REDUCED AND $p . q$-BAER MODULES

Muhittin Başer and Abdullah Harmanci

Abstract

In this paper, we study p.q.-Baer modules and some polynomial extensions of p.q.-Baer modules. In particular, we show: (1) For a reduced module M_{R}, M_{R} is a p.p.-module iff M_{R} is a $p . q$-Baer module. (2) If M_{R} is an α-reduced module where α is an endomorphism of R, then M_{R} is a p.q.-Baer module iff $M[x ; \alpha]_{R[x ; \alpha]}$ is a p.q.-Baer module. (3) For an arbitrary module M_{R}, M_{R} is a p.q.-Baer module if and only if $M[x]_{R[x]}$ is a $p . q$-Baer module.

1. Introduction

Throughout this work all rings R are associative with identity and modules are unital right R-modules and $\alpha: R \longrightarrow R$ is an endomorphism of the ring R. In [6] Clark called a ring R quasi-Baer ring if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. Recently, Birkenmeier et al. [3] called a ring R right (resp. left) principally quasi-Baer [or simply right (resp. left) p.q.-Baer] if the right (resp. left) annihilator of a principal right (resp. left) ideal of R is generated by an idempotent. R is called p.q.-Baer if it is both right and left $p . q$.-Baer. A ring R is called a right (resp. left) p.p.-ring if the right (resp. left) annihilator of every element of R is generated by an idempotent. R is called a $p . p$.-ring if it is both a right and left p.p.-ring. A ring is called reduced ring if it has no nonzero nilpotent elements and M_{R} is called α-reduced module by Lee-Zhou [12] if, for any $m \in M$ and $a \in R$, (1) $m a=0$ implies $m R \cap M a=0$, (2) $m a=0$ iff $m \alpha(a)=0$, where $\alpha: R \longrightarrow R$ is a ring endomorphism with $\alpha(1)=1$. The module M_{R} is called a reduced module if M is 1_{R}-reduced. It is clear that R is a reduced ring iff R_{R} is a reduced module.

We write $R[x], R[[x]], R\left[x, x^{-1}\right]$ and $R\left[\left[x, x^{-1}\right]\right]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively.

[^0]In [12] Lee-Zhou introduced the following notation. For a module M_{R}, we consider

$$
\begin{aligned}
M[x ; \alpha] & =\left\{\sum_{i=0}^{s} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\} \\
M[[x ; \alpha]] & =\left\{\sum_{i=0}^{\infty} m_{i} x^{i}: m_{i} \in M\right\}, \\
M\left[x, x^{-1} ; \alpha\right] & =\left\{\sum_{i=-s}^{t} m_{i} x^{i}: s \geq 0, t \geq 0, m_{i} \in M\right\}, \\
M\left[\left[x, x^{-1} ; \alpha\right]\right] & =\left\{\sum_{i=-s}^{\infty} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\} .
\end{aligned}
$$

Each of these is an Abelian group under an obvious addition operation. Moreover $M[x ; \alpha]$ becomes a module over $R[x ; \alpha]$ under the following scalar product operation: For $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x ; \alpha]$ and $f(x)=\sum_{i=0}^{t} a_{i} x^{i} \in R[x ; \alpha]$

$$
m(x) f(x)=\sum_{k=0}^{s+t}\left(\sum_{i+j=k} m_{i} \alpha^{i}\left(a_{j}\right)\right) x^{k}
$$

Similarly, $M[[x ; \alpha]]$ is module over $R[[x ; \alpha]]$. The modules $M[x ; \alpha]$ and $M[[x ; \alpha]]$ are called the skew polynomial extension and the skew power series extension of M respectively. If $\alpha \in \operatorname{Aut}(R)$, then with a similar scalar product, $M\left[\left[x, x^{-1} ; \alpha\right]\right]$ (resp. $M\left[x, x^{-1} ; \alpha\right]$) becomes a module over $R\left[\left[x, x^{-1} ; \alpha\right]\right]$ (resp. $R\left[x, x^{-1} ; \alpha\right]$). The modules $M\left[x, x^{-1} ; \alpha\right]$ and $M\left[\left[x, x^{-1} ; \alpha\right]\right]$ are called the skew Laurent polynomial extension and the skew Laurent power series extension of M, respectively. First we recall the following theorem.

Theorem 1. [12, Theorem 1.6] The following are equivalent for a module M_{R};
(1) M_{R} is α-reduced;
(2) $M[x ; \alpha]_{R[x ; \alpha]}$ is reduced;
(3) $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is reduced. If $\alpha \in \operatorname{Aut}(R)$, then the conditions $(1)-(3)$ are equivalent to each of (4) and (5):
(4) $M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}$ is reduced;
(5) $M\left[\left[x, x^{-1} ; \alpha\right]\right]_{R\left[\left[x, x^{-1} ; \alpha\right]\right]}$ is reduced.

According to Lee-Zhou [12] a module M_{R} is called α-Armendariz if the following conditions (1) and (2) are satisfied, and module M_{R} is called α-Armendariz of power series type if the following conditions (1) and (3) are satisfied:
(1) For $m \in M$ and $a \in R, m a=0$ if and only if $m \alpha(a)=0$.
(2) For any $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x ; \alpha]$ and $f(x)=\sum_{i=0}^{t} a_{i} x^{i} \in R[x ; \alpha]$, $m(x) f(x)=0$ implies $m_{i} \alpha^{i}\left(a_{j}\right)=0$ for all i and j.
(3) For any $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x ; \alpha]]$ and $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i} \in R[[x ; \alpha]]$, $m(x) f(x)=0$ implies $m_{i} \alpha^{i}\left(a_{j}\right)=0$ for all i and j.

The module M_{R} is Armendariz iff M_{R} is 1_{R}-Armendariz; we call M_{R} Armendariz of power series type if M_{R} is 1_{R}-Armendariz of power series type. If M_{R} is α-reduced then M_{R} is α-Armendariz of power series type. If M_{R} is α-Armendariz of power series type then M_{R} is α-Armendariz.

For a subset X of a module M_{R}, let $r_{R}(X)=\{r \in R: X r=0\}$. In [12] LeeZhou introduced Baer modules, quasi-Baer modules and p.p.-modules as follows.
(1) M_{R} is called Baer if, for any subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$.
(2) M_{R} is called quasi-Baer if, for any submodule N of $M, r_{R}(N)=e R$ where $e^{2}=e \in R ;$
(3) M_{R} is called principally projective (or simply p.p.) if, for any $m \in M$, $r_{R}(m)=e R$ where $e^{2}=e \in R$.

In this paper, we study p.q.-modules and the some polynomial and power series extensions of p.q.-modules. In particular, we show: (1) For a reduced module M_{R}, M_{R} is a p.p.-module iff M_{R} is a p.q.-Baer module. (2) If M_{R} is an α-reduced module where α is an endomorphism of R, then M_{R} is a p.q.-Baer module iff $M[x ; \alpha]_{R[x ; \alpha]}$ is a p.q.-Baer module. (3) For an arbitrary module M_{R}, M_{R} is a p.q.-Baer module if and only if $M[x]_{R[x]}$ is a p.q.-Baer module.

We begin with the following definition which is defined in [10].
Definition 2. Let M_{R} be a module. M_{R} is called principally quasi-Baer (or simply p.q.-Baer) module if, for any $m \in M, r_{R}(m R)=e R$ where $e^{2}=e \in R$.

It is clear that R is a right p.q.-Baer ring iff R_{R} is a p.q.-Baer module. If R is a p.q.-Baer ring, then for any right ideal I of R, I_{R} is a p.q.-Baer module. Every
submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer, and every Baer module is quasi-Baer.

If R is commutative then M_{R} is $p . p$.-module iff M_{R} is $p . q$.-Baer module.
The following examples show that there exists a p.q.-Baer module that is not a p.p.-module.

Example 3. [7, Example 2(1)] Let \mathbb{Z} be the ring of integers and $M_{2}(\mathbb{Z})$ the 2×2 full matrix ring over \mathbb{Z}. We consider the ring

$$
R=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in M_{2}(\mathbb{Z}) \right\rvert\, a \equiv d, b \equiv 0 \text { and } c \equiv 0(\bmod 2)\right\}
$$

Then the module R_{R} is p.q.-Baer, but it is not a p.p.-module.
Theorem 4. Let M_{R} be a module such that for any $m \in M$ and $a \in R$, $m a=0$ implies $m R a=0$. Then M_{R} is a p.p.-module if and only if M_{R} is a p.q.-Baer module.

Proof. Let $m \in M$. If $a \in r_{R}(m)$ then $m a=0$ and by assumption, $m R a=0$ and so $a \in r_{R}(m R)$. Then $r_{R}(m) \subseteq r_{R}(m R)$. But $r_{R}(m R) \subseteq r_{R}(m)$ obviously holds. Consequently, $r_{R}(m R)=r_{R}(m)=e R$. Hence the claim follows.

Our next result extends [7, Lemma 1].
Corollary 5. Let M_{R} be a reduced module. Then M_{R} is a p.p.-module if and only if M_{R} is a p.q.-Baer module.

Proof. Assume M_{R} is a reduced module. Then $m \in M, a \in R, m a=0$ implies $m R a=0$ by [12, Lemma 1.2]. The claim follows from Theorem 4.

Corollary 6. [7, Lemma 1] Let R be a reduced ring. Then R is a right p.p.-ring if and only if R is a right p.q.-Baer ring.

Theorem 7. Let $\alpha: R \longrightarrow R$ be an endomorphism of R and assume that, for $m \in M$ and $a \in R, m a=0 \Leftrightarrow m \alpha(a)=0$. Then the following hold:
(1) (a) If $M[x ; \alpha]_{R[x ; \alpha]}$ is a p.q.-Baer module, then M_{R} is a p.q.-Baer module. The converse holds if in addition M_{R} is α-reduced.
(b) If $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is p.q.-Baer, then M_{R} is p.q.-Baer.
(2) Let $\alpha \in \operatorname{Aut}(R)$.
(a) If $M\left[x, x^{-1} ; \alpha\right]_{R\left[x, x^{-1} ; \alpha\right]}$ is a p.q.-Baer module, then M_{R} is a p.q.-Baer module. The converse holds if in addition M_{R} is α-reduced.
(b) If $M\left[\left[x, x^{-1} ; \alpha\right]\right]_{R\left[\left[x, x^{-1 ;} ; \alpha\right]\right]}$ is a p.q.-Baer module, then M_{R} is a p.q.Baer module.

Proof. (1) (a) Similar to the proof of (1)(b).
Converse of (1) (a): Assume that M_{R} is an α-reduced module and M_{R} is $p . q$--Baer module. For any $m \in M$ and $a \in R, m a=0$ implies $m R a=0$. Then by Theorem 4, M_{R} is a p.p-module. Since M_{R} is an α-reduced module, M_{R} is α-Armendariz. By [12, Theorem 2.11.(1)(a)], $M[x ; \alpha]_{R[x ; \alpha]}$ is p.p.-module. Since M_{R} is α-reduced, $M[x ; \alpha]_{R[x ; \alpha]}$ is reduced by Theorem 1. By Corollary $5, M[x ; \alpha]_{R[x ; \alpha]}$ is a p.q.Baer module.
(1)(b) Suppose $M[[x ; \alpha]]_{R[[x ; \alpha]]}$ is a $p . q$-Baer module. For $m \in M$ we have $r_{R[[x ; \alpha]]}(m R[[x ; \alpha]])=f(x) R[[x ; \alpha]]$ where $f(x)^{2}=f(x) \in R[[x ; \alpha]]$. Thus $f(x) R[[x ; \alpha]] \subseteq r_{R[[x ; \alpha]]}(m R)=r_{R}(m R)[[x ; \alpha]]$. For $g(x)=\sum_{j=0}^{\infty} b_{j} x^{j} \in r_{R}(m R)$ $[[x ; \alpha]], m R b_{j}=0$ for all $j \geq 0$ and hence $m R \alpha^{k}\left(b_{j}\right)=0$ for all $j \geq 0$ and all $k \geq 0$, by assumption. For any $u(x)=\sum_{i=0}^{\infty} u_{i} x^{i} \in(m R)[[x ; \alpha]], u(x) g(x)=$ $\sum_{i} \sum_{j} u_{i} \alpha^{i}\left(b_{j}\right) x^{i+j}=0$. So $g(x) \in r_{R[[x ; \alpha]]}((m R)[[x ; \alpha]])$. Thus $r_{R}(m R)[[x ; \alpha]]=$ $f(x) R[[x ; \alpha]]$. Write $f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}$, where all $a_{i} \in r_{R}(m R)$. Then, for any $a \in$ $r_{R}(m R), a=f(x) h(x)$ for some $h(x) \in R[[x ; \alpha]]$ so $f(x) a=f(x) f(x) h(x)=$ $f(x) h(x)=a$. It follows that $a=a_{0} a$ for all $a \in r_{R}(m R)$. Thus $r_{R}(m R)=a_{0} R$ with $a_{0}{ }^{2}=a_{0}$. So M_{R} is $p . q$--Baer module. Now the rest is clear
(2) Similar to the proof of (1).

Corollary 8. The following hold for a module M_{R} :
(1) If any one of $M[x]_{R[x]}, M[[x]]_{R[x x],} M\left[x, x^{-1}\right]_{R\left[x, x^{-1}\right]}$ and $M\left[\left[x, x^{-1}\right]\right]_{R\left[\left[x, x^{-1}\right]\right]}$
is a p.q.-Baer module, then so is M_{R}.
(2) Let M_{R} be reduced. If M_{R} is a p.q.-Baer, then both $M[x]_{R[x]}$ and $M\left[x, x^{-1}\right]_{R\left[x, x^{-1}\right]}$ are p.q.-Baer.

Corollary 9. The following hold for a ring R :
(1) If any one of $R[x], R[[x]], R\left[x, x^{-1}\right]$ and $R\left[\left[x, x^{-1}\right]\right]$ is a right p.q.-Baer ring, then so is R.
(2) Let R be a reduced ring. If R is right p.q.-Baer, then both $R[x]$ and $R\left[x, x^{-1}\right]$ are p.q.-Baer ring.

Example 10. There is a reduced p.q.-Baer module M_{R} such that $M[[x]]_{R[x]]}$ is not a p.q.-Baer module.

Proof. Let F be a field and R be the ring

$$
R=\left\{\left(a_{n}\right) \in \prod_{n=1}^{\infty} F_{n} \mid a_{n} \text { is eventually constant }\right\}
$$

which is the subring of $\prod_{n=1}^{\infty} F_{n}$, where $F_{n}=F$ for $n=1,2, \ldots$ Let M_{R} denote the module R_{R}. We claim M_{R} is a $p . q$-Baer module and reduced. But $M[[x]]_{R[x x]}$ is not $p . q$--Baer module. It is well known that M_{R} is a p.q.-Baer module and reduced. Let e_{i} denote the " $i^{\text {th }}$ unit vector" $(0, \ldots, 0,1,0, \ldots)$ and let $X=\left\{e_{1}, e_{3}, e_{5}, \ldots\right\}$. Let $m(x)=e_{1} x+e_{3} x^{3}+\cdots \in M[[x]]_{R[x x]]}$. Assume that $M[[x]]_{R[x x]}$ is a p.q.Baer module. Then $r_{R[x x]]}(m(x) R[[x]])=f(x) R[[x]]$ for some idempotent $f(x)^{2}=$ $f(x) \in R[[x]]$. Since R is commutative ring, every idempotent in the ring $R[[x]]$ belongs to R by Lemma 8 in [9]. Hence $f(x)$ belongs to R, say $f(x)=f_{0} \in R$. Now it is easy to check that $r_{R[x]]}(m(x) R[[x]])=f_{0} R[[x]]$ implies $r_{R}(X)=f_{0} R$. This is not possible by Example 7.54 in [11]. Thus $M[[x]]_{R[x x]}$ is not p.q.-Baer module. Since M_{R} is reduced $M[[x]]_{R[[x]]}$ is reduced by Theorem 1. Therefore $M[[x]]_{R[x x]}$ is not p.q.-Baer module by Corollary 5 .

Recall from [4], an idempotent $e \in R$ is left (resp. right) semicentral in R if $e x e=x e\left(\right.$ resp. $e x e=e x$), for all $x \in R$. Equivalently, $e^{2}=e \in R$ is left (resp. right) semicentral if $e R$ (resp. $R e$) is an ideal of R. If M_{R} is a p.q--Baer module and $m \in M$, then $r_{R}(m R)$ is generated by a left semicentral idempotent because $r_{R}(m R)$ is an ideal. We use $\mathcal{S}_{l}(R)$ for the set of all left semicentral idempotents.

The next theorem improved Corollary 8 for the polynomial extension case.
Theorem 11. M_{R} is a p.q.-Baer module if and only if $M[x]_{R[x]}$ is a p.q.-Baer module.

Proof. Assume M_{R} is a p.q.-Baer module. Let $m(x)=m_{0}+m_{1} x+$ $\ldots+m_{n} x^{n} \in M[x]$. There exists $e_{i} \in \mathcal{S}_{l}(R)$ such that $r_{R}\left(m_{i} R\right)=e_{i} R$, for $i=0,1, \ldots, n$. Let $e=e_{0} e_{1} \ldots e_{n}$. Then $e \in \mathcal{S}_{l}(R)$ and $e R=\bigcap_{i=0}^{n} r_{R}\left(m_{i} R\right)$. Hence $e R[x] \subseteq r_{R[x]}(m(x) R[x])$. Observe $r_{R[x]}(m(x) R[x]) \subseteq r_{R[x]}(m(x) R)$. Let $h(x) \in r_{R[x]}(m(x) R)$ and $g(x)=b_{0}+b_{1} x+\ldots+b_{k} x^{k} \in R[x]$. Then

$$
\begin{aligned}
m(x) g(x) h(x) & =m(x) b_{0} h(x)+m(x) b_{1} x h(x)+\ldots+m(x) b_{k} x^{k} h(x)= \\
& =m(x) b_{0} h(x)+m(x) b_{1} h(x) x+\ldots+m(x) b_{k} h(x) x^{k}=0 .
\end{aligned}
$$

Hence $h(x) \in r_{R[x]}(m(x) R[x])$. Consequently, $r_{R[x]}(m(x) R[x])=r_{R[x]}(m(x) R)$.
Now, let $h(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t} \in r_{R[x]}(m(x) R)$. Since $m(x) R h(x)=0$, we have the following system of equations where d is an arbitrary element of R :
(0) $m_{0} d a_{0}=0$;
(1) $m_{1} d a_{0}+m_{0} d a_{1}=0$;
(2) $m_{2} d a_{0}+m_{1} d a_{1}+m_{0} d a_{2}=0$;
(3) $m_{3} d a_{0}+m_{2} d a_{1}+m_{1} d a_{2}+m_{0} d a_{3}=0$;
(l) $m_{l} d a_{0}+m_{l-1} d a_{1}+\ldots+m_{1} d a_{l-1}+m_{0} d a_{l}=0$.

By first equation, $a_{0} \in r_{R}\left(m_{0} R\right)=e_{0} R$, where $e_{0} \in \mathcal{S}_{l}(R)$. Let $s \in R$ and take $d=s e_{0}$ in equation (1). Then $m_{1} s e_{0} a_{0}+m_{0} s e_{0} a_{1}=0$. But $m_{0} s e_{0} a_{1}=0$, so $m_{1} s e_{0} a_{0}=m_{1} s a_{0}=0$. Hence $a_{0} \in r_{R}\left(m_{1} R\right)=e_{1} R$, where $e_{1} \in \mathcal{S}_{l}(R)$. Thus $a_{0} \in e_{0} e_{1} R$. Since $m_{1} d a_{0}=0$, then equation (1) yields $m_{0} d a_{1}=0$. Hence $a_{1} \in r_{R}\left(m_{0} R\right)=e_{0} R$. Take $d=s e_{0} e_{1}$ in equation (2). Then $m_{2} s e_{0} e_{1} a_{0}+$ $m_{1} s e_{0} e_{1} a_{1}+m_{0} s e_{0} e_{1} a_{2}=0$. But $m_{1} s e_{0} e_{1} a_{1}=0=m_{0} s e_{0} e_{1} a_{2}$. Hence $0=m_{2} s e_{0} e_{1} a_{0}=m_{2} s a_{0}$, so $a_{0} \in r\left(m_{0} R\right) \cap r\left(m_{1} R\right) \cap r\left(m_{2} R\right)=e_{0} e_{1} e_{2} R$, and so we have by equation (2)
(2') $m_{1} d a_{1}+m_{0} d a_{2}=0$
In equation (2^{\prime}) substitute $s e_{0}$ for d to obtain $m_{1} s e_{0} a_{1}+m_{0} s e_{0} a_{2}=0$. But $m_{0} s e_{0} a_{2}=0$, so $m_{1} s a_{1}=m_{1} s e_{0} a_{1}=0$. Thus $a_{1} \in r\left(m_{0} R\right) \cap r\left(m_{1} R\right)=e_{0} e_{1} R$. Since $a_{1} \in r_{R}\left(m_{1} R\right)$, then equation (2^{\prime}) yields $m_{0} d a_{2}=0$. Hence $a_{2} \in r\left(m_{0} R\right)=$ $e_{0} R$. Summarizing at this point, we have $a_{0} \in e_{0} e_{1} e_{2} R, a_{1} \in e_{0} e_{1} R$ and $a_{2} \in$ $e_{0} R$. Continuing this procedure yields $a_{i} \in e R$ for all $i=0,1,2, \ldots, t$. Hence $h(x) \in e R[x]$. Consequently $e R[x]=r_{R[x]}(m(x) R[x])$. Conversely, if $M[x]_{R[x]}$ is a p.q.-Baer, then M_{R} is p.q.-Baer by Corollary 8 (2).

Corollary 12. Assume that R is a commutative ring. Then M_{R} is a p.p.-module if and only if $M[x]_{R[x]}$ is a p.p.-module.

Proof. This is an immediate consequence of Theorem 11, since if R is commutative then M_{R} is a p.p.-module if and only if M_{R} is a p.q.-Baer module and R is commutative if and only if $R[x]$ is a commutative.

Corollary 13. [4, Theorem 3.1] R is a right p.q.-Baer ring if and only if $R[x]$ is a right p.q.-Baer ring.

Corollary 14. [8, Theorem 1.2] Let R is a commutative ring. Then R is a p.p.-ring if and only if $R[x]$ is a p.p.-ring.

Corollary 15. [1, Theorem A] Let R be a reduced ring. Then R is a p.p.-ring if and only if $R[x]$ is a p.p.-ring.

Corollary 16. If $M[[x]]_{R[[x]]}$ is a p.q.-Baer module, then so is M_{R}.
Proof. This result follows from [4, Proposition 2.5] and a proof similar to that used in Theorem 11.

Corollary 17. [4, Proposition 3.5.] If $R[[x]]$ is a right p.q.-Baer ring, then so is R.

Acknowledgment

We would like to thank Professor Yiqiang Zhou from Memorial University of Newfoundland for his valuable suggestions and comments during his visit to the Module Theory Group, Hacettepe University, Ankara. We also thank to Turkish Scientific and Research Council for support Zhou's visit.

References

1. E. P. Armendariz, A note on extensions of Baer and p.p.-Rings, J. Australian Math. Soc., 18 (1974), 470-473.
2. G. F. Birkenmeier, Idempotents and Completely Semiprime Ideals, Comm. Algebra, 11 (1983), 567-580.
3. G. F. Birkenmeier, J. Y. Kim, J. K. Park, On extensions of quasi-Baer and principally quasi-Baer rings, Preprint.
4. G. F. Birkenmeier, J. Y. Kim, J. K. Park, On Polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J., 40 (2000), 247-253.
5. A. W. Chatters, C. R. Hajarnavis, Rings with Chain Conditions, Pitman, Boston, (1980).
6. W. E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., 34 (1967), 417-424.
7. C. Y. Hong, N. K. Kim and T. K. Kwak, Ore Extensions of Baer and p.p.-Rings, J. Pure Appl. Algebra, 151 (2000), 215-226.
8. S. Jøndrup, p.p.-Rings and finitely generated flat ideals, Proc. Amer. Math. Soc., 28 (1971), 431-435.
9. N. K. Kim, Y. Lee, Armendariz Rings and Reduced Rings, J. Algebra, 223 (2000), 477-488.
10. M. T.Koşan, M. Başer and A. Harmanci, Quasi-Armendariz Modules and Rings, Preprint.
11. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
12. T. K. Lee and Y. Zhou, Reduced Modules, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New york, 2004.
13. T. K. Lee and Y. Zhou, Armendariz and Reduced Rings, Comm. Alg., 6 (2004), 2287-2299.

Muhittin Başer
Department of Mathematics, Faculty of Science and Arts,
Kocatepe University,
ANS Campus TR-03200,
Afyon - Turkey
E-mail: mbaser@aku.edu.tr

Abdullah Harmanci
Department of Mathematics,
Hacettepe University,
Ankara - Turkey
E-mail: harmanci@hacettepe.edu.tr

[^0]: Received January 4, 2005, accepted March 21, 2005.
 Communicated by Shun-Jen Cheng.
 2000 Mathematics Subject Classification: 16D80, 16S36.
 Key words and phrases: Reduced module, p.q.-Baer module.

