Semi-interior and Semi-closure of a Fuzzy Set*

Tuna Hatice Yalvaç
Department of Mathematics, Hacettepe University, Ankara, Turkey
Submitted by L. A. Zadeh
Received May 17, 1985

Introduction

We generally follow the terminology of Azad [1] and Ming and Ming [3].
Azad defined the fuzzy semi-open, fuzzy semi-closed, fuzzy regular-open, and fuzzy regular-closed sets and the fuzzy semi-continuous, fuzzy weaklycontinuous, fuzzy semi-open, and fuzzy open functions in [1].

We defined the fuzzy H . almost-continuous and fuzzy W . almost-open functions in [8].

Continuing the work in [8], we define the semi-interior and semi-closure of a fuzzy set in a manner similar to that used in ordinary topological spaces. At the same time, the definition of almost-open function defined by Singal (cf. [6]) and irresolute, pre-semi-open functions and semihomeomorphism defined by Crossley et al. [2] are extended to fuzzy sets. Some results are obtained in the functions of fuzzy topological spaces defined by Azad [1] and those are defined in [8] and here.

1. Basic Notation and Definitions

Fuzzy sets of a non-empty set X will be denoted by the capital letters A, B, C, etc. The value of a fuzzy set A at the element x of X will be denoted by $A(x)$ and a fuzzy point will be denoted by p.

If we write $p \in A$, then the definitions of a fuzzy point and being an element of a fuzzy set are understood as in [5] or [3], i.e., $p \in A$ either means that fuzzy point p takes its non-zero value in $(0,1)$ at the support x_{p} and $p\left(x_{p}\right)<A\left(x_{p}\right)$ [5] or fuzzy point p takes its non-zero value in (0,1$]$ and $p\left(x_{p}\right) \leqslant A\left(x_{p}\right)$ [3]. Furthermore, if we say only "fuzzy point p," then p

[^0]will be considered as in [5] or [3]. If we write $p \in{ }_{1} A$ then the definition of fuzzy point-fuzzy elementhood will be the same as Srivastava et al. used in [5].

If for a fuzzy point p and a fuzzy set A, we have $p\left(x_{p}\right)+A\left(x_{p}\right)>1$, then this case, which is defined by Ming and Ming [3] as " p quasi coincident with A," will be denoted by $p q A$.

In this work, X and Y denote fuzzy topological spaces with fuzzy topology τ and ϑ, respectively, and by $f: X \rightarrow Y$ we denote a function f of a fuzzy space X into a fuzzy space Y.
A^{o}, \bar{A} and A^{\prime} will denote respectively the interior, closure, and complement of the fuzzy set A.

2. Fuzzy Semi-interior and Fuzzy Semi-closure

Definition 2.1. Let $A \subset X$ be a fuzzy set and define the following sets:

$$
\begin{aligned}
A & =\bigcap\{B \mid A \subset B, B \text { fuzzy semi-closed }\} \\
A_{o} & =\bigcup\{B \mid B \subset A, B \text { fuzzy semi-open }\} .
\end{aligned}
$$

We call \underline{A} the fuzzy semi-closure of A and A_{o}, the fuzzy semi-interior of A.
Obviously A_{o} is the greatest fuzzy semi-open set which is contained in A and A is the lowest fuzzy semi-closed set which contains A, and we have

$$
A \subset \underline{A} \subset \bar{A} \quad \text { and } \quad A \supset A_{o} \supset A^{o} .
$$

These are easely seen from [1, Theorem 4.3 and Remark 4.4] and the definitions of $\underset{A}{ }$ and A_{o}.

In addition to these facts, if $A, B \subset X$ then

$$
\begin{aligned}
& A \text { is fuzzy semi-open } \Leftrightarrow A=A_{o} \\
& A \text { is fuzzy semi-closed } \Leftrightarrow A=\underline{A} \\
& A \subset B \Rightarrow \underline{A} \subset \underline{B} \text { and } A_{o} \subset B_{o} .
\end{aligned}
$$

Theorem 2.2. Let $f: X \rightarrow Y$. f is fuzzy semi-continuous iff $f(\underline{A}) \subset \overline{f(A)}$ for every $A \subset X$.

Proof. Let $A \subset X$. Since $\overline{f(A)}$ is a fuzzy closed set, $f^{-1}(\overline{f(A)})$ is a fuzzy semi-closed set [8, Theorem 4.5].

Clearly $f^{-1}(\overline{f(A)})=f^{-1}(\overline{f(A)})$. From [4, Lemma 1.1], step by step we get

$$
\begin{aligned}
A & \subset f^{1}(f(A)) \\
A \subset \frac{f^{1}(f(A))}{f(\underline{A}) \subset f\left(f^{-1}(\overline{f(A)})\right)} \subset \overline{f^{-1}(\overline{f(A)})} & =f^{-1}(\overline{f(A)})
\end{aligned}
$$

Conversely, let $B \subset Y$ be a fuzzy closed set. From the hypothesis we have

$$
f\left(\underline{\left.f^{-1}(B)\right)} \subset \overline{f\left(f^{-1}(B)\right)} \subset \bar{B}=B .\right.
$$

So $f^{-1}(B) \subset f^{-1}\left(f\left(\underline{\left.f^{-1}(B)\right)}\right) \subset f^{-1}(B)\right.$.
Since $\underline{f^{-1}(B)} \subset f^{-1}\left(\overline{B)}\right.$ and $f^{-1}(B) \subset f^{-1}(B)$, we get $f^{-1}(B)=f^{-1}(B)$.
Hence $f^{-1}(B)$ is a fuzzy semi-closed set and f is a fuzzy semi-continuous function.

3. Fuzzy Irrfsoliute, Fuzzy Almost-open, and Fuzzy Pre-semi-open Functions

Definition 3.1. Let f be a function from a fuzzy topological space X to a fuzzy topological space Y.
(i) If for any fuzzy semi-open set B in $Y, f^{-1}(B)$ is a fuzzy semiopen set in X, then we say that f is a fuzzy irresolute function.
(ii) If for any fuzzy semi-open set A in $X, f(A)$ is a fuzzy semi-open set in Y, then we say that f is a fuzzy pre-semi-open function.
(iii) If for any fuzzy regular-open set A in $X, f(A)$ is a fuzzy open set in Y, then we say that f is a fuzzy almost-open function.
(iv) If f is one-to-one, onto, fuzzy pre-semi-open, and fuzzy irresolute, then we say that f is a fuzzy semi-homeomorphism.

Remark 3.2. For the function $f: X \rightarrow Y$, the following statements are valid:
f, fuzzy continuous $\nRightarrow f$, fuzzy irresolute,
f, fuzzy irresolute $\nRightarrow f$, fuzzy weakly-continuous,
f, fuzzy irresolute $\nRightarrow f$, fuzzy H. almost-continuous,
f, fuzzy irresolute $\Rightarrow f$, fuzzy semi-continuous.

Example 3.3. Let $X=\{a, b, c\}, \quad Y=\{x, y, z\} \quad$ and $\quad T_{1} \subset X, \quad T_{2} \subset X$, $U_{1} \subset Y, U_{2} \subset Y$ be defined as follows:

$$
\begin{array}{lll}
T_{1}(a)=0, & T_{1}(b)=0,3, & T_{1}(c)=0,2 \\
T_{2}(a)=0, & T_{2}(b)=0,2, & T_{2}(c)=0,2 \\
U_{1}(x)=0, & U_{1}(y)=0,4, & U_{1}(z)=0,2 \\
U_{2}(x)=0, & U_{2}(y)=0,2, & U_{2}(z)=0,7
\end{array}
$$

(a) Let $\tau=\left\{X, \phi, T_{2}\right\}, \vartheta=\left\{Y, \phi, U_{2}\right\}$.

If we define $f: X \rightarrow Y$ satisfying $f(a)=x, f(b)=y, f(c)=y$, then f is fuzzy continuous but not fuzzy irresolute. Because if we define the fuzzy set A in Y being $A(x)=0,1, A(y)=0,9, A(z)=0,8$, then A is a fuzzy semi-open set since $U_{2} \subset A \subset \overline{U_{2}}$. But $f^{-1}(A)$ is not a fuzzy semi-open set.

Clearly f is fuzzy continuous.
(b) Let $\tau=\left\{X, \phi, T_{1}\right\}, \vartheta=\left\{Y, \phi, U_{1}\right\}$.

If we define $f: X \rightarrow Y$ satisfying $f(a)=x, f(b)=y, f(c)=z$, then f is fuzzy irresolute but not fuzzy weakly-continuous and not fuzzy H. almostcontinuous.

Remark 3.4. For the function $f: X \rightarrow Y$ the following statements are valid:
f, fuzzy pre-semi-open $\Rightarrow f$, fuzzy semi-open
f, fuzzy pre-semi-open $\nRightarrow f$, fuzzy almost-open
f, fuzzy pre-semi-open $\nRightarrow f$, fuzzy W . almost-open
f, fuzzy open $\nRightarrow f$, fuzzy pre-semi-open
f, fuzzy open $\Rightarrow f$, fuzzy almost-open
f, fuzzy almost-open $\nRightarrow f$, fuzzy semi-open
f, fuzzy almost-open $\nRightarrow f$, fuzzy W. almost-open
f, fuzzy W. almost-open $\nRightarrow f$, fuzzy almost-open.

Example 3.5. Let $X=\{a, b, c\}, \quad Y=\{x, y, z\}$ and $T_{1} \subset X, \quad T_{2} \subset X$, $T_{3} \subset X, U_{1} \subset Y, U_{2} \subset Y$ be defined as follows:

$$
\begin{array}{lll}
T_{1}(a)=0, & T_{1}(b)=0,3, & T_{1}(c)=0,2 \\
T_{2}(a)=0,9, & T_{2}(b)=0,6, & T_{2}(c)=0,7 \\
T_{3}(a)=0, & T_{3}(b)=0,8, & T_{3}(c)=0,9 \\
U_{1}(x)=0, & U_{1}(y)=0,3, & U_{1}(z)=0,2 \\
U_{2}(x)=0, & U_{2}(y)=0,2, & U_{2}(z)=0,1 .
\end{array}
$$

(a) Let $\tau=\left\{X, \phi, T_{1}, T_{2}\right\}, \vartheta=\left\{Y, \phi, U_{1}\right\}$.

If we define $f: Y \rightarrow X$ satisfying $f(x)=a, f(y)=b, f(z)=c$, then f is fuzzy open, but not fuzzy pre-semi-open.
(b) Let $\tau=\left\{X, \phi, T_{1}\right\}, \vartheta=\left\{Y, \phi, U_{2}\right\}$.

If we define $f: X \rightarrow Y$ satisfying $f(a)=x, f(b)=y, f(c)=z$, then f is fuzzy pre-semi-open, but neither fuzzy almost-open nor fuzzy W . almost-open.
(c) Let $\tau=\left\{X, \phi, T_{1}, T_{3}\right\}, \vartheta=\left\{Y, \phi, U_{1}\right\}$.

If we define f as in (b), then f is fuzzy almost-open, but not fuzzy semiopen.
(d) If we define τ and ϑ as in (b), and f as in (a), then f is fuzzy W . almost-open, but not fuzzy almost-open.
(e) Let $\tau=\left\{X, \phi, T_{2}\right\}, \vartheta=\left\{Y, \phi, U_{1}\right\}$.

If we define f as in b), then f is fuzzy almost-open, but not fuzzy W . almost-open.

Theorem 3.6. Let $f: X \rightarrow Y$. The following are equivalent:
(1) f is fuzzy irresolute.
(2) For every $p \in X$ and for every fuzzy semi-open set O in Y containing $f(p)$ there exists a fuzzy semi-open set O^{*} in X such that $p \in O^{*} \subset f^{-1}(O)$.
(3) For every $p \in X$ and for every fuzzy semi-open set O in Y containing $f(p)$ there exists a fuzzy semi-open set O^{*} in X such that $p \in O^{*}$ and $f\left(O^{*}\right) \subset O$.
(4) For every $p \in X$ and for every fuzzy semi-open set O in Y satisfying $f(p) q O$ there exists a fuzzy semi-open set O^{*} in X such that $p q O^{*} \subset f^{-1}(O)$.
(5) For every $p \in X$ and for every fuzzy semi-open set O in Y satisfying $f(p) q O$ there exists a fuzzy semi-open set O^{*} in X such that $p q O^{*}$ and $f\left(O^{*}\right) \subset O$.
(6) For every fuzzy semi-closed set F in $Y, f^{-1}(F)$ is a fuzzy semiclosed set in X.
(7) For every fuzzy semi-open set O in $Y, f^{-1}(O) \subset \overline{f^{-10}(O)}$.
(8) For every fuzzy semi-closed set F in $Y, f^{-1}(F) \supset \bar{f}^{-1}(F)$.

Proof. (1) $\Rightarrow(2)$: Let $p \in X$ and O be any fuzzy semi-open set such that $f(p) \in O$.

Since f is fuzzy irresolute, $f^{-1}(O)$ is a fuzzy semi-open set and we have $p \in f^{-1}(O)=O^{*} \subset f^{-1}(O)$
$(2) \Rightarrow(3)$ and $(3) \Rightarrow(2)$ can be easily seen.
$(2) \Rightarrow(1)$: Let $O \subset Y$ be a fuzzy semi-open set and $p \in f^{-1}(O)$ be any fuzzy point. This implies $f(p) \in f\left(f^{-1}(O)\right) \subset O$. From hyphothesis there exists a fuzzy semi-open set O^{*} in X such that $p \in O^{*} \subset f^{-1}(O)$.

Hence, $f^{-1}(O)$ is a fuzzy semi-open set [8, Theorem 3.5].
$(4) \Rightarrow(5)$ and $(5) \Rightarrow(4)$ can be easily seen.
$(1) \Rightarrow(4)$: Let $p \in X$ and O be any fuzzy semi-open set such that $f(p) q O$. Clearly $f^{-1}(O)$ is a.fuzzy semi-open set and $p q f^{-1}(O)=$ $O^{*} \subset f^{-1}(O)$ [8, Proposition 4.2].
$(4) \Rightarrow(1)$: Let $O \subset Y$ be any fuzzy semi-open set. Let $p \in{ }_{1} f^{-1}(O)$. Clearly $f(p) \in{ }_{1} O$. Choose the fuzzy point p^{\prime} as $p^{\prime}\left(x_{p}\right)=1-p\left(x_{p}\right)$. For this p^{\prime}, we have $f\left(p^{\prime}\right) q O$ [8, Proposition 2.5]. From (4), there exists a fuzzy semi-open set such that $p^{\prime} q O^{*} \subset f^{-1}(O)$.

Since $p^{\prime} q O^{*}$,

$$
p^{\prime}\left(x_{p}\right)+O^{*}\left(x_{p}\right)=1-p\left(x_{p}\right)+O^{*}\left(x_{p}\right)>1 \Rightarrow O^{*}\left(x_{p}\right)>p\left(x_{p}\right) \Rightarrow p \in_{1} O^{*}
$$

Hence we have $p \in_{1} O^{*} \subset f^{-1}(O)$. From [8, Theorem 3.5], $f^{-1}(O)$ is a fuzzy semi-open set.
$(1) \Rightarrow(6)$: Let F be any fuzzy semi-closed set in $Y . F^{\prime}$ is a fuzzy semiopen set. From (1), $f^{-1}\left(F^{\prime}\right)$ is a fuzzy semi-open set and from known equality $f^{-1}\left(F^{\prime}\right)=\left(f^{-1}(F)\right)^{\prime},\left(f^{-1}(F)\right)^{\prime}$ is a fuzzy semi-open set and hence $f^{-1}(F)$ is a fuzzy semi-closed set [1, Theorem 4.2].
$(6) \Rightarrow(1)$ can be proved in the same way as $(1) \Rightarrow(6)$.
$(6) \Rightarrow(8),(8) \Rightarrow(6),(1) \Rightarrow 7),(7) \Rightarrow(1)$ can be easily proved by using Theorem 4.2 in [1].

Proposition 3.7. Let (Z, W) be a fuzzy topological space and $f: X \rightarrow Y$, $g: Y \rightarrow Z$. Then the following statements are valid:
(1) If f and g are fuzzy pre-semi-open functions then $g \circ f$ is too.
(2) If f and g are fuzzy irresolute functions then $g \circ f$ is too.
(3) If f is fuzzy irresolute and g is fuzzy semi-continuous then $g \circ f$ is a fuzzy semi-continuous function.
(4) If f is fuzzy semi-open and g is fuzzy pre-semi-open then $g \circ f$ is a fuzzy semi-open function.
(5) If f is fuzzy almost-open and g is fuzzy open then $g \circ f$ is a fuzzy almost-open function.

Proof. It is easy since we have $(g \circ f)(A)=g(f(A))$ for $A \subset X$ and $(g \circ f)^{-1}(B)=f^{-1}\left(g^{-1}(B)\right)$ for $B \subset Z$.

Theorem 3.8. If $f: X \rightarrow Y$ is fuzzy almost-open and fuzzy semi-continuous then f is a fuzzy irresolute function.

Proof. It can be easily shown as in ordinary topological spaces [6, Theorem 1.12].

Theorem 3.9. If $f: X \rightarrow Y$ is fuzzy H. almost-continuous and fuzzy semiopen then f is a fuzzy pre-semi-open function.

Proof. It can be proved as in the proof of Theorem 2.5 in [6] by using Theorem 4.17 and Proposition 3.4 in [8].

Corollary 3.10. If $f: X \rightarrow Y$ is fuzzy continuous and fuzzy open then f is both fuzzy irresolute and fuzzy pre-semi-open.

Corollary 3.11. Eevery fuzzy homeomorphism (i.e., one-to-one, onto, fuzzy continuous, and fuzzy open function) is a fuzzy semi-homeomorphism.

Theorem 3.12. If $f: X \rightarrow Y$ is fuzzy semi-continuous and fuzzy W. almost-open then f is a fuzzy irresolute function.

Proof. Let $B \subset Y$ be any fuzzy semi-open set in Y. There exists a fuzzy open-set U in Y such that $U \subset B \subset \bar{U}$. From [8, Definition 4.13(b)], we have $f^{-1}(U) \subset f^{-1}(B) \subset f^{-1}(\bar{U}) \subset \overline{f^{-1}(U)}$.

Since f is fuzzy semi-continuous, $f^{-1}(U)$ is a fuzzy semi-open set.
Hence $f^{-1}(B)$ is a fuzzy semi-open set [8, Proposition 3.4].
THEOREM 3.13. $f: X \rightarrow Y$ is a fuzzy irresolute function iff for every $A \subset X, f(\underline{A}) \subset f(A)$.

Proof. It can be easily proved as in ordinary topological space [2, Theorem 1.5].

Theorem 3.14. $f: X \rightarrow Y$ is a fuzzy irresolute function iff for every $B \subset Y, \underline{f(B)} \subset f^{-1}(\underline{B})$.

Proof. It is similar to the proof of Theorem 1.6 in [2].
Proposition 3.15. Let $f: X \rightarrow Y$ he one-to-one and onto. f is a fuzzy semi-homeomorphism iff f and f^{-1} are fuzzy irresolute functions iff f and f^{-1} are fuzzy pre-semi-open functions.

Proof. Obvious.
Corollary 3.16. Let $f: X \rightarrow Y$ be one-to-one and onto. f is a fuzzy semihomeomorphism iff for every $A \subset X, f(\underline{A})=f(A)$.

Proof. It can be seen from Proposition 3.15, Theorem 3.13, Theorem 3.14, and the fact $\left(f^{-1}\right)^{-1}=f$.

Corollary 3.17. Let f be one-to-one and onto. f is a fuzzy semihomeomorphism iff for every $B \subset Y, f^{-1}(\underline{B})=\underline{f(B)}$.

Theorem 3.18. $f: X \rightarrow Y$ is a fuzzy irresolute function iff for every $B \subset Y, f^{-1}\left(B_{o}\right) \subset\left(f^{-1}(B)\right)_{o}$.

Proof. Let $B \subset Y$. B_{o} is a fuzzy semi-open set. Clearly $f^{-1}\left(B_{o}\right)$ is a fuzzy semi-open set and we have $f^{-1}\left(B_{0}\right)=\left(f^{-1}\left(B_{o}\right)\right)_{o} \subset\left(f^{-1}(B)\right)_{o}$.

Conversely, let B be any fuzzy semi-open set in Y. Then $B_{o}=B$ and $f^{-1}(B)=f^{-1}\left(B_{o}\right) \subset\left(f^{-1}(B)\right)_{o}$.

Hence we have $f^{-1}(B)=\left(f^{-1}(B)\right)_{o}$. This shows that $f^{-1}(B)$ is a fuzzy semi-open set.

Theorem 3.19. Let $f: X \rightarrow Y$ be one-to-one and onto. f is fuzzy irresolute function iff for every $A \subset X,(f(A))_{o} \subset f\left(A_{o}\right)$.

Proof. Let $A \subset X .(f(A))_{o}$ is a fuzzy semi-open set. Clearly $f^{-1}\left((f(A))_{o}\right)$ is a fuzzy semi-open set. $f^{-1}(f(A))=A[4$, Lemma 1.1]. We have

$$
\begin{aligned}
f^{-1}\left((f(A))_{o}\right) & \subset\left(f^{-1}(f(A))\right)_{o}=A_{o} \\
f\left(f^{-1}\left((f(A))_{o}\right)\right) & \subset f\left(A_{o}\right) .
\end{aligned}
$$

Since f is onto

$$
(f(A))_{o}=f\left(f^{-1}\left((f(A))_{o}\right)\right) \subset f\left(A_{o}\right), \quad[4, \text { Lemma 1.1] }
$$

Conversely, let $B \subset Y$ be any fuzzy semi-open set. Immediately $B=B_{o}$. From hypothesis

$$
f\left(\left(f^{-1}(B)\right)_{o}\right) \supset\left(f\left(f^{-1}(B)\right)\right)_{o}=B_{o}=B .
$$

This implies that $f^{-1}\left(f\left(\left(f^{-1}(B)\right)_{o}\right)\right) \supset f^{-1}(B)$. Since f is one-to-one we have $\left(f^{-1}(B)\right)_{o} \supset f^{-1}(B)$. Hence $f^{-1}(B)=\left(f^{-1}(B)\right)_{a}$, i.e., $f^{-1}(B)$ is a fuzzy semi-open set.

Corolmary 3.20. Let $f: X \rightarrow Y$ be one-to-one and onto. f is a fuzzy semihomeomorphism iff for every $A \subset X, f\left(A_{o}\right)=(f(A))_{o}$.

Corollary 3.21. Let $f: X \rightarrow Y$ be one-to-one and onto. f is a fuzzy semihomeomorphism iff for every $B \subset Y, f^{-1}\left(B_{o}\right)=\left(f^{-1}(B)\right)_{o}$.

References

1. K. K. Azad, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
2. S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fund. Math. 74 (1972), 233-254.
3. P. P. Ming and L. Y. Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
4. P. P. Ming and L. Y. Ming, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37.
5. S. Srivastava, S. N. Lal, and A. K. Srivastava, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981), 497-506.
6. N. Takashl, Semi-continuity and weak continuity, Czechoslovak Math. J. 31 (1979), 314-321.
7. T. Thompson, Semicontinuous and irresolute images of S-closed spaces, Proc. Amer. Math. Soc. 66 (1977), 359-362.
8. T. H. Yalvaç, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl., in press.

[^0]: * This research is part of the authors' Ph. D. thesis, which was submitted to the University of Hacettepe in 1982.

