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Abstract

In this paper the authors consider the interplay between di-uniformities on a texture and a complementation on that texture. It is
shown that with each di-uniformity corresponds a second di-uniformity, called its complement. Di-uniformities that coincide with
their complement are then called complemented, and it is verified that the uniform ditopology of a complemented di-uniformity is
a complemented ditopology. The connection with the uniform bicontinuity of the complement of a difunction is also considered.

The relation between quasi-uniformities and uniformities on a set X in the classical sense is then investigated in the setting of
di-uniformities on the complemented discrete texture on X. It is shown that di-uniformities on this discrete texture correspond in a
one-to-one way with quasi-uniformities on X, a quasi-uniformity being a uniformity if and only if the corresponding di-uniformity
is complemented. This shows that while the difference between quasi-uniformities and uniformities in the classical description is a
question of symmetry, this becomes a matter of complementation in the di-uniform case.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In [16] the authors laid the foundations of a theory of uniformities on textures, giving descriptions in terms of
direlations, dicovers and dimetrics. In that paper no account was taken of any possible complementation on the tex-
ture in question, and this topic is taken up in the present paper. It is shown that with each direlational uniformity
on a complemented texture corresponds a second direlational uniformity, called its complement. Direlational unifor-
mities that coincide with their complement are then said to be complemented, and it is verified that the ditopology
of a complemented direlational uniformity is a complemented ditopology. The uniform bicontinuity of the comple-
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ment of a difunction is studied, and the notion of complement characterized in terms of dicovering uniformities on
a complemented texture.

Direlational uniformities have a base of symmetric direlations, and it might therefore be conjectured that they
would correspond to uniformities in the classical sense. However, by restricting attention to the discrete complemented
texture (X,P(X),πX) on a set X it is shown that in fact direlational uniformities correspond in a one-to-one way with
quasi-uniformities on X. Moreover, a direlational uniformity on (X,P(X),πX) corresponds to a uniformity if and only
if it is complemented. Hence the distinction between quasi-uniformities and uniformities, which is one of symmetry
in the classical representation, becomes a matter of complementation in the description using direlations. This shows
the very pervasive role played by complementation, since without a complementation it would not seem possible to
formulate the quasi-uniform/uniform dichotomy for di-uniformities on general textures.

The paper ends with an analysis of the link between dual covers and dicovers, which parallels that between point
relations and direlations used in establishing the above mentioned relationship between quasi-uniformities and direla-
tional uniformities on (X,P(X), πX).

Constant reference will be made to [16] for definitions and results relating to di-uniformities, none of which will
be repeated here. General references on ditopological texture spaces include [4–10], and a major part of the theory of
direlations and difunctions, first described in the preprint [3], may be found in [8] with largely new proofs. It should
be noted that if (r,R) is a direlation from (S,S) to (T ,T), and A ∈ S, then the A-sections of r and R are denoted
by r→A, R→A, respectively, in [8], in preference to the former notation r(A), R(A). We will use this new notation
here since it is more consistent with the notation r←B , R←B for the B-presections, B ∈ T, which is maintained
as a short form for (r←)→B and (R←)→B , respectively. General references on quasi-uniformities and uniformities
include [11,14,15,18], while terms relating to lattice theory not given here may be found in [13].

A preliminary version of part of this work is given in [17].
We end this introduction with a few words of a general nature which aim at motivating the study of ditopological

texture spaces, and which explain their relation to other topics of General Topology.
Ditopological texture spaces were conceived as a point-set setting for the study of fuzzy topology, and provide

a unified setting for the study of topology, bitopology and fuzzy topology. Some of the links with Hutton spaces,
L-fuzzy sets and topologies are expressed in a categorical setting in [6].

Despite the close links with fuzzy sets and topologies, the development of the theory of ditopological texture spaces
has proceeded largely independently, and the work on di-uniformities [16], in particular, has shown that it has much
closer ties with mainstream topological ideas than might be expected. This paper provides further confirmation of this
by giving firm evidence that di-uniformities provide a more unified setting for the study of quasi-uniformities and
uniformities than does the classical approach (see especially the discussion following Theorem 3.5). Here the notion
of difunction plays an important role, and we see additional evidence that despite its very minimal nature, the unit
texture (I, I, ι) under its natural di-uniformity UI plays an extremely important role in the theory.

As argued in the introduction to [16], it is precisely the existence of such minimal but powerful structures that
makes them of potential importance as computational models. However, as also pointed out in [16], this power is
only realized through the use of appropriate concepts, and much of the effort in the development of the theory of
ditopological texture spaces has been devoted to the establishment of such important concepts as dicover, direlation
and difunction.

The formal duality [16, comments following Lemma 1.1], occurring in a texture, is an important element in defining
such concepts. When applied to ditopologies it often gives rise to pairs of properties, such as compact–cocompact,
regular–coregular. Here there is a close parallel with bitopological concepts, and indeed the links with bitopology
are naturally strong. In the presence of a complementation a property and its co-property often coincide, but in the
case of a direlational uniformity it is actually the symmetry of that structure that causes the uniform ditopology
to be simultaneously completely regular and completely coregular. The results in this paper therefore represent an
interesting interplay between duality and complementation in the context of di-uniformities on a texture.

A form of duality also plays a role in Giovanni Sambin’s basic picture for formal topology [18]. There are clear
parallels here which warrant further study. Likewise, links with the theory of locales and with domain theory have
yet to be worked out. Finally, complement free textural concepts can be expected to find applications in negation free
logics, and indeed (ditopological) textures themselves could well prove to be useful models for certain classes of such
logics.
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2. Complementation in di-uniform spaces

In this section we consider di-uniformities in relation to complementation.
By a complementation on the texture (S,S) we mean a mapping σ :S → S satisfying σ(σ (A)) = A and

A ⊆ B �⇒ σ(B) ⊆ σ(A) for all A,B ∈ S. Set difference π(Y ) = X \ Y is a complementation on (X,P(X)). It is
the existence of this complementation that is responsible for many of the special properties of this texture, particularly
in relation to symmetry. We can define a complementation ι on the unit interval texture (I, I) (see, for example, [8,
Definition 1.1(5)], or [16]) by setting

ι
([0, r]) = [0,1 − r) and ι

([0, r)
) = [0,1 − r] for all r ∈ I,

and indeed many of the naturally occurring textures can be equipped with a complementation.
If (τ, κ) is a ditopology on the texture (S,S) we say (τ, κ) is complemented if κ = σ [τ ].
In order to consider the effect of a complementation on a direlational uniformity it is necessary to define the action

of a complementation on a direlation. Let us recall the following definition from [3], see also [8].

Definition 2.1. Let (d,D) be a direlation between the complemented textures (S,S, σ ) and (T ,T, θ).

(1) The complement d ′ of the relation d is the co-relation

d ′ =
⋂{

Q(s,t) | ∃u,v with d � Q(u,v), σ (Qs) � Qu and Pv � θ(Pt )
}
.

(2) The complement D′ of the co-relation D is the relation

D′ =
∨{

P (s,t) | ∃u,v with P (u,v) � D, Pu � σ(Ps) and θ(Qt ) � Qv

}
.

(3) The complement (d,D)′ of the direlation (d,D) is the direlation

(d,D)′ = (D′, d ′).

The direlation (d,D) is said to be complemented if (d,D)′ = (d,D).

We summarize below some properties of the complementation operator which will be needed later.

Proposition 2.2. (Cf. [3]) For direlations (d,D), (e,E) between complemented textures we have:

(1) σ(d→A) = (d ′)→σ(A) and σ(D→A) = (D′)→σ(A) for all A ∈ S.
(2) ((d,D)′)′ = (d,D).
(3) ((d,D)′)← = ((d,D)←)′.
(4) ((d,D) ◦ (d,D))′ = (d,D)′ ◦ (d,D)′.
(5) Each identity direlation (i, I ) is complemented.
(6) (d,D) � (e,E) �⇒ (d,D)′ � (e,E)′.
(7) (d,D) is complemented if and only if (d,D)′ � (d,D).
(8) ((d,D)  (e,E))′ � (d,D)′  (e,E)′.

Proof. The proofs of (1)–(5) are sketched in [8], while (6) and (7) are straightforward. For (8) note that ((d,D) 
(e,E))′ = ((D �E)′, (d  e)′), (d,D)′  (e,E)′ = (D′ E′, d ′ � e′) and assume that (D �E)′ � D′ E′. Since D �E

is a correlation, by Definition 2.1(2) there exist s ∈ S, t ∈ T with P (s,t) � D′  E′ for which we have u ∈ S, v ∈ T

satisfying P (u,v) � D � E, Pu � σ(Ps) and σ(Qt) � Qv . By the definition of D � E (see [3] or [16, Definition 1.8])
there exists v′ ∈ T with P (u,v) � Q(u,v′) and u′ ∈ S with Pu′ � Qu and P (u′,v′) � D,E. Since Pv � Qv′ we have
Qv′ ⊆ Qv and so θ(Qt ) � Qv′ , i.e., θ(Qv′) � Qt . Hence, by [8, Theorem 1.2(5)], we have t ′ ∈ T satisfying θ(Qv′) �
Qt ′ , whence θ(Qt ′) � Qv′ , and Pt ′ � Qt . Likewise we have s′ ∈ S satisfying Ps � Qs′ and Pu′ � σ(Ps′). We now
have P (s′,t ′) ⊆ D′,E′ by Definition 2.1(2), whence D′,E′ � Q(s′,t). This, together with Ps � Qs′ and the fact that
D′,E′ are relations, gives the contradiction P (s,t) ⊆ D′  E′ (see [3] or [16, Definition 1.8]).
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This establishes that (D � E)′ ⊆ D′  E′. The proof of d ′ � e′ ⊆ (d  e)′ is dual to this, and is omitted. �
Now let U be a direlational uniformity on (S,S, σ ) and set

U′ = {
(d,D)′ | (d,D) ∈ U

}
.

We have:

Theorem 2.3. For each direlational uniformity U the family U′ is also a direlational uniformity. The uniform ditopol-
ogy of U′ is (σ [κU], σ [τU]).

Proof. We must verify conditions (1)–(5) of [16, Definition 3.1].
(1) (d,D)′ ∈ U′ �⇒ (d,D) ∈ U �⇒ (i, I ) � (d,D) �⇒ (i, I ) = (i, I )′ � (d,D)′, by Proposition 2.2(2), (5),

and (6).
(2) (d,D)′ ∈ U′, (d,D)′ � (e,E) �⇒ (d,D) ∈ U, (d,D) � (e,E)′ �⇒ (e,E)′ ∈ U �⇒ (e,E) ∈ U′, by Proposi-

tion 2.2(2) and (6).
(3) (d,D)′, (e,E)′ ∈ U′ �⇒ (d,D), (e,E) ∈ U �⇒ (d,D)  (e,E) ∈ U �⇒ ((d,D)  (e,E))′ ∈ U. By Proposi-

tion 2.2(8) we now have (d,D)′  (e,E)′ ∈ U′.
(4) (d,D)′ ∈ U′ �⇒ (d,D) ∈ U �⇒ ∃(e,E) ∈ U satisfying (e,E) ◦ (e,E) � (d,D). Now we have (e,E)′ ∈ U′

and by Proposition 2.2(4) and (5), (e,E)′ ◦ (e,E)′ = ((e,E) ◦ (e,E))′ � (d,D)′.
(5) (d,D)′ ∈ U′ �⇒ (d,D) ∈ U �⇒ ∃(c,C) ∈ U with (c,C)← � (d,D). Hence (c,C)′ ∈ U′ and ((c,C)′)← =

((c,C)←)′ � (d,D)′ by Proposition 2.2(3) and (6).
To show τU′ = σ [κU], take K ∈ κU and s ∈ S with σ(K) � Qs . By [8, Lemma 2.19(2)] we have u ∈ S with

σ(K) � σ(Pu) and σ(Qu) � Qs . Now Pu � K , so there exists (d,D) ∈ U with K ⊆ D→Qu. Since Ps ⊆ σ(Qu)

we have (D′)→Ps ⊆ (D′)→σ(Qu) = σ(D→Qu) ⊆ σ(K) by [8, Lemma 2.20(1)]. This verifies σ(K) ∈ τU′ , so
σ [κU] ⊆ τU′ .

Dually it may be verified that G ∈ τU �⇒ σ(G) ∈ κU′ , so applying this to U′ and noting (U′)′ = U we have
τU′ ⊆ σ [κU]. This shows τU′ = σ [κU], and likewise κU′ = σ [τU]. �

This leads to the following definition.

Definition 2.4. For a given direlational uniformity U on (S,S, σ ) the direlational uniformity U′ = {(d,D)′ | (d,D) ∈
U} is called the complement of U. The di-uniformity U is said to be complemented if U′ = U.

Proposition 2.5. Let U be a direlational uniformity on (S,S, σ ).

(1) U is complemented if and only if it has a base of complemented direlations.
(2) The uniform ditopology of a complemented direlational uniformity is a complemented ditopology.

Proof. (1) Suppose U′ = U and take (d,D) ∈ U. Then (d,D) = (e,E)′ for some (e,E) ∈ U. Let (c,C) = (d,D) 
(e,E). Then (c,C) ∈ U and (c,C) � (d,D). Using Proposition 2.2(8), (2) we obtain (c,C)′ � (c,C), whence (c,C)

is complemented by Proposition 2.2(7). Thus U has a base of complemented direlations.
If, conversely, U has a base of complemented direlations it is trivial to verify U′ = U.
(2) If U is complemented then U′ = U so τU = τU′ = σ [κU] by Theorem 2.3. Hence the uniform ditopology of U

is complemented. �
Example 2.6. Consider the usual direlational uniformity UI on (I, I, ι) defined in [16]. For ε > 0 we have d ′

ε = Dε .
Indeed, suppose d ′

ε � Dε . Then we have s, t ∈ I with d ′
ε � Q(s,t) and P (s,t) � Dε . From P (s,t) � Dε we obtain

t > s −ε, so if we let u = 1−s and v = 1− t we have v < u+ε and so dε � Q(u,v), while ι(Qs) � Qu and Pv � ι(Pt ).
This gives the contradiction d ′

ε ⊆ Q(s,t), so d ′
ε ⊆ Dε . The reverse inclusion is proved likewise, so (dε,Dε)

′ = (dε,Dε),
which proves that UI has a base of complemented direlations. Hence UI is a complemented direlational uniformity
by Proposition 2.5.
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Proposition 2.7. Let U be a direlational uniformity on (S,S, σ ) with uniform ditopology (τU, κU). Then

U ∨ U′ = {
(d,D) | ∃(e,E) ∈ U with (e,E)  (e,E)′ � (d,D)

}

is a complemented direlational uniformity on (S,S, σ ). Moreover, the uniform ditopology of U ∨ U′ has base {G ∩
σ(K) | G ∈ τU, K ∈ κU} and cobase {K ∪ σ(G) | K ∈ κU, G ∈ τU}.

Proof. The proof that U ∨ U′ is a complemented direlational uniformity is a straightforward application of Propo-
sition 2.2, and is omitted. As suggested by the notation U ∨ U′ is the smallest di-uniformity containing U and U′.
In particular, the open sets of the uniform ditopologies of U, U′ are open for the uniform ditopology of U ∨ U′, so
β = {G ∩ σ(K) | G ∈ τU, K ∈ κU} ⊆ τU∨U′ . To show that β is a base, let us first note that for relations d, e in (S,S)

and s, s′ ∈ S with Ps′ � Qs we have

d→Ps ∩ e→Ps ⊆ (d  e)→Ps′ .

To see this, suppose the contrary and take t, t ′ ∈ S with d→Ps ∩ e→Ps � Qt , Pt � Qt ′ and Pt ′ � (d  e)→Ps′ . By [8,
Lemma 2.6(1)] we have d, e � Q(s,t) and so P (s′,t) ⊆ d  e by [16, Definition 1.8]. Hence d  e � Q(s′,t ′), which gives
the contradiction (d  e)→Ps′ � Qt ′ .

Now take H ∈ τU∨U′ and s ∈ S
 with H � Qs . Choose s′ ∈ S with H � Qs′ , Ps′ � Qs . By [16, Lemma 4.3(i)] we
have (d,D) ∈ U∨U′ with d→Ps′ ⊆ H , and by definition we have (e,E) ∈ U with (e,E) (e,E)′ � (d,D). Applying
the above inclusion to the relations e,E′ now gives

e→Ps ∩ (E′)→Ps ⊆ (e  E′)→Ps′ ⊆ d→Ps′ ⊆ H. (1)

It is easy to verify that for L ∈ S,

G(L) =
∨{

Pu | ∃(r,R) ∈ U with r→Pu ⊆ L
} ∈ τU,

K(L) =
⋂{

Qu | ∃(r,R) ∈ U with L ⊆ R→Qu

} ∈ κU

(cf. [16, Lemma 4.6]). We may also note that L ⊆ G(e→L) ⊆ e→L and E→L ⊆ K(E→L) ⊆ L. Hence, setting G =
G(e→Ps) gives Ps ⊆ G ⊆ e→Ps , G ∈ τU, while setting K = K(E→σ(Ps)) gives E→σ(Ps) ⊆ K ⊆ σ(Ps), whence
on taking the complement we obtain Ps ⊆ σ(K) ⊆ σ(E→σ(Ps)) = (E′)→Ps , K ∈ κU, by [8, Lemma 2.20(1)]. Hence
G ∩ σ(K) ∈ β and Ps ⊆ G ∩ σ(K) ⊆ H by (1), which completes the proof that β is a base of (τU∨U′ , κU∨U′) by [9,
Theorem 3.2(1)].

The proof that γ = {K ∪ σ(G) | K ∈ κU, G ∈ τU} is a cobase is dual to the above, and is omitted. �
Let us next consider the uniform bicontinuity of difunctions in relation to complementation. The following lemma

is fundamental.

Lemma 2.8. Let (f,F ) : (S,S, σ ) → (T ,T, θ) be a difunction between complemented textures. If (r,R) is a direlation
on (T ,T, θ) then

(f,F )−1(r,R) = ((
(f,F )′

)−1(
(r,R)′

))′
.

Proof. To establish ((F ′, f ′)−1(r ′))′ ⊆ (f,F )−1(r), assume the contrary. Then we have s1, s2 ∈ S with P (s1,s2) �
(f,F )−1(r) for which there exist u,v ∈ S satisfying

P (u,v) � (F ′, f ′)−1(r ′), Pu � σ(Ps1) and σ(Qs2) � Qv.

By [8, Lemma 2.19] we have s′
1 ∈ S with Pu � σ(Ps′

1
) and σ(Qs′

1
) � σ(Ps1). Since Ps1 � Qs′

1
, P (u,v) � (F ′, f ′)−1(r ′)

now gives the existence of t1, t2 ∈ S satisfying

P (s′
1,t1)

� F, f � Q(s2,t2) and P (t1,t2) � r.

On the other hand, since r ′ is a correlation, from P (u,v) � (F ′, f ′)−1(r ′) we obtain v′, u′ ∈ S with Pv � Qv′ , Pu′ � Qu

for which

∀z1, z2 ∈ S, F ′ � Q(u′,z ) and f ′ � Q(v′,z ) �⇒ P (z ,z ) � r ′. (2)
1 2 1 2
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(See the note following [16, Definition 5.1].) From P (s′
1,t1)

� F we have t ′1 ∈ S with Pt1 � Qt ′1 and P (s′
1,t

′
1)

� F .
By [8, Lemma 2.19] there exists w1 ∈ S with Pt1 � σ(Pw1), σ(Qw1) � Qt ′1 , and then w′

1 ∈ S with σ(Qw1) � σ(Pw′
1
),

σ(Qw′
1
) � Qt ′1 . Clearly P (u′,w′

1)
⊆ F ′ and P (u′,w′

1)
� Q(u′,w1) so F ′ � Q(u′,w1).

In the same way, working from f � Q(s2,t2), we obtain w2 ∈ S satisfying P (v′,w2) � f ′ and σ(Qw2) � Qt2 . Hence,
setting z1 = w1, z2 = w2 in the implication (2) gives P (w1,w2) � r ′. Now we have w′

2 ∈ S with Pw2 � Qw′
2

for which
there are α,β ∈ S satisfying

r � Q(α,β), σ (Qw1) � Qα and Pβ � σ(Pw′
2
).

Note that Pw′
2
⊆ Pw2 , whence σ(Pw2) ⊆ σ(Pw′

2
) and so Pβ � σ(Pw2).

From σ(Qw1) � Qα we obtain σ(Qα) � Qw1 and so Pw1 ⊆ σ(Qα). On the other hand, Pt2 � σ(Pw1) implies
Pw1 � σ(Pt1), so σ(Qα) � σ(Pt1) and therefore Pt1 � Qα . Since r � Q(α,β) we obtain r � Q(t1,β) by condition
R1 for r . Likewise, using Pβ � σ(Pw2) and σ(Qw2) � Qt2 we deduce Pβ � Qt2 , whence Qt2 ⊆ Qβ and we obtain
r � Q(t1,t2) and so the contradiction P (t1,t2) ⊆ r .

This completes the proof of ((F ′, f ′)−1(r ′))′ ⊆ (f,F )−1(r), and the reader may easily provide the proof of the dual
inclusion (f,F )−1(R) ⊆ ((F ′, f ′)−1(R′))′. Applying this latter result to the difunction (F ′, f ′) and the correlation
r ′ gives (F ′, f ′)−1(r ′) ⊆ ((f,F )−1(r))′ by [8, Proposition 2.21(1)], so taking the complement of both sides gives
(f,F )−1(r) ⊆ ((F ′, f ′)−1(r ′))′. Combined with the earlier inclusion this shows (f,F )−1(r) = ((F ′, f ′)−1(r ′))′. The
same method gives (f,F )−1(R) = ((F ′, f ′)−1(R′))′, so completing the proof. �

Now we have:

Theorem 2.9. Let (f,F ) : (S,S, σ ) → (T ,T, θ) be a difunction between complemented textures, U a direlational
uniformity on (S,S) and V on (T ,T). Then (f,F ) is U–V uniformly bicontinuous if and only if (f,F )′ is U′–V′
uniformly bicontinuous.

Proof. Let (f,F ) be U–V uniformly bicontinuous and take (e,E) ∈ V′. Then (e,E) = (d,D)′, (d,D) ∈ V, whence
(f,F )−1(d,D) ∈ U. Hence, by Lemma 2.7, ((f,F )′)−1(e,E) = ((f,F )′)−1((d,D)′) = ((f,F )−1(d,D))′ ∈ U′,
showing (f,F )′ to be U′–V′ uniformly bicontinuous.

Since the operation of taking the complement is idempotent the reverse implication is now clear. �
This immediately gives:

Corollary 2.10. With the notation as in Theorem 2.9, if U and V are complemented then (f,F ) is U–V uniformly
bicontinuous if and only if (f,F )′ is U–V uniformly bicontinuous.

Theorem 2.11. Let (S,S, σ ) be a complemented texture and (τ, κ) a ditopology on (S,S). Then there exists a comple-
mented direlational uniformity on (S,S, σ ) compatible with (τ, κ) if and only if (τ, κ) is complemented and completely
biregular.

Proof. Necessity is clear by Proposition 2.5(2) and [16, Theorem 4.14]. For sufficiency suppose that (τ, κ) is com-
plemented and completely biregular. By [16, proof of Theorem 5.16] we know that the initial direlational uniformity
U generated by the family D of all bicontinuous difunctions from (S,S, σ, τ, κ) to (I, I, ι, τI, κI), and the usual dire-
lational uniformity UI on (I, I, ι), is compatible with (τ, κ). Let us note the following:

Lemma 2.12. For k = 1,2, let (Sk,Sk, σk, τk, κk) be complemented ditopological texture spaces. Then the difunc-
tion (f,F ) : (S1,S1, σ1, τ1, κ1) → (S2,S2, σ2, τ2, κ2) is continuous (cocontinuous) if and only if its complement
(f,F )′ : (S1,S1, σ1, τ1, κ1) → (S2,S2, σ2, τ2, κ2) is cocontinuous (continuous).

Proof. Immediate from [8, Lemma 2.20(2)]. �
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Returning to the proof of the theorem, for (f,F ) ∈ D and ε > 0 we now have
(
(f,F )−1(dε,Dε)

)′ = (
(f,F )′

)−1(
(dε,Dε)

′) = (
(f,F )′

)−1
(dε,Dε) ∈ U

by Lemmas 2.8 and 2.12. By Proposition 2.2 we see that (f,F )−1(dε,Dε)  ((f,F )−1(dε,Dε))
′ is a complemented

element of U with

(f,F )−1(dε,Dε)  (
(f,F )−1(dε,Dε)

)′ � (f,F )−1(dε,Dε),

whence U has a base of complemented direlations. Hence U is complemented, as required. �
It is natural to ask if the complemented di-uniformity U in the proof of Theorem 2.11 may also be generated by the

complemented bicontinuous difunctions. The following example shows that this is not the case in general.

Example 2.13. Consider the discrete complemented texture (X,P(X),πX). Clearly any function ϕ :X → I satisfies
conditions (a), (b) and (c) of [9, Lemma 3.8] so the corresponding difunction (fϕ,Fϕ) is given by

fϕ =
∨

{P (s,ϕ(s)) | s ∈ S} and Fϕ =
⋂

{Q(s,ϕ(s)) | s ∈ S
}.
Moreover, since (X,P(X)) and (I, I) are plain textures, all difunctions have the form (fϕ,Fϕ) for some ϕ :X → I
by [8, Proposition 3.7]. Now,

F ′
ϕ =

∨{
P (x,α) | ∃y,β with P (y,β) � Fϕ, Py � πX(Px) and ι(Qα) � Qβ

}

=
⋃{{x} × [0, α] | ϕ(x) � 1 − α

}

= f1−ϕ,

and so (fϕ,Fϕ)′ = (f1−ϕ,F1−ϕ). The difunction (fϕ,Fϕ) is complemented if and only if fϕ = f1−ϕ , and so if and
only if ϕ = 1 − ϕ. This shows that the only complemented difunction from (X,P(X),πX) to (I, I, ι) is given by the
constant function 1

2 :X → I. Hence, in this case, there are certainly insufficient complemented difunctions to support
the generation of complemented di-uniformities on (X,P(X),πX).

To conclude this section we consider complementation from the point of view of dicovering uniformities. Let
C = {(Aj ,Bj ) | j ∈ J } be a dicover on the complemented texture (S,S, σ ). It is easy to see that C′ = {(σ (Bj ), σ (Aj )) |
j ∈ J } is also a dicover. The following lemma shows how this complementation on dicovers is related to the comple-
mentation of direlations defined above.

Lemma 2.14. Let C be a dicover on the complemented texture (S,S, σ ). Then δ(C)′ = δ(C′).

Proof. We must verify (D(C)′, d(C)′) = (d(C′),D(C′)). Since clearly (C′)′ = C, it will be sufficient to prove that
D(C)′ = d(C′).

Suppose that D(C)′ � d(C′). From Definition 2.1(2) we have s, t ∈ S with P (s,t) � d(C′) and u,v ∈ S satisfying
P (u,v) � D(C), Pu � σ(Ps) and σ(Qt) � Qv . Now from the definition of D(C) (see [16, Proposition 2.5]) we have
v′ ∈ S with P (u,v) � Q(u,v′), and j ∈ J satisfying Pv′ � Bj and Aj � Qu. It is now easy to verify that σ(Bj ) � Qt

and Ps � σ(Aj ), which leads to the contradiction P (s,t) ⊆ d(C′).
Now suppose that d(C′) � D(C)′. Then we have s, t ∈ S with P (s,t) � D(C)′ and j ∈ J satisfying σ(Bj ) � Qt and

Ps � σ(Aj ). Now σ(Qt) � Bj , Aj � σ(Ps) so we may take u,v ∈ S with Aj � Qu, Pu � σ(Ps) and σ(Qt) � Qv ,
Pv � Bj . Finally we may take v′ ∈ S satisfying Pv � Qv′ and Pv′ � Bj . From the definition of D(C) we obtain
D(C) ⊆ Q(u,v′), whence P (u,v) � D(C). However this, together with Pv � Bj and Aj � Qu, now gives the contradic-
tion P (s,t) ⊆ D(C)′ by Definition 2.1(2). �

We may now describe what we should mean by the complement of a dicovering uniformity υ by passing to the
direlational uniformity Δ(υ), taking the complement and then applying Γ (see [16]). This leads to the following:
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Proposition 2.15. For a dicovering uniformity υ on (S,S, σ ),

Γ
(
Δ(υ)′

) = {
D ∈ DC | ∃C ∈ υ with (C′)Δ ≺ D

}
.

Proof. Clearly Γ (Δ(υ)′) = {D ∈ DC | ∃C ∈ υ with γ (δ(C)′) ≺ D}. However, γ (δ(C)′) = γ (δ(C′)) = (C′)Δ by
Lemma 2.14 and [8, Theorem 2.7(2)]. �
Definition 2.16. Let υ be a dicovering uniformity on (S,S, σ ). Then the complement of υ is the covering di-uniformity
υ ′ with base (C′)Δ, C ∈ υ . The dicovering uniformity υ is said to be complemented if υ = υ ′.

Clearly Proposition 2.15 ensures that on a complemented texture, the notions of complement and of being comple-
mented for dicovering uniformities correspond precisely to the corresponding notions for direlational uniformities.

3. Uniformities and quasi-uniformities

In this section we investigate how the relation between quasi-uniformities and uniformities appears in the context
of di-uniformities. That is, we consider di-uniformities on the discrete texture (X,P(X),πX) and look at their relation
to classical uniformities and quasi-uniformities.

We begin by specializing various concepts concerning relations, correlations and difunctions to discrete textures,
and relate these to known concepts for binary point relations and point functions. Several of these results will be
needed in the sequel.

Lemma 3.1. Let (X,P(X),πX), (Y,P(Y ),πY ), (Z,P(Z),πZ) be discrete textures.

(1) Any binary point relation ϕ from X to Y is both a relation and a correlation from (X,P(X)) to (Y,P(Y )).
(2) If we regard ϕ ∈ P(X × Y) as a relation or as a correlation from (X,P(X),πX) to (Y,P(Y ),πY ) then ϕ′ =

(X × Y) \ ϕ.
(3) If we regard ϕ ∈ P(X × Y) as a relation or as a correlation from (X,P(X)) to (Y,P(Y )) then ϕ← = (Y × X) \

ϕ−1 = ((X × Y) \ ϕ)−1. In view of (2) we may therefore write

ϕ← = (
ϕ−1)′ = (ϕ′)−1.

(4) The identity direlation (iX, IX) on (X,P(X)) is given by

iX = {
(x, x) | x ∈ X

} = ΔX,

IX = {
(x, x′) | x, x′ ∈ X, x �= x′} = Δ′

X.

(5) If ϕ,ψ ∈ P(X × Y) are regarded as relations then ϕ  ψ = ϕ ∩ ψ .
(6) If ϕ,ψ ∈ P(X × Y) are regarded as correlations then ϕ � ψ = ϕ ∪ ψ .
(7) If ϕ ∈ P(X × Y) and ψ ∈ P(Y × Z) are regarded as relations then

ψ ◦ ϕ = {
(x, z) | ∃y ∈ Y, (x, y) ∈ ϕ, (y, z) ∈ ψ

}
,

the usual composition of the binary point relations ϕ, ψ .
(8) If ϕ ∈ P(X × Y) and ψ ∈ P(Y × Z) are regarded as correlations then

ψ ◦ ϕ = (ψ ′ ◦ ϕ′)′,

the complement of the usual composition of the binary relations ϕ′, ψ ′.
(9) If ϕ ∈ P(X × Y) is regarded as a relation and A ⊆ X then

ϕ→A = {
y | ∃x ∈ A with (x, y) ∈ ϕ

} = ϕ[A].
(10) If ϕ ∈ P(X × Y) is regarded as a correlation and A ⊆ X then

ϕ→A = {
y | (x, y) /∈ ϕ �⇒ x ∈ A

} = Y \ ϕ′[X \ A].
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(11) If ϕ ∈ P(X × Y) is regarded as a relation and B ⊆ Y then

ϕ←B = X \ ϕ−1[Y \ B].
(12) If ϕ ∈ P(X × Y) is regarded as a correlation and B ⊆ Y then

ϕ←B = (ϕ′)−1[B].
(13) If ϕ ∈ P(X × Y) is regarded as a relation and ψ ∈ P(X × Y) is regarded as a correlation then (ϕ,ψ) is a

difunction from (X,P(X)) to (Y,σ (P (Y )) if and only if ϕ :X → Y is a point function and ψ = ϕ′.
In particular, every difunction (S,S, σ ) → (T ,T, θ) is complemented.

Proof. We content ourselves with establishing (1), (11) and (13), leaving the proofs of the remaining results to the in-
terested reader. Note that for the discrete texture (X,P(X)), x ∈ X, we have Px = {x} and Qx = X \ {x}, whence
Px � Qx′ ⇐⇒ x = x′. Also, if ϕ is a binary point relation from X to Y then ϕ � Q(x,y) ⇐⇒ P (x,y) ⊆ ϕ ⇐⇒
(x, y) ∈ ϕ.

(1) If ϕ ⊆ X × Y then certainly ϕ ∈ P(X × Y) = P(X) ⊗ P(Y ). Suppose ϕ � Q(x,y). In (X,P(X)), Px � Qx′ �⇒
x = x′ �⇒ ϕ � Q(x′,y), which verifies R1, while R2 follows from Px � Qx and ϕ � Q(x,y). Hence ϕ is a relation
from (X,P(X)) to (Y,P(Y )). Likewise, it is a correlation.

(11) If ϕ is regarded as a relation, [16, Lemma 1.4(1)] gives,

r←B =
∨{

Px | ϕ � Q(x,y) �⇒ Py ⊆ B
}

= {
x | (x, y) ∈ ϕ �⇒ y ∈ B

}

= X \ ϕ−1[Y \ B].
(13) Let ϕ, ψ be binary point relations from X to Y , and regard (ϕ,ψ) as a direlation from (X,P(X)) to (Y,P(Y )).
(⇒) Suppose that (ϕ,ψ) is a difunction, and take x ∈ X. Since Px � Qx , by DF1 there exists y ∈ Y satisfying

ϕ � Q(x,y) and P (x,y) � ψ . In particular, (x, y) ∈ ϕ. On the other hand, if we also have (x, y′) ∈ ϕ for some y′ ∈ Y

then ϕ � Q(x,y′) and this, together with P (x,y) � ψ gives Py � Qy′ by DF2, and so y′ = y. This shows that ϕ is a
point function, that is a function in the ordinary sense. The above argument also shows that for the unique y for which
(x, y) ∈ ϕ we have (x, y) /∈ ψ , that is (x, y) ∈ ϕ �⇒ (x, y) /∈ ψ .

On the other hand, suppose that for some x ∈ X, y ∈ Y we have (x, y) /∈ ϕ and (x, y) /∈ ψ . Then, as above, we have
w ∈ Y satisfying (x,w) ∈ ϕ, and now DF2 gives w = y, which is a contradiction. Hence (x, y) /∈ ψ �⇒ (x, y) ∈ ϕ,
and we have verified that ψ = X × Y \ ϕ = ϕ′ by (1).

(⇐) Left to the interested reader.
Since every difunction (S,S, σ ) → (T ,T, θ) has the form (ϕ,ϕ′), and (ϕ,ϕ′)′ = ((ϕ)′)′, ϕ′) = (ϕ,ϕ′) we deduce

that every such difunction is complemented. �
Definition 3.2. Let d ⊆ X × X be a point relation. We define

u(d) = (d, d←)

and regard this as a direlation on (X,P(X)).

According to Lemma 3.1(1) we may indeed regard d as a relation on (X,P(X)), whence d← is a correlation and
the definition is consistent.

Theorem 3.3. Let Q be a diagonal quasi-uniformity on X. Then the family

u(Q) = {
(e,E) | ∃d ∈ Q and u(d) � (e,E)

}

is a direlational uniformity on the discrete texture (X,P(X)).

Proof. We must show that conditions 1–5 of [16, Definition 3.1] hold for u(Q).
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(1) Take (e,E) ∈ u(Q). Then we have d ∈ Q with u(d) � (e,E). Since Q is a quasi-uniformity ΔX ⊆ d , and
ΔX = iX by Lemma 3.1(4), so iX ⊆ d . Hence IX = i←X ⊇ d←, so (iX, IX) � (d, d←) = u(d) � (e,E), that is (e,E)

is reflexive.
(2) Clear from the definition.
(3) Take (e,E), (f,F ) ∈ u(Q) and d,h ∈ Q with u(d) = (d, d←) � (e,E) and u(h) = (h,h←) � (f,F ). Now

d ∩ h ∈ Q since Q is a quasi-uniformity, d ∩ h = d  h by Lemma 3.1(5) and (d  h)← = d← � h← by [16, Proposi-
tion 1.9(4)] so

u(d ∩ h) = (d  h,d← � h←) = (d, d←)  (h,h←) = u(d)  u(h) � (e,E)  (f,F ).

Hence (e,E)  (f,F ) ∈ u(Q).
(4) Take (e,E) ∈ u(Q) and d ∈ Q with u(d) � (e,E). Since Q is a quasi-uniformity there exists h ∈ Q with

h ◦ h ⊆ d . Here ◦ denotes the composition of point relations, which coincides with the composition of relations
in (X,P(X)) by Lemma 3.1(7). Hence u(h) ◦ u(h) = (h,h←) ◦ (h,h←) = (h ◦ h,h← ◦ h←) = (h ◦ h, (h ◦ h)←) �
(d, d←) = u(d) � (e,E) by [8, Lemma 2.17(2) and Lemma 2.4(3)]. Finally, u(h) ∈ u(Q).

(5) Clear since for d ∈ Q we have u(d)← = (d, d←)← = ((d←)←, d←) = (d, d←) = u(d), whence u(Q) has
a base of symmetric direlations. �

Since u is clearly a bijection between the binary point relations on X and the symmetric direlations on (X,P(X)),
it is clear by Theorem 3.3 that it also sets up a bijection between the diagonal quasi-uniformities on X and the
direlational uniformities on (X,P(X)).

Let Q be a quasi-uniformity on X and recall [11,15] that Q−1 = {d−1 | d ∈ Q} is also a quasi-uniformity on X,
called the conjugate of Q.

Proposition 3.4. Let Q be a quasi-uniformity on X and Q−1 its conjugate. Then the direlational uniformity on
(X,P(X),πX) corresponding to Q−1 is the complement of the direlational uniformity corresponding to Q. That is,

u
(
Q−1) = u(Q)′.

Proof. For any d ⊆ X × X let us show that

(d, d←)′ = (
d−1,

(
d−1)←)

.

Clearly (d, d←)′ = ((d←)′, d ′) by the definition of complement. If we take ϕ = d in Lemma 3.1(3) we obtain d← =
(d−1)′, whence (d←)′ = ((d−1)′)′ = d−1 by [8, Proposition 2.21(1)]. Also, taking ϕ = d−1 in Lemma 3.1(3) gives
(d−1)← = ((d−1)−1)′ = d ′ and so ((d←)′, d ′) = ((d−1, (d−1)←) as stated. Since {u(d) | d ∈ Q} is a base for u(Q),
{u(d)′ | d ∈ Q} is a base for u(Q)′. On the other hand {u(d−1) | d ∈ Q} is a base for u(Q−1) since {d−1 | d ∈ Q} is a
base for Q−1, so the equality u(d)′ = u(d−1) proved above shows that u(Q)′ = u(Q−1). �
Theorem 3.5. Let Q be a quasi-uniformity on X. Then Q is a uniformity if and only if the corresponding di-uniformity
u(Q) on (X,P(X),πX) is complemented.

Proof. If Q is a uniformity then Q = Q−1 and so u(Q)′ = u(Q−1) = u(Q) by Proposition 3.4, that is u(Q) is comple-
mented.

Conversely suppose that u(Q) is complemented. Then by Proposition 3.4, u(Q−1) = u(Q)′ = u(Q). Hence if d ∈ Q

we have u(d) ∈ u(Q) = u(Q−1) and so there exists e ∈ Q satisfying u(e−1) � u(d). In particular e−1 ⊆ d , which
establishes that Q is a uniformity. �

Theorem 3.3 shows that direlational uniformities are the textural analogue of diagonal quasi-uniformities, while
Theorem 3.5 says that complemented direlational uniformities are the textural analogue of diagonal uniformities.
Hence the distinction between quasi-uniformities and uniformities, which is a matter of symmetry in the classical
representation, becomes a question of complementation in the textural case, even for discrete textures.

This difference between the two representations has important consequences. Let us recall that a quasi-uniformity Q

on X gives rise to a bitopological space (X,TQ,TQ−1), where TQ is the topology generated by Q and TQ−1 that gener-
ated by Q−1. It follows easily that (TQ,Tc

−1), T
c

−1 = πX[TQ−1], is the uniform ditopology of u(Q), so a bitopological

Q Q
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space (X,u, v) is pairwise completely regular if and only if the ditopological texture space (X,P(X),u, vc) is com-
pletely biregular. We know from [16, proof of Theorem 5.16] that a compatible di-uniformity on (X,P(X),πX,u, vc)

may be obtained as an initial di-uniformity generated by bicontinuous difunctions mapping to the complemented di-
uniform space (I, I, ι, τI, κI) and the natural di-uniformity UI on (I, I, ι). Moreover, by Theorem 2.11, if (u, vc) is
complemented, that is u = v, we obtain a compatible complemented di-uniformity. This means that both a quasi-
uniformity compatible with a pairwise completely regular bitopology (u, v), and a uniformity compatible with a
completely regular topology u, may be obtained from the same space (I, I, ι, τI, κI,UI). This is because of the pres-
ence of sufficient non-complemented difunctions from (X,P(X),πX) to (I, I, ι) (see Example 2.13). On the other
hand, by Lemma 3.1(13), all difunctions between discrete textures are complemented, which explains why different
structures are needed to generate the above quasi-uniformities and uniformities in the classical theory. This illus-
trates quite clearly that the textural representation can provide a more uniform treatment of quasi-uniformities and
uniformities.

We conclude this paper by considering this relationship between the textural and classical cases in terms of covers.
It is well known that uniformities on a set X may be described in terms of covers of X [14,19], but ordinary covers
cannot be used to describe quasi-uniformities since they generate symmetric relations or entourages. Gantner and
Steinlage [12] presented a description of quasi-uniformities in terms of pairs of covers with a common index set, and
Aydın [1] independently developed a theory of quasi-uniformities using the essentially equivalent concept of dual
cover. Dual covers were also studied extensively in a bitopological setting by the second author [2]. Since dual covers
are not so well known we outline the development of the theory of dual-covering quasi-uniformities and show formally
its equivalence with that of diagonal quasi-uniformities.

Let X be a set. We recall [1,2] that a family U = {(Aj ,Bj ) | j ∈ J } of subsets of X is called a dual cover of X if⋃{Aj ∩ Bj | j ∈ J } = X. We may usually assume without loss of generality that Aj ∩ Bj �= ∅ for all j ∈ J .
If U,V are dual covers of X we say U refines V , and write U ≺ V if whenever AUB there exists CV D satisfying

A ⊆ C and B ⊆ D. For Y ⊆ X there are two different stars of Y with respect to U , namely

St(U,Y ) =
⋃

{A | ∃B with AUB and Y ∩ B �= ∅},
St(Y,U) =

⋃
{B | ∃A with AUB and A ∩ Y �= ∅}.

In case Y is a single point set {x} we write St(U,x), St(x,U) in place of St(U, {x}), St({x},U) respectively. Now U

is called a delta refinement (star refinement) of V , and we write U ≺(Δ) V (U ≺(�) V ) if UΔ = {(St(U,x),St(x,U)) |
x ∈ X} ≺ V (U∗ = {(St(U,A),St(B,U)) | AUB} ≺ V ). We recall that U ≺(Δ) V ≺(Δ) W �⇒ U ≺(�) W [1,2].

We also note that if U , V are dual covers of X then U ∧ V = {(A ∩ C,B ∩ D) | AUB,CV D} is also a dual cover
of X—the greatest lower bound of U and V in the family of dual covers of X ordered by refinement.

Given a binary point relation ϕ on X we may associate with ϕ the family

γ ∗(ϕ) = {(
ϕ[x], ϕ−1[x]) | x ∈ X

}
,

where, as usual, ϕ[x] = {y ∈ X | (x, y) ∈ ϕ} and ϕ−1[x] = {y ∈ X | (y, x) ∈ ϕ}. It is clear that if ΔX ⊆ ϕ, i.e. ϕ is
reflexive in the classical sense, then γ ∗(ϕ) is a dual cover of X. If we call a dual cover U of X uniform for the diagonal
quasi-uniformity Q if γ ∗(d) ≺ U for some d ∈ Q, and denote the family of uniform dual covers of Q by Γ ∗(Q), then:

Proposition 3.6. For a given diagonal quasi-uniformity Q the family Γ ∗(Q) of uniform dual covers has the properties,

(1) Γ ∗(Q) has a base of dual covers U satisfying AUB �⇒ A ∩ B �= ∅.
(2) U ∈ Γ ∗(Q), U ≺ V �⇒ V ∈ Γ ∗(Q).
(3) U , V ∈ Γ ∗(Q) �⇒ U ∧ V ∈ Γ ∗(Q).
(4) U ∈ Γ ∗(Q) �⇒ ∃V ∈ Γ (Q) with V ≺(�) U .

Proof. (1) Clear since the dual covers γ ∗(ϕ), ϕ ∈ Q have this property because x ∈ ϕ[x] ∩ ϕ−1[x] �= ∅.
(2) Immediate from the definition of Γ ∗(Q).
(3) For U , V ∈ Γ ∗(Q) we have d, e ∈ Q with γ ∗(d) ≺ U and γ ∗(e) ≺ V . But now d ∩ e ∈ Q and γ ∗(d ∩ e) ≺

γ ∗(d) ∧ γ ∗(e) since for x ∈ X, (d ∩ e)[x] = d[x] ∩ e[x], (d ∩ e)−1[x] = d−1[x] ∩ e−1[x] and d[x] ∩ e[x](γ ∗(d) ∧
γ ∗(e))d−1[x] ∩ e−1[x]. Hence γ ∗(d ∩ e) ≺ U ∧ V , that is U ∧ V ∈ Γ ∗(Q).
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(4) Take U ∈ Γ ∗(Q) and d ∈ Q with γ ∗(d) ≺ U . Since Q is a quasi-uniformity there exists e ∈ Q satisfying
e ◦ e ⊆ d . Now, for x ∈ X,

St
(
γ ∗(e), x

) =
⋃{

e[u] | x ∈ e−1[u]} = d[x],
and likewise St(x, γ ∗(e)) ⊆ d−1[x]. Thus γ ∗(e) ≺(Δ) γ ∗(d), and if we take f ∈ Q with f ◦ f ⊆ e then also γ ∗(f ) ≺
(Δ) γ ∗(e), whence γ ∗(f ) ≺(�) γ ∗(d). Setting V = γ ∗(f ) now gives V ∈ Γ ∗(Q) and V ≺(�) U , as required. �

These conditions on Γ ∗(Q) are precisely what are needed for Γ ∗(Q) to be a dual-covering quasi-uniformity in the
sense of [1,2]2 (cf. [12]). Hence:

Corollary 3.7. For every diagonal quasi-uniformity Q on X, Γ ∗(Q) is a dual-covering quasi-uniformity on X.

Working in the opposite direction, for a dual cover U on X define

δ∗(U) =
⋃

{B × A | AUB}.
Since U is a dual cover, given x ∈ X there exists AUB with x ∈ A ∩ B and so (x, x) ∈ δ∗(U). Thus ΔX ⊆ δ∗(U), i.e.
δ∗(U) is a reflexive binary point relation on X in the classical sense. If U is a dual-covering quasi-uniformity on X

we may therefore set

Δ∗(U) = {
d | ∃U ∈ U with δ∗(U) ⊆ d ⊆ X × X

}
.

Proposition 3.8. For every dual-covering quasi-uniformity U on X, Δ∗(U) is a diagonal quasi-uniformity on X.

Proof. (1) d ∈ Δ∗(U), d ⊆ e ⊆ X × X �⇒ e ∈ Δ∗(U) is immediate from the definition.
(2) Given d ∈ Δ∗(U) we have U ∈ U with δ∗(U) ⊆ d . Since ΔX ⊆ δ∗(U), as noted above, we have ΔX ⊆ d .
(3) Take d, e ∈ Δ∗(U) and U,V ∈ U with δ∗(U) ⊆ d and δ∗(V ) ⊆ e. Then it is easy to verify that δ∗(U ∧ V ) ⊆

δ∗(U) ∩ δ∗(V ) ⊆ d ∩ e, whence d ∩ e ∈ Δ∗(U) since U ∧ V ∈ U.
(4) Take d ∈ Δ∗(U), U ∈ U with δ∗(U) ⊆ d and V ∈ U satisfying V ≺ (�) U . The reader may easily verify that

δ∗(V ) ◦ δ∗(V ) ⊆ δ∗(U), whence if we take e = δ∗(V ) we have e ∈ Δ∗(U) and e ◦ e ⊆ d . �
Theorem 3.9. The mappings Γ ∗ and Δ∗ are dual to one another. That is, for each diagonal quasi-uniformity Q and
dual-covering quasi-uniformity U we have

(1) Q = Δ∗(Γ ∗(Q)), and
(2) U = Γ ∗(Δ∗(U)).

Proof. We establish (1), leaving the proof of (2) to the interested reader.
Take d ∈ Q and e ∈ Q satisfying e ◦ e ⊆ d . Clearly

δ∗(γ ∗(e)) =
⋃{

e−1[x] × e[x] | x ∈ X
} ⊆ d,

while δ∗(γ ∗(e)) ∈ Δ∗(Γ ∗(Q)), and so d ∈ Δ∗(Γ ∗(Q)).
Conversely take d ∈ Δ∗(Γ ∗(Q)). Now we have U ∈ Γ ∗(Q) with δ∗(U) ⊆ d , and then e ∈ Q satisfying δ∗(e) ≺ U .

For (x, y) ∈ e take AUB satisfying e[x] ⊆ A and e−1[x] ⊆ B . Then, since e is reflexive, (x, y) ∈ e−1[x] × e[x] ⊆
B × A ⊆ δ∗(U) ⊆ d , which gives e ⊆ d and hence d ∈ Q. �

Clearly Γ ∗, Δ∗ are the counterparts for diagonal and dual-covering quasi-uniformities of the mappings Γ , Δ,
respectively, defined in [16].

Dual covers formed the inspiration for the notion of dicover, and we now make the connection between dual covers
and dicovers explicit in the case of discrete textures.

2 Condition (1) does not appear in [1,2] explicitly because there is an overall assumption that every pair in a dual cover has non-empty intersection.
Subsequently it was found convenient to permit dual covers not satisfying this condition, as is done here.



3306 S. Özçağ, L.M. Brown / Topology and its Applications 153 (2006) 3294–3307
Proposition 3.10. Let U = {(Aj ,Bj ) | j ∈ J } be a dual cover on X. Then

u�(U) = {
(Aj ,X\Bj ) | j ∈ J

}

is a dicover on (X,P(X)). Moreover, if U satisfies Aj ∩ Bj �= ∅ ∀j ∈ J then u∗(U) is anchored.

Proof. To show u∗(U) is a dicover it will suffice to show that P = {(Px,Qx) | x ∈ X} ≺ u∗(U). Take x ∈ X. Since
U is a dual cover there exists j ∈ J satisfying x ∈ Aj ∩ Bj . Hence Px = {x} ⊆ Aj and X \ Bj ⊆ X \ {x} = Qx , as
required.

Secondly, suppose that U satisfies Aj ∩ Bj �= ∅ for all j ∈ J . We have already verified P ≺ u∗(U), as required
by [16, Definition 2.1(1)]. To verify [16, Definition 2.1(2)], associate with j ∈ J an element x = x(j) ∈ X satisfying
x ∈ Aj ∩ Bj . Now for (a) take Aj � Qu. If we choose A′ = Aj , B ′ = X \ Bj then A′u∗(U)B ′, A′ � Qu and Ps � B ′.
Condition (b) may be verified in the same way, so u∗(U) is an anchored dicover, as stated. �

For any dual covering quasi-uniformity U on X let us set

u∗(U) = {
C | C is a dicover of

(
X,P(X)

)
and ∃U ∈ U with u∗(U) ≺ C

}
.

Theorem 3.11. For any diagonal quasi-uniformity Q on X, u∗(Γ ∗(Q)) = Γ (u(Q)).

Proof. First take C ∈ u∗(Γ ∗(Q)), so we have U ∈ Γ ∗(Q) with u∗(U) ≺ C and then d ∈ Q satisfying γ ∗(d) ≺ U . Now
u(d) = (d, d←), where d is regarded as a relation on (X,P(X)), and so

γ
(
u(d)

) = {(
d→Px, (d

←)→Qx

) | x ∈ X
}
.

By Lemma 3.1(9) we have d→Px = d→{x} = d[{x}] = d[x] and by [8] and Lemma 3.1(11), (d←)→Qx = d←(X \
{x}) = X \ d−1[{x}] = X \ d−1[x]. Hence

γ
(
u(d)

) = {(
d[x],X \ d−1[x]) | x ∈ X

} = u∗(γ ∗(d)
) ≺ C,

which shows that u∗(Γ ∗(Q)) ⊆ Γ (u(Q)).
The proof of the opposite inclusion is left to the reader. �

Corollary 3.12.

(a) For every dual covering quasi-uniformity U, u∗(U) is a dicovering uniformity on (X,P(X)).
(b) The mapping u∗ is a bijection between the dual covering quasi-uniformities on X and the dicovering uniformities

on (X,P(X)).

Proof. If we set Q = Δ∗(U) in the above identity and use Theorem 3.9(2) we obtain u∗(U) = Γ (u(Δ∗(U))). Since the
right-hand side is known to be a dicovering uniformity, so is u∗(U). Also, Γ , u and Δ∗ are bijective, so u∗ is bijective
too. �

Finally, we characterize those quasi-uniformities which are uniformities in terms of dual covering quasi-
uniformities and dicovering uniformities.

Theorem 3.13. Let Q be a diagonal quasi-uniformity on X. Then the following are equivalent:

(1) Q is a uniformity.
(2) U = Γ ∗(Q) satisfies U ∈ U �⇒ ∃V ∈ U with V −1 = {(B,A) | AV B} ≺ U .
(3) u∗(U) is a complemented dicovering uniformity on (X,P(X),πX).

Proof. (1) ⇒ (2). Take U ∈ U = Γ ∗(Q), d ∈ Q with γ ∗(d) ≺ U and e ∈ Q with e−1 ⊆ d . Let V = γ ∗(e). Then V ∈ U

and V −1 = {(e−1[x], e[x]) | x ∈ X} ≺ {(d[x], d−1[x]) | x ∈ X} = γ ∗(d) ≺ U .
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(2) ⇒ (3). According to Definition 2.16 we must show that the family (C′)Δ, C ∈ u∗(U), is a base for u∗(U). For
C ∈ u∗(U) we have U ∈ U with u∗(U) ≺ C. By (2) there exists V ∈ U with V −1 ≺ U , and by Proposition 3.6 we may
assume that AV B �⇒ A ∩ B �= ∅. Finally, there exists W ∈ U with W ≺(�) V . We verify that

u∗(V ) ≺ (
u∗(U)′

)Δ ≺ (C′)Δ and
(
u∗(W)′

)Δ ≺ u∗(U) ≺ C,

which gives the required result. First let us note that u∗(U) = {(A,X \ B) | AUB}, whence u∗(U)′ = {(B,X \ A) |
AUB} and so for any x ∈ X,

St
(
u∗(U)′,Px

) =
⋃

{B | Px � X \ A, AUB} = St(x,U),

and likewise CSt(u∗(U)′,Qx) = X \ St(U,x). Here we recall that CSt denotes the co-star with respect to a dicover,
which is defined dually to the star St [16].

Now take AV B and x ∈ A ∩ B . Then B ⊆ C, A ⊆ D for some CUD and so A ⊆ D ⊆ St(x,U) = St(u∗(U)′,Px),
CSt(u∗(U),Qx) = X \ St(U,x) ⊆ X \ C ⊆ X \ B which gives u∗(V ) ≺ (u∗(U)′)Δ ≺ (C′)Δ. The remaining refine-
ments may be shown in the same way.

(3) ⇒ (1). Clear from Proposition 2.8 and Theorem 3.5. �
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