A Subclass of Analytic Functions Defined by Using Certain Operators of Fractional Calculus

O. Altintaş
Department of Mathematics, Faculty of Science
Hacettepe University, 06532 Beytepe - Ankara, Turkey
H. Irmak
Department of Science Education, Faculty of Education
Hacettepe University, 06532 Beytepe - Ankara, Turkey
H. M. Srivastava
Department of Mathematics and Statistics
University of Victoria
Victoria, British Columbia V8W 3P4, Canada
hMSRI@UVVM.UVIC.CA

(Received December 1994; accepted January 1995)

Abstract

Making use of certain operators of fractional calculus, we introduce a new class $\mathbb{F}_{\delta}(n, \lambda, \alpha)$ of functions which are analytic in the open unit disk \mathcal{U} and obtain a necessary and sufficient condition for a function to be in the class $\mathbb{F}_{\delta}(n, \lambda, \alpha)$. We also determine the radii of close-to-convexity, starlikeness, and convexity. Finally, an application involving fractional calculus of functions in the class $\mathrm{F}_{\delta}(n, \lambda, \alpha)$ is considered.

Keywords-Analytic functions, Fractional calculus, Coefficient bounds, Distortion theorems, Close-to-convex functions, Starlike functions.

1. INTRODUCTION AND DEFINITIONS

Let $\mathbb{F}(n)$ denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=n+1}^{\infty} a_{k} z^{k}, \quad\left(a_{k} \geq 0 ; n \in \mathbb{N}:=\{1,2,3, \ldots\}\right) \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathcal{U}=\{z: z \in \mathbb{C} \text { and }|z|<1\}
$$

Let $\mathbb{F}_{\delta}(n, \lambda, \alpha)$ be the subclass of $\mathbb{F}(n)$ consisting of functions which also satisfy the inequality

$$
\begin{equation*}
\Re\left\{\Gamma(2-\delta) z^{\delta-1}\left[(1-\lambda) D_{z}^{\delta} f(z)+\lambda z D_{z}^{1+\delta} f(z)\right]\right\}>\alpha, \quad(\delta+\alpha<1) \tag{1.2}
\end{equation*}
$$

for some $\delta(0 \leq \delta<1), \lambda(0 \leq \lambda \leq 1)$, and $\alpha(0 \leq \alpha<1)$, and for all $z \in \mathcal{U}$. Here, and throughout this paper, D_{z}^{δ} denotes an operator of fractional calculus, which is defined as follows (cf., e.g., $[1,2]$).

[^0]Definition 1. The fractional integral of order μ is defined by

$$
\begin{equation*}
D_{z}^{-\mu} f(z)=\frac{1}{\Gamma(\mu)} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{1-\mu}} d \zeta, \quad(\mu>0) \tag{1.3}
\end{equation*}
$$

where $f(z)$ is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\mu-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $z-\zeta>0$.

Definition 2. The fractional derivative of order μ is defined by

$$
\begin{equation*}
D_{z}^{\mu} f(z)=\frac{1}{\Gamma(1-\mu)} \frac{d}{d z} \int_{0}^{z} \frac{f(\zeta)}{(z-\zeta)^{\mu}} d \zeta, \quad(0 \leq \mu<1) \tag{1.4}
\end{equation*}
$$

where $f(z)$ is constrained, and the multiplicity of $(z-\zeta)^{-\mu}$ is removed, as in Definition 1.
Definition 3. Under the hypotheses of Definition 1, the fractional derivative of order $k+\mu$ is defined by

$$
\begin{equation*}
D_{z}^{k+\mu} f(z)=\frac{d^{k}}{d z^{k}} D_{z}^{\mu} f(z), \quad\left(0 \leq \mu<1 ; k \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\}\right) . \tag{1.5}
\end{equation*}
$$

The object of the present paper is to investigate various interesting properties of functions belonging to the class $\mathbb{F}_{\delta}(n, \lambda, \alpha)$. We remark in passing that

$$
\begin{equation*}
\mathbb{F}_{0}(1, \lambda, \alpha)=\mathbb{F}_{\lambda}(\alpha), \quad(0 \leq \lambda \leq 1 ; 0 \leq \alpha<1) \tag{1.6}
\end{equation*}
$$

where the class $\mathbb{F}_{\lambda}(\alpha)$ was studied recently by Bhoosnurmath and Swamy [3].

2. A THEOREM ON COEFFICIENT BOUNDS

Theorem 1. A function $f(z) \in \mathbb{F}(n)$ is in the class $\mathbb{F}_{\delta}(n, \lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k} \leq 1-\lambda \delta-\alpha, \quad(\delta+\alpha<1) \tag{2.1}
\end{equation*}
$$

The result is sharp.
Proof. Suppose that $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$. Then, we find from Definitions 1 and 3 , and the inequality (1.2), that

$$
\Re\left\{1-\lambda \delta-\sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k} z^{k-1}\right\}>\alpha, \quad(z \in \mathcal{U})
$$

If we choose z to be real and let $z \rightarrow 1-$, we get

$$
1-\lambda \delta-\sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k} \geq \alpha, \quad(\delta+\alpha<1 ; 0 \leq \alpha<1 ; 0 \leq \delta<1)
$$

which is equivalent to the assertion (2.1) of Theorem 1.
Conversely, let us suppose that the inequality (2.1) holds true. Then, we have

$$
\begin{aligned}
\mid \Gamma(2-\delta) z^{\delta-1} & {\left[(1-\lambda) D_{z}^{\delta} f(z)+z \lambda D_{z}^{1+\delta} f(z)\right]-1+\gamma \delta \mid } \\
& =\left|-\sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k} z^{k-1}\right|
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k}|z|^{k-1} \\
& \leq 1-\lambda \delta-\alpha, \quad(z \in \mathcal{U} ; \delta+\alpha<1 ; 0 \leq \alpha<1 ; 0 \leq \delta<1)
\end{aligned}
$$

which implies that $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$.
Finally, we note that the assertion (2.1) of Theorem 1 is sharp, the extremal function being

$$
\begin{equation*}
f(z)=z-\frac{(1-\lambda \delta-\alpha) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2)} z^{n+1}, \quad(n \in \mathbb{N}) \tag{2.2}
\end{equation*}
$$

Corollary 1. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then

$$
\begin{equation*}
a_{n+1} \leq \frac{(1-\lambda \delta-\alpha) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2)}, \quad(n \in \mathbb{N}) \tag{2.3}
\end{equation*}
$$

Corollary 2. A function $f(z) \in \mathbb{F}(n)$ is in the class $\mathbb{F}_{0}(n, \lambda, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=n+1}^{\infty}[1+\lambda(k-1)] a_{k} \leq 1-\alpha, \quad(0 \leq \lambda \leq 1 ; 0 \leq \alpha<1) . \tag{2.4}
\end{equation*}
$$

Corollary 3. (cf., [3, p. 90, Theorem 1]). A function $f(z) \in \mathbb{F}(1)$ is in the class $\mathbb{F}_{0}(1, \lambda, \alpha)$ if the only if

$$
\begin{equation*}
\sum_{k=2}^{\infty}[1+\lambda(k-1)] a_{k} \leq 1-\alpha, \quad(0 \leq \lambda \leq 1 ; 0 \leq \alpha<1) . \tag{2.5}
\end{equation*}
$$

Corollary 4. If $f(z) \in \mathbb{F}_{0}(n, 1, \alpha)$, then $\Re\left\{f^{\prime}(z)\right\}>\alpha$ for all $z \in \mathcal{U}$.
Proof. Since $f(z) \in \mathbb{F}_{0}(n, 1, \alpha)$, we have (cf., [4])

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k a_{k} \leq 1-\alpha, \quad(0 \leq \alpha<1) \tag{2.6}
\end{equation*}
$$

The result now follows from Theorem 1.
Corollary 5. If $f(z) \in \mathbb{F}_{0}(n, 0, \alpha)$, then

$$
\Re\left\{\frac{f(z)}{z}\right\}>\frac{1-\alpha}{n+1}, \quad(n \in \mathbb{N})
$$

Proof. Since $f(z) \in \mathbb{F}_{0}(n, 0, \alpha)$, we have

$$
\begin{equation*}
(n+1) \sum_{k=n+1}^{\infty} a_{k} \leq \sum_{k=n+1}^{\infty} k a_{k} \leq 1-\alpha, \quad(0 \leq \alpha<1 ; n \in \mathbb{N}) \tag{2.7}
\end{equation*}
$$

by applying the known inequality (2.6). Therefore, we obtain

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leq \frac{1-\alpha}{n+1}, \quad(n \in \mathbb{N}) \tag{2.8}
\end{equation*}
$$

Corollary 6. (cf., [3, p. 91, Corollary 1.2]). If $f(z) \in \mathbb{F}_{0}(1,0,0)$, then

$$
\Re\left\{\frac{f(z)}{z}\right\}>\frac{1}{2},
$$

for all $z \in \mathcal{U}$.

Theorem 2. Let the function $f(z)$ defined by (1.1) and the function $g(z)$ defined by

$$
\begin{equation*}
g(z)=z-\sum_{k=n+1}^{\infty} b_{k} z^{k}, \quad\left(b_{k} \geq 0 ; n \in \mathbb{N}\right) \tag{2.9}
\end{equation*}
$$

be in the same class $\mathbb{F}_{\delta}(n, \lambda, \alpha)$. Then, the function $h(z)$ defined by

$$
\begin{aligned}
& h(z)=(1-\beta) f(z)+\beta g(z)=z-\sum_{k=n+1}^{\infty} c_{k} z^{k} \\
& \left(c_{k}:=(1-\beta) a_{k}+\beta b_{k} \geq 0 ; 0 \leq \beta \leq 1 ; n \in \mathbb{N}\right)
\end{aligned}
$$

is also in the class $\mathbb{F}_{\delta}(n, \lambda, \alpha)$.
Proof. By the hypotheses of Theorem 2, we find from (2.1) that

$$
\begin{aligned}
\sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} c_{k}= & (1-\beta) \sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k} \\
& +\beta \sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} b_{k} \\
\leq & (1-\beta)(1-\lambda \delta-\alpha)+\beta(1-\lambda \delta-\alpha)=1-\delta \lambda-\alpha,
\end{aligned}
$$

which completes the proof of Theorem 2.

3. DISTORTION THEOREMS INVOLVING OPERATORS OF FRACTIONAL CALCULUS

Theorem 3. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then

$$
\begin{equation*}
\left|D_{z}^{-\mu} f(z)\right| \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left(1+\frac{(1-\lambda \delta-\alpha) \Gamma(2+\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2+\mu)}|z|\right) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{-\mu} f(z)\right| \geq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left(1-\frac{(1-\lambda \delta-\alpha) \Gamma(2+\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2+\mu)}|z|\right) \tag{3.2}
\end{equation*}
$$

for $\mu>0$ and $n \in \mathbb{N}$, and for all $z \in \mathcal{U}$.
Proof. Suppose that $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$. Then, we find from (2.1) that

$$
\begin{equation*}
\frac{[1+\lambda(n-\delta)] \Gamma(n+2)}{\Gamma(n+2-\delta)} \sum_{k=n+1}^{\infty} a_{k} \leq \sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k}, \tag{3.3}
\end{equation*}
$$

which evidently yields

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} a_{k} \leq \frac{(1-\lambda \delta-\alpha) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2)}, \quad(n \in \mathbb{N}) \tag{3.4}
\end{equation*}
$$

Making use of (3.4) and Definition 1, we have

$$
\begin{align*}
D_{z}^{-\mu} f(z) & =\frac{z^{1+\mu}}{\Gamma(2+\mu)}\left(1-\sum_{k=n+1}^{\infty} \frac{\Gamma(k+1) \Gamma(2+\mu)}{\Gamma(k+1+\mu)} a_{k} z^{k-1}\right) \\
& =\frac{z^{1+\mu}}{\Gamma(2+\mu)}\left(1-\sum_{k=n+1}^{\infty} \Theta(k) a_{k} z^{k-1}\right), \tag{3.5}
\end{align*}
$$

where, for convenience,

$$
\Theta(k)=\frac{\Gamma(k+1) \Gamma(2+\mu)}{\Gamma(k+1+\mu)}, \quad(\mu>0 ; k \geq n+1 ; n \in \mathbb{N})
$$

Clearly, the function $\Theta(k)$ is decreasing in k, and we have

$$
\begin{equation*}
0<\Theta(k) \leq \Theta(n+1)=\frac{\Gamma(n+2) \Gamma(2+\mu)}{\Gamma(n+2+\mu)} \tag{3.6}
\end{equation*}
$$

Thus, we find from (3.4)-(3.6) that

$$
\begin{aligned}
\left|D_{z}^{-\mu} f(z)\right| & \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left(1+|z| \Theta(n+1) \sum_{k=n+1}^{\infty} a_{k}\right) \\
& \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left(1+\frac{(1-\lambda \delta-\alpha) \Gamma(2+\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2+\mu)}|z|\right)
\end{aligned}
$$

which is precisely the assertion (3.1), and that

$$
\begin{aligned}
\left|D_{z}^{-\mu} f(z)\right| & \geq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left(1-|z| \Theta(n+1) \sum_{k=n+1}^{\infty} a_{k}\right) \\
& \geq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left(1-\frac{(1-\lambda \delta-\alpha) \Gamma(2+\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2+\mu)}|z|\right)
\end{aligned}
$$

which is the same as the assertion (3.2).
Theorem 4. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then

$$
\begin{equation*}
\left|D_{z}^{\mu} f(z)\right| \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left(1+\frac{(1-\lambda \delta-\alpha) \Gamma(2-\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2-\mu)}|z|\right) \tag{3.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{\mu} f(z)\right| \geq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left(1-\frac{(1-\lambda \delta-\alpha) \Gamma(2-\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2-\mu)}|z|\right) \tag{3.8}
\end{equation*}
$$

for $0 \leq \mu<1$ and $n \in \mathbb{N}$, and for all $z \in \mathcal{U}$.
Proof. Suppose that $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$. Then, we find from (2.1) that

$$
\begin{equation*}
\frac{[1+\lambda(n-\delta)] \Gamma(n+1)}{\Gamma(n+2-\delta)} \sum_{k=n+1}^{\infty} k a_{k} \leq \sum_{k=n+1}^{\infty} \frac{[1+\lambda(k-1-\delta)] \Gamma(k+1)}{\Gamma(k+1-\delta)} a_{k} \tag{3.9}
\end{equation*}
$$

which evidently yields

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} k a_{k} \leq \frac{(1-\lambda \delta-\alpha) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+1)}, \quad(0 \leq \lambda \leq 1 ; 0 \leq \delta<1 ; n \in \mathbb{N}) \tag{3.10}
\end{equation*}
$$

Now, making use of (3.10) and Definition 2, we have

$$
\begin{align*}
D_{z}^{\mu} f(z) & =\frac{z^{1-\mu}}{\Gamma(2-\mu)}\left(1-\sum_{k=n+1}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\mu)}{\Gamma(k+1-\mu)} a_{k} z^{k-1}\right) \\
& =\frac{z^{1-\mu}}{\Gamma(2-\mu)}\left(1-\sum_{k=n+1}^{\infty} \Phi(k) k a_{k} z^{k-1}\right) \tag{3.11}
\end{align*}
$$

where, for convenience,

$$
\Phi(k)=\frac{\Gamma(k) \Gamma(2-\mu)}{\Gamma(k+1-\mu)} \quad(0 \leq \mu<1 ; k \geq n+1 ; n \in \mathbb{N}) .
$$

Since the function $\Phi(k)$ is decreasing in k, we also have

$$
\begin{equation*}
0<\Phi(k) \leq \Phi(n+1)=\frac{\Gamma(n+1) \Gamma(2-\mu)}{\Gamma(n+2-\mu)} . \tag{3.12}
\end{equation*}
$$

Thus, we find from (3.10)-(3.12) that

$$
\begin{aligned}
\left|D_{z}^{\mu} f(z)\right| & \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left(1+|z| \Phi(n+1) \sum_{k=n+1}^{\infty} k a_{k}\right) \\
& \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left(1+\frac{(1-\lambda \delta-\alpha) \Gamma(2-\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+2-\mu)}|z|\right),
\end{aligned}
$$

which is precisely the assertion (3.7), and that

$$
\begin{aligned}
\left|D_{z}^{\mu} f(z)\right| & \geq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left(1-|z| \Phi(n+1) \sum_{k=n+1}^{\infty} k a_{k}\right) \\
& \geq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left(1-\frac{(1-\lambda \delta-\alpha) \Gamma(2-\mu) \Gamma(n+2-\delta)}{[1+\lambda(n-\delta)] \Gamma(n+1-\mu)}|z|\right)
\end{aligned}
$$

which is the same as the assertion (3.8).
Theorem 5. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then

$$
\begin{equation*}
\left|D_{z}^{1+\delta} f(z)\right| \leq \frac{|z|^{-\delta}}{\Gamma(1-\delta)}\left(1+\frac{(1-\lambda \delta-\alpha)(n+1-\delta) \Gamma(1-\delta)}{1+\lambda(n-\delta)}|z|\right), \tag{3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D_{z}^{1+\delta} f(z)\right| \geq \frac{|z|^{-\delta}}{\Gamma(1-\delta)}\left(1-\frac{(1-\lambda \delta-\alpha)(n+1-\delta) \Gamma(2-\delta)}{1+\lambda(n-\delta)}|z|\right), \tag{3.14}
\end{equation*}
$$

for $0 \leq \delta<1$ and $n \in \mathbb{N}$, and for all $z \in \mathcal{U}$.
Proof. Suppose that $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$. Then, we find from (2.1) that

$$
\begin{gather*}
\sum_{k=n+1}^{\infty} \frac{\Gamma(k+1) \Gamma(1-\delta)}{\Gamma(k-\delta)} a_{k} \leq \frac{(1-\lambda \delta-\alpha)(n+1-\delta) \Gamma(1-\delta)}{1+\lambda(n-\delta)} \tag{3.15}\\
(0 \leq \lambda \leq 1 ; 0 \leq \delta<1 ; n \in \mathbb{N})
\end{gather*}
$$

On the other hand, by applying Definition 3 (with $k=1$ and $\mu=\delta$), we obtain

$$
\begin{equation*}
D_{z}^{1+\delta} f(z)=\frac{z^{-\delta}}{\Gamma(1-\delta)}\left(1-\sum_{k=n+1}^{\infty} \frac{\Gamma(k+1) \Gamma(1-\delta)}{\Gamma(k-\delta)} a_{k} z^{k-1}\right) . \tag{3.16}
\end{equation*}
$$

Thus, by combining (3.15) and (3.16), we immediately get the assertions (3.13) and (3.14) of Theorem 5 .

Setting $\delta=\mu=0$ in Theorem 4, we have the following corollary.
Corollary 7. If $f(z) \in \mathbb{F}_{0}(n, \lambda, \alpha)$, then

$$
\begin{equation*}
|z|-\frac{1-\alpha}{1+\lambda n}|z|^{2} \leq|f(z)| \leq|z|+\frac{1-\alpha}{1+\lambda n}|z|^{2}, \tag{3.17}
\end{equation*}
$$

for all $z \in \mathcal{U}$ and $n \in \mathbb{N}$.

For $\delta=0$, Theorem 5 yields the following corollary.
Corollary 8. If $f(z) \in \mathbb{F}_{0}(n, \lambda, \alpha)$, then

$$
\begin{equation*}
1-\frac{(1-\alpha)(n+1)}{1+\lambda n}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{(1-\alpha)(n+1)}{1+\lambda n}|z| \tag{3.18}
\end{equation*}
$$

for all $z \in \mathcal{U}$ and $n \in \mathbb{N}$.
Next, setting $\delta=\mu=0$ and $n=1$ in Theorem 4 (or, simply, $n=1$ in Corollary 7), we have the following corollary.

Corollary 9. (cf., $\left[3, p .91\right.$, Theorem 2]). If $f(z) \in \mathbb{F}_{0}(1, \lambda, \alpha)$, then

$$
\begin{equation*}
|z|-\frac{1-\alpha}{1+\lambda}|z|^{2} \leq|f(z)| \leq|z|+\frac{1-\alpha}{1+\lambda}|z|^{2} \tag{3.19}
\end{equation*}
$$

for all $z \in \mathcal{U}$.
If we set $\delta=0$ and $n=1$ in Theorem 5 (or, alternatively, if we just let $n=1$ in Corollary 8), we obtain the following corollary.

Corollary 10. (cf., [3, p. 92, Theorem 3]). If $f(z) \in \mathbb{F}_{0}(1, \lambda, \alpha)$, then

$$
\begin{equation*}
1-\frac{2(1-\alpha)}{1+\lambda}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{2(1-\alpha)}{1+\lambda}|z| \tag{3.20}
\end{equation*}
$$

for all $z \in \mathcal{U}$.
Numerous further consequences of Theorems 3-5 (and of Corollaries 7-10) can indeed be deduced by specializing the various parameters involved.

4. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS, AND CONVEXITY

A function $f(z) \in \mathbb{F}(n)$ is said to be close-to-convex of order β if it satisfies the inequality (cf., $[5,6]$)

$$
\begin{equation*}
\Re\left\{f^{\prime}(z)\right\}>\beta \tag{4.1}
\end{equation*}
$$

for some $\beta(0 \leq \beta<1)$ and for all $z \in \mathcal{U}$. On the other hand, a function $f(z) \in \mathbb{F}(n)$ is said to be starlike of order β if it satisfies the inequality (cf., $[5,6]$)

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta \tag{4.2}
\end{equation*}
$$

for some $\beta(0 \leq \beta<1)$ and for all $z \in \mathcal{U}$. Furthermore, a function $f(z) \in \mathbb{F}(n)$ is said to be convex of order β if and only if $z f^{\prime}(z)$ is starlike of order β, that is, if it satisfies the inequality (cf., $[5,6]$)

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta \tag{4.3}
\end{equation*}
$$

for some $\beta(0 \leq \beta<1)$ and for all $z \in \mathcal{U}$.
Theorem 6. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then $f(z)$ is close-to-convex of order β in $|z|<r_{1}(\alpha, \lambda, \delta, \beta)$, where

$$
r_{1}(\alpha, \lambda, \delta, \beta)=\inf _{k}\left[\frac{(1-\beta) \Gamma(k)[1+\lambda(k-1-\delta)]}{(1-\lambda \delta-\alpha) \Gamma(k+1-\delta)}\right]^{1 /(k-1)}, \quad(k \geq n+1 ; n \in \mathbb{N})
$$

Proof. It is sufficient to show that $\left|f^{\prime}(z)-1\right|<1-\beta$. Indeed, we have

$$
\begin{equation*}
\left|f^{\prime}(z)-1\right| \leq \sum_{k=n+1}^{\infty} k a_{k}|z|^{k-1} \leq 1-\beta \tag{4.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=n+1}^{\infty} \frac{\Gamma(k+1)[1+\lambda(k-\delta-1)]}{\Gamma(k+1-\delta)} a_{k} \leq 1-\lambda \delta-\alpha . \tag{4.5}
\end{equation*}
$$

Hence, (4.4) is true if

$$
\begin{equation*}
\frac{k|z|^{k-1}}{1-\beta} \leq \frac{\Gamma(k+1)[1+\lambda(k-\delta-1)]}{(1-\lambda \delta-\alpha) \Gamma(k+1-\delta)}, \quad(k \geq n+1 ; n \in \mathbb{N}) . \tag{4.6}
\end{equation*}
$$

Solving (4.6) for $|z|$, we obtain

$$
|z| \leq\left[\frac{(1-\beta) \Gamma(k)[1+\lambda(k-1-\delta)]}{(1-\lambda \delta-\alpha) \Gamma(k+1-\delta)}\right]^{1 /(k-1)}, \quad(k \geq n+1 ; n \in \mathbb{N})
$$

which obviously proves Theorem 6.
Theorem 7. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then $f(z)$ is starlike of order β in

$$
|z|<r_{2}(\alpha, \lambda, \delta, \beta),
$$

where

$$
r_{2}(\alpha, \lambda, \delta, \beta)=\inf _{k}\left[\frac{(1-\beta) \Gamma(k+1)[1+\lambda(k-1-\delta)]}{(k-\beta)(1-\lambda \delta-\alpha) \Gamma(k+1-\delta)}\right]^{1 /(k-1)}, \quad(k \geq n+1 ; n \in \mathbb{N})
$$

Proof. We must show that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\beta, \quad \text { for } \quad|z|<r_{2}(\alpha, \lambda, \delta, \beta) .
$$

In fact, we have

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=n+1}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=n+1}^{\infty} a_{k}|z|^{k-1}} \leq 1-\beta, \tag{4.7}
\end{equation*}
$$

if

$$
\begin{equation*}
\frac{(k-\beta)|z|^{k-1}}{1-\beta} \leq \frac{\Gamma(k+1)[1+\lambda(k-\delta-1)]}{(1-\lambda \delta-\alpha) \Gamma(k+1-\delta)}, \quad(k \geq n+1 ; n \in \mathbb{N}), \tag{4.8}
\end{equation*}
$$

which evidently proves Theorem 7 .
Corollary 11. If $f(z) \in \mathbb{F}_{\delta}(n, \lambda, \alpha)$, then $f(z)$ is convex of order β in

$$
|z|<r_{3}(\alpha, \lambda, \delta, \beta),
$$

where

$$
r_{3}(\alpha, \lambda, \delta, \beta)=\inf _{k}\left[\frac{(1-\beta) \Gamma(k)[1+\lambda(k-1-\delta)]}{(k-\beta)(1-\lambda \delta-\alpha) \Gamma(k+1-\delta)}\right]^{1 /(k-1)}, \quad(k \geq n+1 ; n \in \mathbb{N})
$$

Corollary 12. If $f(z) \in \mathbb{F}_{0}(1, \lambda, \alpha)$, then $f(z)$ is close-to-convex of order β in $|z|<r_{4}(\alpha, \lambda, \beta)$, where

$$
r_{4}(\alpha, \lambda, \beta)=\inf _{k}\left[\frac{(1-\beta)[1+\lambda(k-1)]}{k(1-\alpha)}\right]^{1 /(k-1)}, \quad(k \in \mathbb{N} \backslash\{1\}) .
$$

Corollary 13. If $f(z) \in \mathbb{F}_{0}(1, \lambda, \alpha)$, then $f(z)$ is starlike of order β in $|z|<r_{5}(\alpha, \lambda, \beta)$, where

$$
r_{5}(\alpha, \lambda, \beta)=\inf _{k}\left[\frac{(1-\beta)[1+\lambda(k-1)]}{(k-\beta)(1-\alpha)}\right]^{1 /(k-1)}, \quad(k \in \mathbb{N} \backslash\{1\})
$$

Corollary 14. If $f(z) \in \mathbb{F}_{0}(1, \lambda, \alpha)$, then $f(z)$ is convex of order β in $|z|<r_{6}(\alpha, \lambda, \beta)$, where

$$
r_{6}(\alpha, \lambda, \beta)=\inf _{k}\left[\frac{(1-\beta)[1+\lambda(k-1)]}{k(k-\beta)(1-\alpha)}\right]^{1 /(k-1)}, \quad(k \in \mathbb{N} \backslash\{1\}) .
$$

In their special cases when $\beta=0$, Corollaries $12-14$ were proved earlier by Bhoosnurmath and Swamy [3, pp. 93-94, Theorems 5 and 6].

REFERENCES

1. S. Owa, On the distortion theorems. I, Kyungpook Math. J. 18, 53-59 (1978).
2. S. Owa and H.M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39, 1057-1077 (1987).
3. S.S. Bhoosnurmath and S.R. Swamy, Certain classes of analytic functions with negative coefficients, Indian J. Math. 27, 89-98 (1985).
4. H. Silverman, Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51, 109-116 (1975).
5. P.L. Duren, Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Vol. 259, SpringerVerlag, New York, (1983).
6. H.M. Srivastava and S. Owa, Editors, Current Topics in Analytic Function Theory, World Scientific, Singapore, (1992).

[^0]: The present investigation was supported, in part, by the Natural Sciences and Engineering Research Council of Canada under Grant OGP0007353.

