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WEAK (C11
+) MODULES WITH ACC OR DCC ON
ESSENTIAL SUBMODULES

Adnan Tercan

Abstract. In this note we study modules with (WC11
+) property. We

prove that if M satisfies (WC11
+) and M/(SocM ) has finite uniform di-

mension then M = M1 ⊕ M2 where M1 is semisimple and M2 with finite

uniform dimension. In particular, if M satisfies (WC11
+) and ascending

chain (respectively, descending chain) condition on essential submodules then

M = M1 ⊕ M2 for some semisimple submodule M1 and Noetherian (respec-

tively, Artinian) submodule M2.

1. INTRODUCTION

Assume that all rings are associative and have identity elements and all modules

are unital right modules. Let R be any ring. A right R-module M is called CS-

module if every submodule is essential in a direct summand. The module M has

finite uniform (Goldie) dimension if M does not contain an infinite direct sum

of non-zero submodules. It is well known that a module M has finite uniform

dimension if and only if there exist a positive integer n and uniform submodules

Ui(1 ≤ i ≤ n) of M such that U1 ⊕U2 ⊕ · · ·⊕Un is an essential submodule of M
and in this case n is an invariant of the module called the uniform dimension of M

(see, for example, [1, p. 294 ex. 2]).

Armendariz [2, Proposition 1.1] proved that the module M satisfies DCC (de-

scending chain condition) on essential submodules if and only if M/(SocM) is an
Artinian module. On the other hand, Goodearl [5, Proposition 3.6] proved that the

module M satisfies ACC (ascending chain condition) on essential submodules if

and only if M/(SocM) is a Noetherian module.
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It is proved in [10, Theorem 2.1] that the following statements are equivalent

for a module M : (i) M/N has finite uniform dimension for every essential sub-

module N of M ; (ii) every homomorphic image of M/(SocM) has finite uniform
dimension.

Camillo and Yousif [3, Corollary 3] proved that if M is a CS-module and

M/(SocM) has finite uniform dimension thenM = M1⊕M2 for some semisimple

submoduleM1 of M and submoduleM2 with finite uniform dimension, and in this

caseM is a direct sum of uniform modules. They deduced in [3, Proposition 5] that

ifM is a CS-module thenM has ACC (respectively, DCC) on essential submodules

if and only if M = M1 ⊕ M2 for some semisimple submodule M1 and Noetherian

(respectively, Artinian) submodule M2 of M .

A module M is called a weak CS-module if, for each semisimple submodule S

of M , there exists a direct summand K of M such that S is essential in K. Clearly
CS-modules are weak CS-modules. Smith [9, Corollary 2.7, Theorem 2.8] showed

that the result of [3] mentioned above can be extended to weak CS-modules. A

module M is called (C11)-module if, every submodule of M has a complement

which is a direct summand of M . Smith and Tercan [12, Theorem 5.2, Corollary

5.3] extended the result of [3] to modules with (C11
+).

Following [4], a module is called a weak (C11)-module if each of its semisimple
submodules has a complement which is a direct summand and denoted (WC11).
Note that the following implications hold for a module M :

CS =⇒ WeakCS

⇓ ⇓
(C11) =⇒ (WC11).

No other implications can be added to this table in general. In particular, [11,

Example 10] show that (WC11) does not imply (C11). Also Zhou [14, Counter
example 3] makes it clear that there exists a module with (C11) which is not weak
CS.

The purpose of this note is to try to extend the result of [12, Theorem 5.2,

Corollary 5.3] to modules with (WC11
+).

For any unexplained terminology please, see [1], [8].

Weak (C11
+)- modules

Definition 1. Let (P ) be some module property of modules. Then we shall say
that a module M satisfies (P+) if every direct summand of M satisfies (P ).

For example, if a module M has injective socle then M satisfies (WC11
+). In

particular, if R is a (commutative) Dedekind domain, then any finitely generated

R-module is a (WC11
+)- module. Moreover, we have the following.

Corollary 2. Let R be a Dedekind domain and M an R-module with finite
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uniform dimension. Then M is a (WC11
+)-module.

Proof. LetM = M1⊕M2 be the direct sum of submodulesM1 andM2. Let us

show thatM1 is (WC11)-module. First assumeM1 is torsion-free then SocM1 = 0
and, in this case M1 is (WC11). Next we assume that M1 is not torsion-free. By

[6, Theorem 9], it follows that M1 = N1 ⊕ N2 ⊕ N3 for some finitely generated

module N1, injective module N2 and torsion free module N3. By [4, Theorem

2.10], M1 is (WC11). Hence M is (WC11
+).

Lemma 3. Let M = U ⊕ V where U and V are uniform modules. Then M
has (WC11

+).

Proof. Let 0 6= K be a direct summand of M . If K = M then K has (WC11).
If K 6= M then K is uniform hence K has (WC11). Thus M has (WC11

+) as
required.

Corollary 4. Let M = U ⊕ V where U and V are uniform modules. Then M
has (C11

+).

Recall that every direct summand of a non-zero (C11
+)-module with finite uni-

form dimension is a (finite) direct sum of uniform modules (see [12, Proposition

4.4]). However this is not true for (WC11
+)-modules, in general.

Example 5. Let R be a principal ideal domain. If R is not a complete discrete

valuation ring then there exists an indecomposable torsion-freeR-moduleM of rank

2 by [7, Theorem 19]. For M , SocM = 0 so that M satisfies (WC11
+) and MR

has finite uniform dimension, namely 2. But M is not a direct sum of uniform

modules.

Before proving a theorem we should note the following example.

Example 6. Let K be a field and V an infinite dimensional vector space over

K. Let

R =
{[

k v
0 k

]
: k ∈ K, v ∈ V

}
.

Then R is a commutative indecomposable ring with respect to the usual matrix

operations. Moreover RR is not a (WC11
+)-module and contains an semisimple

submodule I is such that R/I has finite uniform dimension but I is not finitely
generated.

Proof. It is straightforward to check that RR is not a (WC11
+)-module. Let

I = SocR =
[

0 V

0 0

]
.
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Define ϕ : R → K by

ϕ

([
k v
0 k

])
= k (k ∈ K, v ∈ V ).

Then ϕ is an epimorphism with kernel I . Thus R/I has uniform dimension 1.

Since V is infinite dimensional then I is not finitely generated.

Theorem 7. Let R be any ring and let M be a finitely generated (WC11
+)

R-module. Let N be a semisimple submodule of M such that M/N has finite

uniform dimension. Then N is finitely generated.

Proof. Let n < ∞ be the uniform dimension of M/N . Suppose that N is not

finitely generated. Then there exist non-finitely generated submodules N1 and N2

such that N = N1 ⊕ N2. By hypothesis, there exist submodules M1, M ′ of M
such that M = M1 ⊕ M ′, N1 ∩ M ′ = 0 and N1 ⊕ M ′ is essential in M . Now let

π1 : M → M1 be the canonical projection. SinceN1∩M ′ = 0 then π1(N1)⊕M ′ =
N1 ⊕ M ′. Thus π1(N1) is essential in M1. Also SocM = Soc(N1 ⊕ M ′) =
N1 ⊕ SocM ′ by [1, Propositions 9.7 and 9.19]. Hence N = N1 ⊕ (N ∩ SocM ′).
Now N2

∼= N ∩ SocM ′ so that N ∩ SocM ′ is not finitely generated. Repeating

this argument there exist πi(Ni) ≤ Mi ≤ M (2 ≤ i ≤ n + 1) such that for each
2 ≤ i ≤ n + 1, Ni is not finitely generated, M = M1 ⊕ M2 ⊕ · · · ⊕ Mn+1. Let

L = π1(N1) ⊕ · · · ⊕ πn+1(Nn+1). Then

M/L ∼=
(
M1/π1(N1)

)
⊕

(
M2/π2(N2)

)
⊕ · · · ⊕

(
Mn+1/πn+1(Nn+1)

)
.

Since M/L has finite uniform dimension then there exists 1 ≤ i ≤ n + 1 such that
Mi = πi(Ni). But Mi is finitely generated and hence so is πi(Ni), a contradiction.
Thus N is finitely generated.

Corollary 8. Let R be any ring andM be finitely generated (C11
+) R-module.

If M/(SocM) has finite uniform dimension then SocM is finitely generated.

It is clear that if M is a semisimple right R-module then (C11
+) and (WC11

+)
properties are the same. We may conjecture whether a (WC11)-module with essen-
tial socle is a (C11)-module? However we shall provide a negative answer. The
following example is taken from [13, Example 3.5].

Example 9. Let p be a prime integer and

R =
[

Z/Zp2 Z/Zp2

0 Z/Zp2

]
.
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Then the right R-module R has essential socle and satisfies (WC11) but does not
satisfy (C11).

Proof. It is clear that Z/Zp2 has a unique composition series :

0 = Zp2/Zp2 ≤ Zp/Zp2 ≤ Z/Zp2.

Since Z/Zp2 is faithful Z/Zp2-module then

SocR =
[

0 Zp/Zp2

0 Zp/Zp2

]
,

which is essential in the right R-module R (see [13, Lemma 2.1]). It is easy to

check that R satisfies (WC11). Now, let

A =
[

p + Zp2 0
0 0

]
R +

[
0 1 + Zp2

0 p + Zp2

]

R =
{[

pa + Zp2 pb + c + Zp2

0 pc + Zp2

]
: a, b, c ∈ Z

}
.

Clearly A is a right ideal of R. Note that A is a complement in R (see [13, Example
3.5]) and there is no non-zero direct summand of R which has zero intersection with
A. If R were a right (C11)-module then A would be essential in R, a contradiction.

It follows that R does not satisfy (C11).

Now we return to general modules over arbitrary rings. We prove first.

Lemma 10. LetM be a module such thatM satisfies (WC11
+) andM/(SocM)

has finite uniform dimension. Suppose that SocM is contained in a finitely gener-

ated submodule of M . Then M has finite uniform dimension.

Proof. Suppose M does not have finite uniform dimension. Then SocM is

not finitely generated. There exist submodules S1, S2 of SocM such that Si is not

finitely generated for i = 1, 2, and SocM = S1 ⊕ S2. By hypothesis, there exist

submodules K, K ′ of M such that M = K ⊕ K ′, S1 ∩ K = 0 and S1 ⊕ K is

essential in M . Note that, by [1, Proposition 9.7 and 9.19],

S1 ⊕ S2 = SocM = Soc(S1 ⊕ K) = S1 ⊕ (SocK).

Thus SocK ∼= S2 and hence SocK is not finitely generated. Also,

SocK ⊕ SocK ′ = SocM = S1 ⊕ (SocK)
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so that SocK ′ ∼= S1, and hence SocK ′ is not finitely generated. By hypothesis,

there exists a finitely generated submoduleN ofM such that SocM ≤ N . Suppose
that K = SocK. Then SocK is a direct summand of M and hence also a direct

summand of N . It follows that SocK is finitely generated which is a contradiction.

Thus K 6= SocK. Similarly, K ′ 6= SocK ′. Now, by [1, Proposition 9.19],

M/SocM ∼=
[
K/(SocK)

]
⊕

[
K ′/(SocK ′)

]
.

It follows that the modules K/(SocK) and K ′/(SocK ′) each have smaller uni-
form dimension than M/(SocM). By induction on the uniform dimension of

M/(SocM), we conclude that K and K ′ both have finite uniform dimension, and
hence so doesM = K⊕K ′, a contradiction. ThusM has finite uniform dimension.

Next we prove a theorem which was pointed out in the introduction.

Theorem 11. LetM be a module such thatM satisfies (WC11
+) andM/(SocM)

has finite uniform dimension. Then M contains a semisimple submodule M1 and

a submodule M2 with finite uniform dimension such that M = M1 ⊕ M2.

Proof. IfM = SocM then there is nothing to prove. Suppose thatM 6= SocM .

Let m ∈ M , m 6∈ SocM . By hypothesis, there exist submodulesK, K ′ of M such

that M = K ⊕ K ′, Soc(mR)∩ K = 0 and Soc(mR)⊕ K is essential in M . Let

π : M → K ′ be the canonical projection. Then

Soc(mR)⊕ K = π(Soc(mR)⊕ K).

It follows that π(Soc(mR)) is an essential submodule of K ′ and hence

SocK ′ = π(Soc(mR)) ≤ π(mR) = π(m)R

and so SocK ′ ≤ π(m)R (see [1, Proposition 9.7]). By Lemma 10, K ′ has finite
uniform dimension. Note that π(m) ∈ K ′ and π(m) 6∈ SocK ′. Thus K ′ 6= SocK ′.

Now

M/SocM ∼=
[
K/(SocK)

]
⊕

[
K ′/(SocK ′)

]

implies that the moduleK/(SocK) has smaller uniform dimension thanM/(SocM).
By induction on the uniform dimension of M/SocM , there exist submodules K1,

K2 of K such that K = K1 ⊕ K2, K1 is semisimple and K2 has finite uniform

dimension. Then M is the direct sum of the semisimple submodule K1 and the

submodule K2 ⊕ K ′, which has finite uniform dimension.

Corollary 12. Let M be a module which satisfies (WC11
+) and ACC (respec-

tively, DCC) on essential submodules. Then M = M1 ⊕ M2 for some semisimple

submodule M1 and Noetherian (respectively, Artinian) submodule M2.
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Proof. We prove the result in the ACC case, the DCC case is similar. Suppose

M satisfies ACC on essential submodules. By [5, Proposition 3.6], M/(SocM) is
Noetherian. Hence by Theorem 11, M = M1⊕M2 for some semisimple submodule

M1 and submodule M2 with finite uniform dimension. Now SocM = M1 ⊕
(SocM2) by [1, Proposition 9.19] and hence M/(SocM) ∼= M2/(SocM2). Thus
M2/(SocM2) is Noetherian. But SocM2 is Noetherian, because M2 has finite

uniform dimension. Thus M2 is Noetherian.

Corollary 13. LetM be a module which satisfies (C11
+) and ACC (respectively,

DCC) on essential submodules. Then M = M1 ⊕ M2 for some semisimple sub-

module M1 and Noetherian (respectively, Artinian) submodule M2.

Proof. It is trivial by Corollary 12.

Remark. Note that M is a direct sum of uniform modules [12, Theorem 5.2].

However M need not to be a direct sum of uniform modules in Theorem 11 (see,

Example 5).
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