Topology and its Applications 44 (1992) 57-62 North-Holland

Semi-sequentially normal bitopological spaces

Lawrence M. Brown

Department of Mathematics, Hacettepe University, Beytepe, Ankara, Turkey

Received 1 October 1989 Revised 23 September 1990 and 5 November 1990

Abstract

Brown, L.M., Semi-sequentially normal bitopological spaces, Topology and its Applications 44 (1992) 57-62.

In this paper we introduce a weak form of full normality for bitopological spaces, and consider its relationship to pairwise paracompactness in the sense of S. Romaguera and J. Marin, and to the notion of σ -bicushioned refinement for dual covers.

Keywords: Dual cover, sequentially normal, *p*-*q*-metrizable, semi-sequentially normal, semi-open dual cover, bicushioned refinement, σ -bicushioned refinement.

AMS (MOS) Subj. Class.: 54E55.

1. Introduction

The notion of sequential normality for bitopological spaces is considered in [2-4]. It is shown to be a generalization of topological full normality which, unlike full binormality, is satisfied by all *p-q-metric* bitopological spaces. In [4] it is shown that a bitopological space is *p-q-metrizable* if and only if it is bidevelopable and sequentially normal, thereby providing a generalization of Bing's metrization theorem. In Section 2 we consider an apparently weaker form of sequential normality, namely semi-sequential normality, and show that the above *p-q-metrization* theorem remains valid in this case. We also relate this form of normality to the notion of pairwise paracompactness introduced recently by Romaguera and Marin [9]. In Section 3 we consider the notion of σ -bicushioned refinement of a dual cover, and relate this to semi-sequential normality.

0166-8641/92/\$05.00 © 1992-Elsevier Science Publishers B.V. All rights reserved

2. Semi-sequential normality

We recall [1-5] that a *dual family* d on a set X is a binary relation on the power set of X, and that $jc(d) = \bigcup \{U \cap V | UdV\}$. A dual family with jc(X) = X is called a *dual cover* of X. There will be no loss of generality in assuming that $UdV \Rightarrow U \cap V \neq \emptyset$. We call d open for a bitopological space (X, u, v) if $d \subseteq u \times v$. Refinement is defined in the obvious way, while in this paper star refinement is based on the stars

$$St(d, A) = \bigcup \{ U \mid \exists V, U dV \text{ and } V \cap A \neq \emptyset \}$$

and

 $St(A, d) = \bigcup \{ V | \exists U, U dV \text{ and } U \cap A \neq \emptyset \}$

of $A \subseteq X$. This is the form of star refinement involved in the covering characterization of quasi-uniformities given by Gantner and Steinlage [6], and used by the author in defining various generalizations of quasi-uniformity, see for example [1, 2]. We write e < (*)d if e is a star refinement of d, and say the dual cover d is normal for (X, u, v) if there is a sequence $\langle d_n \rangle$ of open dual covers with $d_0 < d$ and $d_{n+1} < (*)d_n$ for all n.

Let us recall that a bitopological space (X, u, v) is called *sequential normal* [4] if given an open dual cover d of X there exist (open) normal dual covers e_n and open dual families d_n satisfying

(i) $\bigcup jc(d_n) = X$ and

(ii) $e_n * f_n = \{ (\operatorname{St}(e_n, U), \operatorname{St}(V, e_n)) \mid Ud_n V \} < d, n \in N.$

We now wish to generalize the notion of sequential normality. Let us call a dual cover d of (X, u, v) semi-open if for each $x \in X$, St(d, x) is a u-neighborhood and St(x, d) is a v-neighborhood of x. Since a (normal) open dual cover is semi-open the following notion is apparently weaker than sequential normality:

Definition 2.1. (X, u, v) is semi-sequentially normal if given an open dual cover d there exist sequences (d_n) of open dual families and (e_n) of semi-open dual covers satisfying (i) and (ii) above.

Theorem 2.2. (X, u, v) is p-q-metrizable if and only if it is semi-sequentially normal and bidevelopable.

Proof. Necessity is clear, so we outline the proof of the sufficiency. First let us note that a bidevelopable space is pairwise R_0 . Hence by [5, Theorem 2.1] it will be sufficient to show the existence of a countable bineighborhood basis $\{(R(n, x), S(n, x)) | n \in N\}$ at each $x \in X$ satisfying the following two conditions:

(D) Given $x \in X$ and *n* there exist $x \in U_1 \in u$, $x \in V_1 \in v$ so that

 $y \in U_1 \implies x \in S(n, y) \text{ and } y \in V_1 \implies x \in R(n, y),$

(E) given $x \in X$, $x \in U \in u$, $x \in V \in v$ there exist $x \in U_2 \in u$, $x \in V_2 \in v$ and r so that

$$y \in U_2 \implies R(r, y) \subseteq U$$
 and $y \in V_2 \implies S(r, y) \subseteq V$.

Let a bidevelopment for (X, u, v) be (b_m) . Then for each *m* we have semi-open dual covers $f_{m,n}$ and open dual families $d_{m,n}$ so that

- (i) $\bigcup \{ jc(d_{m,n}) \mid n \in N \} = X$, and
- (ii) $f_{m,n} * d_{m,n} < b_m$ for all $n \in N$.

If we define $R(m, n, x) = \operatorname{St}(f_{m,n}, x)$ and $S(m, n, x) = \operatorname{St}(x, f_{m,n})$, then it is easy to see that $\{(R(m, n, x), S(m, n, x)) | m, n \in N\}$ is a countable bineighborhood base at x. Clearly (D) may be satisfied by taking $U_1 \subseteq R(m, n, x)$ and $V_1 \subseteq S(m, n, x)$. Now take $x \in U \in u$ and $x \in V \in v$. We have m with $\operatorname{St}(b_m, x) \subseteq U$ and $\operatorname{St}(x, b_m) \subseteq V$, and for this m we have n with $x \in \operatorname{jc}(d_{m,n})$. (E) is now satisfied by taking $U_2 d_{m,n} V_2$ with $x \in U_2 \cap V_2$. \Box

We now compare sequential and semi-sequential normality with the notion of pairwise paracompactness introduced by Romaguera and Marin [9], which is based on a characterization of regular paracompact (i.e., fully normal) topological spaces due to Junnila [7]. The restriction to T_1 spaces and quasi-metrization in [9] seems unnecessarily restrictive as it excludes such a fundamental space as (R, s, t)—the reals with the lower and upper topologies. Also, when regarded as a generalization of full normality, the assumption of pairwise regularity may be omitted. Hence for convenience we shall refer to a not necessarily T_1 nor pairwise regular bitopological space—otherwise satisfying the conditions of [9, Definition 4]—as an *R-M*-normal bitopological space. We now have:

Theorem 2.3. Sequentially normal \Rightarrow R-M-normal \Rightarrow semi-sequentially normal.

Proof. First let d be an open dual cover in the sequentially normal space (X, u, v). Then by [2, Theorem 1.4.2] there exists a p-q-metric p with the property that $H_n(x) = \{y | p(x, y) < 2^{-n}\} \in u, K_n(x) = \{y | p(y, x) < 2^{-n}\} \in v$ for each n, and such that, given $x \in X$, there exist n and UdV with

$$H_n(x) \subseteq U$$
 and $K_n(x) \subseteq V.$ (1)

Hence $\{(H_n(x), K_n(x)) | n \in N\}$ is a countable family of bineighborhoods of x, and (i) $y \in H_n(x) \Leftrightarrow x \in K_n(y)$.

(ii) For $x \in X$ we have $n \in N$ and UdV with $H_n(x) \subseteq U$, $K_n(x) \subseteq V$ by (1), and then $H_{n+1}^2(x) = \bigcup \{H_{n+1}(y) | y \in H_{n+1}(x)\} \subseteq H_n(x) \subseteq U$, and likewise $K_{n+1}^2(x) \subseteq V$. This verifies [9, Definition 4], so showing that (X, u, v) is *R-M*-normal.

Now let d be an open dual cover in an R-M-normal space, and let $\{(U_n(x), V_n(x)) | n \in N\}$ be a family of bineighborhoods satisfying [9, Definition 4]. Define

 $f_n = \{(\{x\}, V_n(y)) \mid x \in V_n(y)\}.$

Then the condition $x \in U_n(y) \Leftrightarrow y \in V_n(x)$ implies f_n is a semi-open dual cover with $St(f_n, x) = U_n(x)$ and $St(x, f_n) = V_n(x)$. Finally let

$$d_n = \{ (U_n(x), V_n(x)) \mid \exists U dV, x \in U \cap V, U_n(x) \subseteq U, V_n(x) \subseteq V \}.$$

Then Definition 2.1 (i) and (ii) are easily verified for this choice of (f_n) , (d_n) .

In view of this result [9, Theorem 1] is also a consequence of Theorem 2.2. However I do not know if either of the implications in Theorem 2.3 is reversible.

3. σ -bicushioned refinements of dual covers

In this section we consider the notions of bicushioned and σ -bicushioned refinement for dual covers.

Definition 3.1. The (faithfully indexed) dual cover $e = \{(R_a, S_a) | a \in A\}$ is said to be *bicushioned* in the dual cover d, or to be a *bicushioned refinement* of d, if for each $a \in A$ there exists $U_a dV_a$ so that

$$\operatorname{cl}_v(\bigcup \{R_a \mid a \in A'\}) \subseteq \bigcup \{U_a \mid a \in A'\},\$$

and

$$cl_u(\bigcup \{S_a \mid a \in A'\}) \subseteq \bigcup \{V_a \mid a \in A'\}$$

for all $A' \subseteq A$.

It is clear that the assumption that e be faithfully indexed may be removed. The notion of bicushioned refinement is closely related to that of semi-open dual cover, as the next proposition shows.

Proposition 3.2. The open dual cover d has a bicushioned refinement if and only if there exists a semi-open dual cover f with $f < (\triangle)d$.

Proof. If f exists with the stated properties, then clearly $e = \{(\{x\}, \{x\}) | x \in X\}$ is a bicushioned refinement of d. Conversely let $e = \{(R_a, S_a) | a \in A\}$ be a bicushioned refinement of d, and let $U_a dV_a$ be as in Definition 3.1. For $x \in X$ choose $a(x) \in A$ with $x \in R_{a(x)} \cap S_{a(x)}$. Then $f = \{(\{x\}, V_{a(x)} \cap \{y | x \in U_{a(y)}\}) | x \in X\}$ is easily seen to satisfy the stated properties. \Box

Contrary to the single topology case an open dual cover of a p-q-metric bitopological space need not have a bicushioned refinement. To see this we consider the following example.

Example 3.3 [2, 3]. Let X be the closed first quadrant of the plane. Let u consist of \emptyset and all sets G satisfying

- (i) $(x, y) \in G, \ 0 < x' \le x \Longrightarrow (x', y) \in G,$
- (ii) $(x, y) \in G$, $0 < y \le y' \Longrightarrow (x, y') \in G$, and
- (iii) $\exists y > 0, (0, y) \in G.$

Clearly u is a topology on X, and so is $v = \{G^{-1} | G \in u\}$. It is shown in [2, 3] that the bitopological space (X, u, v) is p-q-metrizable. Consider the finite open dual cover

$$d = \{(G_1, X), (G_2, X)\},\$$

where $G_1 = \{(x, y) | y > 0\}$ and $G_2 = \{(x, 0) | x \ge 0\} \cup \{(0, y) | y \ge 0\}$. Suppose that $e = \{(R_a, S_a) | a \in A\}$ is bicushioned in d, and for $x \ge 0$ choose $a(x) \in A$ so that $(x, 0) \in R_{a(x)} \cap S_{a(x)}$, and put $A' = \{a(x) | x \ge 0\}$. Clearly every nonempty v-open set meets $\bigcup \{R_a | a \in A'\}$, and so $cl_v(\bigcup \{R_a | a \in A'\}) = X$. On the other hand $(x, 0) \in R_{a(x)} \cap S_{a(x)} \subseteq U_{a(x)} \cap V_{a(x)} \Longrightarrow U_{a(x)} = G_2$ for all $x \ge 0$, and this gives an immediate contradiction.

This example shows that the notion of bicushioned refinement is too powerful to consider in the context of p-q-metric spaces, and so we make the following:

Definition 3.4. The dual family e is said to be σ -bicushioned in d if we may write $e = \bigcup \{e_n \mid n \in N\}$ with each e_n bicushioned in d. A σ -bicushioned refinement of a dual cover d is a dual cover e which is σ -bicushioned in d.

We may now state:

Theorem 3.5. In a semi-sequentially normal space every open dual cover has an open σ -bicushioned refinement.

Proof. Let d be an open dual cover, and d_n , e_n as in Definition 2.1. It is trivial to verify that $\bigcup \{d_n | n \in N\}$ is the required open σ -bicushioned refinement of d. \Box

It may be verified that if every open dual cover of (X, u, v) has an open σ bicushioned refinement, then with respect to the joint topology $u \lor v$ on X every open cover has a σ -cushioned open refinement. Hence by a standard theorem of general topology [8, Theorem V.4] we may state:

Corollary. A weakly pairwise T_1 semi-sequentially normal bitopological space is jointly paracompact.

It is natural to wonder about the converse of Theorem 3.5. If every open dual cover has an open σ -bicushioned refinement, must the space be semi-sequentially normal? The answer is not known, but we do have the following result:

Theorem 3.6. Suppose that in (X, u, v) every (finite) open dual cover has an open σ -bicushioned refinement. Then (X, u, v) is pairwise normal.

Proof. Take a *u*-closed set *P* and a *v*-closed set *Q* with $P \cap Q = \emptyset$, and consider the open dual cover $d = \{(X - P, X), (X, X - Q)\}$. Let e_n be open bicushioned refinements of *d* whose union is a dual cover of *X*. Let

$$U_n = \bigcup \{ R \mid \exists Re_n S, R \cap S \cap Q \neq \emptyset \},\$$
$$V_n = \bigcup \{ S \mid \exists Re_n S, R \cap S \cap P \neq \emptyset \}.$$

Then since e_n is bicushioned in d we see that $cl_v(U_n) \cap P = \emptyset$ and $cl_u(V_n) \cap Q = \emptyset$. Let

$$U_n^* = U_n - \operatorname{cl}_u(\bigcup \{V_k \mid 0 \le k \le n\}),$$

$$V_n^* = V_n - \operatorname{cl}_v(\bigcup \{U_k \mid 0 \le k \le n\}),$$

 $U = \bigcup \{U_n^* | n \in N\}$ and $V = \bigcup \{V_n^* | n \in N\}$. Then clearly $Q \subseteq U \in u$, $P \subseteq V \in v$ and $U \cap V = \emptyset$. Hence (X, u, v) is pairwise normal. \Box

Corollary. A semi-sequentially normal, and hence an R-M-normal, bitopological space is pairwise normal.

References

- L.M. Brown, On extensions of bitopological spaces, in: Proceedings J. Bolyai Topology Colloquium Budapest, 1978 (North-Holland, Amsterdam, 1980) 181-214.
- [2] L.M. Brown, Dual covering theory, confluence structures and the lattice of bicontinuous functions, Ph.D. thesis, University of Glasgow (1980).
- [3] L.M. Brown, Sequentially normal bitopological spaces, J. Fac. Sci. Karadeniz Tech. Univ. 6 (1981) 18-22.
- [4] L.M. Brown, A topic in the theory of bitopological spaces, Karadeniz Math. J. 1 (1982) 142-149.
- [5] L.M. Brown, The bitopological *p-q-*metrization problem, Ataturk Univ. J. Sci. Special Issue 2 (1985) 77-86.
- [6] T.E. Gantner and R.C. Steinlage, Characterization of quasi-uniformities, J. London Math. Soc. 11 (1972) 48-52.
- [7] H.J.K. Junnila, Covering properties and quasi-uniformities of topological spaces, Thesis, Virginia Polytechnic Institute and State University, Blacksburg (1978).
- [8] J. Nagata, Modern General Topology (North-Holland, Amsterdam, 1974).
- [9] S. Romaguera and J. Marin, On the bitopological extension of the Bing metrization theorem, J. Austral. Math. Soc. Ser. A 44 (1988) 233-241.