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1. Introduction

An adequate introduction to the theory of ditopological texture spaces, and the motivation for its study may be obtained
from [4,5,7–9].

If S is a set, a texturing S of S is a subset of P(S) which is a point-separating, complete, completely distributive lattice
containing S and ∅, and for which meet coincides with intersection and finite joins with union. The pair (S,S) is then called
a texture.

We regard a texture as a framework in which to do mathematics.
For a texture (S,S), most properties are conveniently defined in terms of the p-sets and q-sets

P s =
⋂

{A ∈ S | s ∈ A}, Q s =
∨

{A ∈ S | s /∈ A}.
However, as noted in [3,14] we may associate with (S,S) the C-space [15] (core-space) (S,Sc), and then the frequently
occurring relationship P s′ � Q s , s, s′ ∈ S , is equivalent to s ωS s′ , where ωS is the interior relation for (S,Sc). In particular if
(S,S), (T ,T) are textures and ϕ : S → T a point function, then ϕ is called ω-preserving if s1 ωS s2 ⇒ ϕ(s1) ωT ϕ(s2).

Since a texturing S need not be closed under the operation of taking the set complement, the notion of topology is
replaced by that of dichotomous topology or ditopology, namely a pair (τ , κ) of subsets of S, where the set of open sets τ
satisfies

(1) S,∅ ∈ τ ,
(2) G1, G2 ∈ τ ⇒ G1 ∩ G2 ∈ τ and
(3) Gi ∈ τ , i ∈ I ⇒ ∨

i Gi ∈ τ ,

and the set of closed sets κ satisfies

(1) S,∅ ∈ κ ,
(2) K1, K2 ∈ κ ⇒ K1 ∪ K2 ∈ κ and
(3) Ki ∈ κ , i ∈ I ⇒ ⋂

Ki ∈ κ .

Hence a ditopology is essentially a “topology” for which there is no a priori relation between the open and closed sets.
It is shown in the general references given above that ditopological texture spaces provide a unified setting for the study

of topology, bitopology [18] and topology on Hutton algebras.
Background material specific to the topic of this paper may be found in [20,21], and the reader is also referred to [10,11].

Due to lack of space, none of this material is repeated here. The classical theory of realcompact topological spaces, with an
emphasis on the relation with the ideal structure of the ring of continuous real-valued functions, is given in the renowned
book of Gillman and Jerison [17]. The second author’s PhD thesis [2] gives a generalization of some of this material to the
bitopological case, ring ideals being replaced by dual ideals in the T -lattice of pairwise continuous real-valued functions.
This theory of dual ideals in a T -lattice developed in [2] also plays an important role in [20,21], and in the present paper. It
is shown in [21] that the bitopological theory given in [2] is categorically equivalent to the ditopological theory restricted to
the subclass of plain ditopological texture spaces. The reader is also referred to [13] for a more categorically based treatment
of bitopological real compactness.

The reader is referred to [16] for terms from lattice theory not defined here, and our overall reference for category theory
is [1].

Section 2 considers nearly plain extensions of a ditopological texture space (S,S, τ , κ). The class of spaces that pos-
sess a nearly plain extension is identified in terms of a notion of almost plain texture. This notion is weaker than that
of nearly plain texture defined in [20, p. 174], but shares with near plainness the existence of an associated plain space
(S p,Sp, τp, κp). Some properties of the class of almost plain ditopological texture spaces are established, a notion of canon-
ical nearly plain extension of an almost plain ditopological texture space, projective and injective pre-orderings and the
concept of isomorphism on such canonical nearly plain extensions are defined.

In Section 3 the notion of nearly plain extension is specialized to that of real dicompactification and dicompactification,
and the spaces that have such extensions are characterized. It is shown that, up to isomorphism, the canonical real di-
compactifications (dicompactifications) of a completely biregular bi-T2 almost plain ditopological space (S,S, τ , κ) have the
form (H〈B〉,H〈B〉, τ〈B〉, κ〈B〉) for B a bigenerating subset of BA(S p) (respectively, BA∗(S p)). See [21] for the necessary defini-
tions. The remainder of this section is devoted to an investigation of the interrelation between the sub-T -lattices 〈B〉 and the
(real) dicompactifications. In particular generalizations of the Hewitt realcompactification and Stone–Čech compactification
are established, and shown to be reflectors for the appropriate categories.

2. Nearly plain extensions

The fact that dicompact, or more generally real dicompact, bi-T2 spaces are nearly plain, focuses our attention on nearly
plain ditopological texture spaces. We begin, therefore, by considering nearly plain extensions of ditopological texture spaces.
First we make definite what we will mean by a “dense subspace” in this context.
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In [6] the notion of elementary subtexture is defined. If (U ,U) is an elementary subtexture of (S,S) then, in particular,
U ⊆ S and U = SU = {A ∩ U | A ∈ S} is a texturing of U . We make the following definition:

Definition 2.1. (U ,U) is an induced subtexture of (S,S) if U ⊆ S and U = SU is a texturing of U .

Hence, an elementary subtexture of (S,S) is an induced subtexture, but not conversely since elementary subtextures
satisfy an additional condition that need not hold for induced subtextures.

In case (S,S, τ , κ) is a ditopological texture space and (U ,U) an induced subtexture of (S,S), then clearly τU = {G ∩ U |
G ∈ τ }, κU = {K ∩ U | K ∈ κ} defines a ditopology (τU , κU ) on (U ,U) which we will refer to as the induced ditopology
on (U ,U).

Definition 2.2. Let (V ,V, ν,μ) be a nearly plain ditopological texture space. By a dense subspace of (V ,V, ν,μ) we mean an
induced subtexture (U ,VU ) with the induced ditopology (νU ,μU ) that satisfies the conditions:

(1) ϕV
p (U ) ⊆ U p , and

(2) U is dense in V under the joint topology of (ν,μ).

Note that the joint topology on (V ,V, ν,μ) is defined as in [20, p. 186], but without the restriction to V p .

Lemma 2.3. If (U ,VU , νU ,μU ) is a dense subspace of the nearly plain ditopological texture space (V ,V, ν,μ) then (U ,VU ) is nearly
plain and U p = V p ∩ U .

Proof. For u ∈ U ⊆ V we have Q U
u = Q V

u ∩ U = Q V
ϕV

p (u)
∩ U = Q U

ϕV
p (u)

, and ϕV
p (u) ∈ U p by Definition 2.2(1). Hence (U ,VU ) is

nearly plain and ϕU
p (u) = ϕV

p (u) for all u ∈ U . The equality U p = V p ∩ U is now easily shown. �
Definition 2.4. The nearly plain ditopological texture space (V ,V, ν,μ) will be called a nearly plain extension of (S,S, τ , κ)

if (S,S, τ , κ) is dihomeomorphic [3, Definition 4.3] to a dense subspace of (V ,V, ν,μ).

Since by [20, Proposition 2.7] a nearly plain texture (V ,V) is isomorphic in dfTex to the plain texture (V p,Vp) we see
from Lemma 2.3 that if (S,S, τ , κ) has a nearly plain extension then (S,S) is, in particular, isomorphic to a plain texture.
In view of this the following result will help us characterize those spaces with a nearly plain extension.

Lemma 2.5. The following are equivalent for a texture (S,S).

(1) There exists a plain texture (Z ,Z) and a surjective difunction ( f , F ) : (Z ,Z) → (S,S).
(2) Given s1, s2 ∈ S with s1 ωS s2 there exists u ∈ S p with s1 ωS u and u ωS s2 .
(3) Sp = {A ∩ S p | A ∈ S} is a plain texturing of S p , the identity ε : (S p,Sp) → (S,S) is ω-preserving and ( fε, Fε) : (S p,Sp) →

(S,S) is bijective.

Proof. (1) ⇒ (2). Since (Z ,Z) is plain, by [7, Proposition 3.7] there exists an ω-preserving point function ψ : Z → S with
f = fψ, F = Fψ . For z ∈ Z we have z ωZ z, whence ψ(z) ωS ψ(z) and so ψ(Z) ⊆ S p , the set of plain points of S . Now take
P s2 � Q s1 . Since ( fψ, Fψ) is surjective we have z ∈ Z satisfying fψ � Q (z,s1) and P (z,s2) � Fψ . But

fψ =
∨

{P (u,v) | Pψ(u) � Q v}
and we deduce that Pψ(z) � Q s1 . Likewise, P s2 � Q ψ(z) and we have shown (2).

(2) ⇒ (3). The stated properties of Sp follow as in the proof of [20, Proposition 3.6], and we again obtain P p
s = P s ∩ S p ,

Q p
s = Q s ∩ S p for s ∈ S p so ε is ω-preserving. It remains to show that ( fε, Fε) is bijective. Since (S p,Sp) is plain we clearly

have

fε =
∨

{P (u,s) | Pu � Q s}, Fε =
⋂

{Q (u,s) | P s � Q u}. (2.1)

Take s, s′ ∈ S with P s � Q s′ . By (2) we have u ∈ S p with P s � Q u and Pu � Q s′ . Since Pu � Q u we have by (2.1) that
P (u,u) ⊆ fε , Fε ⊆ Q (u,u) , whence fε � Q (u,s′) , P (u,s) � Fε . This shows that ( fε, Fε) is surjective.

Now take u, u′ ∈ S p , s ∈ S with fε � Q (u,s) and P (u′,s) � Fε . Using (2.1) we easily obtain Pu � Q u′ , whence ( fε, Fε) is
injective.

(3) ⇒ (1). Immediate on taking (Z ,Z) = (S p,Sp) and ( f , F ) = ( fε, Fε). �
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Definition 2.6. A texture (S,S) satisfying the equivalent conditions of Lemma 2.5 will be called almost plain. For an almost
plain texture (S,S), the plain texture (S p,Sp) will be referred to as the associated plain texture, the inclusion ε : S p → S and
the dfTex isomorphism ( fε, Fε) : (S p,Sp) → (S,S) as the canonical inclusion and canonical isomorphism, respectively.

Clearly the conditions in Lemma 2.5 are also equivalent to [20, Lemma 2.1(1)]. Hence by [20, Lemma 2.4], every nearly-
plain texture is almost plain. The following example shows that the converse is false.

Example 2.7. Denote by (Bs,Bs), 0 < s < 1, the principal subtexture of (MI,MI) on Bs ∈ MI [8, Example 2.4]. Then Bs =
{(r,0) | 0 � r < s} ∪ {(r,1) | 0 < r � s}, and it is easy to verify that the p-sets and q-sets in (Bs,Bs) of the points of Bs , being
the intersection with Bs of the p-sets and q-sets of these points in (MI,MI), are the same as these p-sets and q-sets. Now
take (r1,k1), (r2,k2) ∈ Bs with P (r1,k1) � Q (r2,k2) . Since by [20, Examples 2.3(2)] the texture (MI,MI) is nearly plain and
hence almost plain there exists a plain point (r,0) satisfying P (r1,k1) � Q (r,0) and P (r,0) � Q (r2,k2) . To deduce that (Bs,Bs) is
almost plain it remains only to verify that (r,0) ∈ Bs . In case k1 = 0, P (r1,k1) � Q (r,0) ⇒ Ar1 � Br ⇒ r � r1 < s, while k1 = 1
gives Br1 � Q r and so r < r1 � s. Hence r < s, and (r,0) ∈ Bs as required.

On the other hand consider the point (s,1) ∈ Bs . It is clear that there is no point in (Bs)p = {(r,0) | 0 � r < s} whose
q-set is equal to Q (s,1) , so (Bs,Bs) is not nearly plain.

This example also shows that a principal subtexture of a nearly plain texture need not be nearly plain.
The following lemma further clarifies the relation between almost plain and nearly plain textures.

Lemma 2.8. Let (S,S) be almost plain. The following are equivalent:

(1) There exists an ω-preserving point function ψ : S → S p which is the identity on S p .
(2) (S,S) is nearly plain.
(3) The inverse isomorphism ( fε, Fε)

← : (S,S) → (S p,Sp) is representable.

Proof. (1) ⇒ (2). To prove that (S,S) is nearly plain it will be sufficient to prove Q s = Q ψ(s) for s ∈ S .
Suppose first that Q s � Q ψ(s) . Then P s � Pψ(s) and we have u ∈ S p with P s � Q u and Pu � Pψ(s) by textural density.

On the other hand, ψ is ω-preserving and ψ(u) = u, so Pψ(s) � Q ψ(u) = Q u , and we have the contradiction Pu ⊆ Pψ(s) .
Secondly, suppose that Q ψ(s) � Q s . Then we have u ∈ S p by textural density so that Q ψ(s) � Q u and Pu � Q s . Again using
the fact that ψ is ω-preserving and ψ(u) = u we obtain Pu = Pψ(u) � Q ψ(s) , which gives the contradiction Q ψ(s) ⊆ Q u . This
completes the proof that (S,S) is nearly plain, and indeed shows that ψ = ϕp .

(2) ⇒ (3). When (S,S) is nearly plain we have the ω-preserving point function ϕp : S → S p for which ϕp|S p = ε is the
identity on S p . By [20, Proposition 2.7] we obtain ( fε, Fε)

← = ( f p, F p), and ( f p, F p) is representable by ϕp .
(3) ⇒ (1). Let (F ←

ε , f ←
ε ) = ( fψ, Fψ), where ψ : S → S p is ω-preserving. We must show that ψ(s) = s for all s ∈ S p .

Take s ∈ S p ⊆ S . Since P s � Q s and Pψ(s) � Q ψ(s) as s,ψ(s) ∈ S p we clearly have fψ � Q (s,ψ(s)) , whence F ←
ε = fψ �

Q (s,ψ(s)) . This now gives P (ψ(s),s) � Fε = ⋂{Q (v,s) | P s � Q v}, so for some s′ ∈ S p , P (ψ(s),s) � Q (ψ(s),s′) and P s′ � Q ψ(s) . We
deduce P s � Q ψ(s) , while Pψ(s) � Q s follows by a dual argument using f ←

ε = Fψ , and we have established P s = Pψ(s) , so
s = ψ(s) as required. �
Corollary 2.9. A difunction between two almost plain textures is not necessarily representable.

Proof. By Lemma 2.8 the inverse isomorphism ( fε, Fε)
← : (Bs,Bs) → ((Bs)p, (Bs)p), where (Bs,Bs), 0 < s < 1, is the tex-

ture of Example 2.7, cannot be representable since (Bs,Bs) is not nearly plain. �
This should be contrasted with the contrary result for nearly plain textures [20, Theorem 2.10].
In view of Lemma 2.8(3), properties of nearly plain spaces given in [20,21] that do not depend on the point function ϕp

will also be valid for almost plain spaces. This applies, in particular, to [21, Proposition 2.17 and Corollary 2.18] that we will
use in the sequel.

We shall denote by dfApTex the full, isomorphism closed subcategory of dfTex whose objects are almost plain textures.
The embedding dfPTex → dfNpTex is known to be an equivalence by [20, Theorem 2.8], and it is an easy consequence of
Lemma 2.5(3) and the fact that a nearly plain texture is almost plain that the embedding dfNpTex → dfApTex is also an
equivalence. Hence, the categories dfPTex, dfNpTex and dfApTex are equivalent to one another.

If (S j,S j), j ∈ J , are almost plain textures and s = (s j), s′ = (s′
j) ∈ S = ∏

j∈ J S j , then since P s � Q s′ ⇔ P s j � Q s′j , ∀ j ∈ J

by [7, Corollary 1.4(2)] we have S p = ∏
j∈ J (S j)p and it is easy to deduce that the product texture (S,S) is almost plain. It

follows from [8, Theorem 3.10] that the textural products of almost plain textures, together with the projection difunctions,
are products in dfApTex. In a similar way, disjoint sums of almost plain textures, together with the inclusion difunctions,
are easily shown to be coproducts in dfApTex.

We now consider the full subcategory dfApDitop of dfDitop whose objects are ditopological almost plain texture spaces.
We regard this as a concrete category over dfApTex. Since dfDitop is topological [1,12] over dfTex [8, Theorem 3.6] we see
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at once that dfApDitop is topological over dfApTex. In particular, dfApDitop has products and coproducts that are obtained
from those of dfApTex by giving them the product ditopology and disjoint sum ditopology, respectively.

Lemma 2.10. Let (S,S, τ , κ) be an almost plain ditopological texture space, (S p,Sp) the associated plain texture. Denoting by τp =
{G ∩ S p | G ∈ τ }, κp = {K ∩ S p | K ∈ κ} the induced ditopology, the canonical isomorphism ( fε, Fε) : (S p,Sp, τp, κp) → (S,S, τ , κ)

is a dihomeomorphism.

Proof. Since (S p,Sp) is plain the canonical inclusion ε : S p → S satisfies the hypotheses of [7, Lemma 3.9], so for A ∈ S

we have f ←
ε A = ε−1[A] = A ∩ S p . By the definition of (τp, κp) we now have f ←

ε G ∈ τp ⇔ G ∈ τ and f ←
ε K ∈ κp ⇔ K ∈ κ ,

whence ( fε, Fε) is a dihomeomorphism by [7, Proposition 2.12(v)]. �
As an immediate consequence of this lemma we see that dfApDitop is isomorphism closed in dfDitop. Also, the inclusion

dfNpDitop → dfApDitop is an equivalence, whence by [20, Theorem 4.3] the categories dfPDitop, dfNpDitop and dfApDitop
are equivalent to one another.

Lemma 2.10 also tells us that if (S,S, τ , κ) is an almost plain ditopological texture space, then (S p,Sp, τp, κp) is plain,
and hence a nearly plain extension of (S,S, τ , κ). Combining this with Lemma 2.5 gives:

Theorem 2.11. A ditopological texture space has a nearly plain extension if and only if it is almost plain.

Clearly a nearly plain space is a nearly plain extension of itself.
If (V ,V, ν,μ) is a nearly plain extension of (S,S, τ , κ) we have the following commutative diagram.

(S,S, τ , κ)
( f ,F )

(U ,VU , νU ,μU )

( f p ,F p)

(V ,V, ν,μ)

(S p,Sp, τp, κp)

( fε ,Fε )

( fψ ,Fψ )
(U p, (VU )p, (νU )p, (μU )p) (V p,Vp, νp, κp)

Here ( f , F ) is the postulated dihomeomorphism, ( fε, Fε), ( f p, F p) the dihomeomorphisms introduced above and in [21],
respectively, and the unnamed difunctions are inclusions. Finally, ( f p, F p) ◦ ( f , F ) ◦ ( fε, Fε) is a dihomeomorphism between
plain textures and hence represented by some unique fDitop-isomorphism ψ , that is ( fψ, Fψ) = ( f p, F p) ◦ ( f , F ) ◦ ( fε, Fε).
Since an fDitop-isomorphism is a textural isomorphism in the sense of [4] it may be used to rename the points of U p
with the points of S p , the sets of (VU )p with the sets of Sp , and finally the ditopology ((νU )p, (μU )p) with the di-
topology (τp, κp). Hence we may regard (S p,Sp, τp, κp) as a subspace of (V p,Vp, νp,μp). It is straightforward to see
that (U p, (VU )p, (νU )p, (μU )p) is a dense subspace of (V ,V, ν,μ) in the sense of Definition 2.2, whence we may regard
(S p,Sp, τp, κp) itself as a dense subspace of (V ,V, ν,μ). When we do this we will refer to (V ,V, ν,μ) as a canonical nearly
plain extension of (S,S, τ , κ).

Let ( f , F ) : (V 1,V1, ν1,μ1) → (V 2,V2, ν2,μ2) be a difunction between the canonical nearly plain extensions (V 1,V1,

ν1,μ1), (V 2,V2, ν2,μ2) of (S,S, τ , κ). We know by [20, Theorem 2.10] that there exists an ω-preserving point function
ϕ : V 1 → V 2 with ( f , F ) = ( fϕ, Fϕ). In general ϕ need not be unique, but it clearly maps (V 1)p to (V 2)p since ϕ is ω-
preserving, and its restriction to (V 1)p is unique. Indeed, suppose that ψ is a second such representative of ( f , F ), and
that ϕ(u) �= ψ(u) for some u ∈ (V 1)p . We may assume without loss of generality that Pϕ(u) � Pψ(u) , and hence obtain
v ∈ (V 1)p with Pϕ(u) � Q v and P v � Pψ(u) . By the formula for fϕ we easily obtain P (u,v) ⊆ fϕ , whence fψ = fϕ � Q (u,v)

as P v � Q v , and now the formula for fψ leads to the contradiction P v ⊆ Pψ(u) . In case this unique restriction to (V 1)p
leaves the subset S p pointwise fixed, that is ϕ(s) = s for all s ∈ S p , we will say that ( f , F ) leaves S p pointwise fixed.

We may now define various pre-orderings on the canonical nearly plain extensions of (S,S, τ , κ). These are natural
generalizations of the corresponding pre-orderings in the classical case [19].

Definition 2.12. Let (V ,V, ν,μ), (W ,W,	,η) be canonical nearly plain extensions of (S,S, τ , κ).

(1) (W ,W,	,η) is said to be projectively larger than (V ,V, ν,μ) if there is a bicontinuous surjection ( f , F ) : (W ,W,

	,η) → (V ,V, ν,μ) that leaves S p pointwise fixed.
In case ( f , F ) is a dihomeomorphism, (W ,W,	,η) is said to be isomorphic to (V ,V, ν,μ).

(2) (W ,W,	,η) is said to be injectively larger than (V ,V, ν,μ) if there is an induced subspace (U ,U,υ,�) of (W ,W,

	,η) and a dihomeomorphism ( f , F ) : (V ,V, ν,μ) → (U ,U,υ,�) that leaves S p pointwise fixed.

3. Real dicompactifications

Throughout this paper all real dicompact spaces (V ,V, ν,μ) will be assumed to be bi-T2, hence in particular nearly
plain, and will refer to a nearly plain extension (V ,V, ν,μ) of (S,S, τ , κ) that is real dicompact (dicompact) as a real di-
compactification (dicompactification) of (S,S, τ , κ). By Theorem 2.11, if (S,S, τ , κ) has a real dicompactification it must be
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almost plain. It must also be completely biregular and bi-T2, for these properties are possessed by the real dicompactifica-
tion and are preserved by induced subspaces and dihomeomorphisms.

Theorem 3.1. The ditopological texture space (S,S, τ , κ) has a real dicompactification if and only if it is an almost plain completely
biregular bi-T2 space.

Proof. Necessity has been established above, so we prove sufficiency. Let (S,S, τ , κ) be an almost plain, completely bireg-
ular bi-T2 space, and consider the dihomeomorphic plain space (S p,Sp, τp, κp) which is also completely biregular and
bi-T2. If B ⊆ B A(S p) is bigenerating [21, Definition 2.2], we claim that (H〈B〉,H〈B〉, τ〈B〉, κ〈B〉) is a real dicompactification
of (S p,Sp, τp, κp), and hence of (S,S, τ , κ). To see this we note that (H〈B〉,H〈B〉, τ〈B〉, κ〈B〉) is a jointly closed subspace of a
product of copies of (R,R, τR, κR) by [21, Proposition 2.17(2)]. It is certainly a completely biregular bi-T2 ∗-space, whence
by [21, Theorem 2.19] it is real dicompact. Further, recalling from [21] the mapping ξ〈B〉 : S p → ξ〈B〉(S p), we see from [21,
Proposition 2.17] that ξ〈B〉(S p) is dense in H〈B〉 for the joint topology of (τ〈B〉, κ〈B〉), and that ξ〈B〉 : S p → ξ〈B〉(S p) is an
fDitop isomorphism which therefore gives rise to a dihomeomorphism. Finally, Definition 2.4 is automatically satisfied for
plain textures, and our claim is justified. �

It is straightforward to verify that precisely the same conditions are necessary and sufficient to ensure that (S,S, τ , κ)

has a dicompactification.
Clearly a real dicompact (dicompact) space is a real dicompactification (dicompactification) of itself. Also, if (S,S, τ , κ) is

almost plain then (S,S, τ , κ) and (S p,Sp, τp, κp) have the same real dicompactifications and the same dicompactifications.
The notions of canonical real dicompactification, projectively larger, injectively larger and isomorphic canonical real dicom-

pactifications of (S,S, τ , κ) are specializations of the corresponding notions for canonical nearly plain extensions. Note that
if B ⊆ B A(S p) is bigenerating we may regard (H〈B〉,H〈B〉, τ〈B〉, κ〈B〉) as a canonical real dicompactification of (S,S, τ , κ) via
the fDitop-isomorphism ξ〈B〉 : S p → ξ〈B〉(S p). We now show that up to isomorphism all canonical real dicompactifications
of (S,S, τ , κ) have this form.

Theorem 3.2. Let (S,S, τ , κ) be an almost plain completely biregular bi-T2 ditopological texture space. Then every canonical real
dicompactification is isomorphic to (H〈B〉,H〈B〉, τ〈B〉, κ〈B〉) for some bigenerating set B ⊆ B A(S p).

Proof. Let (V ,V, ν,μ) be a canonical real dicompactification of (S,S, τ , κ). Since we are working up to an isomorphism
there is no loss of generality in assuming that (V ,V, ν,μ) is plain, since otherwise it may be replaced by (V p,Vp, νp,μp).
By hypothesis S p ⊆ V , so we may define B = {ϕ|S p | ϕ ∈ B A(V )}. It is trivial to verify that B is a bigenerating sub-T -
lattice of B A(S p), and we omit the details. It remains to show that (H B ,HB , τB , κB) and (V ,V, ν,μ) are isomorphic as
canonical real dicompactifications of (S,S, τ , κ). We first note that the mapping α : B A(V ) → B defined by α(ϕ) = ϕ|S p ,
ϕ ∈ B A(V ), is a T -lattice isomorphism. Indeed, it is clearly surjective and preserves the T -lattice operations, so it remains
to show that it is injective. Suppose on the contrary that for some ϕ,ψ ∈ B A(V ) we have ϕ|S p = ψ |S p but that ϕ �= ψ .
Now we have v ∈ V with ϕ(v) �= ψ(v), and we may assume without loss of generality that ϕ(v) < ψ(v) and take r ∈ R
with ϕ(v) < r < ψ(v). We now have ϕ−1(−∞, r) ∈ ν , ψ−1(−∞, r] ∈ μ so G = (ϕ−1(−∞, r))∩ (V \ψ−1(−∞, r]) is an open
set for the joint topology of (ν,μ) on V which is non-empty as it contains v . By the density of S p in V under the joint
topology there exists s ∈ S p ∩ G , which leads to the contradiction ϕ(s) < ψ(s).

It is now straightforward to verify that the T -lattice isomorphism α sets up a fDitop isomorphism β : (H B A(V ),HB A(V ),

τB A(V ), κB A(V )) → (H B ,HB , τB , κB) defined by β(h)(α(ϕ)) = h(ϕ), ϕ ∈ B A(V ), and we again omit the details. Combining
this with the mapping ξB A(V ) : V → H B A(V ) which is surjective as (V ,V, ν,μ) is real dicompact we obtain the fDitop iso-
morphism β ◦ ξB A(V ) : (V ,V, ν,μ) → (H B ,HB , τB , κB). Finally, for s ∈ S p we clearly have (β ◦ ξB A(V ))(s) = ξB(s), whence
β ◦ ξB A(V ) leaves S p pointwise fixed and is therefore an isomorphism between the canonical real dicompactifications
(V ,V, ν,μ) and (H B ,HB , τB , κB), as required. �

The real dicompactification (H B A(S p ),HB A(S p), τB A(S p), κB A(S p)) is special in that S p is BA(S p)-embedded in H B A(S p) , that
is, every element of BA(S p) can be extended to an element of BA(HBA(S p)). Indeed, ξBA(S p) is an isomorphism between
(S p,Sp, τp, κp) and its image in (HBA(S p),HBA(S p), τBA(S p), κBA(S p)) by [21, Proposition 2.17(1)], whence μ ∈ BA(S p) �→ μ ◦
ξ−1

BA(S p) ∈ BA(ξBA(S p)(S p)) is a T -lattice isomorphism. Hence BA(ξBA(S p)(S p)) = {μ̂ | μ ∈ BA(S p)}, μ̂(ŝ) = μ(s), and setting

μ̂(h) = h(μ) for h ∈ HBA(S p) gives us the required extension μ̂ of μ to an element of BA(HBA(S p)), since μ̂(ŝ) = ŝ(μ) = μ(s),
for s ∈ S p .

In view of the analogous property of the Hewitt realcompactification of a topological space [17], we shall refer to
(H B A(S p),HB A(S p), τB A(S p ), κB A(S p)) as the Hewitt real dicompactification of (S,S, τ , κ).

We will denote by dfRdiComp2 the category of real dicompact bi-T2 spaces and bicontinuous difunctions, and by
dfApCbiR2 that of almost plain completely biregular bi-T2 spaces and bicontinuous difunctions.

Proposition 3.3. dfRdiComp2 is a reflective subcategory of dfApCbiR2 .
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Proof. Take (S,S, τ , κ) ∈ Ob dfApCbiR2 and consider the Hewitt real dicompactification (H B A(S p),HB A(S p) , τB A(S p), κB A(S p))

and the morphism

( fξBA(S p )
, FξBA(S p )

) ◦ ( fε S , Fε S )← : (S,S, τ , κ) → (H B A(S p),HB A(S p), τB A(S p), κB A(S p)).

To show that this is a dfRdiComp2-reflection take (V ,V, τV , κV ) ∈ Ob dfRdiComp2 , a morphism ( f , F ) : (S,S, τ , κ) →
(V ,V, τV , κV ), and consider the following diagram:

S

( fεS ,FεS )←

( f ,F )

S p

( fεS ,FεS )

( fξBA(S p )
,FξBA(S p )

)

HBA(S p)

( fθ ,Fθ )

V

( fεV ,FεV )←

V p

( fεV ,FεV ) ( fξBA(V p )
,FξBA(V p )

)

HBA(V p)

( f
ξ
−1
BA(V p )

,F
ξ
−1
BA(V p )

)

Here we note that ξBA(V p) maps onto HBA(V p) since (V ,V, τV , κV ) is real dicompact, so in addition to ( fε S , Fε S ) and
( fεV , FεV ), ( fξBA(V p )

, FξBA(V p )
) is also a dihomeomorphism.

To prove the existence of a morphism from (HBA(S p),HBA(S p), τBA(S p), κBA(S p)) to (V ,V, τV , κV ) whose composition with
( fξBA(S p )

, FξBA(S p )
) ◦ ( fε S , Fε S )← is ( f , F ) it will be sufficient to prove the existence of an ω-preserving bicontinuous point

function θ : HBA(S p) → HBA(V p) for which the difunction ( fθ , Fθ ) makes the diagram commutative.
Since S p , V p are plain, ( fεV , FεV )← ◦ ( f , F ) ◦ ( fε S , Fε S ) = ( fδ, Fδ) for some (unique) ω-preserving bicontinuous

point function δ : S p → V p . For μ ∈ BA(V p) it is straightforward to verify that μ ◦ δ ∈ BA(S p). Hence we may define
θ : HBA(S p) → HBA(V p) by θ(h)(μ) = h(μ ◦ δ) for h ∈ HBA(S p) and μ ∈ BA(V p). The mapping θ is easily seen to be ω-
preserving and bicontinuous, so it remains only to verify that the above diagram is commutative. It is clearly sufficient
to show that δ = ξ−1

BA(V p) ◦ θ ◦ ξBA(S p) . However, for s ∈ S p we have ξBA(S p)(s) = ŝ, θ(ŝ) = δ̂(s) since for μ ∈ BA(V p) we have

θ(ŝ)(μ) = ŝ(μ ◦ δ) = μ(δ(s)) = δ̂(s)(μ), and finally ξ−1
BA(V p)(δ̂(s)) = δ(s). This verifies the existence of a suitable morphism

from (HBA(S p),HBA(S p), τBA(S p), κBA(S p)) to (V ,V, τV , κV ).
To prove uniqueness, assume there is a second such morphism (g, G). We must show that

(g, G) = ( fεV , FεV ) ◦ ( f
ξ−1

BA(V p )
, F

ξ−1
BA(V p )

) ◦ ( fθ , Fθ ). (3.1)

We note that (g, G) = ( fψ, Fψ) for some ω-preserving bicontinuous point function ψ : HBA(S p) → V since the domain is
plain. Also, since the space (V ,V, τV , κV ) is real dicompact it is nearly plain by [21, Proposition 2.9], whence ( fεV , FεV )← =
( fϕV

p
, FϕV

p
) by Lemma 2.8. Consider the point functions ϕV

p ◦ ψ and ϕV
p ◦ εV ◦ ξ−1

BA(V p) ◦ θ which map from HBA(S p) to V p .

To show these are equal, it will be sufficient to show their restrictions to ξBA(S p)(S p) are equal. Indeed, ξBA(S p)(S p) is dense
in HBA(S p) under the joint topology, the given mappings are bicontinuous and (V ,V, τV , κV ) is bi-T2 so the conclusion
follows much as in the classical case. However, commutativity of the diagram involving (g, G) leads to ϕV

p ◦ ψ ◦ ξBA(S p) = δ

and a straightforward calculation shows that for s ∈ S p ,

ϕV
p ◦ ψ(ŝ) = δ(s) = ϕV

p ◦ εV ◦ ξ−1
BA(V p) ◦ θ(ŝ),

whence ϕV
p ◦ ψ = ϕV

p ◦ εV ◦ ξ−1
BA(V p) ◦ θ . Passing to the corresponding difunctions gives

( fεV , FεV )← ◦ (g, G) = ( fεV , FεV )← ◦ ( fεV , FεV ) ◦ ( f
ξ−1

BA(V p )
, F

ξ−1
BA(V p )

) ◦ ( fθ , Fθ )

= ( f
ξ−1

BA(V p )
, F

ξ−1
BA(V p )

) ◦ ( fθ , Fθ ),

whence (3.1) is obtained by taking the composition of each side on the left with ( fεV , FεV ).
It will be appropriate to refer to the reflector given by this theorem as the Hewitt-reflector. �
Now let B, B ′ be bigenerating sub-T -lattices of BA(S p) with B ⊆ B ′ and B ′ a finite ρb-refinement of B , meaning effec-

tively that every real bi-ideal in B has a unique extension to a real bi-ideal in B (see [2] or [21, Introduction]). For h′ ∈ H B ′ ,
define the mapping θ : H B ′ → H B by θ(h′) = h′|B . Then:

Lemma 3.4. The mapping θ is an ω-preserving bicontinuous bijection that preserves S p in the sense that θ(ξB ′ (s)) = ξB(s), s ∈ S p .

Proof. Immediate from the definitions. �
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Corollary 3.5. (H B ′ ,HB ′ , τB ′ , κB ′ ) is projectively larger than (H B ,HB , τB , κB).

Proof. Clearly, ( fθ , Fθ ) has the properties required by Definition 2.12. �
In general we cannot assume θ−1 is ω-preserving. Indeed,

Lemma 3.6. θ−1 is ω-preserving if and only if

(i) h′|B � k′|B ⇒ h′ � k′ , ∀h′,k′ ∈ H B ′ .

Proof. Clear from the definitions. �
Proposition 3.7. Suppose that B ⊆ BA∗(S) and that condition (i) holds. Then

(ii) ( fθ , Fθ ) is a dihomeomorphism,

whence (H B ′ ,HB ′ , τB ′ , κB ′ ) is isomorphic to (H B ,HB , τB , κB).

Proof. Under the given conditions ( fθ , Fθ ) is a bijective bicontinuous difunction. Since B ⊆ BA∗(S p) and BA∗(S p) is finitely
ρb-complete we have B ′ ⊆ BA∗(S p). Hence (H B ′ ,HB ′ , τB ′ , κB ′ ) is dicompact, and since (H B ,HB , τB , κB) is bi-T2 we see
( fθ , Fθ ) is a dihomeomorphism by [10, Corollary 4.6]. �

Even if we assume (i), we cannot obtain (ii) without the additional assumption B ⊆ BA∗(S p). To study the general case
we will find it useful to consider the mapping ν : BA(H B) → BA(S p) given by ν(ϕ) = ϕ ◦ξB , ϕ ∈ BA(H B). This is the analogue
of the mapping with the same name defined in [2], and will be seen to have similar properties in this new setting.

Lemma 3.8.

(a) ν is an injective T -lattice homomorphism.
(b) ν(BA(H B)) is a finite ρb-refinement of B in BA(S p).

Proof. (a) For ϕ ∈ BA(H B), ϕ ◦ ξB is certainly ω-preserving and bicontinuous, hence an element of BA(S p). Thus, ν is well
defined. It is trivial to verify that ν is a T -lattice homomorphism, and we omit the details. Suppose that for ϕ,ψ ∈ BA(H B)

we have ν(ϕ) = ν(ψ) but ϕ �= ψ . Then for some h ∈ H B we have ϕ(h) �= ψ(h), and without loss of generality we may
assume ϕ(h) < r < ψ(h) for some r ∈ R. Now h ∈ ϕ−1[Q r] ∩ (H B \ ψ−1[Pr]) is a non-empty open set for the joint topology
of (τB , κB) on H B , so since ξB(S p) is a dense subset for this topology by [21, Proposition 2.17(1)] there exists s ∈ S p with
ξB(s) ∈ ϕ−1[Q r] ∩ (H B \ ψ−1[Pr]). On the other hand ϕ(ξB(s)) = ψ(ξB(s)), which gives an immediate contradiction.

(b) Firstly B ⊆ ν(BA(H B)), since for b ∈ B the projection πb belongs to BA(H B) and clearly b = ν(πb). Now let (L, M) be
a real bi-ideal in B . Then (L, M) = (Lh, Mh) where h ∈ H B is the B-resolution of (L, M). Corresponding to h ∈ H B we have

ĥ ∈ HBA(H B ) defined by ĥ(ϕ) = ϕ(h) for all ϕ ∈ BA(H B), and hence the real bi-ideal (Lĥ, Mĥ) in BA(H B). By (i) it is easy to

see that ν : BA(H B) → ν(BA(H B)) is a T -lattice isomorphism and so (ν(Lĥ), ν(Mĥ)) is a real bi-ideal in ν(BA(H A)). However
it is easy to verify that

ν
(
Lĥ) ∩ B = Lh and ν

(
Mĥ) ∩ B = Mh

so (ν(Lĥ), ν(Mĥ)) is a real extension of (L, M) to ν(BA(H B)). On the other hand if (L′, M ′) is any real extension of (L, M)

to ν(BA(H B)) then (ν−1[L′], ν−1[M ′]) is a real bi-ideal in BA(H B). Since HBA(H B ) is a real dicompact plain space and hence
a ∗-space, (ν−1[L′], ν−1[M ′]) is difixed by some g ∈ H B . Thus (ν−1[L′], ν−1[M ′]) = (L(g), M(g)) = (L ĝ, M ĝ), and we deduce
that (L′, M ′) = (ν(L ĝ), ν(M ĝ)). On the other hand,

(
Lh, Mh) = (L′ ∩ B, M ′ ∩ B) = (

ν
(
L ĝ) ∩ B, ν

(
M ĝ) ∩ B

) = (
Lg, M g)

implies h = g and hence ĥ = ĝ . Thus (L′, M ′) is unique, and ν(BA(H B)) is a finite ρb-refinement of B as required. �
Corollary 3.9. If (S,S, τ , κ) is a dicompact bi-T2 space then BA(S) = BA∗(S), the set of bounded elements of BA(S).

Proof. A simple topological proof of this result has been given in [20, Theorem 4.2]. Here we give a structural proof based
on properties of T -lattices. Firstly we note that it will suffice to show BA(S p) = BA∗(S p). By the Lemma 3.8 applied to B =
BA∗(S p) we see that ν(BA(HBA∗(S ))) is a finite ρb-refinement of BA∗(S p). However, BA∗(S p) is finitely ρb-complete by [2,
p
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Propositions 3.1.9 and 3.3.1] so ν(BA(HBA∗(S p))) = BA∗(S p). It follows easily that BA(HBA∗(S p)) = BA∗(HBA∗(S p)). However,
since (S,S, τ , κ) is BA∗(S p)-real dicompact, HBA∗(S p) is isomorphic to S p , so BA(S p) = BA∗(S p) also. �
Note 3.10. The above results imply that the dicompactifications of (S,S, τ , κ), that is the nearly plain extensions that are di-
compact, are, up to isomorphism, precisely the spaces (H B ,HB , τB , κB), where B is a bigenerating sub-T -lattice of BA∗(S p).

Clearly, if (S,S, τ , κ) is dicompact then the dicompactifications of (S,S, τ , κ) are dfDitop-isomorphic to (S,S, τ , κ), and
hence to each other.

Proposition 3.11. Let B be a bigenerating sub-T -lattice of BA(S p) and B ′ a finite ρb-refinement of B in BA(S p). Then the following
are equivalent:

(iii) B ′ ⊆ ν(BA(H B)).
(iv) (LB ′ , MB ′ ) is nearly prime for every real bi-ideal (L, M) in B.

Here we recall from [2] that a bi-ideal (L, M) is called nearly prime if (L+, M+) is prime, that is L+ , M+ are prime as a lattice ideal,
dual ideal respectively.

Proof. (iii) ⇒ (iv). If B ′ ⊆ ν(BA(S p)) then B ⊆ B ′ ⊆ ν(BA(S p)). Let (L, M) = (Lh, Mh), h ∈ H B , be a real bi-ideal in B and

define ĥ ∈ HBA(H B ) by ĥ(ϕ) = ϕ(h), ϕ ∈ BA(H B), as in the proof of Lemma 3.8(b). By the definition of the ditopology on H B
it is clear that πB = {πb | b ∈ B} is a bigenerating subset of BA(H B), and it is not difficult to check that πB is actually a
sub-T -lattice of BA(H B). Since (H B ,HB) is plain we have h ωH B h and so by [21, Proposition 2.4] we have

(
L(h), M(h)

)
�

([
L

ĥ|πB
BA(H B )

]+
,
[
M

ĥ|πB
BA(H B )

]+)
. (3.2)

Since a plain space is a ∗-space and πB is a T -lattice we have

L
ĥ|πB
BA(H B ) = (

Lĥ|πB
)

BA(H B )
= {

ϕ ∈ BA(H B)
∣∣ ∃πb ∈ Lĥ|πB , r > 0 with ϕ ∧ r � πb

}
,

while ĥ|πB ∈ HπB , so

Lĥ|πB = {
πb

∣∣ b ∈ B, ĥ(πb) � 0
} = {

πb
∣∣ b ∈ B, h(b) � 0

}
. (3.3)

Hence if ϕ ∈ L
ĥ|πB
BA(H B )

we have b ∈ B with h(b) � 0 and r > 0 with ϕ ∧ r � πb , whence ϕ(h) ∧ r � πb(h) = h(b) � 0, so

ϕ(h) � 0 and ϕ ∈ L(h). Hence L
ĥ|πB
BA(H B ) ⊆ L(h), and a dual proof which we omit establishes M

ĥ|πB
BA(H B ) ⊆ M(h), so

(
L

ĥ|πB
BA(H B ), M

ĥ|πB
BA(H B )

)
�

(
L(h), M(h)

)
. (3.4)

From (3.2) and (3.4) we deduce ([L
ĥ|πB
BA(H B )]+, [M

ĥ|πB
BA(H B )]+) = (L(h), M(h)) since (L(h), M(h)) is real and hence maximal ρb-

regular, so (L
ĥ|πB
BA(H B ), M

ĥ|πB
BA(H B )) is nearly total by [2, Theorem 3.1.2], and hence nearly prime.

Take g ∈ B ′ ⊆ ν(BA(H B)). Then g = ν(ϕ) for some ϕ ∈ BA(H B) and Tε(ϕ) ∈ L
ĥ|πB
BA(H B )

, ∀ε > 0 or T−ε(ϕ) ∈ M
ĥ|πB
BA(H B )

, ∀ε > 0.
We assume the first case, so given ε > 0 we have as above b ∈ B and r > 0 with Tε(ϕ)∧ r � πb , and h(b) � 0 by (3.3). Then
Tε(g) ∧ r � b, and b ∈ Lh = L so Tε(g) ∈ LB ′ for all ε > 0. We deduce that (LB ′ , MB ′ ) is nearly total, and hence nearly prime
by [2, Proposition 3.1.3]. The second case leads to the same conclusion, so (ii) is established.

(iv) ⇒ (iii). Since B ′ is a finite ρb-refinement of B it is easy to see that the mapping h′ �→ h′|B , h′ ∈ H B ′ is a bijection
from H B ′ to H B . Take b′ ∈ B ′ . Then we may define ϕ : H B → R by ϕ(h′|B) = h′(b′), h′ ∈ H B ′ . We prove ϕ ∈ BA(H B), from
which we have b′ = ν(ϕ) ∈ ν(BA(H B)) by the definition of ϕ .

Suppose that for r ∈ R and h = h′|B ∈ H B , h′ ∈ H B ′ , we have ϕ← Q r � Q h . Then ϕ(h) < r and we may set ε = r −ϕ(h) > 0.
Since (Lh, Mh) is real it has a unique maximal ρb-regular extension to B ′ and so ((Lh)B ′ , (Mh)B ′ ) is ρb-outer prime. It is also
clearly finite, while by hypothesis it is nearly prime, so by [2, Proposition 3.1.7, Corollary 3], ([(Lh)B ′ ]+, [(Lh)B ′ ]+) is real. It
follows that ([(Lh)B ′ ]+, [(Lh)B ′ ]+) = (Lh′

, Mh′
), whence Th′(b′)+ ε

2
∈ (Lh)B ′ . Hence for some 0 < δ < ε

2 and ψ ∈ Lh we have

Th′(b′)+ ε
2
(b′) ∧ δ � ψ.

We deduce at once that

π←
ψ Q πψ(h)+δ ⊆ ϕ← Q r and π←

ψ Q πψ(h)+δ � Q h,

whence ϕ is continuous as π←
ψ Q πψ(h)+δ ∈ τB . A dual proof shows that ϕ is co-continuous, and the proof is complete. �

We recall from [2] the following definition:
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Definition 3.12. ([2, Definition 3.3.2]) If A is a T -lattice and B, B ′ sub-T -lattices of A then B ′ is called a finite ρb-prime-
refinement of B if it is a finite ρb-refinement and (LB ′ , MB ′ ) is nearly prime in B ′ for every real bi-ideal (L, M) in B .

The relation of being a finite ρb-prime-refinement is easily seen to be transitive, whence we have the following corollary
to Lemma 3.8.

Corollary 3.13. If B ⊆ BA(S p) is a bigenerating sub-T -lattice then ν(BA(H B)) is the finite ρb-prime-completion of B.

We also have

Corollary 3.14. Properties (iii) and (iv) of Proposition 3.11 are each equivalent to property (ii) of Proposition 3.7.

Proof. If θ is a fPDitop-isomorphism then BA(H B) and BA(H B ′ ) are isomorphic T -lattices under the correspondence ϕ ↔ ϕ′
defined by ϕ(h) = ϕ′(h′) such that h′|B = h. It follows at once that B ′ ⊆ ν ′(BA(H B ′ )) = ν(BA(H B)), using an obvious notation.

To establish the converse it will clearly suffice to show (H B ,HB , τB , κB) is fPDitop-isomorphic to (H B ′′ ,HB ′′ , τB ′′ , κB ′′ ) for
the case B ′′ = ν(BA(H B)). Now by Lemma 3.8(b) and Proposition 3.11, applied to B ′′ in place of B we know that ν ′′(BA(H B ′′ ))
is a finite ρb-prime-refinement of B ′′ . However, ν(BA(H B)) is finitely ρb-prime-complete so ν(BA(H B)) = ν ′′(BA(H B ′′ )), and
BA(H B) and BA(H B ′′ ) are isomorphic T -lattices under the correspondence ϕ ↔ ϕ′′ defined by ϕ(h) = ϕ′′(h′′). It follows that
h ↔ h′′ is a fPDitop-isomorphism, as required. �
Note 3.15. The above results show that the canonical real dicompactifications of (S,S, τ , κ) are in one-to-one correspon-
dence with the sub-T -lattices ν(BA(H B)) of BA(S p) for B a bigenerating sub-T -lattice of BA(S p). Moreover, these are
characterized internally amongst the bigenerating sub-T -lattices of BA(S p) by the requirement that they be finitely ρb-
prime-complete.

It will be observed that if (S,S, τ , κ) is real dicompact, then the bigenerating sub-T -lattices of BA(S p) may themselves
be characterized in terms of the internal T -lattice structure of BA(S p), one such characterization being obtained explicitly
by applying [21, Proposition 2.4] to the fPDitop-isomorphic space (HBA(S p),HBA(S p), τBA(S p), κBA(S p)). In this case all the
canonical real dicompactifications of (S,S, τ , κ), including the space itself, of course, can be obtained up to isomorphism
from the T -lattice structure of BA(S p).

In case B is a bigenerating sub-T -lattice of BA∗(S p), we see that the properties (i), (ii), (iii) and (iv) are mutually
equivalent.

By the above analysis the family of all canonical real dicompactifications of (S,S, τ , κ) is seen to be in one-to-one
correspondence with the set B of bigenerating finitely ρb-prime-complete sub-T -lattices of BA(S p). We shall also set B∗ =
{A ∈ B | A ⊆ BA∗(S p)}, and for a finitely ρb-complete C ∈ B we let BC = {B ∈ B | C is a finite ρb-completion of B}. The sets
BC form a partition of B, and B is an upper semi-lattice. Likewise, B∗ and each BC are upper sub-semi-lattices of B. Thus,
the canonical dicompactifications of (S,S, τ , κ) are in one-to-one correspondence with the elements of B∗ .

Lemma 3.16. For B, B ′ ∈ B we have B ⊆ B ′ if and only if there exists an ω-preserving bicontinuous point function ϕ : (H B ′ ,HB ′ ,
τB ′ , κB ′ ) → (H B ,HB , τB , κB) that preserves the points of S p .

Proof. If B ⊆ B ′ the required function is clearly ϕ(h′) = h′|B .
Conversely, let ϕ have the stated properties and for μ ∈ B define μ′ : H B ′ → R by

μ′(h′) = πμ

(
ϕ(h′)

)
, h′ ∈ H B ′ .

Since μ′ is the composition of ω-preserving bicontinuous mappings it is itself ω-preserving and bicontinuous, that is μ′ ∈
BA(H B ′ ). On the other hand, since ϕ preserves S p we may immediately verify μ = ν ′(μ′) ∈ ν ′(BA(H B ′ )) = B ′ . Hence B ⊆ B ′ ,
as required. �

The mapping ϕ : H B ′ → H B defined as above when B ⊆ B ′ need not be onto, so in particular (H B ′ ,HB ′ , τB ′ , κB ′ ) may not
be projectively larger than (H B ,HB , τB , κB). Three special cases where we can be more specific are covered in the following
corollaries.

Corollary 3.17. For B, B ′ ∈ B∗ the mapping ϕ is surjective. Hence the ordering in B∗ reflects the projective ordering of the correspond-
ing dicompactifications.

Proof. For h ∈ H B , (Lh
B ′ , Mh

B ′ ) has a (not necessarily unique) maximal ρb-regular refinement in B ′ . Since B ′ ⊆ BA∗(S p), such

a refinement has the form (Lh′
, Mh′

) for some h′ ∈ H B ′ , and clearly h′|B = h. �



F. Yıldız, L.M. Brown / Topology and its Applications 156 (2009) 3041–3051 3051
Under the projective ordering the largest dicompactification is (HBA∗(S p),HBA∗(S p), τBA∗(S p), κBA∗(S p)), which is also the

dicompactification in which S p is BA∗(S p)-embedded. It is natural to refer to this as the Stone–Čech dicompactification
of (S,S, τ , κ).

As in [20] we will denote by dfDicomp2 the category of dicompact bi-T2 spaces and bicontinuous difunctions.

Proposition 3.18. dfDicomp2 is a reflective subcategory of dfApCbiR2 .

Proof. The proof is essentially similar to that of Proposition 3.3, but uses the Stone–Čech dicompactification instead of the
Hewitt real dicompactification to produce the Stone–Čech-reflector. �
Corollary 3.19. If B, B ′ ∈ BC then ϕ is bijective.

In the classical case BC contains only one element, as may be verified by applying (i) to the space (X,P(X),T,Tc). In
the general case, however, it seems likely that this set could contain more than one element.

Corollary 3.20. Let B ∈ B and B ′ = B ∩ BA∗(S p). Then B ′ ∈ B∗ , and the dicompactification (H B ′ ,HB ′ , τB ′ , κB ′ ) is injectively larger
than the real dicompactification (H B ,HB , τB , κB). In particular, the Hewitt real dicompactification is the injectively smallest among
the real dicompactifications that are injectively smaller than the Stone–Čech dicompactification of (S,S, τ , κ).

Proof. Left to the interested reader. �
Corollary 3.21. Under the hypotheses of Corollary 3.20, (H B ′ ,HB ′ , τB ′ , κB ′ ) is the Stone–Čech dicompactification of (H B ,HB , τB , κB).

In particular, just as in the classical case (HBA∗(S p),HBA∗(S p), τBA∗(S p), κBA∗(S p)) is the Stone–Čech dicompactification of
the Hewitt real dicompactification (HBA(S p), HBA(S p), τBA(S p), κBA(S p)) of (S,S, τ , κ).

A detailed analysis of the relation between the theory of (real) dicompactifications as given here and the bitopological
and topological case, and also its implications for the theory of topologies on Hutton algebras is planned for a future paper.
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