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Abstract-A treatment of asymptotic calculation of upper branch nonstationary instability modes 
is undertaken in the boundary layer flow due to a rotating disk. A numerical spectral solution of the 
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1. INTRODUCTION 

Rotating-disk flow exhibits a vast diversity of instabilities similar to those of a swept-wing, which 

have been believed to cause the transition to turbulence. These instability mechanisms may 

be categorized basically as convective and absolute. Each of these can be provoked by either 

the inviscid or viscous character of the flow disturbances. The absolute instability feature of 

the rotating-disk flow has been carried out lately by [2,3]. A d irect spatial resonance instability 

leading to the transient behaviour in the flow characteristics has also been found to occur at a 

Reynolds number of 445, see [4,5]. 

Most of the experimental, theoretical, and numerical work has been devoted to the investigation 

of convective type of instability. Stationary crossflow instability first studied experimentally by [6] 

(hereafter, referred to as GSW) is an example of convective instability. Hall [l] and Malik [7] 

investigated theoretically the stability characteristics of the stationary crossflow vortices. 

Convective instability is not only induced by the amplification of unstable stationary crossflow 

disturbances, but it is also due to unstable traveling disturbances. Such instability wave patterns 

were first detected in the experiment of GSW, and later [8] showed that in a rotating-disk flow, 

this type of instability occurred much earlier than the stationary one. Bassom [9], applying 
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the multideck ideas of [lo], studied linear and nonlinear aspects of neutral stability of crossflow 

vortices. 

Recently, experiments on the flow over a rotating disk have been carried out by [11,12] to inves- 

tigate, in particular, the role of nonstationary disturbances in the route to transition. Jane [ll] 

found that for the natural transition process over a smooth disk, traveling waves dominate in the 

early stages of instability. When transition is forced with a roughness element in the experiment 

of [12], transition was dominated by traveling disturbances with a negative phase speed. Trav- 

eling instability mode was also present in the experiment of [13] and they showed that a triad 

coupling between pairs of traveling eigenmodes and a stationary mode is responsible for the final 

breakdown to turbulence. 

The effect of wall compliance on boundary-layer instability over a rotating disk, recently ex- 

plored by [14], has made it clear that complete suppression of the absolute instability is possible, 

removing a major route to transition in the rotating disk. Then there remains the amplification 

of the perturbations through convective instability. The neutral stability boundaries in this case 

are of interest and inviscid short wavelength modes are considered in this paper. 

The main objective is to study the nonstationary upper branch behaviour of the disturbances. 

Asymptotic methods based on the triple-deck theory allows the study of nonlinearity, nonparal- 

lelism as well as viscous and curvature effects in a natural and rigorous fashion. For this purpose, 

the asymptotic framework of [l] has been extended to include nonzero frequency waves. An 

investigation of the second-order eigenvalue problem, allowing viscous and nonstationary effects 

to appear, reveals the appearance of a phase shift across the critical layer and a wall layer shift. 

The matching of these shifts generates an eigenrelation which is similar to the one obtained by 

PI. 
This paper is organized as follows. First governing equations and mean flow are given in 

Section 2. The asymptotic expansion of the neutral stability modes is examined in different 

regimes of the flow in Section 3. Finally, conclusions follow in Section 4. 

2. GOVERNING EQUATIONS AND THE MEAN FLOW 

We consider the three dimensional boundary-layer flow of an incompressible fluid on an infinite 

disk which rotates about its axis with a constant angular velocity 0. Then, the suitably nondi- 

mensionalized Navier-Stokes equations governing the unsteady viscous fluid motion are given 

dU 
- dt + (u.V)u + k x (k x r) + 2(k x u) = -VP + k V2u, 

v.u = 0, 
(1) 

where u, k, r, and Re = R2 denote, respectively, velocity vector, normal unit vector, coordinate 

vector, and Reynolds number. 

The mean flow velocities and pressure are given by Von Karman’s exact self-similar solution 

of (1) for steady flow. The boundary-layer coordinate 2 of order O(1) is defined as 2 = zR, and 

the self-similar equations take the form 

(Q,W,WB,PB) = TF[Z],TG[Z], + H[Z], $ P[z]) , 

where the functions F, G, H, and P satisfy the followin g ordinary differential equations and 

boundary conditions: 

F2 - (G + 1)2 + F’H - F” = 0, 2F(G + 1) + G’H - G” = 0, 

P’+H’H-H”=O, 2F + H’ = 0, 

F=G=H=O, atZ=O, F = 0, G = -1, as 2 + co. 

(3) 



Rotating Disk 687 

3. ASYMPTOTIC ANALYSIS OF 
NONSTATIONARY UPPER BRANCH MODES 

A theoretical approach for the evolution of upper branch stationary modes is presented in [l]. 

Our intention here is to extend this theory to account for the nonzero frequency waves. Following 

the work of [l], we define a small parameter E = Re -1/6 We also assume that disturbances take . 

the form of 
(U, v, w, P) = (U(Z), v(z),w(z),p(*))eilE3(~“ ~~~+0%-+2? 

As a result of the choice of scalings above, the leading-order problem will be stationary consistent 

with the analysis of GSW and [9], and the frequency will come into effect in the second-order 

problem. On the upper branch, we also expand the wave numbers and frequency as 

In view of [l], we restrict our attention to neutral disturbances at a local position T. Asymptotic 

regions and solutions therein are sought in the following. 

3.1. Inviscid Region c = zee3(z = O(Re-I/‘)) 

The existence of this inviscid zone of depth 0(e3) was shown by GSW. In this region, U, U, 20, 

and p are expanded in the form 

(%%‘w,P) = (~o,~o,wo,Po)(C) + 4~lr~l,W,Pl)(<) +... . 

After making substitution of these into equations (1) and equating the terms of order of 0(,em3), 

the leading-order approximation results in the inviscid Rayleigh equation, see [l]. Defining the 

effective velocity profile UB = acrF + /3aG and leading-order wave number $ = C$ + pi/r”, the 

solution is restricted to satisfy l?~ and cfj to vanish at a nonzero C = t, so that the singularity 

is avoided. The eigenvalue problem was solved in [l], and the quantities crs, ,&, 70, and c are 

given therein. 

A couple of second-order differential equations results from equating 0(ee2) terms in the 

inviscid zone, and upon eliminating ~1, wr, and pr, we obtain the following nonhomogeneous 

Rayleigh equation for wr : 

where & = aacrr + (&#r/r2) and E^ = al/pa - (o&//3;). Due to the second term on the right- 

hand side of (4), a Frobenius expansion reveals that a logarithmic singularity appears belonging 

to w1 at < = c. This singularity manifests itself in the form 

where 

Such a singularity can be removed by introducing a critical layer at C = <. 

By means of the consideration of the viscous critical layer theory, when the path of the inte- 
gration is deformed into the complex plane near C = < (i.e., continuation below the critical layer), 

together with (5), the well-known linear phase jump in the inviscid zone is obtained: 

(6) 
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3.2. Viscous Sublayer 5 = ze-“(z = 0(Re-2’3)) 

It is readily obtained from the leading-order equations in the inviscid zone that 

c --) 0, i ( PO 
CYOUO + --VI) 

r 1 + -WA(O). 

Therefore, to satisfy the zero velocity requirement at the wall, a viscous sublayer is required. The 

thickness of this layer is found to be O(e4), by balancing the convection and diffusion terms in (1). 

Hall [l] presents the expansion of basic velocity profiles. The various quantities also expand as 

follows: 

Substituting these into the Navier-Stokes equations (l), and after some manipulations as in [l], 

for large < we find the wall layer shift 

60 N WA(O) 5 + [ E.& 

with f& = -i (&/Xi), Xi = i[cuorFo + PoGo], and K = &r Aids. On matching with the 

inviscid zone described earlier, we find that 2~1 must satisfy 

Ai’ 
w + &(O> r, c + 0. 

A solvability condition is a prerequisite for further assessment, which can be rigorously con- 

structed by multiplying (4) with wc and integrating from wall to infinity, additionally making 

use of equations (4), (6), and (7), we obtain the eigenrelation 

2M1 + rE^[I2 + a] -t zo[13 + b] = w&(O)~ $G$, (8) 

where the quantities II, Iz, 13, a, and b can be found in [4]. 

Finally, making use of the Reynolds number R based on the boundary-layer thickness and the 

local azimuthal velocity of the disk, R = r Fte ‘12, the effective wave number (cr2 + p2/r2)1/2 and 

the wave angle E in powers of R are given by 

l/2 ^ = y. + ; R-1/3 + . . . , 

(tan-l(E)) = z + cRm1i3 + . . . . 
(9) 

Note that when 3s = 0, the explicit expressions for the effective wave number and the wave 

angle outlined in [l] are recovered from the eigenrelation (8). The extra term 1s comes in due 

to the consideration of nonzero frequency waves. In this case, equation (8) should be solved 

numerically to determine the wave number correction 13 and the wave angle correction 2 required 

in (9). 
Based on these asymptotic findings, comparisons with the numerical calculations are shown in 

Figure 1 for w = -5, 0, and 10 (2 = w/R). It is seen that there is satisfactory agreement between 

the asymptotic and the numerical results. Moreover, it is also possible to consider ijs as complex 

to further investigate temporally growing waves. Furthermore, using the asymptotic relation of 

the Airy function as ]Wo] -+ 00, the right-hand side of (8) can be replaced by ~w~(O)~WO/X~, which 

then gives explicit expressions for the corrections & and i. 



Rotating Disk 689 

\ 
\ 

IQ2 I 
10° 

I 

10’ 
I 

ld 
I I 1 I 1 

10’ 104 105 IO6 IO’ 

R 

(a) 

25 

18 

11 

w 

4 

-3 

-10 

10’ 

io” 
I 

I 
I 

i 

t I 7 I I I 

IO2 lo-’ 104 105 106 IO’ 

R 

(b) 

Figure 1. A comparison of the numerical and asymptotic calculations of the station- 
ary - and nonstationary - - (w = -5) and - - (w = 10) waves, in (R,X) and (R,E) 
planes. The long curves show numerical results and the shorter lines asymptotic 
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The physical importance of the nonstationary disturbance waves, some of which are demon- 

strated in Figure 1, is that amplification of such single waves or wave packets is believed to be one 

of the main sources causing transition to turbulence in the rotating-disk flow, as also pointed out 

in the earlier experiment of GSW as well as in the recent experiments of [ll-131. This, in turn, 

will shed light on the role of the traveling disturbances in the route to transition to turbulence in 

several fluid dynamics flows of, in particular, engineering and aeronautical interest, such as the 

flow over aircraft wings. 

4. CONCLUSIONS 

The upper branch neutral stability of three-dimensional disturbances imposed on Von K&man’s 

boundary-layer profile has been investigated asymptotically, in particular, for the nonstationary 

crossflow disturbances. The multideck theory of [l] has been extended to include the nonzero 

frequency waves for the upper branch instability modes, and an eigenrelation has been obtained 

which involves the correction terms for the wave number and wave angle. The wave number and 

frequencies calculated from this eigenrelation have been found to compare well with the numerical 

results. It has been found that at very large Reynolds numbers, the upper branch for all waves 

tends asymptotically to a finite value. 

As a further work, the asymptotic work of [l] could also be extended to study the nonzero 

frequency waves developing along the lower branch of the neutral curve, and this is currently 

under consideration. 
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