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REDUCED AND p.q.-BAER MODULES

Muhittin Başer and Abdullah Harmanci

Abstract. In this paper, we study p.q.-Baer modules and some polynomial
extensions of p.q.-Baer modules. In particular, we show: (1) For a reduced
moduleMR,MR is ap.p.-module iff MR is a p.q.-Baer module. (2) If MR is an
α-reduced module where α is an endomorphism of R, then MR is a p.q.-Baer
module iff M [x; α]R[x;α] is a p.q.-Baer module. (3) For an arbitrary module
MR, MR is a p.q.-Baer module if and only if M [x]R[x] is a p.q.-Baer module.

1. INTRODUCTION

Throughout this work all rings R are associative with identity and modules are
unital right R-modules and α : R −→ R is an endomorphism of the ring R. In
[6] Clark called a ring R quasi-Baer ring if the right annihilator of each right ideal
of R is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al.
[3] called a ring R right (resp. left) principally quasi-Baer [or simply right (resp.
left) p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left)
ideal of R is generated by an idempotent. R is called p.q.-Baer if it is both right
and left p.q.-Baer. A ring R is called a right (resp. left) p.p.-ring if the right (resp.
left) annihilator of every element of R is generated by an idempotent. R is called a
p.p.-ring if it is both a right and left p.p.-ring. A ring is called reduced ring if it has
no nonzero nilpotent elements and MR is called α-reduced module by Lee-Zhou
[12] if, for any m ∈ M and a ∈ R, (1) ma = 0 implies mR∩Ma = 0, (2) ma = 0
iff mα(a) = 0, where α : R −→ R is a ring endomorphism with α(1) = 1. The
module MR is called a reduced module if M is 1R-reduced. It is clear that R is a
reduced ring iff RR is a reduced module.

We write R[x], R[[x]], R[x, x−1] and R[[x, x−1]] for the polynomial ring, the
power series ring, the Laurent polynomial ring and the Laurent power series ring
over R, respectively.
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In [12] Lee-Zhou introduced the following notation. For a module MR, we
consider

M [x; α] =

{
s∑

i=0

mix
i : s ≥ 0, mi ∈ M

}
,

M [[x; α]] =

{ ∞∑
i=0

mix
i : mi ∈ M

}
,

M [x, x−1; α] =

{
t∑

i=−s

mix
i : s ≥ 0, t ≥ 0, mi ∈ M

}
,

M [[x, x−1; α]] =

{ ∞∑
i=−s

mix
i : s ≥ 0, mi ∈ M

}
.

Each of these is an Abelian group under an obvious addition operation. More-
over M [x; α] becomes a module over R[x; α] under the following scalar product

operation: For m(x) =
s∑

i=0

mix
i ∈ M [x; α] and f(x) =

t∑
i=0

aix
i ∈ R[x; α]

m(x)f(x) =
s+t∑
k=0


 ∑

i+j=k

miα
i(aj)


xk.

Similarly, M [[x; α]] is module over R[[x; α]]. The modules M [x; α] and M [[x; α]]
are called the skew polynomial extension and the skew power series extension of
M respectively. If α ∈ Aut(R), then with a similar scalar product, M [[x, x−1; α]]
(resp. M [x, x−1; α]) becomes a module over R[[x, x−1; α]] (resp.R[x, x−1; α]). The
modules M [x, x−1; α] and M [[x, x−1; α]] are called the skew Laurent polynomial
extension and the skew Laurent power series extension of M , respectively. First we
recall the following theorem.

Theorem 1. [12, Theorem 1.6] The following are equivalent for a module M R;

(1) MR is α-reduced;

(2) M [x; α]R[x;α] is reduced;

(3) M [[x; α]]R[[x;α]] is reduced. If α ∈ Aut(R), then the conditions (1)− (3) are
equivalent to each of (4) and (5):

(4) M [x, x−1; α]R[x,x−1;α] is reduced;

(5) M [[x, x−1; α]]R[[x,x−1;α]] is reduced.
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According to Lee-Zhou [12] a module MR is called α-Armendariz if the fol-
lowing conditions (1) and (2) are satisfied, and module MR is called α-Armendariz
of power series type if the following conditions (1) and (3) are satisfied:

(1) For m ∈ M and a ∈ R, ma = 0 if and only if mα(a) = 0.

(2) For any m(x) =
s∑

i=0

mix
i ∈ M [x; α] and f(x) =

t∑
i=0

aix
i ∈ R[x; α],

m(x)f(x) = 0 implies miα
i(aj) = 0 for all i and j.

(3) For any m(x) =
∞∑
i=0

mix
i ∈ M [[x; α]] and f(x) =

∞∑
i=0

aix
i ∈ R[[x; α]],

m(x)f(x) = 0 implies miα
i(aj) = 0 for all i and j.

The module MR is Armendariz iff MR is 1R-Armendariz; we call MR Armen-
dariz of power series type if MR is 1R-Armendariz of power series type. If MR is
α-reduced then MR is α-Armendariz of power series type. If MR is α-Armendariz
of power series type then MR is α-Armendariz.

For a subset X of a module MR, let rR(X)={r ∈R : Xr=0}. In [12] Lee-
Zhou introduced Baer modules, quasi-Baer modules and p.p.-modules as follows.

(1) MR is called Baer if, for any subset X of M , rR(X)=eR where e2 =e∈R.
(2) MR is called quasi-Baer if, for any submodule N of M , rR(N ) = eR where

e2 = e ∈ R;

(3) MR is called principally projective (or simply p.p.) if, for any m ∈ M ,
rR(m) = eR where e2 = e ∈ R.

In this paper, we study p.q.-modules and the some polynomial and power series
extensions of p.q.-modules. In particular, we show: (1) For a reduced module MR,
MR is a p.p.-module iff MR is a p.q.-Baer module. (2) If MR is an α-reduced
module where α is an endomorphism of R, then MR is a p.q.-Baer module iff
M [x; α]R[x;α] is a p.q.-Baer module. (3) For an arbitrary module MR, MR is a
p.q.-Baer module if and only if M [x]R[x] is a p.q.-Baer module.

We begin with the following definition which is defined in [10].

Definition 2. Let MR be a module. MR is called principally quasi-Baer (or
simply p.q.-Baer) module if, for any m ∈ M , rR(mR) = eR where e2 = e ∈ R.

It is clear that R is a right p.q.-Baer ring iff RR is a p.q.-Baer module. If R is
a p.q.-Baer ring, then for any right ideal I of R, IR is a p.q.-Baer module. Every
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submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer
module is p.q.-Baer, and every Baer module is quasi-Baer.

If R is commutative then MR is p.p.-module iff MR is p.q.-Baer module.
The following examples show that there exists a p.q.-Baer module that is not a

p.p.-module.

Example 3. [7, Example 2(1)] Let Z be the ring of integers and M2(Z) the
2 × 2 full matrix ring over Z. We consider the ring

R =
{(

a b
c d

)
∈ M2(Z) | a ≡ d, b ≡ 0 and c ≡ 0 (mod 2)

}
.

Then the module RR is p.q.-Baer, but it is not a p.p.-module.

Theorem 4. Let MR be a module such that for any m ∈ M and a ∈ R,
ma = 0 implies mRa = 0. Then MR is a p.p.-module if and only if MR is a
p.q.-Baer module.

Proof. Let m ∈ M . If a ∈ rR(m) then ma = 0 and by assumption, mRa = 0
and so a ∈ rR(mR). Then rR(m) ⊆ rR(mR). But rR(mR) ⊆ rR(m) obviously
holds. Consequently, rR(mR) = rR(m) = eR. Hence the claim follows.

Our next result extends [7, Lemma 1].

Corollary 5. Let MR be a reduced module. Then MR is a p.p.-module if and
only if MR is a p.q.-Baer module.

Proof. Assume MR is a reduced module. Then m ∈ M, a ∈ R, ma = 0
implies mRa = 0 by [12, Lemma 1.2]. The claim follows from Theorem 4.

Corollary 6. [7, Lemma 1] Let R be a reduced ring. Then R is a right p.p.-ring
if and only if R is a right p.q.-Baer ring.

Theorem 7. Let α : R −→ R be an endomorphism of R and assume that, for
m ∈ M and a ∈ R, ma = 0 ⇔ mα(a) = 0. Then the following hold:

(1) (a) If M [x; α]R[x;α] is a p.q.-Baer module, then MR is a p.q.-Baer module.
The converse holds if in addition MR is α−reduced.

(b) If M [[x; α]]R[[x;α]] is p.q.-Baer, then MR is p.q.-Baer.

(2) Let α ∈ Aut(R).

(a) If M [x, x−1; α]R[x,x−1;α] is a p.q.-Baer module, then MR is a p.q.-Baer
module. The converse holds if in addition MR is α−reduced.
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(b) If M [[x, x−1; α]]R[[x,x−1;α]] is a p.q.-Baer module, then MR is a p.q.-
Baer module.

Proof. (1) (a) Similar to the proof of (1)(b).
Converse of (1) (a): Assume that MR is an α-reduced module and MR is p.q.-Baer
module. For any m ∈ M and a ∈ R, ma = 0 implies mRa = 0. Then by Theorem
4, MR is a p.p.-module. Since MR is an α-reduced module, MR is α-Armendariz.
By [12, Theorem 2.11.(1)(a)], M [x; α]R[x;α] is p.p.-module. Since MR is α-reduced,
M [x; α]R[x;α] is reduced by Theorem 1. By Corollary 5, M [x; α]R[x;α] is a p.q.-
Baer module.

(1)(b) Suppose M [[x; α]]R[[x;α]] is a p.q.-Baer module. For m ∈ M we have
rR[[x;α]](mR[[x; α]]) = f(x)R[[x; α]] where f(x)2 = f(x) ∈ R[[x; α]]. Thus

f(x)R[[x; α]] ⊆ rR[[x;α]](mR) = rR(mR)[[x; α]]. For g(x) =
∞∑

j=0

bjx
j ∈ rR(mR)

[[x; α]], mRbj = 0 for all j ≥ 0 and hence mRαk(bj) = 0 for all j ≥ 0 and

all k ≥ 0, by assumption. For any u(x) =
∞∑
i=0

uix
i ∈ (mR)[[x; α]], u(x)g(x) =∑

i

∑
j

uiα
i(bj)xi+j = 0. So g(x) ∈ rR[[x;α]]((mR)[[x; α]]). Thus rR(mR)[[x; α]] =

f(x)R[[x; α]]. Write f(x) =
∞∑
i=0

aix
i, where all ai ∈ rR(mR). Then, for any a ∈

rR(mR), a = f(x)h(x) for some h(x) ∈ R[[x; α]] so f(x)a = f(x)f(x)h(x) =
f(x)h(x) = a. It follows that a = a0a for all a ∈ rR(mR). Thus rR(mR) = a0R

with a0
2 = a0. So MR is p.q.-Baer module. Now the rest is clear

(2) Similar to the proof of (1).

Corollary 8. The following hold for a module M R:
(1) If any one of M [x]R[x],M [[x]]R[[x]],M [x, x−1]R[x,x−1] and M [[x, x−1]]R[[x,x−1]]

is a p.q.-Baer module, then so is MR.
(2) Let MR be reduced. If MR is a p.q.-Baer, then both M [x]R[x] and M [x, x−1]R[x,x−1]

are p.q.-Baer.

Corollary 9. The following hold for a ring R:
(1) If any one of R[x],R[[x]], R[x, x−1] and R[[x, x−1]] is a right p.q.-Baer ring,
then so is R.
(2) Let R be a reduced ring. If R is right p.q.-Baer, then both R[x] and R[x, x−1]
are p.q.-Baer ring.
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Example 10. There is a reduced p.q.-Baer module MR such that M [[x]]R[[x]]

is not a p.q.-Baer module.

Proof. Let F be a field and R be the ring

R =

{
(an) ∈

∞∏
n=1

Fn | an is eventually constant

}
,

which is the subring of
∞∏

n=1

Fn, where Fn = F for n = 1, 2, . . . . Let MR denote the

module RR. We claim MR is a p.q.-Baer module and reduced. But M [[x]]R[[x]] is
not p.q.-Baer module. It is well known that MR is a p.q.-Baer module and reduced.
Let ei denote the ”ith unit vector ” (0, ..., 0, 1, 0, ...) and let X = {e1, e3, e5, ...}.
Let m(x) = e1x + e3x

3 + · · · ∈ M [[x]]R[[x]]. Assume that M [[x]]R[[x]] is a p.q.-
Baer module. Then rR[[x]](m(x)R[[x]]) = f(x)R[[x]] for some idempotent f(x)2 =
f(x) ∈ R[[x]]. Since R is commutative ring, every idempotent in the ring R[[x]]
belongs to R by Lemma 8 in [9]. Hence f(x) belongs to R, say f(x) = f0 ∈ R.
Now it is easy to check that rR[[x]](m(x)R[[x]]) = f0R[[x]] implies rR(X) = f0R.
This is not possible by Example 7.54 in [11]. Thus M [[x]]R[[x]] is not p.q.-Baer
module. Since MR is reduced M [[x]]R[[x]] is reduced by Theorem 1. Therefore
M [[x]]R[[x]] is not p.q.-Baer module by Corollary 5.

Recall from [4], an idempotent e ∈ R is left (resp. right) semicentral in R if
exe = xe (resp. exe = ex), for all x ∈ R. Equivalently, e2 = e ∈ R is left (resp.
right) semicentral if eR (resp. Re) is an ideal of R. If MR is a p.q.-Baer module
and m ∈ M , then rR(mR) is generated by a left semicentral idempotent because
rR(mR) is an ideal. We use Sl(R) for the set of all left semicentral idempotents.

The next theorem improved Corollary 8 for the polynomial extension case.

Theorem 11. MR is a p.q.-Baer module if and only if M [x]R[x] is a p.q.-Baer
module.

Proof. Assume MR is a p.q.-Baer module. Let m(x) = m0 + m1x +
. . . + mnxn ∈ M [x]. There exists ei ∈ Sl(R) such that rR(miR) = eiR, for

i = 0, 1, . . . , n. Let e = e0e1 . . . en. Then e ∈ Sl(R) and eR =
n⋂

i=0

rR(miR).

Hence eR[x] ⊆ rR[x](m(x)R[x]). Observe rR[x](m(x)R[x]) ⊆ rR[x](m(x)R).
Let h(x) ∈ rR[x](m(x)R) and g(x) = b0 + b1x + . . . + bkx

k ∈ R[x]. Then
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m(x)g(x)h(x) = m(x)b0h(x) + m(x)b1xh(x) + . . . + m(x)bkx
kh(x) =

= m(x)b0h(x) + m(x)b1h(x)x + . . . + m(x)bkh(x)xk = 0.

Hence h(x) ∈ rR[x](m(x)R[x]). Consequently, rR[x](m(x)R[x]) = rR[x](m(x)R).
Now, let h(x) = a0+a1x+. . .+atx

t ∈ rR[x](m(x)R). Since m(x)Rh(x) = 0,
we have the following system of equations where d is an arbitrary element of R:

(0) m0da0 = 0 ;
(1) m1da0 + m0da1 = 0 ;
(2) m2da0 + m1da1 + m0da2 = 0 ;
(3) m3da0 + m2da1 + m1da2 + m0da3 = 0 ;

. . .

(l) mlda0 + ml−1da1 + . . . + m1dal−1 + m0dal = 0.

By first equation, a0 ∈ rR(m0R) = e0R, where e0 ∈ Sl(R). Let s ∈ R and
take d = se0 in equation (1). Then m1se0a0 + m0se0a1 = 0. But m0se0a1 = 0,
so m1se0a0 = m1sa0 = 0. Hence a0 ∈ rR(m1R) = e1R, where e1 ∈ Sl(R).
Thus a0 ∈ e0e1R. Since m1da0 = 0, then equation (1) yields m0da1 = 0. Hence
a1 ∈ rR(m0R) = e0R. Take d = se0e1 in equation (2). Then m2se0e1a0 +
m1se0e1a1 + m0se0e1a2 = 0. But m1se0e1a1 = 0 = m0se0e1a2. Hence
0 = m2se0e1a0 = m2sa0, so a0 ∈ r(m0R) ∩ r(m1R) ∩ r(m2R) = e0e1e2R,
and so we have by equation (2)

(2′) m1da1 + m0da2 = 0

In equation (2′) substitute se0 for d to obtain m1se0a1 + m0se0a2 = 0. But
m0se0a2 = 0, so m1sa1 = m1se0a1 = 0. Thus a1 ∈ r(m0R)∩ r(m1R) = e0e1R.
Since a1 ∈ rR(m1R), then equation (2′) yields m0da2 = 0. Hence a2 ∈ r(m0R) =
e0R. Summarizing at this point, we have a0 ∈ e0e1e2R, a1 ∈ e0e1R and a2 ∈
e0R. Continuing this procedure yields ai ∈ eR for all i = 0, 1, 2, ..., t. Hence
h(x) ∈ eR[x]. Consequently eR[x] = rR[x](m(x)R[x]). Conversely, if M [x]R[x] is
a p.q.-Baer, then MR is p.q.-Baer by Corollary 8 (2).

Corollary 12. Assume that R is a commutative ring. Then M R is a p.p.-module
if and only if M [x]R[x] is a p.p.-module.

Proof. This is an immediate consequence of Theorem 11, since if R is com-
mutative then MR is a p.p.-module if and only if MR is a p.q.-Baer module and R
is commutative if and only if R[x] is a commutative.

Corollary 13. [4, Theorem 3.1] R is a right p.q.-Baer ring if and only if R[x]
is a right p.q.-Baer ring.
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Corollary 14. [8, Theorem 1.2] Let R is a commutative ring. Then R is a
p.p.-ring if and only if R[x] is a p.p.-ring.

Corollary 15. [1, Theorem A] Let R be a reduced ring. Then R is a p.p.-ring
if and only if R[x] is a p.p.-ring.

Corollary 16. If M [[x]]R[[x]] is a p.q.-Baer module, then so is MR.

Proof. This result follows from [4, Proposition 2.5] and a proof similar to that
used in Theorem 11.

Corollary 17. [4, Proposition 3.5.] If R[[x]] is a right p.q.-Baer ring, then so
is R.

ACKNOWLEDGMENT

We would like to thank Professor Yiqiang Zhou from Memorial University of
Newfoundland for his valuable suggestions and comments during his visit to the
Module Theory Group, Hacettepe University, Ankara. We also thank to Turkish
Scientific and Research Council for support Zhou’s visit.

REFERENCES

1. E. P. Armendariz, A note on extensions of Baer and p.p.-Rings, J. Australian Math.
Soc., 18 (1974), 470-473.

2. G. F. Birkenmeier, Idempotents and Completely Semiprime Ideals, Comm. Algebra,
11 (1983), 567-580.

3. G. F. Birkenmeier, J. Y. Kim, J. K. Park, On extensions of quasi-Baer and principally
quasi-Baer rings, Preprint.

4. G. F. Birkenmeier, J. Y. Kim, J. K. Park, On Polynomial extensions of principally
quasi-Baer rings, Kyungpook Math. J., 40 (2000), 247-253.

5. A. W. Chatters, C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston,
(1980).

6. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34 (1967),
417-424.

7. C. Y. Hong, N. K. Kim and T. K. Kwak, Ore Extensions of Baer and p.p.-Rings, J.
Pure Appl. Algebra, 151 (2000), 215-226.

8. S. Jøndrup, p.p.-Rings and finitely generated flat ideals, Proc. Amer. Math. Soc., 28
(1971), 431-435.



Reduced and p.q.-Baer Modules 275

9. N. K. Kim, Y. Lee, Armendariz Rings and Reduced Rings, J. Algebra, 223 (2000),
477-488.
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