ELSEVIER

Contents lists available at ScienceDirect

Topology and its Applications

www.elsevier.com/locate/topol

Versions of separability in bitopological spaces

Ljubiša D.R. Kočinac^{a,1}, Selma Özçağ^{b,*,2}

^a Faculty of Sciences and Mathematics, University of Niš, 18000 Niš, Serbia

^b Faculty of Science, Hacettepe University, Ankara, Turkey

ARTICLE INFO

MSC: primary 54E55 secondary 54A10, 54C35, 54D65

Keywords: Selection principles Bitopologies Selective separability

ABSTRACT

We study selective versions of separability in bitopological spaces. In particular, we investigate these properties in function spaces endowed with the topology of pointwise convergence and the compact-open topology.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Many topological properties are defined or characterized in terms of the following two classical selection principles. Let A and B be sets consisting of families of subsets of an infinite set X. Then:

 $S_1(\mathcal{A}, \mathcal{B})$ is the selection hypothesis: for each sequence $\langle A_n : n \in \mathbb{N} \rangle$ of elements of \mathcal{A} there is a sequence $\langle b_n : n \in \mathbb{N} \rangle$ such that for each $n, b_n \in A_n$, and $\{b_n : n \in \mathbb{N}\}$ is an element of \mathcal{B} .

 $S_{fin}(\mathcal{A}, \mathcal{B})$ denotes the selection hypothesis: for each sequence $\langle A_n: n \in \mathbb{N} \rangle$ of elements of \mathcal{A} there is a sequence $\langle B_n: n \in \mathbb{N} \rangle$ of finite sets such that for each $n, B_n \subset A_n$, and $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

The prototypes for these selection principles are the Rothberger covering property $S_1(\mathcal{O}, \mathcal{O})$ and the Menger property $S_{fin}(\mathcal{O}, \mathcal{O})$.

In recent years many papers about selection principles in topological spaces have appeared in the literature.

On the other hand, there are very few papers which deal with bitopological spaces and selection principles. They are mainly related to function spaces (see [7,14,17,19,22]). However, there is not a systematic study of selection principles theory in bitopological context. Here we study versions of separability in bitopological spaces.

Recently several papers on selective versions of separability have been published. Let \mathcal{D} denote the family of dense subspaces of a topological space X. In [23] the selection principles $S_{fin}(\mathcal{D}, \mathcal{D})$ and $S_1(\mathcal{D}, \mathcal{D})$ have been introduced. These principles appeared in a natural way in a study of hyperspace topologies in [7,8]. Also, in [8] the notion of groupable (countable) dense sets was introduced; denote by \mathcal{D}^{gp} the family of groupable dense subsets of a space. In [8] (see also [7]), the selection properties $S_{fin}(\mathcal{D}, \mathcal{D}^{gp})$ and $S_1(\mathcal{D}, \mathcal{D}^{gp})$ were introduced and studied in connection with hyperspace topologies. Later on, these four selection properties have been systematically studied by several authors [2–5,9,20]. In [4] the selection properties $S_{fin}(\mathcal{D}, \mathcal{D})$, $S_1(\mathcal{D}, \mathcal{D})$ and $S_1(\mathcal{D}, \mathcal{D}^{gp})$ are called M-separability, R-separability and GN-separability, respectively,

^{*} Corresponding author.

E-mail addresses: lkocinac@gmail.com (Lj.D.R. Kočinac), sozcag@hacettepe.edu.tr (S. Özçağ).

¹ Supported by MNTR RS.

² The author acknowledges support under research project number 09 G 702001 awarded by the Hacettepe University Scientific Research Unit.

^{0166-8641/\$ –} see front matter $\,\, @$ 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2011.05.019 $\,$

while a bit modified property $S_{fin}(\mathcal{D}, \mathcal{D}^{gp})$ is called H-separability (the last two after characterizations of the Hurewicz and Gerlits-Nagy properties given in [15]).

In this article we study these properties in the bitopological context, in particular in the space C(X) of all continuous real-valued functions on a Tychonoff space X, where C(X) is endowed with the topology τ_p of pointwise convergence and the compact-open topology τ_k . Because both spaces $(C(X), \tau_p)$ and $(C(X), \tau_k)$ are homogeneous it is enough to study local properties of these spaces considering the constantly 0 function $\underline{0} \in C(X)$. Recall that the sets $W(\underline{0}, F, \varepsilon) = \{f \in C(X): f(F) \subset (-\varepsilon, \varepsilon)\}$, F finite (resp. compact) in $X, \varepsilon > 0$, form a local base of $\underline{0}$ in $(C(X), \tau_p)$ (resp. $(C(X), \tau_k)$).

This study naturally suggests to consider selection principles $S_{fin}(\mathcal{K}, \Omega)$ and $S_1(\mathcal{K}, \Omega)$ introduced in [11], as well as (versions of) the principles $S_{fin}(\mathcal{K}, \Omega^{gp})$ and $S_1(\mathcal{K}, \Omega^{gp})$ [7].

Recall that Ω , \mathcal{K} , Ω^{gp} denote the families of ω -covers, *k*-covers, groupable ω -covers, respectively. An open cover \mathcal{U} of a topological space X is an ω -cover (a *k*-cover) of X if $X \notin \mathcal{U}$ and each finite (compact) subset of X belongs to a member of \mathcal{U} . A countable ω -cover \mathcal{U} is groupable [15] if it can be partitioned into countable many pairwise disjoint finite sets \mathcal{U}_n such that each finite subset of the space is contained in an element of \mathcal{U}_n for all but finitely many n.

For undefined notions regarding selection principles in topological spaces we refer the reader to the survey papers [10, 13]. The books [1,16] are nice sources concerning function spaces.

At the end of this introduction we mention that there is a deep relationship between selection principles theory and game theory.

The symbol $G_1(\mathcal{A}, \mathcal{B})$ denotes the infinitely long game for two players, ONE and TWO, who play a round for each positive integer. In the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, and TWO responds by choosing an element $b_n \in A_n$. TWO wins a play $(A_1, b_1; ...; A_n, b_n; ...)$ if $\{b_n: n \in \mathbb{N}\} \in \mathcal{B}$; otherwise, ONE wins.

 $G_{fin}(\mathcal{A}, \mathcal{B})$ denotes the game where in the *n*-th round ONE chooses a set $A_n \in \mathcal{A}$, while TWO responds by choosing a finite set $B_n \subset A_n$. A play $(A_1, B_1, \ldots, A_n, B_n, \ldots)$ is won by TWO if and only if $\bigcup_{n \in \mathbb{N}} B_n \in \mathcal{B}$.

It is evident that if ONE does not have a winning strategy in the game $G_1(\mathcal{A}, \mathcal{B})$ (resp. $G_{fin}(\mathcal{A}, \mathcal{B})$) then the selection hypothesis $S_1(\mathcal{A}, \mathcal{B})$ (resp. $S_{fin}(\mathcal{A}, \mathcal{B})$) is true. The converse implication need not be always true (though many properties described by selection principles can be characterized by the corresponding game).

2. Definitions

Throughout this paper (X, τ_1, τ_2) , sometimes written simply *X*, will be a bitopological space (shortly bispace), i.e. the set *X* endowed with two topologies τ_1 and τ_2 . For a subset *A* of *X*, $Cl_i(A)$ will denote the closure of *A* in (X, τ_i) , i = 1, 2. We begin with some definitions.

Let (X, τ_1, τ_2) be a bitopological space. Then:

1. ([6]) A subset A of X is bidense (here called *double dense* or shortly *d-dense*) in X if A is dense in both (X, τ_1) and (X, τ_2) . X is *d-separable* if there is a countable set A which is *d*-dense in X.

2. A pairwise π -base of X is a collection of pairs $(P_{\alpha}, Q_{\alpha}) \in \tau_1 \times \tau_2$, $\alpha \in \Lambda$, such that for every $(U, V) \in \tau_1 \times \tau_2$ there is $\alpha \in \Lambda$ such that $P_{\alpha} \subset V$ and $Q_{\alpha} \subset U$.

3. *X* has countable (τ_i, τ_j) -fan tightness $(i \neq j; i, j = 1, 2)$ if for each $x \in X$ and each sequence $(A_n: n \in \mathbb{N})$ of subsets of *X* such that $x \in Cl_i(A_n)$ for each $n \in \mathbb{N}$, there are finite sets $F_n \subset A_n$, $n \in \mathbb{N}$, with $x \in Cl_j(\bigcup_{n \in \mathbb{N}} F_n)$.

4. *X* has countable (τ_i, τ_j) -strong fan tightness $(i \neq j; i, j = 1, 2)$, if for each $x \in X$ and each sequence $\langle A_n: n \in \mathbb{N} \rangle$ of subsets of *X* such that $x \in \text{Cl}_i(A_n)$ for each $n \in \mathbb{N}$, there are points $x_n \in A_n$, $n \in \mathbb{N}$, with $x \in \text{Cl}_i(\{x_n: n \in \mathbb{N}\})$.

Denote by \mathcal{D}_1 and \mathcal{D}_2 the collections of all dense subsets of (X, τ_1) and (X, τ_2) , respectively. We say that X is:

• $M_{(\tau_i,\tau_j)}$ -separable $(i, j = 1, 2; i \neq j)$, if for each sequence $\langle D_n : n \in \mathbb{N} \rangle$ of elements of \mathcal{D}_i there are finite sets $F_n \subset D_n$, $n \in \mathbb{N}$, such that $\bigcup_{n \in \mathbb{N}} F_n \in \mathcal{D}_j$, i.e. if $S_{fin}(\mathcal{D}_i, \mathcal{D}_j)$ holds;

• $\mathsf{R}_{(\tau_i,\tau_j)}$ -separable if $\mathsf{S}_1(\mathcal{D}_i,\mathcal{D}_j)$ holds;

• $H_{(\tau_i, \tau_j)}$ -separable if for each sequence $\langle D_n: n \in \mathbb{N} \rangle$ of elements of \mathcal{D}_i there are finite sets $F_n \subset D_n$, $n \in \mathbb{N}$, such that each τ_j -open subset of X intersects F_n for all but finitely many n;

• $GN_{(\tau_i,\tau_i)}$ -separable if $S_1(\mathcal{D}_i, \mathcal{D}_i^{gp})$ holds.

Here \mathcal{D}^{gp} is the collection of groupable dense subsets of a space; a countable dense subset *D* of a space *Z* is groupable if $D = \bigcup_{n \in \mathbb{N}} A_n$, each A_n finite and each open set *U* in *Z* intersects all but finitely many A_n [8].

Clearly, if $\tau_1 = \tau_2 = \tau$, then these definitions coincide with definitions of corresponding topological selective versions of separability of (*X*, τ).

Obviously,

 $GN_{(\tau_i,\tau_i)}$ -separability $\Rightarrow R_{(\tau_i,\tau_i)}$ -separability $\Rightarrow M_{(\tau_i,\tau_i)}$ -separability,

and

 $H_{(\tau_i, \tau_i)}$ -separability $\Rightarrow M_{(\tau_i, \tau_i)}$ -separability.

3. Bitopological R-separability

In this section we give some results on bitopological **R**-separability.

Fact 1. $R_{(\tau_i, \tau_j)}$ -separability implies separability of (X, τ_j) .

Fact 2. If $\tau_1 \leq \tau_2$ then:

2.1 $R_{(\tau_1,\tau_2)}$ -separability implies (X, τ_1) is R-separable (and, by Fact 1, (X, τ_2) is separable).

2.2 (X, τ_1) is R-separable $\Rightarrow (X, \tau_1, \tau_2)$ is $\mathsf{R}_{(\tau_2, \tau_1)}$ -separable $\Rightarrow (X, \tau_1)$ is separable.

Fact 3. If Y is either d-dense or d-open in (X, τ_1, τ_2) and X is $\mathsf{R}_{(\tau_i, \tau_i)}$ -separable, then Y is also $\mathsf{R}_{(\tau_i, \tau_i)}$ -separable.

[It follows from the fact that each set which is τ_i -dense (open) in *Y* is τ_i -dense (open) in *X*.]

Theorem 1. If X has a countable pairwise π -base, then X is $\mathsf{R}_{(\tau_i, \tau_j)}$ -separable, i, j = 1, 2.

Proof. (For i = 1, j = 2) Let $\{(P_n, Q_n): n \in \mathbb{N}\}$ be a countable pairwise π -base of X. Take any sequence $\langle D_n: n \in \mathbb{N} \rangle$ of dense subsets of (X, τ_1) . For each $n \in \mathbb{N}$, the intersection $D_n \cap P_n$ is non-empty; take a point $x_n \in D_n \cap P_n$, $n \in \mathbb{N}$, and prove that the set $\{x_n: n \in \mathbb{N}\}$ is dense in (X, τ_2) . Indeed, if $V \in \tau_2$, then there is $m \in \mathbb{N}$ such that $P_m \subset V$, hence $x_m \in V$. \Box

Theorem 2. Let (X, τ_1, τ_2) be a d-separable bitopological space with countable (τ_i, τ_j) -strong fan tightness. Then X is $\mathsf{R}_{(\tau_i, \tau_j)}$ -separable.

Proof. We consider only the case i = 1, j = 2. Let $\langle D_n : n \in \mathbb{N} \rangle$ be a sequence of dense subsets of (X, τ_1) , and let $A = \{a_n : n \in \mathbb{N}\}$ be a countable set dense in (X, τ_1) and in (X, τ_2) . Fix a partition $\mathbb{N} = M_1 \cup M_2 \cup \cdots$ of \mathbb{N} into infinite, pairwise disjoint sets. For each $n \in \mathbb{N}$, $a_n \in \bigcap_{k \in M_n} \operatorname{Cl}_1(D_k)$. Since (τ_1, τ_2) -strong fan tightness of (X, τ_1, τ_2) is countable, there is a sequence $(x_k : k \in M_n)$ of points such that for each $k \in M_n$, $x_k \in D_k$ and $a_n \in \operatorname{Cl}_2(\{x_k : k \in M_n\})$. We claim that the set $\{x_n : n \in \mathbb{N}\}$ is dense in (X, τ_2) . Let U be a set open in (X, τ_2) . Since A is dense in (X, τ_2) , there is some $a_m \in U$. But $a_m \in \operatorname{Cl}_2(\{x_k : k \in M_m\})$, hence $U \cap (\{x_k : k \in M_m\}) \neq \emptyset$ and thus $U \cap \{x_n : n \in \mathbb{N}\} \neq \emptyset$. \Box

Corollary 3. Let (X, τ_1, τ_2) be a bitopological space such that $\tau_1 \leq \tau_2$. If (X, τ_2) is separable and X has countable (τ_i, τ_j) -strong fan tightness, then (X, τ_1, τ_2) is $\mathsf{R}_{(\tau_i, \tau_j)}$ -separable.

As we mentioned, in what follows τ_p denotes the pointwise topology, and τ_k denotes the compact-open topology on the set C(X) of all continuous real-valued functions on a Tychonoff space *X*.

Theorem 4. Let X be a Tychonoff space such that $w(X) = \omega$. Then the following are equivalent:

(1) $X \in S_1(\mathcal{K}, \Omega);$

(2) (C(X), τ_p , τ_k) is $\mathsf{R}_{(\tau_k, \tau_p)}$ -separable.

Proof. (1) \Rightarrow (2): From $d(C(X), \tau_k) = w(X)$ [16] it follows that $(C(X), \tau_k)$ is separable. On the other hand, by Theorem 2.4 in [17], (τ_k, τ_p) -strong fan tightness of $(C(X), \tau_p, \tau_k)$ is countable if (and only if) $X \in S_1(\mathcal{K}, \Omega)$. By Corollary 3 we obtain $(C(X), \tau_p, \tau_k)$ is $R_{(\tau_k, \tau_p)}$ -separable.

 $(2) \Rightarrow (1)$: Let $\langle \mathcal{U}_n : n \in \mathbb{N} \rangle$ be a sequence of *k*-covers of *X*. For every $n \in \mathbb{N}$ let

 $A_n = \left\{ f \in \mathsf{C}_k(X) : \text{there is } U \in \mathcal{U}_n, \ f(X \setminus U) = \{1\} \right\}.$

We prove that each A_n is dense in $C_k(X)$. Let $f \in C_k(X)$ and let $\bigcap_{i \leq m} W(K_i, V_i)$ be a basic neighbourhood of f. [Here $W(K_i, V_i) = \{f \in C(X): f(K_i) \subset V_i\}$, K_i compact in X, V_i open in \mathbb{R} .] The set $K = \bigcup_{i \leq m} K_i$ is compact, and since \mathcal{U}_n is a k-cover of X, there is $U \in \mathcal{U}_n$ containing K. There is also $g \in C_k(X)$ such that $g(X \setminus U) = \{1\}$ and $g \upharpoonright K = f \upharpoonright K$. Then $g \in \bigcap_{i \leq m} W(K_i, V_i) \cap A_n$.

Since $(C(X), \tau_p, \tau_k)$ is $R_{(\tau_k, \tau_p)}$ -separable there are functions $f_n \in A_n$, $n \in \mathbb{N}$, such that the set $\{f_n: n \in \mathbb{N}\}$ is dense in $(C(X), \tau_1)$. Let $U_n \in \mathcal{U}_n$ be a set for which $f_n(X \setminus U_n) = \{1\}$ holds. We claim that $\{U_n: n \in \mathbb{N}\}$ is an ω -cover of X. Let F be a finite subset of X. Suppose that for each $n \in \mathbb{N}$ there is a point $x_n \in F \setminus U_n$. This means that for each n, $f_n(x_n) = 1$ which contradicts the fact that $\{f_n: n \in \mathbb{N}\}$ is dense in $(C(X), \tau_p)$ (the open set $W(F, (-1, 1)) = \{g \in C(X): f(F) \subset (-1, 1)\}$ does not contain any $f_m, m \in \mathbb{N}$). \Box

4. Bitopological M-separability

Because M-separability has many similarities with R-separability, we formulate here statements parallel to the corresponding statements from the previous section.

The proof of the following theorem is quite similar to the proof of Theorem 2 and thus will be omitted. Instead we prove Corollary 6 below parallel to Corollary 3.

Theorem 5. Let (X, τ_1, τ_2) be a d-separable bitopological space with countable (τ_i, τ_j) -fan tightness. Then X is $M_{(\tau_i, \tau_j)}$ -separable.

Corollary 6. Let (X, τ_1, τ_2) be a bitopological space with $\tau_1 \leq \tau_2$. If (X, τ_2) is separable and the (τ_i, τ_j) -fan tightness of X is countable, then (X, τ_1, τ_2) is $M_{(\tau_i, \tau_i)}$ -separable.

Proof. (i = 1, j = 2) Let $\langle D_n: n \in \mathbb{N} \rangle$ be a sequence of dense subsets of (X, τ_1) . Fix a countable set $A = \{a_n: n \in \mathbb{N}\}$ dense in (X, τ_2) , so also in (X, τ_1) because $\tau_1 \leq \tau_2$. Let $\mathbb{N} = M_1 \cup M_2 \cup \cdots$ be a partition of \mathbb{N} into infinite, pairwise disjoint sets. For each n we have $a_n \in Cl_1(D_k)$ for each $k \in M_n$. Since (τ_1, τ_2) -fan tightness of (X, τ_1, τ_2) is countable, there is a sequence $\langle F_k: k \in M_n \rangle$ of finite sets such that for each $k \in M_n$, $F_k \subset D_k$ and $a_n \in Cl_2(\bigcup \{F_k: k \in M_n\})$. We claim that the sequence $\langle F_n: n \in \mathbb{N} \rangle$ witnesses for $\langle D_n: n \in \mathbb{N} \rangle$ that (X, τ_1, τ_2) is $M_{(\tau_1, \tau_2)}$ -separable, i.e. that $\bigcup \{F_n: n \in \mathbb{N}\}$ is dense in (X, τ_2) . Let U be a set open in (X, τ_2) . Then there is $m \in \mathbb{N}$ such that $a_m \in U$. But $a_m \in Cl_2(\bigcup \{F_k: k \in M_m\})$ so that $U \cap (\bigcup \{F_k: k \in M_m\}) \neq \emptyset$, hence $\bigcup \{F_n: n \in \mathbb{N}\}$ is dense in (X, τ_2) . \Box

Theorem 7. For a Tychonoff space X with countable base the following are equivalent:

- (1) $X \in S_{fin}(\mathcal{K}, \Omega);$
- (2) $(C(X), \tau_p, \tau_k)$ is $M_{(\tau_k, \tau_p)}$ -separable.

Proof. (1) \Rightarrow (2): The space (C(*X*), τ_k) is separable since $d(C(X), \tau_k) = w(X)$. On the other hand, by [17, Theorem 2.5], (τ_k, τ_p) -fan tightness of (C(*X*), τ_p, τ_k) is countable if and only if *X* has selection property $S_{fin}(\mathcal{K}, \Omega)$. Apply Corollary 6. (2) \Rightarrow (1): Let $\langle \mathcal{U}_n : n \in \mathbb{N} \rangle$ be a sequence of *k*-covers of *X*. For every $n \in \mathbb{N}$ let

$$A_n = \{ f \in C_k(X) : \text{there is } U \in \mathcal{U}, f(X \setminus U) = \{1\} \}.$$

As in the proof of Theorem 4 one proves that each A_n is dense in $C_k(X)$.

Since $(C(X), \tau_p, \tau_k)$ is $M_{(\tau_k, \tau_p)}$ -separable there are finite sets $B_n = \{f_{n,1}, \ldots, f_{n,m_n}\} \subset A_n, n \in \mathbb{N}$, such that the set $\bigcup_{n \in \mathbb{N}} B_n$ is dense in $(C(X), \tau_p)$. For each n, let $\mathcal{V}_n = \{U_{n,1}, \ldots, U_{n,m_n}: f_{n,i}(X \setminus U_{n,i}) = \{1\}, i \leq m_n\}$. Then \mathcal{V}_n is a finite subset of \mathcal{U}_n . We claim that $\bigcup_{n \in \mathbb{N}} \mathcal{V}_n$ is an ω -cover of X. Let F be a finite subset of X. The τ_p -open set $W(\underline{0}, F, 1)$ meets B_j for some $j \in \mathbb{N}$, i.e. there is a function $f_{j,m_j} \in B_j$ such that $f_{j,m_j}(x) \in (-1, 1)$ for each $x \in F$. This means $F \subset U_{j,m_j}$ as required. \Box

The unexpected result that separable Fréchet-Urysohn spaces are M-separable was shown in [3].

The following is a bitopological version of this result. Call a bispace (X, τ_1, τ_2) (τ_i, τ_j) -Fréchet–Urysohn $(i \neq j; i, j = 1, 2)$, abbreviated as (τ_i, τ_j) -FU, if for each $A \subset X$ and each $x \in Cl_i(A)$ there is a sequence $(a_n)_{n \in \mathbb{N}}$ in A which τ_i -converges to x.

Theorem 8. Let (X, τ_1, τ_2) be a *d*-separable bispace such that $\tau_1 \leq \tau_2$, (X, τ_1) is dense-in-itself, and (X, τ_2) is Hausdorff. If X is (τ_1, τ_2) -FU, then X is $M_{(\tau_1, \tau_2)}$ -separable.

Proof. Let $A = \{a_n : n \in \mathbb{N}\}$ be a countable *d*-dense subset of *X* and let $\langle D_n : n \in \mathbb{N} \rangle$ be a sequence of τ_1 -dense subsets of *X*. Take any $a \in A$. From $a \in \operatorname{Cl}_1(X \setminus \{a\})$ it follows that there is a sequence $(x_n)_{n \in \mathbb{N}}$ in $X \setminus \{a\}$ which τ_2 -converges to *a*. Further, for each $n \in \mathbb{N}$, $x_n \in \operatorname{Cl}_1(D_n)$ and thus there is a sequence $y_n = (y_{n,m})_{m \in \mathbb{N}}$ in D_n τ_2 -converging to x_n . Clearly, $a \in \operatorname{Cl}_2(\bigcup_{n \in \mathbb{N}} y_n)$ and so $a \in \operatorname{Cl}_1(\bigcup_{n \in \mathbb{N}} y_n)$. There is a sequence $z = (z_m)_{m \in \mathbb{N}}$ in $\bigcup_{n \in \mathbb{N}} y_n$ τ_2 -converging to *a*. For each *n* the intersection $y_n \cap z = F_n \subset D_n$ is finite because y_n and z τ_2 -converge to different points in the Hausdorff space (X, τ_2) . Since $a \in \operatorname{Cl}_2(\{z_m : m \in \mathbb{N}\})$ and $z = \bigcup_{n \in \mathbb{N}} F_n$ we have $a \in \operatorname{Cl}_2(\bigcup_{n \in \mathbb{N}} F_n)$. This means that *X* has countable (τ_1, τ_2) -fan tightness at each point $a \in A$.

Let $\mathbb{N} = M_1 \cup M_2 \cup \cdots$, where M_i , $i \in \mathbb{N}$ are infinite, pairwise disjoint. Fix $n \in \mathbb{N}$. Apply the fact that X has countable (τ_1, τ_2) -fan tightness at a_n to the sequence $\langle D_m: m \in M_n \rangle$ and find finite sets $F_m^n \subset D_m$, $m \in M_n$, such that $a_n \in \operatorname{Cl}_2(\bigcup_{m \in M_n} F_m^n)$. Then the sets F_m^n , $m \in M_n$, $n \in \mathbb{N}$ testify that X is $M_{(\tau_1, \tau_2)}$ -separable because $A \subset \operatorname{Cl}_2(\bigcup_{n \in \mathbb{N}} \bigcup_{m \in M_n} F_m^n)$ and A is d-dense in X. \Box

The following theorem, which is a bitopological version of [9, Prop. 4.1], gives an interesting implication. Recall that a bispace (X, τ_1, τ_2) is (τ_i, τ_j) -*Pytkeev* $(i \neq j; i, j = 1, 2)$ [12] (see also [17]) if for each $A \subset X$ and each $x \in Cl_i(A) \setminus A$ there are infinite sets $B_n \subset A$, $n \in \mathbb{N}$, such that each τ_i -neighbourhood of x contains some B_n .

Theorem 9. Let $(X, \tau_1, \tau_2), \tau_1 \leq \tau_2$, be a d-separable (τ_1, τ_2) -Pytkeev bispace. If X is $M_{(\tau_1, \tau_2)}$ -separable, then it is $R_{(\tau_1, \tau_2)}$ -separable.

Proof. Fix a *d*-dense subset $A = \{a_n : n \in \mathbb{N}\}$ of *X*. Let $\langle D_n : n \in \mathbb{N} \rangle$ be a sequence of τ_1 -dense subsets of *X*. Let $\mathbb{N} = M_1 \cup M_2 \cup \cdots$ be a partition of \mathbb{N} into infinite subsets. For each $n \in \mathbb{N}$ consider the sequence $\langle D_m : m \in M_n \rangle$. Since *X* is $M_{(\tau_1, \tau_2)}$ -separable, there are finite sets $F_m \subset D_m$, $m \in M_n$, such that $Y_n := \bigcup_{m \in M_n} F_m$ is τ_2 -dense in *X*. Let $K_1 = \{n \in \mathbb{N} : a_n \in Y_n\}$ and $K_2 = \mathbb{N} \setminus K_1$. For each $n \in K_2$ we have $a_n \in Cl_1(Y_n) \setminus Y_n$ and since *X* is (τ_1, τ_2) -Pytkeev there are infinite sets $B_{n,k} \subset Y_n$, $k \in \mathbb{N}$, such that each τ_2 -neighbourhood of *x* contains some $B_{n,k}$. Clearly, each $B_{n,k}$ intersects infinitely many (finite) sets F_m , say F_{m_1}, \ldots, F_{m_k} . Pick a point $x_{n,m_k} \in B_{n,k} \cap F_{m_k} \subset D_{m_k}$. Let

$$z_n = \begin{cases} a_n, & \text{if } n \in K_1; \\ x_{n,m_k}, & \text{if } n \in K_2, \ k \in \mathbb{N} \end{cases}$$

Then $\{z_n: n \in \mathbb{N}\}$ is τ_2 -dense in X, i.e. the sequence $\langle z_n: n \in \mathbb{N} \rangle$ witnesses for $\langle D_n: n \in \mathbb{N} \rangle$ that X is $\mathsf{R}_{(\tau_1, \tau_2)}$ -separable. \Box

5. Bitopological H- and GN-separability

A bispace (X, τ_1, τ_2) has the *selectively* (τ_i, τ_j) -*Reznichenko property* $(i \neq j; i, j = 1, 2)$, if for each sequence $\langle A_n: n \in \mathbb{N} \rangle$ of subsets of X and each point $x \in \bigcap_{n \in \mathbb{N}} \operatorname{Cl}_i(A_n)$ there are finite, pairwise disjoint sets $B_n \subset A_n$, $n \in \mathbb{N}$, such that each τ_j -neighbourhood of x intersects B_n for all but finitely many n.

This notion was introduced in [12]. If we do not require B_n 's to be disjoint, one obtains the notion of weak selectively (τ_i, τ_j) -Reznichenko property (compare with [18,21]).

Theorem 10. For a Tychonoff space X with countable base the following are equivalent:

(1) (C(X), τ_p , τ_k) is H_(τ_k, τ_p)-separable;

(2) For each sequence $\langle \mathcal{U}_n : n \in \mathbb{N} \rangle$ of k-covers of X there is a sequence $\langle \mathcal{V}_n : n \in \mathbb{N} \rangle$ of finite sets such that for each $n, \mathcal{V}_n \subset \mathcal{U}_n$ and each finite set $F \subset X$ is contained in an element of \mathcal{V}_n for all but finitely many $n \in \mathbb{N}$.

Proof. (1) \Rightarrow (2): Let $\langle \mathcal{U}_n : n \in \mathbb{N} \rangle$ be a sequence of *k*-covers of *X*. For every $n \in \mathbb{N}$ let

$$A_n = \{ f \in C_k(X) : \text{ there is } U \in \mathcal{U}_n, f(X \setminus U) = \{1\} \}.$$

Each A_n is dense in $(C(X), \tau_k)$. By (1) there are finite sets $B_n \subset A_n$, $n \in \mathbb{N}$, such that each τ_p -open set intersects B_n for all but finitely many n. Let \mathcal{V}_n , $n \in \mathbb{N}$, be the family of sets $U_f \in \mathcal{U}_n$, $f \in B_n$, such that $f(X \setminus U_f) = \{1\}$. We prove that the sequence $\langle \mathcal{V}_n : n \in \mathbb{N} \rangle$ witnesses that X satisfies (2).

Let *E* be a finite subset of *X*. Then W = W(E, (-1, 1)) is an open set in $(C(X), \tau_p)$ and thus it meets B_m for each *m* bigger than some m_0 ; pick $f_m \in W \cap B_m$, $m > m_0$. Then for each $m > m_0$, $E \subset U_{f_m} \in V_m$, as required in (2).

 $(2) \Rightarrow (1)$: We divide the proof into two parts.

Claim 1. C(X) has the weak selectively (τ_k, τ_p) -Reznichenko property.

Let $\langle A_n: n \in \mathbb{N} \rangle$ be a sequence of subsets of C(X) whose τ_k -closures contain $\underline{0}$. For every compact set $K \subset X$ and every $m \in \mathbb{N}$ the τ_k -neighborhood $W(\underline{0}, K, 1/m)$ of $\underline{0}$ intersects each A_n . It follows that for each $n \in \mathbb{N}$ there exists a function $f_{K,n,m} \in A_n$ satisfying $|f_{K,n,m}(x)| < 1/m$ for each $x \in K$. For each n set

$$\mathcal{U}_{n,m} = \{ f^{\leftarrow}(-1/m, 1/m) \colon m \in \mathbb{N}, \ f \in A_n \}.$$

(We can view the indices m, n in $\mathcal{U}_{n,m}$ as $\varphi(m, n)$ for some bijection $\varphi : \mathbb{N}^2 \to \mathbb{N}$.) We claim that for each $n, m \in \mathbb{N}$, each compact subset of X is contained in an element of $\mathcal{U}_{n,m}$. Indeed, if C is a compact subset of X, then there is $f_{C,n,m} \in W(\underline{0}, C, 1/m) \cap A_n$. Hence $|f_{C,n,m}(x)| < 1/m$ for each $x \in C$. This means $C \subset f_{C,n,m}^{\leftarrow}(-1/m, 1/m) \in \mathcal{U}_{n,m}$.

Put $M = \{m \in \mathbb{N}: X \in \mathcal{U}_{n,m} \text{ for some } n \in \mathbb{N}\}.$

Case 1. M is infinite.

There are $m_1 < m_2 < \cdots$ in M and (the corresponding) n_1, n_2, \ldots in \mathbb{N} such that $f_{K_i, n_i, m_i}(-1/m_i, 1/m_i) = X$ for all $i \in \mathbb{N}$ and some compact sets $K_i \subset X$. Let $W(\underline{0}, F, \varepsilon)$ be a τ_p -neighbourhood of $\underline{0}$. Pick m_k such that $1/m_k < \varepsilon$. For every $m_i > m_k$ we have $f_{K_i, n_i, m_i}(x) \in (-1/m_i, 1/m_i)$ for each $x \in X$ and so $f_{K_i, n_i, m_i} \in W(\underline{0}, F, 1/m_i) \subset W(\underline{0}, F, \varepsilon)$. This means that the sequence $(f_{K_i, n_i, m_i}: i \in \mathbb{N})$ τ_p -converges to $\underline{0}$, hence C(X) has the weak selectively (τ_k, τ_p) -Reznichenko property at $\underline{0}$.

Case 2. *M* is finite.

There is $m_0 \in \mathbb{N}$ such that for each $m \ge m_0$ and each $n \in \mathbb{N}$, the set $\mathcal{U}_{n,m}$ is a *k*-cover of *X*. Without loss of generality one may suppose $m_0 = 1$. Further, we can consider only *k*-covers $\mathcal{U}_{n,n}$, $n \in \mathbb{N}$. By (2) choose for each $n \in \mathbb{N}$ a finite set

 $\mathcal{V}_{n,n} \subset \mathcal{U}_{n,n}$ so that each finite subset F of X belongs to some $V \in \mathcal{V}_{n,n}$ for all but finitely many n. Choose the corresponding functions $f_{K_V,1/n,1/n}$, $V \in \mathcal{V}_{n,n}$, and put $B_n = \{f_{K_V,1/n,1/n}: V \in \mathcal{V}_{n,n}\}$. Then each B_n is a finite subset of A_n . Let $W(\underline{0}, F, 1/i)$ be a neighborhood of $\underline{0}$. Let n_0 be such that i/n < 1/i and for each $n > n_0$ there is $V_n \in \mathcal{V}_{n,n}$ containing F. Choose a corresponding $f_n \in B_n$. Since this can be done for all $n > n_0$, we conclude that for all $n > n_0$ we have $f_n \in W(\underline{0}, F, 1/i)$, i.e., $B_n \cap W(\underline{0}, F, 1/i) \neq \emptyset$ for all $n > n_0$.

Claim 2. C(X) is $H_{(\tau_k, \tau_p)}$ -separable.

Since $w(X) = \omega$, and $\tau_1 \leq \tau_2$, there is a countable *d*-dense subset $A = \{a_n : n \in \mathbb{N}\}$ of C(X). Let $\langle D_n : n \in \mathbb{N} \rangle$ be a sequence of dense subsets of $(C(X), \tau_k)$. Fix $m \in \mathbb{N}$. Since $a_m \in Cl_{\tau_k}(D_n)$ for each $n \in \mathbb{N}$, and C(X) has the weak selectively (τ_k, τ_p) -Reznichenko property, there are finite sets $F_{n,m}$, such that for each n, $F_{n,m} \subset D_n$ and each τ_p -neighbourhood of a_m intersects all but finitely many $F_{n,m}$. For each n put $F_n = \bigcup \{F_{n,m} : m \leq n\}$. The sequence $\langle F_n : n \in \mathbb{N} \rangle$ witnesses for $\langle D_n : n \in \mathbb{N} \rangle$ that C(X) is $H_{(\tau_k, \tau_p)}$ -separable. Indeed, let W be an open set in $(C(X), \tau_p)$. Then there is $a_m \in W$, hence W meets all but finitely many F_n . \Box

Theorem 11. If C(X) is $GN_{(\tau_k, \tau_n)}$ -separable, then X satisfies $S_{fin}(\mathcal{K}, \Omega^{gp})$.

Proof. Let $\langle U_n : n \in \mathbb{N} \rangle$ be a sequence of *k*-covers of *X*. As in the proof of Theorem 10 define dense sets A_n in $(C(X), \tau_k)$, hence *d*-dense in C(X). Since C(X) is $GN_{(\tau_k, \tau_p)}$ -separable, there are $f_n \in A_n$, $n \in \mathbb{N}$, such that $A = \{f_n : n \in \mathbb{N}\}$ is τ_p -groupable, i.e. $A = \bigcup_{m \in \mathbb{N}} B_m$, where each $B_m = \{f_m^{k_1}, \ldots, f_m^{k_m}\}$ is a finite subset of *A* and each τ_p -open set meets all but finitely many B_m . For each $m \in \mathbb{N}$, let

 $\mathcal{V}_m = \left\{ U_m^{k_i} \colon f_m^{k_i} \left(X \setminus U_m^{k_i} \right) = \{1\}, \ i \leq m \right\}.$

We prove that each finite subset of *X* is contained in some $V \in \mathcal{V}_m$ for all but finitely many *m*. Let *F* be a finite subset of *X*. Then the τ_p -open set $W(\underline{0}, F, 1)$ intersects B_m for all *m* bigger than some $m_0 \in \mathbb{N}$. Let $f_m^{k_j} \in W(\underline{0}, F, 1) \cap B_m$, $m \ge m_0$. Then $F \subset U_m^{k_j}$, $m \ge m_0$. This means that *X* satisfies $S_{fin}(\mathcal{K}, \Omega^{gp})$. \Box

From Theorems 4 and 11 we obtain

Theorem 12. If C(X) is $GN_{(\tau_k, \tau_n)}$ -separable, then X satisfies $S_1(\mathcal{K}, \Omega)$ and $S_{fin}(\mathcal{K}, \Omega^{gp})$.

A direct consequence is the following assertion.

Corollary 13. If C(X) is $GN_{(\tau_k, \tau_p)}$ -separable, then C(X) is $R_{(\tau_k, \tau_p)}$ -separable as well as $H_{(\tau_k, \tau_p)}$ -separable.

6. Concluding remarks

It would be interesting to investigate relations between bitopological selective versions of separability and games which naturally correspond to them (see [3] for M-separability in topological spaces). For example, we conjecture that the following two assertions are not equivalent:

- (1) TWO has a winning strategy in the game $G_1(\mathcal{D}_i, \mathcal{D}_j)$ (resp. $G_1(\mathcal{D}_i, \mathcal{D}_i^{gr})$);
- (2) (X, τ_1, τ_2) is $\mathsf{R}_{(\tau_i, \tau_j)}$ -separable (resp. $\mathsf{GN}_{(\tau_i, \tau_j)}$ -separable).

Similarly for the $H_{(\tau_i, \tau_i)}$ -separability and the corresponding game.

Acknowledgements

The authors thank the referees for several useful remarks and suggestions. They also thank Prof. A. Bella for his comments which led to an improvement of the paper.

References

- [1] A.V. Arhangel'skii, Topological Function Spaces, Kluwer Academic Publishers, 1992.
- [2] L. Babinkostova, On some questions about selective separability, Math. Log. Quart. 55 (2009) 539-541.
- [3] D. Barman, A. Dow, Selective separability and SS⁺, Topology Proc. 37 (2011) 181–204.
- [4] A. Bella, M. Bonanzinga, M. Matveev, Variations of selective separability, Topology Appl. 156 (2009) 1241-1252.
- [5] A. Bella, M. Bonanzinga, M. Matveev, V. Tkachuk, Selective separability: general facts and behavior in countable spaces, Topology Proc. 32 (2008) 15–30.
- [6] L.M. Brown, Dual covering theory, confluence structures and the lattice of bicontinuous functions, PhD thesis, Glasgow University, 1981.
- [7] A. Caserta, G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Applications of k-covers II, Topology Appl. 153 (2006) 3277–3293.

- [8] G. Di Maio, Lj.D.R. Kočinac, E. Meccariello, Selection principles and hyperspace topologies, Topology Appl. 153 (2005) 912-923.
- [9] G. Gruenhage, M. Sakai, Selective separability and its variations, Topology Appl. 158 (12) (2011) 1352–1359, doi:10.1016/j.topol.2011.05.009.
- [10] Lj.D.R. Kočinac, Selected results on selection principles, in: Proc. Third Seminar on Geometry and Topology, Tabriz, Iran, July 15–17, 2004, pp. 71–104.
 [11] Lj.D.R. Kočinac, Two covering properties and partition relations, in: Proc. Third Seminar on Geometry and Topology, Tabriz, Iran, July 15–17, 2004, pp. 105–109.
- [12] LJ.D.R. Kočinac, The Reznichenko property and the Pytkeev property in hyperspaces, Acta Math. Hungar. 107 (2005) 225-233.
- [13] LJ.D.R. Kočinac, Some covering properties in topological and uniform spaces, Proc. Steklov Inst. Math. 252 (2006) 122-137.
- [14] Lj.D. Kočinac, M. Scheepers, Function spaces and strong measure zero sets, Acta Math. Hungar. 82 (1999) 341-351.
- [15] Lj.D.R. Kočinac, M. Scheepers, Combinatorics of open covers (VII): Groupability, Fund. Math. 179 (2003) 131-155.
- [16] R.A. McCoy, I. Ntantu, Topological Properties of Spaces of Continuous Functions, Lecture Notes in Mathematics, vol. 1315, Springer, Berlin, 1988.
- [17] B.A. Pansera, V. Pavlović, Open covers and function spaces, Mat. Vesnik 58 (2006) 57-70.
- [18] V. Pavlović, A selective version of the Reznichenko property in function spaces. Acta Math. Hungar. 113 (2006) 101–117.
- [19] V. Pavlović, A selective bitopological version of the Reznichenko property in function spaces, Topology Appl. 156 (2009) 1636-1645.
- [20] D. Repovš, L. Zdomskyy, On M-separability of countable spaces and function spaces, Topology Appl. 157 (2010) 2538-2541.
- [21] M. Sakai, Special subsets of reals characterizing local properties of function spaces, in: Lj.D.R. Kočinac (Ed.), Selection Principles and Covering Properties in Topology, Quad. Mat., vol. 18, Caserta, 2006, pp. 195–224.
- [22] M. Scheepers, Strong measure zero sets, filters, and pointwise convergence, East-West J. Math. 1 (1998) 109-116.
- [23] M. Scheepers, Combinatorics of open covers (VI): Selectors for sequences of dense sets, Quaest. Math. 22 (1999) 109-130.