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Given modules M and N , M is said to be N-subinjective if for ev-
ery extension K of N and every homomorphism ϕ : N → M there
exists a homomorphism φ : K → M such that φ|N = ϕ. For a mod-
ule M , the subinjectivity domain of M is defined to be the collection
of all modules N such that M is N-subinjective. As an opposite
to injectivity, a module M is said to be indigent if its subinjectivity
domain is smallest possible, namely, consisting of exactly the injec-
tive modules. Properties of subinjectivity domains and of indigent
modules are studied. In particular, the existence of indigent mod-
ules is determined for some families of rings including the ring
of integers and Artinian serial rings. It is also shown that some
rings (e.g. Artinian chain rings) have no middle class in the sense
that all modules are either injective or indigent. For various classes
of modules (such as semisimple, singular and projective), neces-
sary and sufficient conditions for the existence of indigent modules
of those types are studied. Indigent modules are analog to the
so-called poor modules, an opposite of injectivity (in terms of in-
jectivity domains) recently studied in papers by Alahmadi, Alkan
and López-Permouth and by Er, López-Permouth and Sökmez. Re-
lations between poor and indigent modules are also investigated
here.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction and preliminaries

The purpose of this paper is to initiate the study of an alternative perspective on the analysis of
the injectivity of a module. In contrast to the well-known notion of relative injectivity, we introduce
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the notion of subinjectivity. Namely, a module M is said to be A-subinjective (or subinjective relative
to A) if for every extension B of A and every homomorphism ϕ : A → M there exists a homomor-
phism φ : B → M such that φ|A = ϕ . For every module M , the subinjectivity domain of M consists
of {A | M is subinjective relative to A}. In the same way that a module is injective if and only if its
injectivity domain consists of the entire class Mod-R , it is clear that a module is injective also if and
only if its subinjectivity domain equals Mod-R . An interesting situation arises, however, when one
studies modules which are not injective. While there are many questions one may consider regard-
ing this new perspective on injectivity, as a first project, we focus on this paper in those modules
which are the least injective with respect to their subinjectivity domains. As subinjectivity domains
clearly include all injective modules, a reasonable opposite to injectivity in this context is obtained by
considering modules whose subinjectivity domain consists of only injective modules. We initiate the
study of those modules here and we refer to them as indigent modules.

Indigent modules are the subinjectivity domain analog of “poor modules”. The notion of a poor
module was introduced as an opposite to injectivity by Alahmadi, Alkan and López-Permouth (see [1]).
Poor modules have been studied further in [5] where Er, López-Permouth and Sökmez prove that
every ring has a poor module and characterize those rings having semisimple poor modules. Also in
the same paper, the structure of rings over which every module is poor or injective is investigated.

In this paper, we study the properties of subinjectivity domains and of indigent modules. We
also establish connections between indigent and poor modules. We show that Artinian serial rings
have an indigent module. Moreover, if R is an Artinian serial ring with J (R)2 = 0, then R has a
semisimple indigent module. Also, we are able to show that the ring of integers Z has a semisimple
indigent module, whereas no simple Z-module is indigent. In addition, we study indigent modules
versus poor modules. We observe that indigent modules are poor over an Artinian serial ring R with
J (R)2 = 0, but indigent modules need not be poor over an Artinian serial ring even though a simple
indigent module is poor over this ring. In fact, all non-injective modules over an Artinian chain ring
are indigent. But this is not the case for poor modules, i.e., there are examples of Artinian chain
rings which have modules that are neither injective nor poor. However, in some situations poor and
indigent modules coincide. For instance, if R is a non-semisimple QF-ring with homogeneous right
socle and J (R)2 = 0, then poor and indigent modules coincide.

Throughout this paper, R will be an associative ring with identity and modules will be unital right
R-modules. Mod-R will denote the category of all right R-modules over a ring R . If M is an R-module,
then E(M), Rad(M), Z(M) and Soc(M) will respectively denote the injective hull, Jacobson radical, the
singular submodule and socle of M . J (R) will stand for the Jacobson radical of R . We will use the
notations �, �e and �⊕ in order to indicate submodules, essential submodules and direct summands,
respectively.

Recall that a module is said to be uniserial if the lattice of its submodules is linearly ordered under
set inclusion. A ring R is said to be a right chain ring if it is a uniserial module as a right module
over itself. A left chain ring is defined similarly. A ring R is a chain ring if it is both a right and a left
chain ring. A serial module is a module that is a direct sum of uniserial modules. A ring R is called
right (left) serial if it is a serial module as a right (left) module over itself. If both conditions hold R
is a serial ring. Note that every (right) chain ring is a (right) serial ring.

A ring R is called right V -ring if simple right R-modules are injective. The notion of right V -rings
may be generalized to that of right GV-rings (generalized V -rings), in which every simple module is
either injective or projective. Right GV-rings were introduced in [9].

A module M is called quasi-injective if it is M-injective. Any quasi-injective module M satisfies the
following two conditions (see [10, Proposition 2.1]):

(C1) For every submodule N of M there exists M1 �⊕ M with N �e M1.
(C2) For any summand M ′ of M , every exact sequence 0 → M ′ → M splits.

Note that modules which satisfy (C1) have also been called extending. If a module M satisfies (C2),
then it satisfies the following condition (see [10, Proposition 2.2]):

(C3) If M1 and M2 are summands of M with M1 ∩ M2 = 0, then M1 ⊕ M2 is a summand of M .



P. Aydoğdu, S.R. López-Permouth / Journal of Algebra 338 (2011) 207–219 209
Recall from [10] that a module M is called continuous (quasi-continuous) if it satisfies (C1) and
(C2) ((C1) and (C3)). Hence the following hierarchy exists:

Injective ⇒ quasi-injective ⇒ continuous ⇒ quasi-continuous.

For additional concepts and results not mentioned here, we refer the reader to [2,6,7,10].

2. The notion of subinjectivity and the subinjectivity domain of a module

Definition 2.1. Given modules M and N , we say that M is N-subinjective if for every module K with
N � K and every homomorphism ϕ : N → M there exists a homomorphism φ : K → M such that
φ|N = ϕ . The subinjectivity domain of a module M , In−1(M), is defined to be the collection of all
modules N such that M is N-subinjective.

Our next lemma shows for M to be N-subinjective, one only needs to extend maps to E(N).

Lemma 2.2. The following statements are equivalent for any modules M and N:

(1) M is N-subinjective.
(2) For each ϕ : N → M and for every module K with N �e K there exists a homomorphism φ : K → M such

that φ|N = ϕ .
(3) For each ϕ : N → M there exists a homomorphism φ : E(N) → M such that φ|N = ϕ .
(4) For each ϕ : N → M there exists an injective extension E of N and a homomorphism φ : E → M such that

φ|N = ϕ .

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are obvious. To show (4) ⇒ (1), let N ⊆ N ′ and ϕ :
N → M . By assumption, there exists an injective extension E of N and a homomorphism φ : E → M
such that φ|N = ϕ . Since E is injective, there exists a ψ : N ′ → E such that ψ |N = i, where i : N → E
is the inclusion. Then we get that (φψ)|N = ϕ . This gives that N ∈ In−1(M). �

Applying Lemma 2.2(3) to the identity M → M , one sees that a module M is M-subinjective if and
only if it is injective.

It is clear that injective modules are contained in the subinjectivity domain of any module, and
that a module is injective if and only if its subinjectivity domain consists of all modules in Mod-R .
Moreover, we have the following fact.

Proposition 2.3.
⋂

M∈Mod-R In−1(M) = {A ∈ Mod-R | A is injective}.

Proof. Let N ∈ ⋂
M∈Mod-R In−1(M). Then N ∈ In−1(N) which means that N is injective. �

According to well-known Baer’s Criterion, an R-module is injective if it is injective relative to R .
However, a module need not be injective if it is R-subinjective. For instance, every module over a
self-injective ring R is R-subinjective.

Proposition 2.4. The following properties hold for a module N:

(1)
∏

i∈I Mi is N-subinjective if and only if each Mi is N-subinjective.
(2) If each Mi is N-subinjective for i = 1, . . . ,n, then so is

⊕n
i=1 Mi .

(3) Every direct summand of an N-subinjective module is an N-subinjective module. Conversely, if N is a
finitely generated module and Mi , i ∈ I is a family of N-subinjective modules indexed in an arbitrary
index set I , then

⊕
i∈I Mi is an N-subinjective module.
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Proof. (1) Suppose that Mi is N-subinjective for each i ∈ I . Consider a homomorphism ϕ : N →∏
i∈I Mi . Let πi : ∏

i∈I Mi → Mi be the canonical epimorphism for each i ∈ I . Then there exists a
φi : E(N) → Mi such that φi |N = πiϕ for each i ∈ I . Define an R-homomorphism ψ : E(N) → ∏

i∈I Mi
via x 
→ (φi(x)). Then ψ |N = ϕ .

For the converse, let i ∈ I and ϕ : N → Mi . There exists a φ : E(N) → ∏
i∈I Mi such that φ|N = eiϕ ,

where ei is the inclusion Mi → ∏
i∈I Mi . Let πi : ∏

i∈I Mi → Mi be the canonical epimorphism. Then
(πiφ)|N = ϕ . Hence, N ∈ ⋂

i∈I In−1(Mi).
The proofs of (2) and (3) are similar to the proof of (1). �
The subinjectivity domain In−1(M) of M need not be closed under submodules. For instance, let

M be a non-injective module. Then M is not M-subinjective by Proposition 2.5(5) below, but it is
subinjective relative to its injective hull. Notice that In−1(M) is closed under submodules if and only
if M is injective, if and only if In−1(M) is contained in the injectivity domain of M .

Likewise, in light of Proposition 2.5(1), we cannot expect that if M is N-subinjective and N ⊂ K
then M is K -subinjective. Simply take a non-injective module M and consider K to be the sum N ⊕N∗
for some N∗ such that M is not N∗-subinjective. On the other hand, one may expect that the result
holds true if one assumes that K is an essential extension of N . We do not know if this is true in
general but we can prove it for the special case when M is non-singular (see part (4) of the following
proposition).

Proposition 2.5. The following properties hold for any ring R and R-modules N and M:

(1) If N = ⊕n
i=1 Ni , then M is N-subinjective if and only if M is Ni-subinjective for each i = 1, . . . ,n.

(2) If R is right Noetherian and I is any index set, then M is
⊕

i∈I Ni -subinjective if and only if M is
Ni -subinjective for each i ∈ I .

(3) If R is a right hereditary right Noetherian ring and M is N-subinjective, then M is N/K -subinjective for
any submodule K of N.

(4) If M is a non-singular N-subinjective module, then M is K -subinjective for any essential extension K of N.
(5) If N � M and M is N-subinjective, then E(N) � M. In particular, M is M-subinjective if and only if M is

injective.

Proof. (1) Let ϕ : Ni → M , and consider the canonical epimorphism π : N → Ni . Since N ∈ In−1(M),
there exists a φ : E(Ni) ⊕ E(

⊕
i �= j N j) → M such that φ|N = ϕπ . Then ψ = φ|E(Ni) : E(Ni) → M , and

hence ψ |Ni = ϕ . Now let ϕ : N → M . Then there exists ψi : E(Ni) → M such that ψi |Ni = ϕπi for each
i = 1, . . . ,n. Define ψ : ⊕n

i=1 E(Ni) → M , x1 + · · · + xn 
→ ψ1(x1) + · · · + ψ(xn). Hence, we get that
ψ |N = ϕ .

(2) Since R is right Noetherian, E(N) = ⊕
i∈I E(Ni). The rest of the proof is similar to that of (1).

(3) Since R is right Noetherian, we have a decomposition M = M1 ⊕ M2, where M1 is an injective
module and M2 is a reduced module, i.e., a module which does not have non-zero injective sub-
modules. Then In−1(M) = In−1(M1) ∩ In−1(M2) by Proposition 2.4(1). But since M1 is injective, its
subinjectivity domain consists of all R-modules. Therefore, In−1(M) = In−1(M2). On the other hand,
R being right hereditary implies that In−1(M2) = {N ∈ Mod-R | HomR(N, M2) = 0}. It is easy to see
that this set is closed under taking homomorphic images.

(4) Let f : K → M be any homomorphism. Since M is N-subinjective, there exists g : E(N) → M
such that g|N = f |N . Then N ⊆ Ker(g − f ). Because N is an essential submodule of K , Ker(g − f ) is
essential in K , too. Therefore, K/Ker(g − f ) is singular. On the other hand, K/Ker(g − f ) is isomorphic
to a submodule of the non-singular module M . Hence, K = Ker(g − f ) which means that g|K = f |K .

(5) Since N is essential in E(N), E(N) can be embedded into M because of N-subinjectivity as-
sumption. �
Example 2.6. The condition that ‘R is right Noetherian’ in Proposition 2.5(2) is not superfluous. If
R is a non-Noetherian ring, then there exist injective modules Mi such that M = ⊕

i∈I Mi is not
injective. Then M is Mi-subinjective for each i ∈ I , whereas M is not M-subinjective. Also, the Mi ’s
are M-subinjective. So the statement (2) of Proposition 2.4 need not be true for arbitrary index sets.
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Example 2.7. The condition that ‘R is right hereditary’ in Proposition 2.5(3) is not superfluous. Let
R = Z/8Z. Then 2R is R-subinjective but it is not subinjective relative to any homomorphic image
of R (see Corollary 5.3 below).

A submodule N � M is pure in M in case N ∩ M I = N I for each left ideal I of R (see [2, Exercise 11,
p. 232]).

Proposition 2.8. (1) Let R = R1 ⊕ R2 be a ring decomposition. Then M is N-subinjective in Mod-R if and only
if M Ri is N Ri -subinjective in Mod-Ri for each i = 1,2.

(2) Let I be an ideal of a ring R, and let M and N be R/I-modules. If M is N-subinjective as an R/I-module,
then it is N-subinjective as an R-module. The converse holds if N is a pure submodule of E(N).

Proof. (1) By assumption, we have K = K R1 ⊕ K R2 for any R-module K . Now assume that M is
N-subinjective. Let f i : N Ri → M Ri be an Ri -homomorphism. We can define an R-homomorphism
f ′ : N → M , n1r1 +n2r2 
→ f i(niri), where n1,n2 ∈ N , ri ∈ Ri for i = 1,2. Then there exists g : E(N R1)⊕
E(N R2) → M such that g|N = f ′ . Hence, the result follows. For the converse, note that E(N) ↪→
E(N R1) ⊕ E(N R2) since E(N R1) ⊕ E(N R2) is an injective R-module.

(2) Let E R/I (N) be the injective hull of NR/I . Since E R/I (N) is also an injective R-module, the
result follows from Lemma 2.2(4). For the reverse implication, let N be pure in E(N). Then N being
both pure and essential in E(N) implies that E(N) has an R/I-module structure. �

Projective modules exhibit a very interesting behaviour when they appear in subinjectivity do-
mains. Namely, if a projective module is in the subinjectivity domain of a module then it also appears
in the subinjectivity domains of all quotients of that module. That is the subject of our next proposi-
tion.

Proposition 2.9. Consider the following statements for a module N:

(1) N is projective.
(2) Every homomorphic image of an N-subinjective module is N-subinjective.
(3) Every homomorphic image of an injective module is N-subinjective.

Then (1) ⇒ (2) ⇒ (3), and (3) ⇒ (1) if the injective hull E(N) of N is projective.

Proof. (1) ⇒ (2) Let M be an N-subinjective module. Let K � M and let f : N → M/K be a homo-
morphism. Since N is projective, there exists a homomorphism g : N → M such that π g = f , where
π : M → M/K is the canonical epimorphism. But N-subinjectivity of M implies that g can be ex-
tended to a homomorphism h : E(N) → M . It follows that the homomorphism πh : E(N) → M/K ex-
tends f . (2) ⇒ (3) is obvious. For (3) ⇒ (1) assume that E(N) is projective. Let M and K be modules
such that K � M , and let f : N → M/K . Then we have i f : N → E(M)/K , where i : M/K → E(M)/K
is the inclusion. By hypothesis, E(M)/K is N-subinjective, so there exists g : E(N) → E(M)/K which
extends i f . But E(N) is projective. Therefore, there is a homomorphism h : E(N) → E(M) such that
π ′h = g , where π ′ : E(M) → E(M)/K is the canonical epimorphism. Hence, if we consider hi : N → M ,
then πhi = f , where π : M → M/N is the canonical epimorphism. �

If F is free and M is F -subinjective, then so is every homomorphic image of M by Proposition 2.9.

3. Modules whose subinjectivity domain consists of only injective modules

Since a module is injective if and only if it is N-subinjective for all N , it makes sense to wonder
about the extreme opposite: What are the modules which are subinjective with respect to the small-
est possible collection of modules? It is clear that such a smallest collection would have to consist
precisely of the injective modules. That is the motivation for our next definition which was inspired
by another “opposite” of injectivity, the poor modules studied in [1] and [5].
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Definition 3.1. We will call a module M indigent in case In−1(M) = {A ∈ Mod-R | A is injective}.

Considering that the notion of indigent modules is formally so similar to that of poor modules,
one would expect that many results in this theory will echo those of the other one. That is indeed
the case but differences are also abundant and interesting. We start with two results that are very
close to their “poor” counterparts.

Proposition 3.2. If a module M is indigent, then M ⊕ N is indigent for any module N.

Proof. Let A ∈ In−1(M ⊕ N). Then by Proposition 2.4(3), A ∈ In−1(M). Since M is indigent, A is
injective. �
Proposition 3.3. For an arbitrary ring R, the following conditions are equivalent:

(1) R is semisimple Artinian.
(2) Every (non-zero) R-module is indigent.
(3) There exists an injective indigent module.
(4) {0} is an indigent module.
(5) R has an indigent module and non-zero direct summands of indigent modules are indigent.
(6) R has an indigent module and non-zero factors of indigent modules are indigent.

Considering that quasi-injective, continuous and quasi-continuous modules are all generalizations
of injectivity, one may be tempted to think that the idea of considering modules whose domain
of subinjectivity is contained in one of those classes may be yielding more than just the indigent
modules. Our next proposition shows that this is not the case.

First note that, according to [10, Proposition 2.10], if M1 ⊕ M2 is quasi-continuous, then M1 and
M2 are relatively injective (i.e., M1 is M2-injective and M2 is M1-injective).

Proposition 3.4. The following conditions are equivalent for a module M:

(1) M is indigent.
(2) In−1(M) ⊆ {N ∈ Mod-R | N is quasi-injective}.
(3) In−1(M) ⊆ {N ∈ Mod-R | N is continuous}.
(4) In−1(M) ⊆ {N ∈ Mod-R | N is quasi-continuous}.

Proof. (1) ⇒ (2) ⇒ (3) ⇒ (4) Obvious. For (4) ⇒ (1), let M be N-subinjective. Since M is always
E(N)-subinjective, we have that M is N ⊕ E(N)-subinjective by Proposition 2.5(1). By assumption,
N ⊕ E(N) is quasi-continuous. But then N is E(N)-injective and hence N = E(N) is injective by [10,
Proposition 2.10]. �

Certainly, the first problem that comes to mind with the introduction of the notion of indigent
modules is whether such modules exist over all rings. We have not been able to answer this question
entirely but we can guarantee so far that this is indeed the case for various rings, including the ring
of integers and the so-called

∑
-cyclic rings. In [5], the existence of poor modules is proven for arbi-

trary rings and, indeed, two generic constructions for poor modules over arbitrary rings are given. We
attempt similar constructions here. The reason why we are focusing on Noetherian rings is because
of an inherent difficulty in the study of subinjectivity. Namely, we have not been able to identify a
manageable subclass that characterizes subinjectivity domains. In other words, while injectivity do-
mains are characterized by the cyclic modules they contain (see [10]), we do not have the benefit of
any similar characterization for subinjectivity domains. Due to this difficulty, our attempts to prove
that a suitable module M is indigent have been based on using the type of additional information
one has about modules over Noetherian rings. For the remainder of this section, let M = ⊕

U∈B U ,
where B is a complete set of non-injective uniform modules, and let N = ⊕

N∈Γ N , where Γ is any
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complete set of representatives of cyclic modules. We suspect that M is indigent, at least over all
Noetherian rings, but we have not been able to prove it in general. We do know that the construction
yields an indigent module when the ring is Artinian serial (Theorem 3.5). The second construction is
shown to yield indigent modules over all right

∑
-cyclic rings (Theorem 3.8). In particular, this second

construction is therefore also successful for Artinian serial rings (Corollary 3.9). Interestingly, M and
N are indigent over the ring of integers (see Corollary 4.5).

Theorem 3.5. Let R be a right Noetherian ring. Then In−1(M) does not contain non-injective extending mod-
ules. In particular, M is indigent when R is Artinian serial.

Proof. First we will show that if U is a non-injective uniform module, then U does not belong to
In−1(M). For if M is U -subinjective, then U is U -subinjective by Proposition 2.4(3). But since U is
non-injective, this is a contradiction. Now let N be a non-injective extending module. R being right
Noetherian implies that N is a direct sum of uniform modules [10, Theorem 2.19]. Because R is right
Noetherian and N is non-injective, N has a non-injective uniform summand U . But U /∈ In−1(M). By
Proposition 2.5(1), N /∈ In−1(M).

If R is a ring whose right modules are direct sums of extending modules, then R is an Artinian
ring by [4, Theorem 1]. Since a non-injective R-module contains a non-injective extending summand,
M is an indigent R-module. Now assume that R is an Artinian serial ring. It follows from [4] that
every R-module is a direct sum of extending modules. Hence, M is an indigent module. �

We suspect that M is indigent over all Noetherian rings but we have not been able to prove it.
The aim is to show that if M is N-subinjective then N is injective. The next proposition shows that
this is indeed the case for N = R when R is assumed to be hereditary and prime.

Proposition 3.6. If M is R-subinjective over a hereditary Noetherian prime ring, then R is semisimple Artinian.

Proof. Let P be a finitely generated projective R-module. Assume that M is P -subinjective. But P is
isomorphic to a direct sum of uniform right ideals of R . Then we obtain that P is injective. Therefore,
if M is R-subinjective, then R is semisimple Artinian. �

We do not know if M is indigent over a QF-ring in general but we have the following observation.

Proposition 3.7. Let R be a QF-ring. Assume that every singular module is extending. Then M is an indigent
module.

Proof. Let N be a non-injective module. By [11, Theorem 7], N is a direct sum of an injective and
singular module. So N has a non-injective singular summand S which is extending by assumption. It
follows from Lemma 3.5 that S /∈ In−1(M). Hence, N /∈ In−1(M). �

Following Faith [7], we say that a ring R is (right)
∑

-cyclic if every (right) R-module decomposes
into a direct sum of cyclic modules. Note that a right

∑
-cyclic ring has to be right Artinian by [7,

Theorem 20.23].

Theorem 3.8. N is an indigent module over a (right)
∑

-cyclic ring R.

Proof. Let N be an A-subinjective module. Since R is (right)
∑

-cyclic, A = ⊕
i∈I Ai , where each Ai is

cyclic. Then N is Ai-subinjective by Proposition 2.5(1). But it follows from Proposition 2.4(3) that each
Ai is Ai-subinjective which implies that Ai is injective. Since R is (right) Noetherian, A is injective,
too. �
Corollary 3.9. N is an indigent module over an Artinian serial ring R.
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Proof. Because Artinian serial rings are
∑

-cyclic (see [6, Theorem 5.6]), the result follows from The-
orem 3.8. �
4. Indigent modules of specific types

A second problem to be considered, a variation of the question of existence of indigent modules,
is that of the existence of modules of specific types. For which rings do there exist, say, semisimple,
singular, or projective modules which are indigent? This section deals with such questions and offers
some necessary and some sufficient conditions for the existence or non-existence of various types of
indigent modules. Of course, a byproduct of this enquiry is likely to be an increase in the family of
rings which are guaranteed to have indigent modules. Such is the case as, for instance, we can prove
that the integers do have indigent modules (Corollary 4.5). The existence of semisimple poor modules
was fully characterized in [5] and the existence of singular and projective poor modules were studied
in [1].

Lemma 4.1. Let S be a module with Rad(S) = 0 and let N be a module such that Rad(N) = N. Then S is
N-subinjective.

Proof. Hom(N, S) = 0 since N doesn’t have a maximal submodule and Rad(S) = 0. �
We obtain the following result by the previous lemma:

Proposition 4.2. If a ring R has an indigent module with a zero Jacobson radical, then every module N with
Rad(N) = N is injective.

By Proposition 4.2, we conclude that if a ring R has a semisimple indigent module, then every
module N with Rad(N) = N is injective. But the converse of this fact need not be true.

Example 4.3. If R is a right Noetherian right V -ring which is not semisimple Artinian, then R doesn’t
have a semisimple indigent module.

Proposition 4.4. Let R be any ring. Suppose that an R-module N is injective if and only if Rad(N) = N. Then
R has a semisimple indigent module.

Proof. Let S = ⊕
i∈I Si , where I is any complete set of representatives of simple modules. Consider

a non-injective module N . By assumption, N has a maximal submodule, and hence N has a simple
factor Si for some i ∈ I . But then Si cannot be N-subinjective since Hom(E(N), Si) = 0. Hence, S is
not N-subinjective. �
Corollary 4.5. The ring of integers Z has a semisimple indigent module.

Proof. By Proposition 4.4,
⊕

p is prime Zp is an indigent Z-module. �
Theorem 4.6. Let R be an Artinian serial ring with J (R)2 = 0. Then R has a semisimple indigent module.

Proof. Since R is Artinian, R/ J (R) is semisimple. Let R/ J (R) = ⊕n
i=1 Si , and assume that R/ J (R) is

K -subinjective. Then, by Proposition 2.4(3), each Si is K -subinjective. By our assumption, K = K1 ⊕ K2,
where K1 is semisimple and K2 is injective. Let S be a simple direct summand of K1. Then there
exists j ∈ I such that S ∼= S j . But M j ∼= S ∈ In−1(M j) which means that M j is injective. Hence, K1 is
injective, and so K is injective, too. �
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Example 4.7. The ring R = Z/8Z is an Artinian serial ring which has a simple indigent module but
J (R)2 �= 0.

Proposition 4.8. QF serial rings have a singular indigent module.

Proof. By [11, Theorem 7], every module is a direct sum of a singular and an injective module over
QF-rings. The result follows from this fact and Proposition 2.4(3). �

The next two results are companion propositions to [1, Theorem 6.2] and [1, Theorem 6.3], respec-
tively.

Proposition 4.9. Let R = R1 ⊕ R2 be a ring decomposition. If M is an indigent R-module, then M Ri is an
indigent Ri -module for each i = 1,2. However, if Ri is not self-injective, then M R j is not an indigent R-module,
where i �= j.

Proof. Let K be an Ri -module and let M Ri be K -subinjective. By Proposition 2.5(1), M is K -sub-
injective, too. Since M is indigent, K is an injective R-module. Hence, K Ri = K is an injective
Ri -module. Therefore, M Ri is an indigent Ri -module.

Now suppose that R2 is not self-injective. But for any injective R1-module K , M R1 is K ⊕ R2-sub-
injective. Since R2 is non-injective, M R1 is not indigent as an R-module. �
Proposition 4.10. Let R be a ring that decomposes as a direct sum R1 ⊕ S1 of rings R1 ∼= R and S1 , which is
not self-injective. Then an indigent R-module is not Artinian.

Proof. Let M be an indigent R-module. By Proposition 4.9, M1 = M R1 is an indigent R1-module, but
is not an indigent R-module. Hence, M1 is a non-zero proper R-submodule of M . As R1 ∼= R , we have
R1 = R2 ⊕ S2, where R2 ∼= R1 and S2 is not self-injective. Repeating the same argument, we get that
M2 = M1 R2 is an indigent R2-module and a non-zero proper R-submodule of M1. Hence, we obtain
an infinite chain of R-submodules {Mn} of M . Thus, M is not Artinian. �

Recall that a ring is called SI if every singular module is injective (see [8]).

Proposition 4.11. If a ring R has a non-singular indigent right module, then R is a right SI-ring.

Proof. Let M be a non-singular indigent module and N be a singular module. Since any homomor-
phism from N to M is zero, M is N-subinjective. Hence, N is injective. �
Corollary 4.12. Let R be a ring that is not a right SI-ring. Assume that every right R-module is either injective
or indigent. Then every non-singular right R-module is semisimple.

Proof. By Proposition 4.11, every non-singular module is injective, and hence semisimple. �
A module is said to be semiartinian in case every homomorphic image of it has an essential socle.

A ring R is called right semiartinian if it is semiartinian as a right R-module.

Proposition 4.13. If every non-zero cyclic right R-module is indigent, then R is right semiartinian.

Proof. Assume that R is not right semiartinian. Then there exists a right ideal I of R such that
Soc(R/I) = 0. By hypothesis, R/I is indigent. On the other hand, R/I is S-subinjective for a simple
right R-module S . So S is injective. S being both injective and indigent implies that R is semisimple
Artinian by Proposition 3.3. But this leads to a contradiction. �
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Example 4.14. The converse of Proposition 4.13 need not be true. If we let R = Z/8Z, then R is not
an indigent R-module because R is self-injective; but R is an Artinian ring.

Proposition 4.15. Assume that every non-zero cyclic right R-module is indigent. Then R is semisimple Artinian
or Z(M) �e M for any right R-module M (or equivalently Z(R R) �e R).

Proof. Suppose that Z(M) is not an essential submodule of M . Then there exists a non-zero x ∈ M
such that xR ∩ Z(M) = 0. So xR is non-singular, and by hypothesis, xR is indigent. Then R is a right
SI-ring by Proposition 4.11. If S is a simple singular right R-module, then it is both injective and
indigent. This means that R is semisimple Artinian by Proposition 3.3. �
Proposition 4.16. Suppose that all simple modules are indigent over a non-semisimple ring R. Then R has only
one simple singular module up to isomorphism.

Proof. Suppose a ring R satisfies the given condition. If there exist non-isomorphic simple modules
S1 and S2, then we have HomR(S1, S2) = 0. But then S2 is S1-subinjective, whence S1 is injective.
Since S1 is both injective and indigent, R is a semisimple Artinian ring. This contradiction shows that
S1 ∼= S2. Since R is not semisimple Artinian, the unique simple module is singular. �
Lemma 4.17. Let N be an A-injective module for an injective module A. Then submodules of A are contained
in the subinjectivity domain of N. Moreover, if N is indigent, then A is semisimple.

Proof. Let B � A. Since A is injective, E(B) � A. Hence, the A-injectivity of N implies that B ∈
In−1(N). �
Corollary 4.18. No abelian p-group is indigent.

Two modules are called orthogonal if they have no non-zero isomorphic submodules (see [10]).

Theorem 4.19. Let M be a projective semisimple indigent module. Then any semisimple module B orthogonal
to M is injective.

Proof. First we will show that Hom(X, M) = 0 for any submodule X of E(B). Let X be a submodule
of E(B) and let f : X → M be a homomorphism. Then f (X) �⊕ M , and so f (X) is projective. This
gives that Ker( f ) �⊕ X . Hence, X = Y ⊕ Ker( f ) and Y ∼= f (X). If f (X ∩ B) �= 0, then X ∩ B ∼= f (X ∩
B) ⊕ (Ker( f ) ∩ (X ∩ B)). But this contradicts the hypothesis that B and M are orthogonal. So we have
that f (X ∩ B) = 0 which implies that f (X) = 0. Hence, M is E(B)-injective. Since M is indigent and
E(B) is injective, E(B) is semisimple by Lemma 4.17. Thus, B = E(B). �

The results in the remainder of this section all have counterparts in the theory of poor modules.
The poor module versions of these results appear in Section 4 of [1]. The proofs from that reference
carry through almost exactly. For that reason, we will list the results here but without proofs.

Corollary 4.20. Let R be a ring that has a simple projective indigent module. Then R is a GV-ring.

Corollary 4.21. Let R be a ring which is not semisimple Artinian. If there exists a simple projective indigent
module, then the following hold:

(1) Every direct sum of simple injective modules is injective.
(2) Every simple R-module is either injective or indigent.

Recall that a ring R is called right Kasch if every simple R-module is embedded in R .



P. Aydoğdu, S.R. López-Permouth / Journal of Algebra 338 (2011) 207–219 217
Theorem 4.22. If R is a right Kasch ring which has a non-zero simple projective indigent module, then R is
semisimple Artinian.

Theorem 4.23. Let R be a semiperfect ring. If R has a simple projective indigent module, then R = R1 ⊕ R2 , as
a ring direct sum, where R1 is semisimple Artinian and R2 is semiperfect with projective indigent homogeneous
socle.

Corollary 4.24. If there is a projective simple indigent module M, then Soc(R) is projective. Indeed, the socle
of any projective R-module under this hypothesis is projective.

Theorem 4.25. A semiprime ring with a finite right uniform dimension and a projective simple indigent module
is semisimple Artinian.

5. Poor and indigent modules

Considering that the notions of poor and indigent modules are defined similarly, one would expect
them to coincide frequently. Questions about when poor modules are indigent and conversely are the
subject of this last section. We will show examples that indigent modules are not always poor. We do
not know at this moment any examples of poor modules which are not indigent.

We show above that M = ⊕
N∈Γ N , where Γ is any complete set of representatives of cyclic mod-

ules, is an indigent module over an Artinian serial ring. On the other hand, M is a poor module, too
(see [5, Proposition 2]). But, as the next theorem shows, indigent modules need not be poor over an
Artinian serial ring.

Theorem 5.1. Let R be an Artinian chain ring. Then non-injective R-modules are indigent.

Proof. Since R is an Artinian chain ring, every R-module is a direct sum of cyclic uniserial modules.
Then it is enough to consider cyclic modules by Propositions 2.4 and 2.5. Because R is an Artinian
chain ring, the (right) ideals of R are zero and the powers J (R)n of J (R). Moreover, if p ∈ J (R)\ J(R)2,
then J (R)n = pn R for every n � 0 (see [6, p. 115]). But R is Artinian, so lattice of its (right) ideals is
finite. Hence, we have the following chain for some positive integer n:

R ⊃ pR ⊃ p2 R ⊃ · · · ⊃ pn R ⊃ 0.

Therefore, it is enough to show that pn R is indigent for every non-zero n. By [6, Lemma 5.4],
E(pn R) = R for every n.

Take X = pn R , where n �= 0. If m � n, then X is not pm R-subinjective. Otherwise we get R ⊆ X
which is a contradiction. Now suppose that 0 �= m < n. Consider the homomorphism f : pm R → X ,
f (pm) = pn . If f was extended by a homomorphism g : R → X , then we would have g(pm) = f (pm)

which means that g(1)pm = pn . But g(1) ∈ X , so we get pn ∈ p(m+n)R , a contradiction. Hence, X is
not pm R-subinjective for 0 �= m < n. Thus, X is subinjective relative to only injective modules. �
Example 5.2. The converse of Theorem 5.1 is not true in general. The ring R = [ F F

0 F

]
is not a chain

ring but non-injective R-modules are indigent.

Corollary 5.3. Let p be a prime and n be a positive integer. A non-injective module over the ring Z/pn
Z is

indigent.

Example 5.4. Let R = Z/8Z. Since 2R is a quasi-injective R-module, it is not poor. But by Corollary 5.3,
2R is indigent.

Theorem 5.5. Let R be an Artinian serial ring with J (R)2 = 0. Then indigent modules are poor.
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Proof. Let N be an indigent R-module. Suppose that N is A-injective. By [3, Theorem 7], we have a
decomposition A = A1 ⊕ A2, where A1 is semisimple and A2 is injective. Then N is A2-injective. By
Lemma 4.17, A2 is semisimple. Thus, N is a poor module. �
Lemma 5.6. Let N be a non-singular module and A be a semisimple module such that A ∈ In−1(N). If A �
B � E(A), then N is B-injective. Moreover, if N is poor, then A is injective.

Proof. Let T be an essential submodule of B and f : T → B be a homomorphism. Since A is semisim-
ple, it is contained in T . It follows that f |A can be extended to a homomorphism g : E(A) → N
because A ∈ In−1(N). We will show that g|T = f . Let h = g − f . Because h(A) = 0 we have that
A ⊆ Ker(h). Since A �e T , we get that T /Ker(h) ∼= h(T ) is singular. But N is non-singular so that
T = Ker(h). �
Theorem 5.7. Let R be an Artinian serial ring with J (R)2 = 0. Then non-singular poor modules are indigent.

Proof. Let N be a non-singular poor module and let N be A-subinjective. Then we have a de-
composition A = A1 ⊕ A2, where A1 is semisimple and A2 is injective. By Proposition 2.5(1), N is
A1-subinjective. It follows from Lemma 5.6 that A1 is injective. �
Corollary 5.8. Let M be a semisimple projective module over an Artinian serial ring R with J (R)2 = 0. Then
M is poor if and only if M is indigent.

Theorem 5.9. Let R = ∏n
i=1 Ri , where Ri is a non-semisimple Artinian serial ring with J (Ri)

2 = 0 and a
unique non-injective simple for each i = 1, . . . ,n. Then an R-module is poor if and only if it is indigent.

Proof. The sufficiency follows from Theorem 5.5. For the necessity, let M be a poor R-module. Sup-
pose Si is the unique non-injective simple of Ri for each i = 1, . . . ,n. We have M = ⊕n

i=1 M Ri . Then
Si �⊕ M Ri for i = 1, . . . ,n. For if there exists an i such that Si is not a direct summand of M Ri , then
M Ri is an injective Ri -module. But then M is Ri ⊕ (

⊕
i �= j S j)-injective, which is a contradiction.

Now suppose that M is N-subinjective, where N is a non-injective module. Then there exists an i
such that N Ri has a non-injective simple summand which is isomorphic to Si . By Proposition 2.8(1),
we obtain Si is Si -subinjective, which is a contradiction. Therefore, N is injective. Thus, M is indi-
gent. �
Corollary 5.10. Let R be a non-semisimple QF-ring with homogeneous right socle and J (R)2 = 0. Then poor
and indigent modules coincide. In addition, every R-module is either indigent or injective.

Proof. Since R is non-semisimple and has a homogeneous socle, R is an Artinian serial ring with
a unique simple module up to isomorphism. This simple module is non-injective because R is non-
semisimple. Hence, the result follows from Proposition 5.9. �
Example 5.11. Let R = [ F F

0 F

]
. R is not a QF-ring but poor R-modules coincide with indigent

R-modules.

Proposition 5.12. A simple indigent module of an Artinian serial ring is poor.

Proof. Let R be an Artinian serial ring and let S be a simple indigent R-module. Suppose that S is
T -injective. Since R is Artinian serial, without loss of generality, we can assume that T is cyclic unise-
rial. Since T /T J(R) is both semisimple and uniserial, it is simple. It follows from [6, Lemma 1.14] that
T is a local module. So Rad(T ) is a maximal submodule of T . Hence, we get that Hom(Rad(T ), S) = 0.
This obviously gives us that S is Rad(T )-subinjective whence Rad(T ) is injective. If Rad(T ) �= 0, then
it is both an essential submodule and a direct summand of T . But this is a contradiction since
Rad(T ) �= T . Hence, Rad(T ) = 0, and so we get that T is simple. �
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