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Abstract

Log-linear models are used to analyze the contingency tables. If the
variables are ordinal or interval, because the score values affect both the
model significance and parameter estimates, selection of score values
has importance. Sometimes an interval variable contains open-ended
categories as the first or last category. While the variable has open-
ended classes, estimates of the lowermost and/or uppermost values of
distribution must be handled carefully. In that case, the unknown val-
ues of first and last classes can be estimated firstly, and then the score
values can be calculated. In the previous studies, the unknown bound-
aries were estimated by using interquartile range (IQR). In this study,
we suggested interdecile range (IDR), interpercentile range (IPR), and
the mid-distance range (MDR) as alternatives to IQR to detect the
effects of score values on model parameters.
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1. Introduction

Categorical variables, which have a measurement scale consisting of a set of cate-
gories, are of importance in many fields often in the medical, social, and behavioral
sciences. The tables that represent these variables are called contingency tables.
Log-linear model equations are applied to analyze these tables. Interaction, row
effects, and association parameters are strictly important to interpret the tables.

In the presence of an ordinal variable, score values should be considered. As us-
ing row effects parameters for nominal–ordinal tables, association parameter is
suggested for ordinal–ordinal tables. Score values are used to weight these param-
eters. In that case, selection of score values is important. For instance, taking
the score values equal does not fit in many studies because these scores may not
represent true intervals between categories. Choice of scores affects estimates of
model parameters and results of Goodness-of-fit test statistics.

To use quantitative data in contingency tables, the data need to be converted to
qualitative form. If one category (class) of a variable has either no lower or upper
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limit, this category is called open-ended. Age, income, serum cholesterol levels,
systolic blood pressure are some examples of variable which can have open-ended
categories. Ku and Kullback [12] used a contingency table which one of its variable
is systolic blood pressure with the levels: (1) ′ < 127′, (2) 127-146, (3) 147-166, (4)
′ ≥ 167′. Lower bound of the first and upper bound of the fourth categories are
unknown. Agresti [3] applied linear-by-linear association model to the data and
accepted that the distance between (1–2), (2–3), and (3–4) categories are equal. If
it is not allowed to get raw data, it is not possible to find minimum and maximum
values. Therefore, it is impossible to find the boundaries of open-ended categories.
In this situation, the boundaries need to be estimated first. Then the score values
can be calculated.

Determining these boundaries and fitted score values have been discussed by au-
thorities. The author who studied on score values initially was Birch [6]. Simon
[14], Goodman [9], Agresti [3], Graubard and Korn [10] discussed the equally
spaced score values in their studies. Inequally spaced scores were discussed in
the studies of Bross [7] and Agresti [3]. Iki et al. [11] used ridit scores to ana-
lyze square contingency tables by using cumulative probabilities. More recently,
Bagheban and Zayeri [5] proposed exponential score values as an alternative to
equal spaced scores. Initially, Frigge et al. [8] proposed the interquartile range
to illustrate the outlier, then Tibshirani and Hastie [15], and Liu and Wu [13] fo-
cused on the interquartile range (IQR) to detect genes with over-expressed outlier
disease samples as we used on estimate of the open ended boundaries. Aktas and
Saracbasi [4] used median and quartile ranges to calculate standardized score val-
ues on open-ended categories. We suggested three different methods as alternative
to IQR for ordinal categories that are grouped from quantitative data.

In this paper, through an application with one open-ended variable, we discussed
the effects of score values on model parameters. The proposed new methods used
to determine the boundaries of open-ended classes. In section 2, the log-linear
models were introduced. Section 3 outlined the score methods and suggested the
methods to estimate the boundaries of open-ended categories were represented in
Section 4. The log-linear models and the estimation methods were illustrated in
Section 5 by an application.

2. Log-Linear Models

2.1. Models for Two-way Tables. Consider an R× C contingency table that
the first variable is represented by X and the second variable is represented by Y.
In this two-way table, cross-classifies constitute multinominal sample of n subjects

on two categorical responses. Let nij denote the frequency of (i, j)
th

cell and the
cell probabilities are πij and the expected values mij where i = 1, 2, . . . , R and
j = 1, 2, . . . , C. The properties of independence [2], linear by linear association
[9], and row effects [3] models for two-way contingency tables are given in Table
1.
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Table 1. The properties of most used log-linear models for two-way
contingency tables

Model X Y Equation df

Independence N, O* N,O log mij = λ+ λXi + λYj (R− 1)(C − 1)

Linear by Linear Association O O log mij = λ+ λXi + λYj + β ∗ uivj (R− 1)(C − 1) − 1

Row Effects N O log mij = λ+ λXi + λYj + µi ∗ vj (R− 1)(C − 2)

*:N: Nominal O: Ordinal

Here, in the equations λ is the overall effect parameter, λXi is effect of variable

X at i and λYj is effect of variable Y at j with constraints such as
∑R
i=1 λ

X
i =∑C

j=1 λ
Y
j = 0. ui and vj in linear by linear association model are the the known

scores where u1 ≤ u2 ≤ . . . ≤ uR are ordered row scores and v1 ≤ v2 ≤ . . . ≤ vC
are column scores. β is the association parameter. Goodman [9] called the specif-
ical case of model uniform association model, where {ui = i} and {vj = j}. µi in
row effect model is the row effect parameters where constraints are needed such

as
∑R
i=1 µi = 0.

The local log-odds ratios of linear by linear association, uniform association and
row effects models are given in the Equations (2.1)-(2.3), respectively.

(2.1) log θij = β(ui − ui+1)(vj − vj+1),

(2.2) log θij = β,

(2.3) log θij = (µi+1 − µi) ∗ (vj+1 − vj).

2.2. Models for Multi-way Tables for Nominal x Ordinal x Ordinal Cat-
egorical Data. Let X be a nominal variable, Y and Z be ordinal variables and,
uj are score values for variable Y and vk are score values for variable Z. Then the
full model is:

(2.4) log mijk = λ+ λXi + λYj + λZk + µXYi uj + µXZi vk + βY Z ∗ ujvk.

The constraints are
∑R
i=1 λ

X
i =

∑C
j=1 λ

Y
j =

∑R
i=1 µ

XY
i =

∑R
i=1 µ

XZ
i = 0. In this

model, βY Z represents the linear-by-linear association parameter, µXYi and µXZi
represent the row effects model parameters [2].

The log θij(k) is the conditional log-odds ratio between X and Y for fixed levels of
Z, the log θi(j)k is the conditional log-odds ratio between X and Z for fixed levels
of Y and the log θ(i)jk is the conditional log-odds ratio between Y and Z for fixed
levels of X can be calculated from Equation (2.5).

(2.5)

log θij(k) = (µXYi+1 − µXYi )(uj+1 − uj)

log θi(j)k = (µXZi+1 − µXZi )(vk+1 − vk)

log θ(i)jk = βY Z(uj+1 − uj)(vk+1 − vk).
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2.3. Scoring Methods. For log-linear model studies, assignment of score values
is important. Assuming all distance between adjacent categories equal is not
always fit the data. In this situation, the way to assign the scores causes a problem.
The score equality of best fitting model is chosen as the distance between adjacent
categories. As π.j , j = 1, 2, . . . , C are the marginal probabilities of the ordered
variable Y, the properties of equal spaced, ridit [7, 11] and exponential [5] scores
are summarized in Table 2.

Table 2. The recommended score equalities

Scores Variables ui vj
Equal spaced N, O i j

Ridit O -
∑j−1

k=1 π.k + 1
2
π.j

Exponential O ia ja

For application of equal spaced scores, all the intervals between adjacent cate-
gories are assumed as equal. The cumulative probabilities are used to calculate
ridit scores. Sometimes, non-equality characteristic of scores are observed in the
categories of variables. In this situation, the arithmetic progression between cate-
gories disappears. The exponential scores are used when the baseline characteristic
of categories changing by a geometric progression. a in the exponential score equa-
tion is called the power parameter and the model gives the uniform association
model with equal spaced score values for a = 1.

3. Suggested Methods to Estimate the Boundaries of Open-ended
Categories

The most practical scoring method is the exponential scores because it permits dif-
ferent values of the power parameter. However, when working on the open-ended
ordered categories, these methods are insufficient. Applying the same method both
ordered and open-ended categories is only possible when ignoring the open-ended
structure. It makes the minimum value (lower bound of the first category) and
the maximum value (upper bound of the last category) unimportant. However,
these unknown values are the proof of inequality of scores.

Instead of using equal or non-equal scoring method, the different methods need to
be used. To avoid the outlier problem, the interquartile range was suggested as a
measure of dispersion [13]. The first quartile of a raw data is defined as Q1 and
the third quartile is Q3. Then the interquartile range is IQR = Q3 − Q1. For a
frequency table with k categories, the values which are less and greater than the
limits in the Equation (3.1) were defined as outliers by Frigge et al. [8] under the
normality assumption.

(3.1)
LowerBound(LB1) = Q1 − 1.5 ∗ IQR
UpperBound(UBk) = Q3 + 1.5 ∗ IQR.

The definition of quartiles can affect the number of observations which shown as
outside. This estimation method is used with 25% trimmed range. Changes of
trimmed range may have greater effects on the estimate of score values.
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3.1. Interdecile and Interpercentile Ranges. In this study, the Interdecile
range (IDR) and Interpercentile range (IPR) were suggested as the alternatives of
IQR, having 10% and 5% trimmed ranges, respectively. The calculations of IDR
(IDR = P90 − P10) and IPR (IPR = P95 − P5) are similar with IQR.

Under the normality assumption, the estimations of the boundaries with these
methods can be limited as following equations, respectively.

(3.2) LB1 = P10 − 0.78 ∗ IDR and UBk = P90 + 0.78 ∗ IDR,
(3.3) LB1 = P5 − 0.61 ∗ IPR and UBk = P95 + 0.61 ∗ IPR.
The standard normal distribution graphs and Z-values in order of IQR, IDR, and
IPR are shown in Figure 1. Although the IPR seems to have wider range, this
does not mean that it uses larger part of the distribution and it is better. The aim
is to explain the data well and this depends on the distribution of frequencies.

Figure 1. The trimmed ranges for IQR, IDR, and IPR under the
standard normal distribution

3.2. Mid-distance Range. Mid-distance range (MDR) was suggested to use as
an alternative to IQR. The mid-distance (MDi = (LBi + UBi−1)/2) is the mid-
point of ith and (i + 1)th categories where i = 2, 3, . . . , k. The definition of MD
can be shown in Figure 2. In this figure, first and last categories are open-ended
and the values in the boxes are unknown. For a variable with k categories, the
frequency table has (k+1) MD. However, because of open-ended boundaries (LB1

and UBk) MD1 and MDk+1) are not calculated.

Figure 2. The mid-distances of a k-categories frequency table

Under the normality assumption, the percentage of the first category is p1 = P (x <
MD2) and the kth category is pk = P (x > MDk). Then the MDR is calculated
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from MDR = MDk −MD2. The distribution of frequencies is used to calculate
MDR. Under the normality assumption, the boundaries are suggested,

(3.4) LB1 = MD2 − [1/|Z1|] ∗MDR and UBk = MDk + [1/|Zk|] ∗MDR,

where Z1 = Φ−1(p1) and Zk = Φ−1(pk).

For Ku and Kullback [12] example, MD’s of systolic blood pressure are calculated
and shown in Table 3 [2].

Table 3. Mid-distances of systolic blood pressure

i LB UB MD
– MD1

1 – 126
126.5 MD2

2 127 146
146.5 MD3

3 147 166
166.5 MD4

4 167 –
– MD5

3.3. Standardized Score Values for Open-ended Categories. For an open-
ended frequency table, because median is the appropriate measure of location
and the quartile deviation is the appropriate measure of dispersion, Aktas and
Saracbasi [4] suggested a score value that is calculated from quartile values. As si
is the midpoint of ith class, Q2 is the median and Q1, Q3 are the first and third
quartiles, respectively. The midpoint is,

(3.5) si = LBi+UBi

2 , i = 1, 2, ..., k.

Here, the estimated LB1 and UBk, which are defined in Equations (3.1)-(3.4),
are used to calculate the midpoints. The standardized score values for row and
column variables are

(3.6)

ui = si−Q2

(Q3−Q1)/2
, i = 1, 2, ..., R

vj =
sj−Q2

(Q3−Q1)/2
, j = 1, 2, ..., C.

4. An Application

The 2× 4× 4 contingency table, which is shown in Table 4, is taken from General
Social Survey, 1991, National Opinion Research Center. It refers to the relation-
ship between job satisfaction and income, stratified by gender, for 104 African–
Americans [3].

The described models in Section 2 with equal spaced score values for (nominal×
ordinal×ordinal) structure were applied to the data in Table 4. Because the data
set contains sampling zeros, a correction factor for zero of 6 cells (nij = 0 + 0.5)
was used. Table 5 shows the value of likelihood ratio statistics (G2) for testing
the Goodness-of-fit of each model. λGi is the effect of gender at i,λIj is the effect

of income at j, and λSk is the effect of job satisfaction at k. µGIi and µGSi are the
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Table 4. Job Satisfaction and income, controlling for gender

Job Satisfaction
Very A Little Moderately Very

Gender Income Dissatisfied Satisfied Satisfied Satisfied
Female < 5000 1 3 11 2

5000–15,000 2 3 17 3
15,000–25,000 0 1 8 5
> 25, 000 0 2 4 2

Male < 5000 1 1 2 1
5000–15,000 0 3 5 1
15,000–25,000 0 0 7 3
> 25, 000 0 1 9 6

row effects parameters between gender–income and gender–job satisfaction, re-
spectively. βIS is the association parameter between income and job satisfaction.
Then, the Akaike Information Criteria (AIC) was used to select the best fitting
model [1]. Regarding the presented results, all models were fit the data. Because
the 6th model that contains both association parameter between income–job sat-
isfaction and the row effects parameter between gender–income had the smallest
value of AIC, this model was chosen as best fitting model.

Table 5. The results of Goodness-of-fit test for equal spaced score values

Models G2 df P-Value AIC

1 log mijk = λ+ λG
i + λI

j + λS
k 25.326 24 0.388 –22.674

2 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj 13.716 23 0.935 –32.284

3 log mijk = λ+ λG
i + λI

j + λS
k + µGS

i vk 24.983 23 0.351 –21.017

4 log mijk = λ+ λG
i + λI

j + λS
k + βIS ∗ ujvk 20.794 23 0.594 –25.206

5 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + µGS
i vk 13.373 22 0.922 –30.627

6 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + βIS ∗ ujvk 9.184 22 0.992 –34.816

7 log mijk = λ+ λG
i + λI

j + λS
k + µGS

i vk + βIS ∗ ujvk 20.451 22 0.555 –23.549

8 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + µGS
i vk + βIS ∗ ujvk 9.174 21 0.988 –32.826

Thereafter, the recommended score values were tried on the 6th model to choose
the appropriate score values. Considering the open-ended structure, the standard-
ized score values for income were calculated. Because gender is a nominal variable,
score alternatives were not considered. For job satisfaction, equal spaced, expo-
nential, and ridit scores were applied. The IQR, IDR, IPR, and MDR values for
income were calculated as 17936.92, 25855.86, 30441.32, and 20000 respectively.
To use mid-distance range, the percentages of 1st and 4th categories, p1 = 0.2056
and p4 = 0.2337, were used. Then the LB1, UBk from the methods, that were
previously mentioned, were estimated. The estimated boundaries and range of in-
come are shown in the Table 6. The estimated values of lower bound are negative.
This can be logical when considering the people’s loans. Between these methods,
MDR has the largest value.

The score values in the first part of the Table 7 were calculated for job satisfaction.
In the second part of the table, the standardized score values in Equatin (3.6) were
calculated for income. After analyzing the model with different power parameter
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Table 6. Estimated lower and upper boundaries of open-ended classes

Method LB1 UBk Range
IQR –20,523 51,219 71,742
IDR –15,304 50,887 67,191
IPR –16,151 51,429 67,580
MDR –19,330 52,510 71,840

values of exponential score, much appropriate a was found as 2. Because of the
differences between estimated lowermost and uppermost values, the only alteration
happens on the first and last classes.

Table 7. Estimated score values for income and job satisfaction

Scores v1 v2 v3 v4

Job Satisfaction
Equal Spaced 1 2 3 4
Exponential 1 4 9 16
Ridit 0.0304 0.1285 0.4906 0.8925
Scores u1 u2 u3 u4

Income

IQR –2.457 –0.477 0.638 2.658
IDR –2.166 –0.477 0.638 2.639
IPR –2.213 –0.477 0.638 2.670
MDR –2.390 –0.477 0.638 2.730

The 6th model was analyzed with the score values in Table 7. The results with
different score values for income and job satisfaction were shown in Table 8.

Table 8. The results of parameter estimates for different score values
in the model 6

Scores β̂IS µ̂GI

Income–Job Satisfaction G2 P-value Estimate P-value Estimate P-value
1 IQR–Equal Sapced 10.063 0.986 0.146 0.057 –0.202 0.001
2 IQR–Exponential 9.584 0.990 0.028 0.043 –0.202 0.001
3 IQR–Ridit 9.687 0.989 0.458 0.045 –0.202 0.001
4 IDR–Equal Spaced 9.750 0.988 0.157 0.055 –0.215 0.001
5 IDR–Exponential 9.273 0.992 0.030 0.041 –0.215 0.001
6 IDR–Ridit 9.377 0.991 0.488 0.043 –0.215 0.001
7 IPR–Equal Spaced 9.794 0.988 0.154 0.056 –0.211 0.001
8 IPR–Exponential 9.321 0.991 0.030 0.042 –0.211 0.001
9 IPR–Ridit 9.426 0.991 0.480 0.044 –0.211 0.001
10 MDR–Equal Spaced 9.974 0.987 0.146 0.057 –0.202 0.001
11 MDR–Exponential 9.501 0.990 0.028 0.043 –0.202 0.001
12 MDR–Ridit 9.605 0.990 0.456 0.045 –0.202 0.001

Despite all the models in Table 8 fitted the data based on df = 22, the Goodness-
of-fit test statistics differed depending on the score alternatives. For these models,
the best fitting one is the 5th model which have standardized scores for income with
the estimate method of IDR and exponential scores with a = 2 for job satisfaction.
The 10% trimmed range was found as more appropriate. Besides the variation on
Goodness-of-fit statistics, the estimated association parameter changed for differ-
ent scores of income and job satisfaction. In general, the exponential score for job
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satisfaction had a decreasing effect on G2 for all the combinations.

The association between adjacent categories where the gender effect is constant
could be explained by odds ratio that θ(i)jk = exp{βIS ∗ (uj − uj+1)(vk − vk+1)}.
The local odds ratios from the scores in Table 7 were estimated. The association
between adjoint categories where job satisfaction effect was constant could be ex-
plained by odds ratio that θij(k) = exp{(µGIi+1 − µGIi )(uj+1 − uj)}. Table 9 and
Table 10 show the odds ratios for different score values.

Table 9. θ(1)11 for income × job satisfaction for the fixed levels of gender

Job Satisfaction
Income Equal Spaced Exponential Ridit
IQR 1.335 1.181 1.093
IDR 1.304 1.164 1.084
IPR 1.307 1.169 1.085
MDR 1.322 1.174 1.089

Table 10. θ11(1) for gender × income for the fixed levels of job satisfaction

Scores for Income
IQR IDR IPR MDR

2.225 2.067 2.080 2.166

Regarding the presented results in Table 9, using different methods to estimate
lower and/or upper boundaries of open-ended categories was varying odds ratios.
Using the estimation methods of IDR and IPR generated the odds ratios similar
but different from the odds ratios estimated by using the IQR and MDR. Any
category change on gender does not affect the odds ratio. The reason of this is
the odds ratio depends on only changing scores of ordinal variable in row effects
model. Regarding the presented results in Table 10, the odds ratios were varied
between different scores of income.

By the 5th case in Table 8, which explained the data well, the local odds ratios,
which were calculated from parameter estimates, are shown in the following matrix.

θ̂(i)jk =

1.164 1.288 1.426
1.105 1.182 1.264
1.197 1.350 1.522


θ̂ij(k) =

[
2.067 1.615 2.364

]
The odds ratio that income was ′5000−15, 000′ rather than ′15, 000−25, 000′ esti-
mated to be 1.182 times higher than when the job satisfaction was ’A little satisfied’
rather than ’Moderately satisfied’. The odds ratio that males rather than femalse
estimated to be 2.067 times higher than when the income was ′ < 5000′ rather
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than ′5000− 15, 000′.

5. Conclusions

In this study, we focused on determining the model which explains the data well for
open-ended categories. This determination depends on the changing score values.
When working on the contingency tables, which contain open-ended ordered cate-
gories, the open-ended boundaries of the distribution is suggested to be estimated.
In the previous studies, utilizing the interquartile range, which is calculated from
the first and the third quartiles, the unknown boundaries were estimated. In this
study, we suggested alternative methods of interquartile range. We estimated the
unknown boundaries of the table with these methods.

The used method is important because different methods cause differences on the
estimated boundaries and accordingly midpoints. Differences in midpoints cause
differences in score values. The changing score values also influenced the model
significance and model fit. Parameter estimates and odds ratios varied between
the methods which we utilized.

The difference between these four methods is that the estimation methods of IQR,
IDR, and IPR use the trimmed range, which is a constant value, and trimmed
ranges from the both side of the frequency distribution is equal. However, to es-
timate the MDR, we used the trimmed range where the information comes from
the distribution of open-ended variable itself. Therefore, the trimmed ranges are
different between the left and the right sides of the distribution. This difference
comes from the percentages of the first and last categories.
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