WEAK (C_{11}) MODULES AND ALGEBRAIC TOPOLOGY TYPE EXAMPLES

ADNAN TERCAN

1. Introduction. In this note, we provide some counterexamples using the construction technique of trivial extensions for questions below and then investigate whether direct summands of a weak (C_{11}) -module are also weak (C_{11}) or not. To this end, affirmative answers are given in special cases. Some results on the endomorphism rings of weak (C_{11}) -modules and more examples using algebraic topology to the question [10, p. 1821] are also provided.

All rings are associative and have identity elements and all modules are unital right modules. Let R be any ring and M a right R-module. For any submodule K of M the family of submodules N satisfying $K \cap N = 0$ has a maximal member by Zorn's Lemma, which is called complement of K in M. A submodule N of M is called a complement in M if N is a complement of a submodule of M. It is well known that a submodule is a complement in M if and only if it has no proper essential extensions in M. A module is called a CS-module, or extending, or it satisfies (C_1) provided every complement submodule is a direct summand; equivalently, every submodule is essential in a direct summand of M. Note that semi-simple modules, uniform modules and injective modules are CS. For good sources of references, please see [3] or [6]. Various generalizations of CS-modules have been studied by some authors see, for example [4, 8, 10]. Following Smith [8], a module is called a weak CS-module if every semi-simple submodule is essential in a direct summand. A module M is called a (C_{11}) -module if every submodule of M has a complement which is a direct summand of M (see [10]). Following [4], a module is called a weak (C_{11}) -module if each of its semi-simple submodules has a complement which is a direct summand and denoted (WC_{11}) . Note that the following implications hold for a module M.

Received by the editors on May 22, 2000, and in revised form on March 8, 2002.

784 A. TERCAN

$$CS \implies \operatorname{weak} CS$$

$$\downarrow \qquad \qquad \downarrow$$

$$(C_{11}) \implies (WC_{11}).$$

No other implications can be added to this table in general. In particular, [9, Example 10] shows that (WC_{11}) does not imply (C_{11}) . Recently Zhou [14, Example 3] provided an example which makes it clear that there exists a module with (C_{11}) but not weak CS.

A module M is called a CESS-module if every complement in M with essential socle is a direct summand of M (see [8]). Recall that a CESS-module is a weak CS-module. It is proved in [8, Corollary 1.6] that if M is a CESS-module then $M = M_1 \oplus M_2$ for some CS-module M_1 with essential socle and module M_2 with zero socle and asked whether the converse of this result is true or not (see [8, Question 1.7]). Among others, Smith's question [8, Question 1.7] was answered in the negative by constructing a counterexample in [14, Example 1]. Now we ask:

Question 1. Is a direct sum of a module with essential socle and a module with zero socle a (WC_{11}) -module?

Question 2. Is a direct sum of a (C_{11}) -module with essential socle and a module with zero socle a (C_{11}) -module?

Note that these questions are based on the general question, namely, whether being weak (C_{11}) , or (C_{11}) , is inherited by direct summands or not. In [11], the (C_{11}) case of this question has been settled in the negative by providing counterexamples and also investigated in some affirmative cases.

In this paper, we answer the above questions 1 and 2 in the negative by constructing counterexamples and deal with some special cases in which direct summands of a weak (C_{11}) module are also weak (C_{11}) . To this end, it is shown that, if $M = M_1 \oplus M_2$ is a weak (C_{11}) -module such that Soc M_2 is essential in M_2 and for every direct summand K of M with $K \cap M_2 = 0$, $K \oplus M_2$ is a direct summand of M, then M_1 is a weak (C_{11}) -module. In particular, if $M = M_1 \oplus M_2$ is a weak (C_{11}) -module such that M_2 is injective with essential socle, then M_1

is a weak (C_{11}) -module. Besides, it is obtained that if M is a module satisfying (WC_{11}) and (C_2) with essential socle, then the quotient ring of the endomorphism ring of M over its Jacobson radical is a (von Neumann) regular ring. Further, we give more counterexamples to the question [10, p. 1821]. We begin by mentioning a basic result about modules with property (C_{11}) and (WC_{11}) .

Lemma 1 (See [10, Theorem 2.4] and [4, Theorem 2.10]). Any direct sum of (C_{11}) -modules (respectively, (WC_{11}) -modules) is also a (C_{11}) -module (respectively, (WC_{11}) -module).

The following easy proposition shows that the converse of question 1 is true and its proof is given for completeness.

Proposition 2. Let M be a (WC_{11}) -module. Then $M = M_1 \oplus M_2$ where M_1 is a submodule of M with essential socle and M_2 a submodule of M with zero socle.

Proof. Let S denote the socle of M. There exist submodules M_1 and M_2 of M such that $M = M_1 \oplus M_2$, $S \cap M_2 = 0$ and $S \oplus M_2$ is an essential submodule of M. By [1, Proposition 9.19], $S = \operatorname{Soc} M = (\operatorname{Soc} M_1) \oplus (\operatorname{Soc} M_2)$. Clearly $\operatorname{Soc} M_2 = 0$ so that $S \leq M_1$. Now $S \oplus M_2$ essential in M implies S essential in M_1 , whence the result follows. □

The following example makes it clear that the converse of Proposition 2 is not true in general.

Example 3. Let S be a ring and let V be a S-S-bimodule. Assume that S has zero socle and V is semi-simple which is not simple. Let R be the trivial extension of S and the S-module V. Then $R = S \oplus V$ has the following addition and multiplication:

$$(s,a) + (t,b) = (s+t, a+b),$$
 and $(s,a)(t,b) = (st, sb+ta).$

Let $M_1=R_R$. Then $\operatorname{Soc} M_1=0\oplus V$ is essential in M_1 . Set $I=0\oplus V$ and let $M_2=R/I$. Then $\operatorname{Soc} M_2=0$. Now, consider

the module $M=M_1\oplus M_2$. Let N be a simple submodule of M. Then $N=(0\oplus A)\oplus 0$ for some submodule A of V. Suppose there exists a direct summand L of M such that $N\cap L=0$ and $N\oplus L$ is essential in M. Now

$$L = \Big\{ ((s,a),(t,0)+I) : s,t \in R, \ a \in V \Big\}.$$

Then $N \leq L$. But $N \cap L = N = 0$, a contradiction. Hence L = 0. However N is not essential in V. It follows that M is not (WC_{11}) -module.

Note that if the module V is simple in Example 3 then M is a weak (C_{11}) -module by Lemma 1. Now we shall give an example to Question 2. The following example is taken from [9, Example 11].

Example 4. An example of Levy [5, p. 151, Remark (i)] (see [9]) gives a commutative, local ring R with zero socle which is not a (C_{11}) R-module. Let I be the unique maximal ideal of R. Now, let $M_1 = R_R$ and $M_2 = R/I$. Note that $\operatorname{Soc} M_1 = 0$ and $\operatorname{Soc} M_2 = M_2$ which is essential in M_2 . Let M be the direct sum $M_1 \oplus M_2$ of R-modules M_1 and M_2 . Since M_1 is not a (C_{11}) -module and M_2 is simple, then M is not a (C_{11}) -module.

Next we deal with when a direct summand of a (WC_{11}) -module is a (WC_{11}) -module. We first prove an easy result.

Lemma 5. Let R be a ring and let M be an indecomposable right R-module such that $Soc M \neq 0$. Then M is a (WC_{11}) -module if and only if M is uniform.

Proof. The sufficiency is clear. Conversely, suppose that M satisfies (WC_{11}) . Thus Soc M is essential in M. Let $0 \neq X$ be any submodule of M. Then there exists a direct summand L of M such that Soc $X \cap L = 0$ and Soc $X \oplus L$ is essential in M. If L = M then X = 0, a contradiction. Hence L = 0. It follows that X is essential in M. So M is uniform. \square

Proposition 6. Let R be a ring such that the right R-module R is (WC_{11}) -module and such that every direct summand of a (WC_{11}) -

module is a (WC_{11}) -module. Then every indecomposable projective right R-module which has a nonzero socle is uniform.

Proof. Let P be an indecomposable projective right R-module such that $\operatorname{Soc} P \neq 0$. Then there exists a free R-module F such that $F = P \oplus N$ for some submodule P of F. By Lemma 1, F satisfies (WC_{11}) and, by hypothesis, so too does P. Now, by Lemma 5, P is uniform. \square

In view of Proposition 6, if R is a right (WC_{11}) R-module such that Soc R is nonzero and P is any indecomposable projective right R-module of rank $n \geq 2$. Then there exists a free right R-module M which satisfies (WC_{11}) by Lemma 1. Now, P is a direct summand of M and P is not a (WC_{11}) -module by Lemma 5. However we do not know so far whether such modules M exist or not.

Lemma 7. Let a module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1, M_2 . Then the module M_1 satisfies (WC_{11}) if and only if for every semi-simple submodule N of M_1 there exists a direct summand K of M such that $M_2 \subseteq K$, $K \cap N = 0$ and $K \oplus N$ is an essential submodule of M.

Proof. Suppose that M_1 satisfies (WC_{11}) . Let N be any semi-simple submodule M_1 . There exists a direct summand L of M_1 such that $N \cap L = 0$ and $N \oplus L$ is essential in M_1 . Clearly, $L \oplus M_2$ is a direct summand of M, $M_2 \subseteq L \oplus M_2$, $(L \oplus M_2) \cap N = 0$ and $(L \oplus M_2) \oplus N$ is essential in M. Conversely, suppose that M_1 has the stated property. Let H be a semi-simple submodule of M_1 . By hypothesis, there exists a direct summand K of M such that $M_2 \subseteq K$, $K \cap H = 0$ and $K \oplus H$ is an essential submodule of M. Now $K = K \cap (M_1 \oplus M_2) = (K \cap M_1) \oplus M_2$, so that $K \cap M_1$ is a direct summand of M, and hence also of M_1 , $H \cap (K \cap M_1) = 0$ and $H \oplus (K \cap M_1) = M_1 \cap (H \oplus K)$ which is an essential submodule of M_1 . It follows that M_1 is a (WC_{11}) -module. \square

Theorem 8. Let a (WC_{11}) -module $M = M_1 \oplus M_2$ be direct sum of submodules M_1, M_2 such that, Soc M_2 is essential in M_2 and for every

direct summand K of M with $K \cap M_2 = 0$, $K \oplus M_2$ is a direct summand of M. Then M_1 is a (WC_{11}) -module.

Proof. Let N be any semi-simple submodule of M_1 . Then $N \oplus \operatorname{Soc} M_2$ is a semi-simple submodule of M. By hypothesis, there exists a direct summand K of M such that $(N \oplus \operatorname{Soc} M_2) \cap K = 0$ and $N \oplus \operatorname{Soc} M_2 \oplus K$ is an essential submodule of M. Since $\operatorname{Soc} M_2$ is essential in M_2 then $N \cap M_2 = 0$ and $N \oplus M_2 \oplus K$ is essential in M. Moreover $M_2 \oplus K$ is a direct summand of M. Now, the result follows by Lemma 7.

Corollary 9. Let a (WC_{11}) -module $M = M_1 \oplus M_2$ be a direct sum of submodules M_1, M_2 such that, Soc M_2 is essential in M_2 and M/M_1 is M_1 -injective. Then M_1 is a (WC_{11}) -module.

Proof. By hypothesis, M_2 is M_1 -injective. Let L be a direct summand of M such that $L \cap M_2 = 0$. By [3, Lemma 7.5] there exists a submodule H of M such that $H \cap M_2 = 0$, $M = H \oplus M_2$ and $L \subseteq H$. Now L is a direct summand of H and hence $L \oplus M_2$ is a direct summand of $M = H \oplus M_2$. By Theorem 8, M_1 is a (WC_{11}) -module. \square

Corollary 10. Let a module $M = M_1 \oplus M_2$ be a direct sum of a submodule M_1 and an injective submodule M_2 with essential socle. Then M satisfies (WC_{11}) if and only if M_1 satisfies (WC_{11}) .

Proof. If M satisfies (WC_{11}) , then M_1 satisfies (WC_{11}) by Corollary 9. Conversely, if M_1 satisfies (WC_{11}) then M satisfies (WC_{11}) by Lemma 1. \square

The next few results concern the endomorphism ring of (WC_{11}) modules. We will use S and J(S) to denote the endomorphism ring of
a module M and the Jacobson radical of S, respectively. Further Δ will stand for the ideal $\{\alpha \in S : \ker \alpha \text{ is essential in } M\}$. Recall that
a CS-module M is called *continuous* if, for each direct summand N of M and each monomorphism $\varphi : N \longrightarrow M$, the submodule $\varphi(N)$ is also
a direct summand of M (see $[\mathbf{6}, \mathbf{3}]$). It was proved in $[\mathbf{6}, \text{Proposition}]$ 3.5] that if M is continuous, then S/Δ is a (von Neumann) regular
ring and $\Delta = J(S)$. This result was generalized to modules with (C_{11})

and (C_2) in [13, Theorem 3.3]. Hence, one might conjecture: if M is a (WC_{11}) -module with (C_2) , then S/Δ is a regular ring and $\Delta = J(S)$. However, the following example eliminates this possibility.

Example 11. Let R be as in Example 4. Let M denote the R-module R. Then M satisfies (WC_{11}) and (C_2) . But $J(S) \neq \Delta$.

Proof. First note that R is a commutative local ring. Thus S/J(S) is a (von Neumann) regular ring. Since Soc R = 0, then M satisfies (WC_{11}) . By [9, Example 11], M also satisfies (C_2) . It is straightforward to check that $\Delta \neq J(S)$.

In contrast to Example 11, we have the following result which was pointed out in the introduction.

Theorem 12. Let M be a module with essential socle. If M satisfies (WC_{11}) and (C_2) , then S/Δ is a regular ring and $\Delta = J(S)$.

Proof. Let $\alpha \in S$ and let $K = \operatorname{Soc}(ker\alpha)$. By (WC_{11}) , there exists a direct summand L of M such that L is a complement of K in M. Since $\operatorname{Soc} M$ is essential in M, then $\ker \alpha \cap L = 0$ and hence $\alpha \mid_L$ is a monomorphism. By (C_2) , $\alpha(L)$ is a direct summand of M. Hence there exists $\beta \in S$ such that $\beta \alpha = 1 \mid_L$. Then

$$(\alpha - \alpha \beta \alpha)(K \oplus L) = (\alpha - \alpha \beta \alpha)(L) = 0,$$

and so $K \oplus L$ is a submodule of $\ker (\alpha - \alpha \beta \alpha)$. Since $K \oplus L$ is essential in M then $\alpha - \alpha \beta \alpha \in \Delta$. Therefore S/Δ is a regular ring. This also proves that J(S) is contained in Δ . Now, let $f \in \Delta$. Since $\ker f \cap \ker (1-f) = 0$ and $\ker f$ is essential in M, then $\ker (1-f) = 0$. Hence (1-f)M is a direct summand of M by (C_2) . However, (1-f)M is an essential submodule of M since $\ker f$ is a submodule of (1-f)M. Thus (1-f)M = M, and therefore 1-f is a unit in S. Hence $f \in J(S)$. It follows that $\Delta = J(S)$. \square

Corollary 13. Let M be a right nonsingular right R-module with essential socle. If M satisfies (WC_{11}) and (C_2) , then S is a regular ring.

Proof. Since M is nonsingular then $\Delta=0$, by [7, Lemma 3.1]. Hence the result follows from Theorem 12. \Box

Finally we are interested in question [10, p. 1821]. It is well known that any direct summand of a CS-module is a CS-module (see [3, Lemma 7.1] or [6, Proposition 2.7]). In contrast to CS-modules, it was shown that there exists a module M which satisfies (C_{11}) but which has a direct summand which does not satisfy (C_{11}) (see [11, Example 4]). We provide more examples in the following. Note first that any indecomposable module satisfying (C_{11}) is uniform.

Proposition 14. Let F be a field of characteristic zero and n any integer with $n \geq 3$. Let S be the polynomial ring $F[x_1, \ldots, x_n]$ in indeterminates x_1, \ldots, x_n over F. Let R = S/Ss be the coordinate ring of (n-1)-sphere S^{n-1} , where $s = x_1^2 + \cdots + x_n^2 - 1$. If S^{n-1} has nonzero Euler characteristic, then the free R-module $M = \bigoplus_{i=1}^n R$ satisfies (C_{11}) but M contains a direct summand K which does not satisfy (C_{11}) .

Proof. It is clear that R is a commutative Noetherian domain. The free R-module M satisfies (C_{11}) by Lemma 1. Let $\varphi: M \longrightarrow R$ be the homomorphism defined by $\varphi(a_1 + Ss, \dots, a_n + Ss) = a_1x_1 + \dots + a_nx_n + Ss$ for all a_i in $S, 1 \leq i \leq n$. Clearly φ is an epimorphism and hence its kernel K is a direct summand of M, i.e., $M = K \oplus K'$ for some submodule $K' \cong R$. Clearly K is not uniform. Note that K is the K-module of regular sections of the tangent bundle of the (n-1)-sphere S^{n-1} . Since the Euler characteristic $\chi(S^{n-1}) \neq 0$ it follows that (n-1)-sphere cannot have a nonvanishing regular section of its tangent bundle (see [2, Corollary VI. 13.3]). Thus K is an indecomposable module. It follows that K does not satisfy (C_{11}) .

Proposition 15. Let \mathbf{R} be the real field and n any odd integer with $n \geq 3$. Let S be the polynomial ring $\mathbf{R}[x_1, \ldots, x_n]$ in indeterminates x_1, \ldots, x_n over \mathbf{R} . Let R be the ring S/Ss, where $s = x_1^2 + \cdots + x_n^2 - 1$. Let P be the R-module with generators s_1, \cdots, s_n and relation $\sum_{i=1}^n x_i s_i = 0$. Then the R-module $P \oplus R$ satisfies (C_{11}) but P does not satisfy (C_{11}) .

Proof. Let $M = P \oplus R$. Then it is clear that M is a free R-module. Note that P is an indecomposable R-module by [12, Theorem 3]. Now, by Lemma 1, M is a (C_{11}) -module. Since P has uniform dimension n-1 then P is not uniform. It follows that P is not a (C_{11}) -module. \square

The next corollary which is obvious by Proposition 15, or Proposition 14, is Example 4 in [11].

Corollary 16. Let **R** be the real field and n any odd integer with $n \geq 3$. Let S be the polynomial ring $\mathbf{R}[x_1,\ldots,x_n]$ in indeterminates x_1,\ldots,x_n over **R**. Let R be the ring S/Ss, where $s=x_1^2+\cdots+x_n^2-1$. Then the free R-module $M=\bigoplus_{i=1}^n R$ satisfies (C_{11}) but M contains a direct summand K which does not satisfy (C_{11}) .

Remarks. (i) If n is 1 or 2 in Proposition 14, or Proposition 15 and Corollary 16, then every direct summand of the module M satisfies (C_{11}) by [10, Lemma 4.1].

(ii) If n is any even integer with $n \ge 4$ then the proof of Corollary 16 does not work. For example spheres S^3, S^5, S^7 all have decomposable tangent bundles by the celebrated result of Adams (see [2, Corollary VI. 15.16]).

Acknowledgments. The author is extremely grateful to the referee, whose perceptive comments greatly broadened the scope of this paper.

REFERENCES

- 1. F.W. Anderson and K.R. Fuller, Rings and categories of modules, Springer Verlag, New York, 1974.
 - 2. G.E. Bredon, Topology and geometry, Springer Verlag, New York, 1993.
- 3. N.V. Dung, D.V. Huyhn, P.F. Smith and R. Wisbauer, *Extending modules*, Longman, Harlow, 1994.
- 4. N. Er, Direct sums and summands of weak CS-modules and continuous modules, Rocky Mountain J. Math. 29 (1999), 491–503.
- 5. L.S. Levy, Commutative rings whose homomorphic images are self-injective, Pacific J. Math. 18 (1966), 149–153.
- **6.** S.H. Mohamed and B.J. Muller, *Continuous and discrete modules*, London Math. Soc. Lecture Note Ser., vol. 147, Cambridge Univ. Press, Cambridge, 1990.

- ${\bf 7.}$ F.L. Sandomierski, Non-singular rings, Proc. Amer. Math. Soc. ${\bf 19}$ (1968), 225–230.
- $\bf 8.$ P.F. Smith, CS-modules and weak CS-modules, in Noncommutative ring theory, Lecture Notes in Math., vol. 1448, Springer-Verlag, New York, 1990, pp. 99–115.
- 9. P.F. Smith and A. Tercan, Continuous and quasi-continuous modules, Houston J. Math. 18 (1992), 339–348.
 - 10. ———, Generalizations of CS-modules, Comm. Algebra 21 (1993), 1809–1847.
 - 11. , Direct summands of modules which satisfy (C_{11}) , preprint.
- 12. R.G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277.
- 13. A. Tercan, On the endomorphism ring of modules with (C_{11}) and (C_2) , Hacettepe Bull. Nat. Sci. Engrg. 22 (1993), 1–7.
- 14. Y. Zhou, Examples of rings and modules as trivial extensions, Comm. Algebra 27 (1999), 1997–2001.

Hacettepe University, Department of Mathematics, Beytepe Campus, $06532~\mathrm{Ankara},~\mathrm{Turkey}$

 $E ext{-}mail\ address: tercan@hacettepe.edu.tr}$