is called uniquely strongly clean if for every element

a ∈ R there exists a unique idempotent e ∈ R such that a − e ∈ U(R) and ea = ae . In Theorem 17 of [7] it

is proven that a uniquely strongly clean ring is exactly the same as a uniquely strongly J -clean, i.e. for any

a ∈ R there exists a unique idempotent e ∈ R such that a− e ∈ J and ea = ae .

Definition 4.1 A ring R is called uniquely strongly δr -clean if for every element a ∈ R there exists a unique

idempotent e ∈ R such that a− e ∈ δr and ea = ae .

Proposition 4.2 A ring R is uniquely δr -clean if and only if R is an abelian USDC ring.

Proof Since uniquely δr -clean rings are abelian by Theorem 3.6, the proof is obvious. 2

Proposition 4.3 Let R be a USDC ring. Then the following hold:

1) If e2 = e ∈ δr then e = 0 .

2) R/J is Boolean.

3) δr = J .

4) R is uniquely strongly clean.

Proof 1) Let e2 = e ∈ δr . Then e+ 0 = 0 + e and 0.e = e.0 yield e = 0.

2) R is exchange by Theorem 2.2. If we show that every nonzero idempotent of R is not the sum of 2 units,

then by [13, Theorem 13], R/J will be Boolean. Let e be a nonzero idempotent in R . Write e = u+ v , where

u, v ∈U(R). Since R is USDC, R/δr is Boolean and so 2 ∈ δr . Therefore, u and v are congruent to 1, modulo

δr , which means that their sum is in δr . This contradicts with (1).

3) Let a ∈ δr . Since R/J is Boolean, a2 − a ∈ J . By Theorem 2.2, R is exchange and so idempotents lift

modulo J . Thus, there exist e2 = e ∈ R such that a − e ∈ J . Since J ⊆ δr , e = 0 by (1). Hence, a ∈ J , as

asserted.
4) It is clear by (3) and [7, Theorem 17]. 2

However, a uniquely strongly clean ring need not be USDC. The ring R =

[
Z2 Z2

0 Z2

]
is uniquely

strongly clean by [7, Theorem 10] but not USDC by Example 3.8.

Thus, we conclude that

{ uniquely δr -clean } ⫋ { USDC } ⫋ { uniquely strongly clean } ⫋ { δr -clean } .
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GÜRGÜN and ÖZCAN/Turk J Math

The first and the last containments above are proper because, for example, the ring Zp where 2 ̸= p

is a prime is δr -clean but not uniquely strongly clean because J(Zp) = 0 and Zp is not Boolean. If R is a

commutative uniquely δr -clean ring, then Tn(R) is USDC by Theorem 4.5 for any n ∈ N , but Tn(R) is never

uniquely δr -clean by Remark 3.10(2).

Any factor ring of any USDC ring need not be USDC. For example, since Z4 is uniquely δr -clean by

Example 3.3, it is USDC by Proposition 4.2. However, Z4/J(Z4) ∼= Z2 is not USDC by Proposition 4.2 and

Example 3.3.

Proposition 4.4 Let e be an idempotent of a ring R such that eR = eRe (i.e. right semicentral) or ReR = R

(i.e. full idempotent). If R is USDC, then eRe is USDC.

Proof Assume that R is USDC. For any idempotent e of R , eRe is uniquely strongly clean by Propo-

sition 4.3(4) and [7, Example 5]. Since uniquely strongly clean rings are uniquely strongly J -clean, for any

a ∈ eRe , there exists an idempotent f ∈ eRe and v ∈ δr(eRe) such that a = f + v and fv = vf . It remains

to show the uniqueness. Let a = f + v = g + w where f and g are idempotents in eRe and v, w ∈ δr(eRe)

such that fv = vf and gw = wg . If e is an idempotent as in the hypothesis, then δr(eRe) ⊆ eδre ⊆ δr(R) by

[18, Theorems 3.9 and 3.11]. Hence, by assumption, f = g . 2

Since Mn(R) is never uniquely strongly clean by [7, Lemma 6], Mn(R) is never USDC.

Theorem 4.5 Let R be a commutative ring. Then the following are equivalent.

(1) R is USDC.

(2) R is uniquely δr -clean.

(3) Tn(R) is USDC for all n ⩾ 1 .

(4) T2(R) is USDC.

Proof (1) ⇔ (2) This follows by Proposition 4.2.

(3) ⇒ (4) It is clear.

(4) ⇒ (1) Suppose that T2(R) is USDC and let e =

[
0 0
0 1

]
∈ T2(R). Since e is right semicentral and

eT2(R)e ∼= R , R is USDC by Proposition 4.4.

(1) ⇒ (3) If R is USDC, then Tn(R) is uniquely strongly clean by Proposition 4.3(4) and [7, Theorem

10]. According to Proposition 4.3(3) and Lemma 5.1, δr(Tn(R)) = J(Tn(R)) and so Tn(R) is USDC by [7,

Theorem 17]. Therefore, the proof is completed. 2

5. On the formal triangular matrix rings

Let S and T be any ring, M an (S, T )-bimodule, and R the formal triangular matrix ring

[
S M
0 T

]
. It

is well known that J(R) =

[
J(S) M
0 J(T )

]
(e.g., [8, Corollary 2.2]), but for δr(R) the similar property does
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not hold in general. For example, if S = M = T = F is a field, then δr(R) = Socr(R) =

[
0 F
0 F

]
since

R/Socr(R) has zero Jacobson radical, but

[
δr(S) M
0 δr(T )

]
=

[
F F
0 F

]
= R . Now we prove the following.

Lemma 5.1 Let R =

[
S M
0 T

]
where S , T are any ring and M is an (S, T )-bimodule. Then δr(R) ⊆[

δr(S) M
0 δr(T )

]
.

Proof Let r =

[
s m
0 t

]
∈ δr(R) where s ∈ S , t ∈ T and m ∈ M . We claim that s ∈ δr(S). Let I be a

right ideal of S such that sS + I = S . It is enough to show that I is a direct summand of S by [21, Theorem

1.6]. Since rR +

[
I M
0 T

]
= R and r ∈ δr(R), we have that

[
I M
0 T

]
is a direct summand of R and so

is generated by an idempotent e ∈ R . Let e =

[
g n
0 f

]
where g ∈ S , f ∈ T and n ∈ M . Then g is an

idempotent in S and we see that I = gS , and hence I is a direct summand of S , as desired. By a similar

argument we see that t ∈ δr(T ). Hence, the proof is completed. 2

According to [8, Proposition 6.3], R =

[
S M
0 T

]
is clean if and only if S and T are clean. This result

also holds for J -clean ring.

Proposition 5.2 Let R =

[
S M
0 T

]
. Then R is J -clean if and only if S and T are J -clean.

Proof Since S and T are factor rings of R , the necessity is obvious. Now assume that S and T are J -clean.

Let r =

[
s m
0 t

]
∈ R where s ∈ S , t ∈ T and m ∈ M . Then s = e + w where e2 = e ∈ S and w ∈ J(S),

and t = f + v where f2 = f ∈ T and v ∈ J(T ). This gives that

[
s m
0 t

]
=

[
e 0
0 f

]
+

[
w m
0 v

]
where[

e 0
0 f

]
is an idempotent in R and

[
w m
0 v

]
∈ J(R). Hence, R is J -clean. 2

If S and T are local rings with nonzero maximal left ideal, then J(S) = δr(S) and J(T ) = δr(T ).

By Lemma 5.1, one can thus deduce that J(R) = δr(R). Hence, the following corollary is immediate from

Proposition 5.2.

Corollary 5.3 Let R =

[
S M
0 T

]
where S and T are local rings with nonzero maximal left ideals. Then R

is δr -clean if and only if S and T are δr -clean.

If R =

[
Z3 Z3

0 Z3

]
, then Z3 is a δr -clean ring, but R is not δr -clean since no quotient of it is Boolean.
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GÜRGÜN and ÖZCAN/Turk J Math

Acknowledgement

The first author thanks the Scientific and Technological Research Council of Turkey (TÜBİTAK) for grant
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