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WEAK (C11) MODULES AND
ALGEBRAIC TOPOLOGY TYPE EXAMPLES

ADNAN TERCAN

1. Introduction. In this note, we provide some counterexamples
using the construction technique of trivial extensions for questions
below and then investigate whether direct summands of a weak (C11)-
module are also weak (C11) or not. To this end, affirmative answers
are given in special cases. Some results on the endomorphism rings
of weak (C11)-modules and more examples using algebraic topology to
the question [10, p. 1821] are also provided.

All rings are associative and have identity elements and all modules
are unital right modules. Let R be any ring and M a right R-module.
For any submodule K of M the family of submodules N satisfying
K ∩ N = 0 has a maximal member by Zorn’s Lemma, which is called
complement of K in M . A submodule N of M is called a complement
in M if N is a complement of a submodule of M . It is well known
that a submodule is a complement in M if and only if it has no
proper essential extensions in M . A module is called a CS-module, or
extending, or it satisfies (C1) provided every complement submodule is
a direct summand; equivalently, every submodule is essential in a direct
summand of M . Note that semi-simple modules, uniform modules and
injective modules are CS. For good sources of references, please see
[3] or [6]. Various generalizations of CS-modules have been studied
by some authors see, for example [4, 8, 10]. Following Smith [8], a
module is called a weak CS-module if every semi-simple submodule is
essential in a direct summand. A module M is called a (C11)-module if
every submodule of M has a complement which is a direct summand of
M (see [10]). Following [4], a module is called a weak (C11)-module if
each of its semi-simple submodules has a complement which is a direct
summand and denoted (WC11). Note that the following implications
hold for a module M .

Received by the editors on May 22, 2000, and in revised form on March 8, 2002.

Copyright c©2004 Rocky Mountain Mathematics Consortium

783



784 A. TERCAN

CS =⇒ weakCS

⇓ ⇓
(C11) =⇒ (WC11).

No other implications can be added to this table in general. In
particular, [9, Example 10] shows that (WC11) does not imply (C11).
Recently Zhou [14, Example 3] provided an example which makes it
clear that there exists a module with (C11) but not weak CS.

A module M is called a CESS-module if every complement in M with
essential socle is a direct summand of M (see [8]). Recall that a CESS-
module is a weak CS-module. It is proved in [8, Corollary 1.6] that
if M is a CESS-module then M = M1 ⊕ M2 for some CS-module M1

with essential socle and module M2 with zero socle and asked whether
the converse of this result is true or not (see [8, Question 1.7]). Among
others, Smith’s question [8, Question 1.7] was answered in the negative
by constructing a counterexample in [14, Example 1]. Now we ask:

Question 1. Is a direct sum of a module with essential socle and a
module with zero socle a (WC11)-module?

Question 2. Is a direct sum of a (C11)-module with essential socle
and a module with zero socle a (C11)-module?

Note that these questions are based on the general question, namely,
whether being weak (C11), or (C11), is inherited by direct summands
or not. In [11], the (C11) case of this question has been settled in the
negative by providing counterexamples and also investigated in some
affirmative cases.

In this paper, we answer the above questions 1 and 2 in the negative
by constructing counterexamples and deal with some special cases in
which direct summands of a weak (C11) module are also weak (C11).
To this end, it is shown that, if M = M1 ⊕M2 is a weak (C11)-module
such that Soc M2 is essential in M2 and for every direct summand K
of M with K ∩ M2 = 0, K ⊕ M2 is a direct summand of M , then M1

is a weak (C11)-module. In particular, if M = M1 ⊕ M2 is a weak
(C11)-module such that M2 is injective with essential socle, then M1
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is a weak (C11)-module. Besides, it is obtained that if M is a module
satisfying (WC11) and (C2) with essential socle, then the quotient ring
of the endomorphism ring of M over its Jacobson radical is a (von
Neumann) regular ring. Further, we give more counterexamples to the
question [10, p. 1821]. We begin by mentioning a basic result about
modules with property (C11) and (WC11).

Lemma 1 (See [10, Theorem 2.4] and [4, Theorem 2.10]). Any
direct sum of (C11)-modules (respectively, (WC11)-modules) is also a
(C11)-module (respectively, (WC11)-module).

The following easy proposition shows that the converse of question 1
is true and its proof is given for completeness.

Proposition 2. Let M be a (WC11)-module. Then M = M1 ⊕ M2

where M1 is a submodule of M with essential socle and M2 a submodule
of M with zero socle.

Proof. Let S denote the socle of M . There exist submodules
M1 and M2 of M such that M = M1 ⊕ M2, S ∩ M2 = 0 and
S ⊕ M2 is an essential submodule of M . By [1, Proposition 9.19],
S = SocM = (SocM1) ⊕ (SocM2). Clearly SocM2 = 0 so that
S ≤ M1. Now S⊕M2 essential in M implies S essential in M1, whence
the result follows.

The following example makes it clear that the converse of Proposition
2 is not true in general.

Example 3. Let S be a ring and let V be a S−S-bimodule. Assume
that S has zero socle and V is semi-simple which is not simple. Let R
be the trivial extension of S and the S-module V . Then R = S ⊕ V
has the following addition and multiplication:

(s, a) + (t, b) = (s + t, a + b), and (s, a)(t, b) = (st, sb + ta).

Let M1 = RR. Then SocM1 = 0 ⊕ V is essential in M1. Set
I = 0 ⊕ V and let M2 = R/I. Then SocM2 = 0. Now, consider
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the module M = M1 ⊕M2. Let N be a simple submodule of M . Then
N = (0 ⊕ A) ⊕ 0 for some submodule A of V . Suppose there exists a
direct summand L of M such that N ∩L = 0 and N ⊕L is essential in
M . Now

L =
{

((s, a), (t, 0) + I) : s, t ∈ R, a ∈ V
}

.

Then N ≤ L. But N ∩ L = N = 0, a contradiction. Hence L = 0.
However N is not essential in V . It follows that M is not (WC11)-
module.

Note that if the module V is simple in Example 3 then M is a weak
(C11)-module by Lemma 1. Now we shall give an example to Question
2. The following example is taken from [9, Example 11].

Example 4. An example of Levy [5, p. 151, Remark (i)] (see [9])
gives a commutative, local ring R with zero socle which is not a (C11)
R-module. Let I be the unique maximal ideal of R. Now, let M1 = RR

and M2 = R/I. Note that SocM1 = 0 and SocM2 = M2 which is
essential in M2. Let M be the direct sum M1 ⊕ M2 of R-modules M1

and M2. Since M1 is not a (C11)-module and M2 is simple, then M is
not a (C11)-module.

Next we deal with when a direct summand of a (WC11)-module is a
(WC11)-module. We first prove an easy result.

Lemma 5. Let R be a ring and let M be an indecomposable right
R-module such that SocM �= 0. Then M is a (WC11)-module if and
only if M is uniform.

Proof. The sufficiency is clear. Conversely, suppose that M satisfies
(WC11). Thus SocM is essential in M . Let 0 �= X be any submodule of
M . Then there exists a direct summand L of M such that Soc X∩L = 0
and SocX⊕L is essential in M . If L = M then X = 0, a contradiction.
Hence L = 0. It follows that X is essential in M . So M is uniform.

Proposition 6. Let R be a ring such that the right R-module R
is (WC11)-module and such that every direct summand of a (WC11)-
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module is a (WC11)-module. Then every indecomposable projective
right R-module which has a nonzero socle is uniform.

Proof. Let P be an indecomposable projective right R-module such
that Soc P �= 0. Then there exists a free R-module F such that
F = P ⊕ N for some submodule N of F . By Lemma 1, F satisfies
(WC11) and, by hypothesis, so too does P . Now, by Lemma 5, P is
uniform.

In view of Proposition 6, if R is a right (WC11) R-module such
that SocR is nonzero and P is any indecomposable projective right
R-module of rank n ≥ 2. Then there exists a free right R-module M
which satisfies (WC11) by Lemma 1. Now, P is a direct summand of
M and P is not a (WC11)-module by Lemma 5. However we do not
know so far whether such modules M exist or not.

Lemma 7. Let a module M = M1⊕M2 be a direct sum of submodules
M1, M2. Then the module M1 satisfies (WC11) if and only if for every
semi-simple submodule N of M1 there exists a direct summand K of
M such that M2 ⊆ K, K∩N = 0 and K⊕N is an essential submodule
of M .

Proof. Suppose that M1 satisfies (WC11). Let N be any semi-simple
submodule M1. There exists a direct summand L of M1 such that
N ∩ L = 0 and N ⊕ L is essential in M1. Clearly, L ⊕ M2 is a direct
summand of M , M2 ⊆ L⊕M2, (L⊕M2)∩N = 0 and (L⊕M2)⊕N is
essential in M . Conversely, suppose that M1 has the stated property.
Let H be a semi-simple submodule of M1. By hypothesis, there exists a
direct summand K of M such that M2 ⊆ K, K∩H = 0 and K⊕H is an
essential submodule of M . Now K = K∩(M1⊕M2) = (K∩M1)⊕M2,
so that K ∩ M1 is a direct summand of M , and hence also of M1,
H ∩ (K ∩ M1) = 0 and H ⊕ (K ∩ M1) = M1 ∩ (H ⊕ K) which is an
essential submodule of M1. It follows that M1 is a (WC11)-module.

Theorem 8. Let a (WC11)-module M = M1 ⊕ M2 be direct sum of
submodules M1, M2 such that, Soc M2 is essential in M2 and for every



788 A. TERCAN

direct summand K of M with K∩M2 = 0, K⊕M2 is a direct summand
of M . Then M1 is a (WC11)-module.

Proof. Let N be any semi-simple submodule of M1. Then N⊕SocM2

is a semi-simple submodule of M . By hypothesis, there exists a direct
summand K of M such that (N⊕Soc M2)∩K = 0 and N⊕Soc M2⊕K
is an essential submodule of M . Since SocM2 is essential in M2 then
N ∩ M2 = 0 and N ⊕ M2 ⊕ K is essential in M . Moreover M2 ⊕ K is
a direct summand of M . Now, the result follows by Lemma 7.

Corollary 9. Let a (WC11)-module M = M1 ⊕ M2 be a direct sum
of submodules M1, M2 such that, Soc M2 is essential in M2 and M/M1

is M1-injective. Then M1 is a (WC11)-module.

Proof. By hypothesis, M2 is M1-injective. Let L be a direct summand
of M such that L∩M2 = 0. By [3, Lemma 7.5] there exists a submodule
H of M such that H ∩ M2 = 0, M = H ⊕ M2 and L ⊆ H. Now L
is a direct summand of H and hence L ⊕ M2 is a direct summand of
M = H ⊕ M2. By Theorem 8, M1 is a (WC11)-module.

Corollary 10. Let a module M = M1 ⊕ M2 be a direct sum of
a submodule M1 and an injective submodule M2 with essential socle.
Then M satisfies (WC11) if and only if M1 satisfies (WC11).

Proof. If M satisfies (WC11), then M1 satisfies (WC11) by Corol-
lary 9. Conversely, if M1 satisfies (WC11) then M satisfies (WC11) by
Lemma 1.

The next few results concern the endomorphism ring of (WC11)-
modules. We will use S and J(S) to denote the endomorphism ring of
a module M and the Jacobson radical of S, respectively. Further ∆
will stand for the ideal {α ∈ S : ker α is essential in M}. Recall that
a CS-module M is called continuous if, for each direct summand N of
M and each monomorphism ϕ : N −→ M , the submodule ϕ(N) is also
a direct summand of M (see [6, 3]). It was proved in [6, Proposition
3.5] that if M is continuous, then S/∆ is a (von Neumann) regular
ring and ∆ = J(S). This result was generalized to modules with (C11)
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and (C2) in [13, Theorem 3.3]. Hence, one might conjecture: if M is a
(WC11)-module with (C2), then S/∆ is a regular ring and ∆ = J(S).
However, the following example eliminates this possibility.

Example 11. Let R be as in Example 4. Let M denote the R-
module R. Then M satisfies (WC11) and (C2). But J(S) �= ∆.

Proof. First note that R is a commutative local ring. Thus S/J(S)
is a (von Neumann) regular ring. Since SocR = 0, then M satisfies
(WC11). By [9, Example 11], M also satisfies (C2). It is straightfor-
ward to check that ∆ �= J(S).

In contrast to Example 11, we have the following result which was
pointed out in the introduction.

Theorem 12. Let M be a module with essential socle. If M satisfies
(WC11) and (C2), then S/∆ is a regular ring and ∆ = J(S).

Proof. Let α ∈ S and let K = Soc (kerα). By (WC11), there exists
a direct summand L of M such that L is a complement of K in M .
Since Soc M is essential in M , then kerα ∩ L = 0 and hence α |L is
a monomorphism. By (C2), α(L) is a direct summand of M . Hence
there exists β ∈ S such that βα = 1 |L. Then

(α − αβα)(K ⊕ L) = (α − αβα)(L) = 0,

and so K ⊕L is a submodule of ker (α−αβα). Since K ⊕L is essential
in M then α − αβα ∈ ∆. Therefore S/∆ is a regular ring. This
also proves that J(S) is contained in ∆. Now, let f ∈ ∆. Since
ker f ∩ ker (1− f) = 0 and ker f is essential in M , then ker (1− f) = 0.
Hence (1−f)M is a direct summand of M by (C2). However, (1−f)M
is an essential submodule of M since ker f is a submodule of (1− f)M .
Thus (1−f)M = M , and therefore 1−f is a unit in S. Hence f ∈ J(S).
It follows that ∆ = J(S).

Corollary 13. Let M be a right nonsingular right R-module with
essential socle. If M satisfies (WC11) and (C2), then S is a regular
ring.
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Proof. Since M is nonsingular then ∆ = 0, by [7, Lemma 3.1]. Hence
the result follows from Theorem 12.

Finally we are interested in question [10, p. 1821]. It is well known
that any direct summand of a CS-module is a CS-module (see [3,
Lemma 7.1] or [6, Proposition 2.7]). In contrast to CS-modules, it was
shown that there exists a module M which satisfies (C11) but which
has a direct summand which does not satisfy (C11) (see [11, Example
4]). We provide more examples in the following. Note first that any
indecomposable module satisfying (C11) is uniform.

Proposition 14. Let F be a field of characteristic zero and n any
integer with n ≥ 3. Let S be the polynomial ring F [x1, . . . , xn] in
indeterminates x1, . . . , xn over F . Let R = S/Ss be the coordinate
ring of (n − 1)-sphere Sn−1, where s = x2

1 + · · · + x2
n − 1. If Sn−1

has nonzero Euler characteristic, then the free R-module M = ⊕n
i=1R

satisfies (C11) but M contains a direct summand K which does not
satisfy (C11).

Proof. It is clear that R is a commutative Noetherian domain. The
free R-module M satisfies (C11) by Lemma 1. Let ϕ : M −→ R be
the homomorphism defined by ϕ(a1 + Ss, · · · , an + Ss) = a1x1 + · · ·+
anxn + Ss for all ai in S, 1 ≤ i ≤ n. Clearly ϕ is an epimorphism and
hence its kernel K is a direct summand of M , i.e., M = K ⊕ K ′ for
some submodule K ′ ∼= R. Clearly K is not uniform. Note that K is the
R-module of regular sections of the tangent bundle of the (n−1)-sphere
Sn−1. Since the Euler characteristic χ(Sn−1) �= 0 it follows that (n−1)-
sphere cannot have a nonvanishing regular section of its tangent bundle
(see [2, Corollary VI. 13.3]). Thus K is an indecomposable module. It
follows that K does not satisfy (C11).

Proposition 15. Let R be the real field and n any odd integer with
n ≥ 3. Let S be the polynomial ring R[x1, . . . , xn] in indeterminates
x1, . . . , xn over R. Let R be the ring S/Ss, where s = x2

1 + · · · +
x2

n − 1. Let P be the R-module with generators s1, · · · , sn and relation∑n
i=1 xisi = 0. Then the R-module P ⊕ R satisfies (C11) but P does

not satisfy (C11).
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Proof. Let M = P ⊕ R. Then it is clear that M is a free R-module.
Note that P is an indecomposable R-module by [12, Theorem 3]. Now,
by Lemma 1, M is a (C11)-module. Since P has uniform dimension n−1
then P is not uniform. It follows that P is not a (C11)-module.

The next corollary which is obvious by Proposition 15, or Proposi-
tion 14, is Example 4 in [11].

Corollary 16. Let R be the real field and n any odd integer with
n ≥ 3. Let S be the polynomial ring R[x1, . . . , xn] in indeterminates
x1, . . . , xn over R. Let R be the ring S/Ss, where s = x2

1 + · · ·+x2
n−1.

Then the free R-module M = ⊕n
i=1R satisfies (C11) but M contains a

direct summand K which does not satisfy (C11).

Remarks. (i) If n is 1 or 2 in Proposition 14, or Proposition 15 and
Corollary 16, then every direct summand of the module M satisfies
(C11) by [10, Lemma 4.1].

(ii) If n is any even integer with n ≥ 4 then the proof of Corollary 16
does not work. For example spheres S3, S5, S7 all have decomposable
tangent bundles by the celebrated result of Adams (see [2, Corollary
VI. 15.16]).
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