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a b s t r a c t

The present paper is concerned with the approximate analytic series solution of the
nonlinear two-point second-order singularly perturbed boundary value problems. In place
of the traditional numerical, perturbation or asymptotic methods, a homotopy technique
is employed. It is shown that proper choices of an auxiliary linear operator and also an
initial approximation during the implementation of the homotopy analysis method (HAM)
can yield uniformly valid and accurate solutions. The fast convergence of the method is
ensured by the optimal convergence control parameter obtained through the absolute
residual error concept. To demonstrate the favor of the HAM over the traditional finite-
difference techniques several nonlinear problems have been solved and compared.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Singularly perturbed second-order two-point boundary value problems,which received a significant amount of attention
in past and recent years arise very frequently in fluid mechanics and other branches of science and engineering. These
problems depend on a small positive parameter in such away that the solution varies rapidly in some parts and varies slowly
in some other parts. One of thewell-known examples is the Navier–Stokes equation of computational fluid dynamics, which
is singularly perturbed at high Reynolds number. Equations of this type typically exhibit solutions with layers; that is, the
domain of the differential equation contains narrow regions where the solution varies very fast, whereas away from this
region the solution behaves smoothly and varies slowly. To handle this type of problem the basic idea is, to divide the domain
of integration into two sub-domains and then to apply different schemes on each sub-domain [1] and [2]. References [3–5]
and [6] contain a good analytical discussion of the subject. For some further numerical methods one may refer to books
[7–10].
Liao in [11] proposed a new technique which is based on the homotopy concept in topology, named the homotopy

analysis method (HAM). Unlike the traditional perturbation methods, this technique does not require a small perturbation
parameter in the equation. In thismethod, according to the homotopy technique, a homotopywith an embedding parameter
is constructed, and the embedding parameter is considered as a small parameter. Thus the original nonlinear problem is
converted into an infinite number of linear problems without using the perturbation techniques; see the book by Liao [12].
Different from other methods, the HAM provides a simple way to control and adjust the convergence region of solution
series by means of an auxiliary parameter [13,14].
There are many physical situations in which the sharp changes occur inside the domain of interest, and the narrow

regions across which these changes take place are usually referred to as shock layers in fluid and solid mechanics, transition
points in quantum mechanics, and strokes lines and surfaces in mathematics. These rapid changes cannot be handled by
slow scales, but they can be handled by fast or magnified or stretched scales. Thus, in general, finding numerical solution
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of a boundary value problem is more difficult than finding numerical solution of corresponding initial value problem. In
the present paper we use the homotopy analysis technique for the solution of the nonlinear two-point singular boundary
layers, without the introduction of extra scales or the need of converting the equations into asymptotic first-order initial
value problem. Better auxiliary linear operators and initial approximations are the essential target to be used herewithin the
homotopy concept in order to obtain highly accurate solutions. The optimal convergence is achieved by picking up the best
approximating convergence control parameter via the absolute residual error. The proposed linear operators together with
the homotopy analysis method provide analytic series solutions which are valid for all the perturbation parameters and are
also more accurate than those already available in the literature. Several nonlinear problems are accounted to demonstrate
the applicability of the method.
The following strategy is adopted in the rest of the paper. In Section 2 the idea of homotopy analysis method is laid out.

Application of the method is implemented in Section 3, in which analytic expressions are derived yielding better results
than those in [3,6]. Finally conclusions follow in Section 4.

2. The homotopy analysis method

Liao in [11] proposed a new kind of analytic technique for nonlinear problems, namely the homotopy analysis method.
This method is based on the homotopy and has several advantages. To underline, firstly its validity does not depend upon
whether or not nonlinear equations under consideration contain small or large parameters, hence it can solve more of
strongly nonlinear equations than the perturbation techniques. Secondly, it provides uswith a great freedom to select proper
auxiliary linear operators and initial guesses so that uniformly valid approximations can be obtained. Thirdly, it gives a family
of approximations which are convergent in a larger region. Liao successfully applied the homotopy analysis method to solve
some nonlinear problems in mechanics. Fascinating examples are provided within Ref. [12]. To briefly revisit and describe
the method let us consider the following nonlinear differential equation

N(u)− f (x) = 0, x ∈ Ω (2.1)

with boundary conditions

B
(
u,
∂u
∂n

)
= 0, x ∈ Γ (2.2)

where N is an operator having linear and nonlinear parts, B is a boundary operator, u is an unknown analytic function and
Γ is the boundary of the domainΩ . By this technique, we construct a homotopy v(x, p) from the cartesian setΩ × [0, 1]
to Rwhich satisfies

H(v, p) = (1− p)L(v − u0)+ ph[N(u)− f (x)] = 0, (2.3)

where p ∈ [0, 1] is an embedding parameter, u0 is an initial approximation of Eq. (2.1) that satisfies the boundary condition
(2.2) and h is a constant that can be adjusted to speed the convergence. It is clear from Eq. (2.3) that for p = 0 and p = 1
respectively the following hold

H(v, 0) = L(v − u0) = 0, (2.4)
H(v, 1) = N(u)− f (x) = 0.

Hence, it can be deduced from (2.4) that the deformation process of p from zero to unity is just that of the solution from
u0(x) to u(x). This kind of continuous variation is called deformation in topology so that we call Eq. (2.3) the zeroth-order
deformation equation. Next, differentiating (2.3) successively and eventually imposing at p = 0, the kth-order deformation
equations follow as

L(uk − γkuk−1) = −hRk, (2.5)

with the proper boundary conditions. The constant function γ in (2.5) is defined by γ = 0 if k ≤ 1 and γ = 1 otherwise.
Additionally, the function Rk can be found by differentiating the nonlinear operator N .
Considering p as a parameter, the solution to system (2.1) and (2.2) can be naturally expressed taking into account a

Taylor expansion of the solution v(x, p) at p = 0 and later imposing the expansion at p = 1, that is

u(x) = u0(x)+
∞∑
k=1

uk(x), (2.6)

where uk are defined by uk = 1
k!
∂ku
∂pk
|p=0.

It is well known, as also shown in [15] that properly chosen auxiliary parameters can ensure the convergence of the
homotopy analysis method. Thus, it is the auxiliary parameter that provides us, a simple way to ensure the convergence
of series solution. Actually, the region of validity of the convergence control parameter can be worked out via displaying
the constant-h curves for some certain fixed quantities of physical interest, such as u′′(0), u′′′(0), etc., as long as they are
not zero. However, this technique does not tell one how to pick up a specific value. To avoid this, and to obtain accurate
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Table 1
The absolute residual errors at different orders of homotopy approximation M , corresponding to two values of convergence control parameters for the
singular problem (3.8).

M = 1 M = 5 M = 10 M = 13

h = −1 2.974× 10−1 8.128× 10−3 1.527× 10−4 7.260× 10−6

h = −1.33 2.385× 10−1 1.102× 10−3 2.331× 10−6 7.601× 10−8

series solutions in the relatively lower-order approximations, in the present paper the convergence control parameter h
was chosen optimally from the absolute residual error

Res(h) =
∫ tb

ta
|N(u(t))− f (t)|dt, (2.7)

which is evaluated at theMth-order of homotopy approximation. Here, the interval [ta, tb] is the physical domain of interest.
The minimum of (2.7) gives rise to the optimal value of h.

3. Application to boundary layer problems

To demonstrate the applicability of the above presented method we have applied it to three linear singular perturbation
problems with left-end boundary layer. These examples have been chosen because they have been widely discussed in
the literature and also approximate solutions are available for a concrete comparison. The approximate solution obtained
through the HAM method is compared here with the numerical (so-called exact here) solution computed using the
contemporary software package MATHEMATICA.
It was proven in [12] that the convergent solution of the HAM series converges to the true solution of the relevant

differential equation. Therefore, there is no doubt that the converged solutions as shown in the figures below fully represent
the solutions of the corresponding differential equations.

Example 1. Consider the following singular perturbation problem from [3] (p. 463; Eq. (9.7.1))

εu′′ + 2u′ + eu = 0, u(0) = 0, u(1) = 0. (3.8)

The structure of differential equation suggests an auxiliary linear operator L = ε d
2

dx2
+ 2 ddx with an assumption of the

initial solution of the form u0 = 0, that enables us to easily handle the nonlinear term eu. The term Rk on the right-hand side
of deformation equation (2.5) is constructed by

Rk = εu′′k−1 + 2u
′

k−1 + Dexpk−1,
where Dexpk is given by the recurrence formula

Dexp0 = e
u0 , Dexpk =

k−1∑
m=0

(
1−

m
k

)
uk−mDexpm.

Taking into account all these and the homotopy introduced in (2.5)–(2.6), the optimal value of h computed from the absolute
residual error at the order ofM = 10homotopy approximation is h = −1.33. To investigate the influence of the convergence
control parameter on the solutions, we present the absolute residual errors at different orders of approximation in Table 1.
An efficient and fast convergence of the method with the optimum value of h is observed from the table.
With the optimum parameter h = −1.33, we obtain a first-order approximation to the solution in subsequent form

u = −
133
200

(
e
2
ε−

2x
ε(

−1+ e2/ε
) − e2/ε(

−1+ e2/ε
) + x) , (3.9)

Fig. 1 demonstrates how the HAMmethod sufficiently resolves the boundary layer regionwith a convergent solution. For
this example, we have a boundary layer of thickness O(ε) at x = 0. Therefore, Fig. 1 only concentrates on the boundary layer
region for the selected value of ε = 10−4. In this figure, first-order (dashed curve), fourth-order (dotted curve), 13th-order
(thick-dashed curve) HAM results calculated with the optimum convergence control parameter and the exact result (solid
curve) are shown. It is seen from the figure that the homotopy solution converges rapidly to the numerical solution, even
the fourth-order solution almost graphically collides onto the exact one. The 13th-order HAM result, the numerical result
from the MATHEMATICA (exact) and the literature results are also presented in Table 2 for ε = 10−4.

Example 2. Now we consider the following singular perturbation problem from [5] (p. 9; Eq. (1.10) Case 2)

εu′′ − uu′ = 0, u(−1) = 0, u(1) = −1. (3.10)

Keeping inmind that outside the boundary layer region solution does not change abruptly with the behavior u(1) = −1,
it is natural to select the linear operator as L = ε d

2

dx2
+

d
dx and assume the initial approximation to the solution satisfying
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Fig. 1. Solution of boundary layer equation (3.8). For the legends refer to the text.

Table 2
Illustrating the comparisons of (3.8) for ε = 10−4 . HAM was obtained at 13th-order approximation with the optimum convergence control parameter
h = −1.33.

x [6] [3] HAM Exact

0.00 0.0000000 0.0000000 0.0000000 0.0000000
0.01 0.6866081 0.6831968 0.6832306 0.6832306
0.02 0.6766733 0.6733446 0.6733775 0.6733775
0.04 0.6570964 0.6539265 0.6539579 0.6539578
0.06 0.6378974 0.6348783 0.6349082 0.6349081
0.08 0.6190615 0.6161861 0.6162146 0.6162146
0.10 0.6005756 0.5978370 0.5978641 0.5978641
0.20 0.5129692 0.5108256 0.5108469 0.5108469
0.30 0.4324506 0.4307829 0.4307995 0.4307995
0.40 0.3579564 0.3566750 0.3566877 0.3566877
0.50 0.2886464 0.2876821 0.2876917 0.2876917
0.60 0.2238446 0.2231436 0.2231505 0.2231505
0.70 0.1629993 0.1625189 0.1625237 0.1625237
0.80 0.1056545 0.1053605 0.1053634 0.1053634
0.90 0.0514289 0.0512933 0.0512946 0.0512946
1.00 0.0000000 0.0000000 0.0000000 0.0000000

exactly the boundary condition as

u0 =
e
1
ε−

x
ε

−1+ e2/ε
−

e2/ε

−1+ e2/ε
,

together with the term Rk on the right-hand side of deformation equation (2.5) as

Rk = εu′′k−1 −
k−1∑
j=0

uju′k−1−j.

In this example, the optimal value of h computed from the absolute residual error at the order of M = 10 homotopy
approximation is h = −1.021, which yields 10−14 as the absolute residual error.
For this example, we have a boundary layer of width O(ε) at x = −1(see [5], p. 9–10, Eq. (1.10), (1.13) and (1.14),

Case 2). Therefore, Fig. 2 only concentrates on the boundary layer region for the fixed value of ε = 10−4. In figure, leading-
order (dashed curve), first-order (dash-dotted curve), third-order (dotted curve), 11-order (thick-dashed curve) HAM results
calculated with the optimum convergence control parameter and the exact result (solid curve) are shown. It is seen from
the figure that the homotopy solution converges rapidly to the numerical solution, even the third-order solution almost
graphically collides onto the exact one. Fig. 2 also demonstrates how the HAM method sufficiently resolves the boundary
layer region with a convergent solution. The 11th-order HAM result, the numerical result from the MATHEMATICA (exact)
and the literature results are also presented in Table 3 for ε = 10−4.

Example 3. Finally, we consider the following singular perturbation problem from [4] (p. 56; Eq. (2.5.1))

εu′′ + uu′ − u = 0, u(0) = −1, u(1) = 3.9995. (3.11)
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Fig. 2. Solution of boundary layer equation (3.10). For the legends refer to the text.

Table 3
Illustrating the comparisons of (3.10) for ε = 10−4 . HAM was obtained at 11th-order approximation with the optimum convergence control parameter
h = −1.021.

x [6] [5] HAM Exact

−1.000 0.0000000 0.0000000 0.0000000 0.0000000
−0.999 – – −0.9999092 −0.9999092
−0.800 −1.0000000 −1.0000000 −1.0000000 −1.0000000
−0.500 −1.0000000 −1.0000000 −1.0000000 −1.0000000
−0.200 −1.0000000 −1.0000000 −1.0000000 −1.0000000
0.0000 −1.0000000 −1.0000000 −1.0000000 −1.0000000
0.2000 −1.0000000 −1.0000000 −1.0000000 −1.0000000
0.4000 −1.0000000 −1.0000000 −1.0000000 −1.0000000
0.6000 −1.0000000 −1.0000000 −1.0000000 −1.0000000
0.8000 −1.0000000 −1.0000000 −1.0000000 −1.0000000
1.0000 −1.0000000 −1.0000000 −1.0000000 −1.0000000

If we now choose the linear operator as L = ε d
2

dx2
+ c ddx and assume the initial approximation to the solution as

u0 = −
ce

c
ε−

cx
ε

−1+ ec/ε
+
1− ec/ε + cec/ε

−1+ ec/ε
+ x

with c = 3.9995, the term Rk on the right-hand side of deformation equation (2.5) is computed as

Rk = εu′′k−1 − uk−1 +
k−1∑
j=0

uju′k−1−j.

The optimal value of the convergence control parameter is found to be h = −0.988 computed from the absolute residual
error (2.7) at the order ofM = 10 homotopy approximation. The absolute residual error at this order is evaluated as 10−8.
For this examplewe also have a boundary layer ofwidthO(ε) at x = −1 ([4] pp. 56–66). Therefore, Fig. 3 only concentrates

on the boundary layer region for the fixed value of ε = 10−4. In figure, leading-order (dashed curve), first-order (dash-dotted
curve), third-order (dotted curve), 14-order (thick-dashed curve) HAM results calculated with the optimum convergence
control parameter and the exact result (solid curve) are shown. It is seen from the figure that the homotopy solution
converges rapidly to the numerical solution, even the third-order solution almost graphically collides onto the exact one. The
20th-order HAM result, the numerical result from theMATHEMATICA (exact) and the literature results are further presented
in Table 4 for ε = 10−4.
It can be readily deduced from the considered examples that singular two-point boundary value problems exhibiting

stronger singularities or possessing larger physical intervals can also be tackled by the powerful HAM method as imple-
mented here. It should be emphasized that only a few order approximate solutions that we obtained reveal excellent agree-
ment with the exact numerical solutions. Addition of higher approximations from the homotopy technique would naturally
yieldmore remarkable agreement. It is furthermoreworthwhile to state that the homotopy solutions obtained here are valid
for all the values of the parameter ε. To conclude, the advantage of the HAM solutions obtained here is that they represent
solutions all over the domain both inside the boundary layer and outside it. Therefore, values corresponding to any ε are
calculated from a single formula. However, the conventional numerical techniques such as the finite differences require
finer meshes particularly distributed inside the boundary layer region to resolve the field as the values of ε gets decreased
drastically.
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Fig. 3. Solution of boundary layer equation (3.11). For the legends refer to the text.

Table 4
Illustrating the comparisons of (3.11) for ε = 10−4 . HAM was obtained at 20th-order approximation with the optimum convergence control parameter
h = −0.988.

x [6] [4] HAM Exact

0.00 −1.000000 −1.000000 −1.000000 −1.000000
0.01 3.0161450 3.0095000 3.0095000 3.0095000
0.02 3.0194790 3.0195000 3.0195000 3.0195000
0.04 3.0395010 3.0395000 3.0395000 3.0395000
0.06 3.0595010 3.0595000 3.0595000 3.0595000
0.08 3.0795010 3.0795000 3.0795000 3.0795000
0.10 3.0995010 3.0995000 3.0995000 3.0995000
0.20 3.1995010 3.1995000 3.1995000 3.1995000
0.30 3.2995010 3.2995000 3.2995000 3.2995000
0.40 3.3995010 3.3995000 3.3995000 3.3995000
0.50 3.4995010 3.4995000 3.4995000 3.4995000
0.60 3.5995000 3.5995000 3.5995000 3.5995000
0.70 3.6995000 3.6995000 3.6995000 3.6995000
0.80 3.7995000 3.7995000 3.7995000 3.7995000
0.90 3.8995000 3.8995000 3.8995000 3.8995000
1.00 3.9995000 3.9995000 3.9995000 3.9995000

4. Concluding remarks

In this paper the homotopy analysis method (HAM) is employed, for the first time, to the nonlinear boundary value
problems with singularity, i.e. the highest-order derivative is multiplied by a very small parameter.
Taking the advantage of free selection of the linear operator and the initial approximation to the solution, three nonlinear

exampleswith boundary layers have been treated. The homotopymethodwith these choices are shown to generate analytic
approximations that are more accurate than the numerical results available in the literature. The optimum convergence
control parameters calculated using the absolute residual error concept make the method more feasible in terms of rapid
convergence. The graphical displays are clear evident that the homotopy analysis method adhered is able to adequately
resolve the boundary layer region.
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