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The concept of efficiency in data envelopment analysis (DEA) is defined as weighted sum of
outputs/weighted sum of inputs. In order to calculate the maximum efficiency score, each
decision making unit (DMU)’s inputs and outputs are assigned to different weights. Hence,
the classical DEA allows the weight flexibility. Therefore, even if they are important, the
inputs or outputs of some DMUs can be assigned zero (0) weights. Thus, these inputs or
outputs are neglected in the evaluation. Also, some DMUs may be defined as efficient even
if they are inefficient. This situation leads to unrealistic results. Also to eliminate the prob-
lem of weight flexibility, weight restrictions are made in DEA. In our study, we proposed a
new model which has not been published in the literature. We describe it as the restricted
Data Envelopment Analysis ((ARIII(COR))) model with correlation coefficients. The aim for
developing this new model, is to take into account the relations between variables using
correlation coefficients. Also, these relations were added as constraints to the CCR and
BCC models. For this purpose, the correlation coefficients were used in the restrictions of
input–output each one alone and their combination together. Inputs and outputs are
related to the degree of correlation between each other in the production. Previous studies
did not take into account the relationship between inputs/outputs variables. So, only with
expert opinions or an objective method, weight restrictions have been made. In our study,
the weights for input and output variables were determined, according to the correlations
between input and output variables. The proposed new method is different from other
methods in the literature, because the efficiency scores were calculated at the level of cor-
relations between the input and/or output variables.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

DEA was first developed in 1978 by Charnes, Cooper, Rhodes (CCR) [1]. DEA is a nonparametric method which is used for
the evaluation of the efficiency of DMUs. The CCR model is developed depending on technical efficiency measurement for the
single input-single output of Farrell [2] in the evaluation of the relative efficiency with multiple inputs and multiple outputs.

In order to obtain the maximum efficiency scores, the classical DEA allows weight flexibility. For this reason, some impor-
tant inputs or outputs in DEA can be assigned weights of zero. In this situation, these inputs or outputs are neglected. So,
unrealistic efficiency scores are obtained. Nowadays, weight restriction in DEA is one of the popular topics which is used
to solve the existing problems. The first study about the weight restrictions was made by Thompson et al. [3]. Thompson
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et al. [4] defined the restriction of the input weights independent of the output weights as Assurance Region I (ARI). Accord-
ing to each one of the other units, the input and output weights were restricted together and they were described as Assur-
ance Region II (ARII) by Thompson et al. [4]. The Cone-Ratio Approach is suggested by Charnes et al. [5], in order to solve the
efficiency problem of DMUs which are inefficient in the real by the DEA model.

In our study, a new AR Aproach (the ARIII (COR)) which is restricted by correlation coefficients, is developed. The purpose
of the proposed approach is to assign weights according to the correlations between the input and output variables in the
weight restriction. In this method, each DMU takes a sequence in a set according to the weight results. In the study, Spear-
man rank test was used to check the ranks compatibility of models.

The goal of our study is given in the first section (input section). In the second section, earlier studies about the weight
restrictions are placed. In the third section, the current methods of weight restriction are described. In the fourth section, the
classical DEA methods (the CCR [1] and the BCC [6]) are mentioned. In the fifth section, ARIII, a new research approach for the
restricted with correlation coefficient (ARIII (COR)), AR for the restricted with AHP [7] approach (the ARIII (AHP)) and Multi-
ple Criteria Data Envelopment Analysis (MCDEA) [8] is described. In the sixth chapter, comparison of the similarities and
differences with the models which are section three, four and five are examined. In the chapter seven, the new proposed
correlation coefficient constrained DEA models (the CCRCOR and the BCCCOR), and the classical DEA models (the CCR, the
BCC) and the AHP restricted DEA models (the AHPCCR, the AHPBCC) and the MCDEA model are applied on the data set. Then
the obtained results were compared by application of Spearman’s test on these methods. In the eighth chapter, the results
are given.
2. Literature study

Mostly non-balanced weight distributions and unrealistic results are obtained in classical DEA models. To eliminate the
problem which arises from the weight flexibility, different approaches in weight restrictions have been made in the litera-
ture. Most of the studies have been tried to incorporate the preference information of the decision makers into DMUs. The
first study about weight restrictions was conducted by Thompson et al. [3] that was used in determination of the best loca-
tion for establishment of a nuclear physic laboratory. Weight restrictions were developed for the preferred locations. So, this
approach is called Assurance Region (AR) Approach. The reason for calling this region as AR is constraints limiting of the
weight region with the specific region. The reduction of weight space is increasing the power of classification of DEA. The
restriction of the input weights independently of output weights was considered as ARI and according to each one of other
units, input and output weight restriction is defined as ARII [4]. Dyson and Thanassoulis [9] put direct restrictions on the
weights in the evaluation of the departments proportionally. In the evaluation of the perinatal care to take the risk and other
unknown factors in consideration, Thanassoulis et al. [10] carried out a weight restriction study. To make comparison and
measurement for the performance of nations which were divided to four classes according to income level (low income, be-
low the middle income, above middle income, high-income) in the Olympic games (6 different year), Li et al. [11] used the AR
Approach in DEA. In order to give importance to inputs and outputs by AR Approach according to the number of medals won,
a ratio of two variables is limited to a certain range (e.g. 1 < c1/c2 < 3) [11]. AR approach was used to refine the results of the
DEA by Li et al. [11]. Podinovski [12,13] argued it was estimated that DMUs had a low relative efficiency scores in adding
weight restrictions in the CCR model. Thus, target values can be misleading for inefficient DMU and a wrong reference set
of efficient peers can be determined. To avoid all these side effects, Podinovski and Athanassopoulos [12] proposed adding
weight restrictions in the maximin DEA model. Cook et al. [14] give the first real-life example with the absolute weight
restrictions in DEA. The pilot study has been done to measure the efficiency of 14 highway maintenance patrols. Two inputs
and two outputs are available in the analysis. The AR limits for the separable inputs and outputs are placed on prices (mul-
tipliers) in the transition of overall efficiency from the technical efficiency in the model which is made by Thompson et al.
[15]. Chilingerian and Sherman [16] used the weight restrictions to limit the factor weights in a cone which represents a
doctor working model. This cone was established using the criteria which were determined by the head of primary health
care unit. The application styles of the doctors which are compatible with the preference of the head of primary health care
unit that they are defined in the preferred cone as efficient. The weight restrictions for the AR/cone ratio model which are
used in this study, meet the criteria that are set by the head of health care system for efficient DMU’s applications styles.
These weight restrictions are defined as base on weight values assigned to these factors. Taylor et al. [17] assessed the effi-
ciency of Mexican banks with DEA-AR productivity.

The VZA model presenting some banks efficient even though they faced financial difficulties and inefficient banks to be
very good banks was seen as a problem by Charnes et al. [5] who suggested the Cone Ratio Approach in addressing these
drawbacks.

Beasley [18] evaluated physics and chemistry departments of 52 universities by proposing to use proportionally weight
restrictions to limit the weighted inputs and outputs. Wong and Beasley [19] developed the first virtual weight restriction
method. Wong and Beasley [19] proposed the restriction of weighted input/output with virtual weight restriction, rather
than directly restricting the weights. Sarrico and Dyson [20] discussed the use of virtual weights in the ARI and ARII.

From another perspective, there are approaches which are forced to use a common set of weights for all DMUs. Roll and
Golany [21] suggested models which found a common set of weights to maximize the number of average efficiency of DMUs
and to find the number of efficient DMUs. In order to obtain a common set of DMUs, a model was developed by Kao and Hung
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[22]. An approach which includes the preference information in DEA and introduction of the term of value efficiency includes
the values of decision makers as the concept of efficiency, is developed by Halme et al. [23]. This model has been useful to
create a set of constraints through common weights to all DMUs. Korhonen et al. [24] had introduced a systematic approach
to analyze the performance of research in R&D (research and development) institutes and universities, and also used value
efficiency.

Furthermore, there are weight restriction approaches for ranking in the literature. Bal et al. [25], defining the coefficient of
variation for the input and output weights, and adding them to the objective function of the CCR model (taking into account
min CV = �max CV), for ranking that they obtained a new CVDEA model. This model serves the same purpose with the MCDEA
which is developed by Li and Reeves [8]. In other words, to improve the separation power of DEA, the CVDEA model was used to
obtain more reliable input and output weights. As opposed to Li and Reeves model [8], the CVDEA model [25] can be solved
without any prior knowledge of decision-makers. Li and Reeves model [8] is a multi-goal linear programming technique.
So, it is very hard to find a solution which always provides all the goals. Yet, the CVDEA model which is developed by Bal
et al. [25], has a single objective function. It can be measured variability of weights related to average by the coefficient of var-
iation which is used in the CVDEA model. The CVDEA model is obtained by adding the coefficient of variation to the CCR model,
which reduces the number of efficient units and provides more stable (homogeneous) weight distribution. Wang et al. [26]
suggested a linear programming method to produce the preferred weights from the pairwise comparison matrices. A model
which provides the development of a balanced weight distribution using goal programming in DEA, is developed by Bal
and Örkçü [27]. The only difference between the GPMCDEA model and the MCDEA model which is developed by Li and Reeves
[8], is found to be the desired and undesired deviations for the input /output utilizing from the goal programming. Here, the
aim is to minimize unwanted deviations. In the study of Bernroider and Stix [28], in order to sort of DMUs, multi-criteria anal-
ysis of decision making (MADM) is combined with the multiplier constrained DEA. The cross-efficiency method is used to mea-
sure the performance of nations in the Olympics by Wu et al. [29]. A major advantage of cross-efficiency can be used to rank all
of the DMUs. Two input variables (the budget and population) and three output variables (the numbers of gold, silver and
bronze medal winners) are available in the study. The weight restrictions which are made on the conditions show that the unit
gets silver medal higher than unit gets bronze medal while the highest value of the units is gold. Soares De Mello et al. [30] used
the cross-efficiency model in weight restricted DEA to each set for the ranking during Olympic games.

When the weight restrictions are used in DEA, sometimes infeasible solutions are obtained. In order to avoid infeasible
solutions in the DEA model with weight restrictions, Estellita Lins et al. [31] have provided a theorem establishing the com-
pability conditions for DEA multiplier programs with weight restrictions.
3. Weight restriction in DEA

In the weighting, subjective methods differ from objective methods during the assessment of efficiency. The value judg-
ments are thought to reflect the preferences of decision makers. Even in DEA developed by Charnes et al. [1], there are the
value judgments in the selection of input–output variables. For example, the variables with zero weights are removed from
evaluation. The value judgments in evaluating the efficiency of a DMU affect the selection of optimal weights for inputs and
outputs. The reasons for using of the value judgments in DEA were considered as follows [32]:

� To combine prior views on the values of inputs and outputs of DMUs.
� To establish a link between specific input and output values.
� To combine prior views on the efficient and inefficient DMUs,
� To estimate the marginal rate of substitution for inputs and outputs in the efficiency which are evaluated.
� To take into consideration of the situation of zero weights for inputs and outputs.
� To allow classification between the efficient units.

To install the weight restrictions in the literature, three different approaches are used as follows [32]:
� Direct restrictions (assurance region I (ARI), assurance region II (ARII), Absolute Weight Restrictions) [3,4,14].
� To adjust the observed input and output levels, in order to take into account the value judgments (Cone Ratio and

Golany methods) [5,33].
� To restrict weighted inputs and outputs [32].

3.1. Direct restrictions on the weights

Many studies have been done to install directly on the weight restrictions in the literature. For example, the development
of nuclear skills [3], to evaluate departments proportionally [9], military activities [34], efficiency in terms of the highway
[14], the evaluation of perinatal protection [10], efficiency of physicians [16].

3.1.1. Assurance regions of type I (ARI)
ARI is used to include the preference information on input/ output values (prices) or to take into consideration the relative

ranking of input/output values. Upper and lower limits in such restrictions are loaded using the price information on the
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ratios of factor weights [4,15,17,35]. AR model shows the transition of overall efficiency measurement from technical effi-
ciency measurement. If there are no price information, the expert opinion on the relative importance of inputs/outputs is
used to determine the boundaries [36].

ARI DEA model can be shown mathematically as follows:
max
Xs

r¼1

uryro

s:t:
Xm

i¼1

v ixio ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0 j ¼ 1; . . . ;n;

Ai 6
v i
vk
6 Bi i < k; i; k ¼ 1; . . . ;m;

ar 6
ur
ut
6 br r < t; r; t ¼ 1; . . . ; s;

�v i 6 �e i ¼ 1; . . . ;m;

�ur 6 �e r ¼ 1; . . . ; s:

ð1Þ
Ai and Bi are lower and upper limits on the ratios of the input weights. ar and br are lower and upper limits on the ratios of the
output weights.

ARI restrictions for x1 and y1:
ar 6
ur
u1
6 br r ¼ 2; . . . ; s;

Ai 6
v i
v1
6 Bi i ¼ 2; . . . ;m:

ð2Þ
For ease of calculation in (2), AR restrictions can be written as follows:
aru1 6 ur 6 bru1 r ¼ 2; . . . ; s;

Aiv1 6 v i 6 Biv1 i ¼ 2; . . . ;m:
ð3Þ
3.1.2. Assurance regions of type II (ARII)
Input and output weights are linked in ARII model. Therefore, such constraints are called as linked AR constraints. ARII

models are used for the following purposes:

� To incorporate information on the relative importance according to an input of an output [10],
� To define the efficiency of DMUs [35].

The limits in ARII approach are based on the ratios of output weights to input weights.
ARII DEA model can be shown mathematically as follows:
max
Xs

r¼1

uryro

s:t:
Xm

i¼1

v ixio ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0 j ¼ 1; . . . ;n;

civ i P ur ;

�v i 6 �e i ¼ 1; . . . ;m;

�ur 6 �e r ¼ 1; . . . ; s:

ð4Þ
Here, ci is the upper limit on the rate of the output weight, ur to the input weight, vi .
3.1.3. Absolute weight restrictions
Absolute weight restrictions load lower and upper limits on the input-output weights [21,37]. A basic difficulty of this

approach, is to determine the limit values. The CCR model with the absolute weight restrictions can be shown in the
following way:
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max
Ps

r¼1
ur yroPm

i¼1
v ixio

s:t:
Ps

r¼1
ur yrjPm

i¼1
v ixij
6 1 j ¼ 1; . . . ;n;

di 6 v i 6 si;

qr 6 ur 6 gr ;

�v i 6 �e i ¼ 1; . . . ;m;

�ur 6 �e r ¼ 1; . . . ; s;

ð5Þ
where di and si are user-defined upper and lower limits on the input weights, respectively. However, qr and gr are upper and
lower limits on the output weights, respectively.
3.2. To adjust the observed input-output levels for take into account of value judgments

Directly weight restrictions are installed by adding additional constraints to original DEA model. The current input-output
data in this type of weight restrictions is multiplied by a vector. So, the input-output data is rearranged. Some studies in the
literature for this purpose is as follows: The combined performance of banks [5], trade games [38], the selection of bills [39],
etc. There are two approaches which are used to make the weight restrictions with the converted input–output.
3.2.1. The cone ratio model
The cone ratio model is proposed by Charnes et al. [5] who added the expert opinion to the analysis. This model includes

creating a cone (smaller than the non-negative regions) within the range by the optimal virtual multipliers of efficient DMUs
that provides the conditions which is determined by the decision maker.
3.2.2. The Golany method
To install the sequential relationships; v1 P v2 P v3 P e among DEA weights have been proposed by Golany [32]. For

this purpose, Golany [33] made equivalent transformations on the data without adding any other constraints. For instance,
the equivalent of the constraint; v1 P v2 P v3 P e; x2j can be replaced instead of x2j + x1j. Also, x3j can be replaced instead of
x3j þ x2j þ x1j; 8j. Here, xij is the level of the ith input for the jth DMU.
3.3. The restriction of weighted inputs and outputs

There are two approaches which are proposed in the literature about this subject. The first, contingent weight restrictions
are proposed by Pedraja et al. [40]. The second method includes the installation restrictions on the importance which is given
of a DMU ‘s output (input) [19]. The importance is given to specific output by a DMU, which is the ratio of the output to total
output. So, the importance is given to the rth output by the jth DMU which can be formulated as:
uryrjPs
r¼1uryrj

ð6Þ
Here, ur is the weight on the rth output (r = 1, ..., s). Also, yrj is the level of the rth output for the jth DMU.
Wong and Beasley [19] placed [ar,br] restrictions depending on the importance of the rth output for jth DMU. Using the

limit values, the following constraints are added to the original DEA model:
ar 6
uryrjPs
r¼1uryrj

6 br : ð7Þ
[ar,br] is obtained by a common opinion which is reached from value judgments of experts on the relative importance of
each output measurement in total output.

In order to contribute significantly to the total costs of inputs-outputs or to include the benefits of a DMU in the analysis,
Pedraja et al. [40] argued that the weight restrictions should be added according to DMU ‘s input and output levels. The
weight scheme is based on the input and output levels which are selected by a DMU. So, this approach is described as
the contingent weight restriction approach by Pedraja et al. [40]. Because of this dependence, assessed DMU puts more
weight on low-level inputs (for example, reducing its efficiency). In contrast to this situation, this DMU puts less weight
on high-level input (such as increasing its inefficiency). Thus, the efficiency which is calculated by the contingent model
tends to be more than the efficiency which is calculated to set limitations on input and output prices.

An input-space restriction in the following format is recommended by Pedraja et al. [40]:
ciV1X1j 6 ViXij 6 diV1X1j:
ci and di are the values selected by the analyst.
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4. The classical DEA methods

4.1. The CCR model

The CCR model was first introduced in 1978 by Charnes et al. [1]. In order to achieve maximum efficiency scores, this
model evaluates the inputs and outputs for each DMUs that it is designed to assign different weights. The CCR model is based
on the assumption of constant returns to scale (CRS). In the model, they are defined by:

h0: the efficiency score for the DMU0,
u: the output weights,
v: the input weights,
x: inputs,
y: outputs.

4.1.1. Input oriented CCR model (CCRi)
In the form of fractional programming, input oriented CCR model has been formulated in the following format:Ps
max h0 ¼ r¼1
ur yr0Pm

i¼1
v ixi0

s:t:
Ps

r¼1
ur yrjPm

i¼1
v ixij
6 1 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0;
v1; v2; . . . ;vm P 0:

ð8Þ
The translated version to linear programming model of input oriented CCR is as follows:
max h0 ¼
Xs

r¼1

uryr0

s:t:
Xm

i¼1

v ixi0 ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0;
v1; v2; . . . ;vm P 0:

ð9Þ
4.1.2. Output oriented CCR model (CCRo)
In the form of fractional programming, output oriented model isPm
minh0 ¼ i¼1
v ixi0Ps

r¼1
ur yr0

s:t:
Pm

i¼1
v ixijPs

r¼1
ur yrj

P 1 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0;
v1; v2; . . . ;vm P 0:

ð10Þ
The translated version to linear programming model of output oriented CCR is
min h0 ¼
Xm

i¼1

v ixi0

s:t:
Xs

r¼1

uryr0 ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0;
v1; v2; . . . ;vm P 0:

ð11Þ
4.2. The BCC model

The BCC model was developed in 1984 as an alternative to the CCR model by Banker et al. [6]. The only difference between
the BCC model and the CCR model is adding the variable of u0 to the input oriented model and the variable of v0 in the output
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oriented model to provide convexity. With the addition of the u0 and v0 variables (the signs of free), the BCC model is based
on the variable returns to scale (VRS) assumption. In the model, they are shown by:

h0: the efficiency score for the DMU0.
u: the output weights,
v: the input weights,
x: inputs,
y: outputs.

4.2.1. Input oriented BCC model (BCCi)
max h0 ¼
Xs

r¼1

uryr0 � u0

s:t:
Xm

i¼1

v ixi0 ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij � u0 6 0 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0; v1; v2; . . . ; vm P 0; u0 free

ð12Þ
4.2.2. Output oriented BCC model (BCCo)
min h0 ¼
Xm

i¼1

v ixi0 � v0

s:t:
Xs

r¼1

uryr0 ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ v0 6 0 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0; v1; v2; . . . ; vm P 0; v0 free:

ð13Þ
5. The weight restriction models

5.1. A new AR approach (ARIII)

We know that ARI approach will only restrict in the inputs or outputs constraints, while ARII approach restrict both inputs
and outputs linked together. As an advantage in our study, ARIII approach can do by itself all the work which is done by ARI
and ARII approaches simultaneously. Input and output variables (within their own group together and separate) can be re-
stricted by this new approach. We suggest that ARIII can avoid the problem which is assigned of zero or very low weights to
the important variables. Also, if they aren’t actually efficient DMUs, they will be accurately found as inefficient. In this way, a
more balanced distribution of the weights can be achieved.

ARIII is formulated as follows:
zi;iþ1v iþ1 � v i 6 0 ði ¼ 1; . . . ;m� 1Þ;
hi;rur � v i 6 0 ði ¼ 1; . . . ;mÞ; ðr ¼ 1; . . . ; sÞ;
gr;rþ1urþ1 � ur 6 0 ðr ¼ 1; . . . ; s� 1Þ;
u1;u2; . . . ;us P 0; v1;v2; . . . ;vm P 0:

ð14Þ
In ARIII (14),
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zi;iþ1 is a lower limit on the ratio of the weight of the ith input to the weight of the (i + 1)th input.
hi,r is a lower limit on the ratio of the weight of the ith input to the weight of the rth output.
gr,r+1 is a lower limit on the ratio of the weight of the rth output to the weight of the (r + 1)th output.

5.1.1. A new AR model of restricted Data Envelopment Analysis by correlation coefficients (ARIII(COR))
In the production process, DMU’s input and output variables are related to each other. The relationship between the

variables was reflected to the model by the weights which are chosen in the correlation ratio in our study. Other known
methods do not take into account the relationships to each other of the variables. The weights in the classical CCR and
BCC models are determined to assign the highest efficiency scores. In the calculation of efficiency scores for some situ-
ations, a lot of important inputs and outputs are not taken into account or they are considered at very small amounts. In
the literature, a lot of research has been done taking into account the problem of weighting. The studies to balance the
weights may be considered in this context. Moreover, the weighted methods which are given in the literature, provide
not to reach inconsistent results. For example, in the evaluation of the hospital efficiency, if a surgeon and general prac-
titioner have been weighted at the same ratio, this situation will lead to incorrect results. The classical DEA method as-
sesses without taking into account the levels of importance relative to each other for inputs and outputs. We think to
use the correlation between each variable with the other variables to find more meaningful results. So, we proposed
a new model in our study. The primary important input and output variables for the production must be given weights
in that level. We believe that the binary combination (input and output) of weights to be taken into account can elim-
inate the above-mentioned drawbacks. Efficiency scores are calculated at the level of the correlation between input and/
or output variables in our approach. To calculate the efficiency scores in our study, the weighted variables are taken into
account as the existing relationship, in which case the weights are balanced according to us. The authors presented the
method of balancing weight without taking into account such situations which considered only important weights that
were different from zero and one. We propose a new concept of a balanced approach which is based on the principle of
‘‘if a variable is as important as what happened during production, it should be placed with a weight at the level’’. If the
weights are given to this idea, they can be expressed as ‘‘balanced’’. Inputs or outputs are being compared among them-
selves by ARI, the ratio of inputs to outputs is based by ARII. Unlike them, we recommend ARIII (COR). While inputs/out-
puts are proportioned within their own group, inputs and outputs are proportioned in a way connected by ARIII (COR) at
the same time. However, in order to take into account the relationships between variables, the weighting is done by the
correlation matrix.

ARIII (COR) approach is superior to the subjective method which is as follows: first, ARIII (COR) does not require prefer-
ence information. The results do not change according to analysts, because this method is objective. ARIII (COR) does not
raise some well-known problems (the difference of alternative solutions in the cross-efficiency method, the difference of
the preference information by experts, etc.). While the results are obtained, especially considering the relationship between
variables, more realistic results are to be allowing. Thus, a more balanced distribution of weights is provided. So, in fact an
inefficient DMU isn’t found to be efficient.

Let m, be the number of inputs and s, be the number of outputs in ARIII (COR). The correlation matrix is symmetric. So, the
total number of weight restrictions is obtained by the following formulation:
ðmþ sÞ2 � ðmþ sÞ
2

¼ ðmþ sÞðmþ s� 1Þ
2

: ð15Þ
The weight restrictions with the correlation coefficients are defined in the following format:
ci;iþ1v iþ1 � v i 6 0 ði ¼ 1; . . . ;m� 1Þ;

pi;rur � v i 6 0 ði ¼ 1; . . . ;mÞ; ðr ¼ 1; . . . ; sÞ;

br;rþ1urþ1 � ur 6 0 ðr ¼ 1; . . . ; s� 1Þ;

u1;u2; . . . ;us P 0;

v1;v2; . . . ;vm P 0:

ð16Þ
In ARIII (COR) (16),

ci;iþ1 is the correlation coefficient between the ith and (i+1)th input variables.
pi,r is the correlation coefficient between the ith input and the rth output variables.
br;rþ1is the correlation coefficient between the rth and (r+1)th output variables.

ARIII (COR) restrictions (16) were added in the classical CCR, BCC models (9), (11)–(13). So, the input and output oriented
correlation weight restricted DEA models (the CCRCOR, the BCCCOR) were obtained.

The input oriented CCRCOR model can be shown mathematically as follows:
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max h0 ¼
Xs

r¼1

uryr0

s:t:
Xm

i¼1

v ixi0 ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0 ðj ¼ 1; . . . ; nÞ;

ci;iþ1v iþ1 � v i 6 0 ði ¼ 1; . . . ;m� 1Þ;
pi;rur � v i 6 0 ði ¼ 1; . . . ;mÞ; ðr ¼ 1; . . . ; sÞ;
br;rþ1urþ1 � ur 6 0 ðr ¼ 1; . . . ; s� 1Þ;
u1;u2; . . . ;us P 0; v1;v2; . . . ;vm P 0:

ð17Þ
5.1.2. An AR approach (ARIII (AHP)) of restricted with Analytical Hierarchy Process (AHP)
The AHP method was first developed by Saaty [7]. In this method, a preference matrix of the binary preferred coefficients

is created by experts. Then, the consistency of the preference matrix is tested [7,41]. Often, necessary market information in
DEA cannot be easily obtained [36]. In such cases, the limits of AR must be defined using expert opinions. First in the liter-
ature, in order to collect expert opinions to establish the limits of AR in DEA, the Analytical Hierarchy Process (AHP) was used
by Zhu [36]. Later, to restrict the flexibility of the weight in DEA, Liu [42] has proposed to merge the objective knowledge and
the subjective information obtained with the AHP. The AHP, DEA models and simulations are combined for the development
of the railway system by Azadeh et al. [43]. First, the computer simulation model was performed to verify the model and to
confirm the system which has been worked on. Second, the AHP method is used to define the weights of any qualitative cri-
teria (inputs or outputs). Finally, DEA was applied to identify the best alternatives of model and to determine the current
system mechanism. While earlier studies were based on quantitative variables, both qualitative and quantitative variables
for evaluation of efficiency and integrated simulation of DEA and the AHP models were considered in this study. The re-
stricted CCR and BCC models with the AHP were obtained by using the binary preferences for inputs and outputs in AHP
method which was developed by Saaty [7,41]. Later, these preferences were transformed to the constraints which could
be added into the CCR and BCC models. If AHP method is arranged for ARIII approach,
ai;iþ1v iþ1 � v i 6 0 ði ¼ 1; . . . ;m� 1Þ;
ki;rur � v i 6 0 ði ¼ 1; . . . ;mÞ; ðr ¼ 1; . . . ; sÞ;
tr;rþ1urþ1 � ur 6 0 ðr ¼ 1; . . . ; s� 1Þ;
u1;u2; . . . ;us P 0; v1;v2; . . . ; vm P 0

ð18Þ
a set of constraints (18) will be obtained that we have called as ARIII (AHP).
In ARIII (AHP) (18),

ai,i+1 is the AHP binary preference coefficient between the ith and (i + 1)th input variables.
ki;r is the AHP binary preference coefficient between the ith input and the rth output variables.
tr;rþ1 is the AHP binary preference coefficient between the rth and (r + 1)th output variables.

ARIII (AHP) was added in the classical CCR, BCC models (9), (11)–(13). So, the weights of the restricted input-output oriented
AHP models (AHPCCR, AHPBCC) were obtained. The input oriented AHPCCR model can be shown mathematically as follows:
max h0 ¼
Xs

r¼1

uryr0

s:t:
Xm

i¼1

v ixi0 ¼ 1

Xs

r¼1

uryrj �
Xm

i¼1

v ixij 6 0; ðj ¼ 1; . . . ;nÞ;

ai;iþ1v iþ1 � v i 6 0 ði ¼ 1; . . . ;m� 1Þ;
ki;rur � v i 6 0 ði ¼ 1; . . . ;mÞ; ðr ¼ 1; . . . ; sÞ;
tr;rþ1urþ1 � ur 6 0 ðr ¼ 1; . . . ; s� 1Þ;
u1;u2; . . . ;us P 0; v1;v2; . . . ;vm P 0:

ð19Þ
5.2. Multiple criteria data envelopment analysis (MCDEA)

Multiple criteria data envelopment analysis (MCDEA) was suggested by Li and Reeves [8]. This model was developed to
solve the problem of ineligible weighting and the deficiency of separation. Three objective functions are introduced by
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MCDEA. The first objective function is minimized of deviation (the value of inefficiency) of d0. The efficiency value of DMU0 is
defined as h0 = 1 � d0 in the model. The second objective function is minimized of M which is the maximum deviation. The
third target function is minimized the sum of deviations for all DMUs. MCDEA model is as follows:
min d0

min M

min
Xn

j¼1

dj

Xm

i¼1

v ixi0 ¼ 1;

Xs

r¼1

uryrj �
Xm

i¼1

v ixij þ dj ¼ 0 ðj ¼ 1; . . . ;nÞ;

M � dj P 0 ðj ¼ 1; . . . ;nÞ;

u1;u2; . . . ;us P 0;

v1;v2; . . . ;vm P 0;

d1; d2; . . . ;dn P 0:

ð20Þ
6. Comparison of models based on similarities and differences

In this section, comparison of the similarities and differences with the models which are Sections 3–5 are listed in Table 1.
In Table 1, we examine the fundamentals of the models such as; restricted or unrestricted, weighting technique, taking

into account the weight or not, the most prominent features of the method of weighting and cost of method.
As seen in Table 1, the CCR and BCC models of unrestricts methods, the MCDEA, CCRCOR and BCCCOR models of restricts

methods are objective. The remaining methods are subjective. Subjective methods are based on expert opinions and value
judgments. Objective methods don’t include expert opinions or value judgments. Subjective methods affect the optimal solu-
tion region. If a weight restriction does not affect the solution region of the linear program, the weight restriction is objective
[44].

Only the CCR and BCC models which are presented in Table 1, do not provide a balanced weight distribution. Because, the
methods which are objective allow the flexibility of weight. Other methods provide a balanced weight distribution. The sub-
jective methods are evaluated with expert opinions. To find an expert for each area is difficult. So, these methods costs are
high. CCRCOR and BCCCOR are objective models. Therefore, their costs are low. The methods restrict weights with correlation
coefficients. So, a balanced weight distribution is provided. These models don’t require expert opinions. Thus, the new meth-
ods are advanced.
7. Application

The CCR, BCC, CCRCOR, BCCCOR, MCDEA, AHPCCR, AHPBCC models were applied on a data set (this data set has been used
by Sun et al. [45]) which was given in Appendix 1. In our study on the evaluation of the efficiency of 27 robots, prices and
repeatability were taken as the inputs. Also load capacity and speed were taken as the outputs.

By using the correlation coefficients matrix in Table 2, the weight restrictions with correlation coefficients will be added
in the CCR and BCC models which are as follows:
v1=v2 > 0:081) 0:081v2 � v1 < 0;

v1=u1 > 0:156) 0:156u1 � v1 < 0;

v1=u2 > 0:241) 0:241u2 � v1 < 0;

v2=u1 > 0:367) 0:367u1 � v2 < 0;

v2=u2 > 0:493) 0:493u2 � v2 < 0;

u1=u2 > 0:05) 0:05u2 � u1 < 0:

ð21Þ
By using AHP preference coefficients matrix in Table 3, the AHP weight restrictions will be added in the CCR and BCC
models which are as follows:



Table 1
Comparison of the models.

The method Restricted
or
unrestricted

Type of
restriction

Weighting
technique

The status of
the balanced
weight
distribution

What does the current method
takes into account when
choosing the weights?

The most prominent features of the method of weighting Cost of
the
method

ARIDEA Restricted Direct Subjective Yes Assurance region determined
by expert opinion on input or
output variables

Input and output weights are not linked. Example: Ai 6
v i
vk
6 Bi ,

i < k; i; k ¼ 1; . . . ;m, ar 6
ur
ut
6 br , r < t; r; t ¼ 1; . . . ; s

High

ARIIDEA Restricted Direct Subjective Yes Assurance region determined
by expert opinion on input and
output variables

Input and output weights are linked. Example: civ i P ur ,
i ¼ 1; . . . ;m; r ¼ 1; . . . ; s

High

Absolute weight
restrictions

Restricted Direct Subjective Yes Lower and upper limits
determined by expert opinion
on input and output variables

Absolute weight restrictions load lower and upper limits on the
input-output weights. A basic difficulty of this approach, is to
determine the limit values. Example: di 6 v i 6 si i = 1, . . . ,m,
qr 6 ur 6 gr r = 1, . . . ,s

High

Cone ratio Restricted To adjust the
observed input-
output levels

Subjective Yes Converted input and output
data

A cone (smaller than the non-negative regions) is created by the
optimal virtual multipliers of efficient DMUs with expert opinion

High

The Golany
method

Restricted To adjust the
observed input-
output levels

Subjective Yes Equivalent transformations on
the data without adding any
other constraints

The sequential relationships High

Wong and Beasley
method

Restricted The restriction
of weighted
inputs and
outputs

Subjective Yes [ar,br] restrictions depend on
the importance of the rth
output for jth DMU

[ar,br] is obtained by a common opinion which is reached from
value judgments of experts on the relative importance of each

output measurement in total output. Example: ar 6
ur yrjPs

r¼1
ur yrj
6 br

High

Pedraja et al. method Restricted The restriction
of weighted
inputs and
outputs

Subjective Yes Contingent weight restriction For example; input-space restriction: ciV1x1j 6 Vixij 6 diV1x1j , ci

and di are the values selected by the analyst
High

CCR model Unrestricted – Objective No Input and output weights must
be positive

There is weight flexibility. The method doesn’t require a priori
assumption about the analytic form of the production function

Low

BCC model Unrestricted – Objective No Input and output weights must
be positive

There is weight flexibility. However, u0 and v0 are free variables for
output, input variables, respectively. The method doesn’t require a
priori assumption about the analytic form of the production
function

Low

AHPCCR Restricted The restricted
CCR model with
AHP coefficients

Subjective Yes The weights are selected
according to the production
function as determined by
expert opinion

AHP coefficients are determined by expert opinion. Consistency of
these coefficients will be tested. Then the restrictions are imposed
with the coefficients in the CCR model

High

AHPBCC Restricted The restricted
BCC model with
AHP coefficients

Subjective Yes The weights are selected
according to the production
function as determined by
expert opinion.

AHP coefficients are determined by expert opinion. Consistency of
these coefficients will be tested. Then the restrictions are imposed
with the coefficients in the BCC model

High

MCDEA Restricted Multi criteria Objective Yes 1 – Minimized of deviation (the
value of inefficiency) of d0

2 – Minimized of M which is the
maximum deviation
3 – Minimized the sum of
deviations for all DMUs

This model was developed to solve the problem of ineligible
weighting and the deficiency of separation

Low

(continued on next page)
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Table 1 (continued)

The method Restricted
or
unrestricted

Type of
restriction

Weighting
technique

The status of
the balanced
weight
distribution

What does the current method
takes into account when
choosing the weights?

The most prominent features of the method of weighting Cost of
the
method

CCRCOR Restricted The restricted
CCR model by
correlation
coefficients

Objective Yes In this method, the weights are
determined by the correlations
between input and output
variables

In the production process, DMU ‘s input and output variables are
related to each other.
The relationship between the variables was reflected to the CCR
model by the weights which are chosen in the correlation ratio in
our study. Other known methods do not take into account the
relationships among each of the other variables

Low

BCCCOR Restricted The restricted
BCC model by
correlation
coefficients

Objective Yes In this method, the weights are
determined by the correlations
between input and output
variables.

In the production process, DMUs input and output variables are
related to each other
The relationship between the variables was reflected to the BCC
model by the weights which are chosen in the correlation ratio in
our study. Other known methods do not take into account the
relationships among each of the other variables

Low
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Table 2
The correlation coefficients matrix.

Prices (v1) Repeatability (v2) Load capacity (u1) Speed (u2)

Prices (v1) 1 0.081 0.156 0.241
Repeatability (v2) 0.081 1 0.367 0.493
Load capacity (u1) 0.156 0.367 1 0.05
Speed (u2) 0.241 0.493 0.05 1

Table 3
The AHP preference coefficients matrix.

Prices (v1) Repeatability (v2) Load capacity (u1) Speed (u2)

Prices (v1) 1 2 1/2 1/4
Repeatability (v2) 1/2 1 1/5 1/3
Load capacity (u1) 2 5 1 1/2
Speed (u2) 4 3 2 1

Table 4
The efficiency scores obtained from the models.

DMUs The efficiency
of CCR

The efficiency of
CCRCOR

The efficiency of
AHPCCR

The efficiency
of MCDEA

The
efficiency of
BCC

The efficiency of
BCCCOR

The efficiency of
AHPBCC

1 1 0.981420 0.4214601 0.48 1 1 0.466934
2 0.90376 0.610155 0.3463125 0.42 0.907407 0.628715 0.382893
3 0.52884 0.528588 0.4726979 0.47 0.666720 0.659670 0.522701
4 1 0.263219 0.1333884 0.16 1 0.305842 0.153262
5 0.59235 0.558651 0.125609 0.11 0.593779 0.567284 0.184290
6 0.48238 0.482050 0.3959284 0.47 0.864865 0.864865 0.864865
7 1 1 0.834411 1 1 1 0.899460
8 0.78254 0.782544 0.5240593 0.62 0.782948 0.782948 0.560730
9 0.37838 0.378383 0.2563228 0.31 0.383367 0.383367 0.282287

10 1 1 0.6307525 0.76 1 1 0.679364
11 0.67132 0.671317 0.591429 0.67 0.676624 0.676624 0.611468
12 0.10236 0.101919 0.06411219 0.09 0.141873 0.141851 0.141647
13 1 0.980572 0.5858928 0.7 1 1 0.658976
14 1 1 0.5652973 0.66 1 1 0.624570
15 0.6125 0.612294 0.5551437 0.56 0.623696 0.621425 0.584758
16 0.60351 0.602192 0.4006909 0.58 0.603854 0.602393 0.418108
17 0.40454 0.404024 0.3463358 0.27 1 0.680500 0.424708
18 0.36521 0.365215 0.2510529 0.3 0.366836 0.366836 0.269562
19 1 1 0.6394379 0.73 1 1 1
20 1 0.988171 1 1 1 1 1
21 0.85154 0.848660 0.7675496 0.15 1 0.973426 0.906979
22 0.82889 0.677921 0.379085 0.45 0.913151 0.677921 0.407843
23 0.69429 0.694161 0.5808784 0.69 0.923416 0.923416 0.802308
24 0.63613 0.636046 0.5317901 0.64 0.846536 0.846536 0.734507
25 0.55334 0.553343 0.4307609 0.99 0.556195 0.556195 0.462519
26 0.58102 0.581025 0.5252987 0.58 0.770664 0.744057 0.571405
27 1 1 1 1 1 1 1
The number of
efficient DMUs

9 5 2 3 11 8 3
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v1=v2 > 2) 2v2 � v1 < 0;
v1=u1 > 1=2) ð1=2Þu1 � v1 < 0;
v1=u2 > 1=4) ð1=4Þu2 � v1 < 0;
v2=u1 > 1=5) ð1=5Þu1 � v2 < 0;
v2=u2 > 1=3) ð1=3Þu2 � v2 < 0;
u1=u2 > 1=2) ð1=2Þu2 � u1 < 0:

ð22Þ
The results which are obtained from the evaluation of the input oriented models with two inputs and two outputs of 27
DMUs, were presented in Table 4. As shown that the DMUs are evaluated as efficient, which can obtain efficiency score of one
from the models. From these results,



Table 5
The weights and efficiency scores obtained from CCR, CCRCOR, AHPCCR and MCDEA models.

DMUs Models Efficiency u1 u2 v1 v2

1 CCR 1 0.014305 0.016345 0.10886 1.441366
CCRCOR 0.981420 0.036919 0.015526 0.110475 1.363884
AHPCCR 0.4214601 0.194341 0.002652 0.137457 0.068729
MCDEA 0.48 0.24 0 0.14 0.09

2 CCR 0.90376 0.821596 0 0.008803 19.154930
CCRCOR 0.610155 0.531814 0.004193 0.184594 2.278943
AHPCCR 0.3463125 0.293022 0.003998 0.207254 0.103627
MCDEA 0.42 0.36 0 0.21 0.13

3 CCR 0.52884 0.297845 0.003346 0.172609 0.107839
CCRCOR 0.528588 0.297356 0.003354 0.172281 0.109130
AHPCCR 0.4726979 0.250901 0.003423 0.177462 0.088731
MCDEA 0.47 0.18 0.01 0.09 0.43

4 CCR 1 1.515152 0 0.016234 35.324677
CCRCOR 0.263219 0.398816 0 0.13318 1.644196
AHPCCR 0.1333884 0.196025 0.002675 0.138648 0.069324
MCDEA 0.16 0.24 0 0.14 0.09

5 CCR 0.59235 0 0.011847 0.07696 1.044731
CCRCOR 0.558651 0.000559 0.011172 0.078824 0.973141
AHPCCR 0.125609 0.001255 0.002511 0.102828 0.051414
MCDEA 0.11 0.18 0 0.1 0.06

6 CCR 0.48238 1.607929 0 0.881057 0.572687
CCRCOR 0.482050 1.606832 0 0.879467 0.589707
AHPCCR 0.3959284 1.262348 0.017224 0.892857 0.446429
MCDEA 0.47 1.52 0.02 0.88 0.55

7 CCR 1 0.946815 0.010637 0.548704 0.342807
CCRCOR 1 0.946609 0.010678 0.548443 0.347405
AHPCCR 0.834411 0.781121 0.010658 0.552486 0.276243
MCDEA 1 0.95 0.01 0.55 0.34

8 CCR 0.78254 0.536243 0.01642 0.265039 1.518738
CCRCOR 0.782544 0.536243 0.01642 0.265039 1.518738
AHPCCR 0.5240593 0.435024 0.005936 0.307692 0.153846
MCDEA 0.62 0.53 0.01 0.31 0.19

9 CCR 0.37838 0.300156 0.004821 0.109837 1.309487
CCRCOR 0.378383 0.300156 0.004821 0.109837 1.309487
AHPCCR 0.2563228 0.207306 0.002829 0.146628 0.073314
MCDEA 0.31 0.25 0 0.15 0.09

10 CCR 1 0.912098 0.01465 0.333767 3.979206
CCRCOR 1 0.912098 0.01465 0.333767 3.979206
AHPCCR 0.6307525 0.583023 0.007955 0.412371 0.206186
MCDEA 0.76 0.71 0.01 0.41 0.26

11 CCR 0.67132 0.368092 0.011334 0.189835 0.906550
CCRCOR 0.671317 0.368092 0.011334 0.189835 0.906550
AHPCCR 0.591429 0.451703 0.006163 0.319489 0.159744
MCDEA 0.67 0.37 0.01 0.19 0.91

12 CCR 0.10236 0.006524 0.007455 0.049651 0.657407
CCRCOR 0.101919 0.017364 0.007303 0.05196 0.641478
AHPCCR 0.06411219 0.191058 0.002607 0.135135 0.067568
MCDEA 0.09 0.17 0.01 0.09 0.41

13 CCR 1 0.754717 0.009434 0.235849 4.905660
CCRCOR 0.980572 0.721727 0.01145 0.261966 3.234153
AHPCCR 0.5858928 0.438397 0.005982 0.310078 0.155039
MCDEA 0.7 0.53 0.01 0.31 0.19

14 CCR 1 0.472005 0.014453 0.23329 1.336806
CCRCOR 1 0.472005 0.014453 0.23329 1.336806
AHPCCR 0.5652973 0.351262 0.004793 0.248447 0.124224
MCDEA 0.66 0.43 0 0.25 0.15

15 CCR 0.6125 0.400846 0.004503 0.232301 0.145132
CCRCOR 0.612294 0.400143 0.004514 0.231834 0.146853
AHPCCR 0.5551437 0.338237 0.004615 0.239234 0.119617
MCDEA 0.56 0.23 0.01 0.12 0.56

16 CCR 0.60351 0.006531 0.007462 0.049701 0.658060
CCRCOR 0.602192 0.017382 0.00731 0.052014 0.642145
AHPCCR 0.4006909 0.191576 0.002614 0.135501 0.067751
MCDEA 0.58 0.17 0.01 0.09 0.41

17 CCR 0.40454 0.186555 0.002096 0.108114 0.067545
CCRCOR 0.404024 0.186254 0.002101 0.107911 0.068355
AHPCCR 0.3463358 0.157092 0.002143 0.111111 0.055556
MCDEA 0.27 0.11 0 0.06 0.27
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Table 5 (continued)

DMUs Models Efficiency u1 u2 v1 v2

18 CCR 0.36521 0.314672 0.005054 0.115149 1.372817
CCRCOR 0.365215 0.314672 0.005054 0.115149 1.372817
AHPCCR 0.2510529 0.220911 0.003014 0.15625 0.078125
MCDEA 0.3 0.27 0 0.16 0.1

19 CCR 1 1.64494 0.050652 0.84834 4.051214
CCRCOR 1 1.64494 0.050652 0.84834 4.051214
AHPCCR 0.6394379 1.465108 0.019991 1.036269 0.518135
MCDEA 0.73 1.78 0.02 1.03 0.64

20 CCR 1 1.25 0 6.25 0
CCRCOR 0.988171 1.209628 0.013645 0.70083 0.443934
AHPCCR 1 1.25 0 0.862069 0.431034
MCDEA 1 1.22 0.01 0.71 0.44

21 CCR 0.85154 0.425062 0.004775 0.246335 0.153900
CCRCOR 0.848660 0.423361 0.004776 0.245286 0.155374
AHPCCR 0.7675496 0.371084 0.005063 0.262467 0.131234
MCDEA 0.15 0 0.01 0.03 0.45

22 CCR 0.82889 0.828893 0 0.008881 19.325045
CCRCOR 0.677921 0.677921 0 0.226383 2.794858
AHPCCR 0.379085 0.379085 0 0.261438 0.130719
MCDEA 0.45 0.45 0.01 0.26 0.16

23 CCR 0.69429 1.314726 0.01477 0.761919 0.476015
CCRCOR 0.694161 1.314197 0.014825 0.761415 0.482310
AHPCCR 0.5808784 1.087561 0.014839 0.769231 0.384615
MCDEA 0.69 1.31 0.01 0.76 0.48

24 CCR 0.63613 1.20459 0.013533 0.698092 0.436139
CCRCOR 0.636046 1.204172 0.013584 0.697669 0.441931
AHPCCR 0.5317901 0.995655 0.013585 0.704225 0.352113
MCDEA 0.64 1.2 0.01 0.7 0.44

25 CCR 0.55334 0.423626 0.012972 0.209378 1.199786
CCRCOR 0.553343 0.423626 0.012972 0.209378 1.199786
AHPCCR 0.4307609 0.379043 0.005172 0.268097 0.134048
MCDEA 0.99 0.0048 0.0001 0.0028 0.0017

26 CCR 0.58102 0.170615 0.005254 0.087991 0.420196
CCRCOR 0.581025 0.170615 0.005254 0.087991 0.420196
AHPCCR 0.5252987 0.238219 0.00325 0.168492 0.084246
MCDEA 0.58 0.17 0.01 0.09 0.42

27 CCR 1 0 0.004878 0.25 0
CCRCOR 1 0.006521 0.004854 0.248785 0.002393
AHPCCR 1 0.002435 0.004869 0.249176 0.001623
MCDEA 1 0 0 0.03 0.43

Table 6
The comparison of CCR. CCRCOR. AHPCCR and MCDEA models.

The general situation Models The number of efficient DMUs The number of zero weights

u1 u2 v1 v2

CCR 9 2 5 - 2
CCRCOR 5 - 3 - -
AHPCCR 2 - 2 - -
MCDEA 3 2 9 - -
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the CCR model, 1, 4, 7, 10, 13, 14, 19, 20, 27 DMUs
the BCC model, 1, 4, 7, 10, 13, 14, 17, 19, 20, 21, 27 DMUs
the CCRCOR model, 7, 10, 14, 19, 27 DMUs
the BCCCOR model, 1, 7, 10, 13, 14, 19, 20, 27 DMUs
the MCDEA model, 7, 20, 27 DMUs
the AHPCCR model, 20, 27 DMUs
the AHPBCC model, 19, 20, 27 DMUs that
they were considered as efficient.

The efficiency scores and weights were given in Table 5 for the CCR, CCRCOR, AHPCCR, MCDEA models and in Table 7 for
the BCC, BCCCOR, AHPBCC models. The results were given in Tables 6 and 8, respectively, which were compared in terms of
the efficiency of scores and the zero weights for the CCR, CCRCOR, AHPCCR, MCDEA models and for the BCC, BCCCOR,
AHPBCC models. Spearman’s test results are included in Table 9 for all models with the help of SPSS program.



Table 7
The weights and efficiency scores obtained from BCC. BCCCOR and AHPBCC models.

DMUs Models Efficiency u0 u1 u2 v1 v2

1 BCC 1 2.120425 2.086898 0.005052 0.126297 0.604403
BCCCOR 1 0.759108 0.773012 0.011926 0.120590 0.878355
AHPBCC 0.466934 0.064488 0.274914 0.002671 0.137457 0.068729

2 BCC 0.907407 0.111111 0.925926 0 0 20.000000
BCCCOR 0.628715 0.206563 0.759344 0 0.184594 2.278943
AHPBCC 0.382893 0.097234 0.414508 0.004028 0.207254 0.103627

3 BCC 0.666720 0.584244 0.801125 0.005190 0.129742 0.276608
BCCCOR 0.659670 0.513556 0.745446 0.005034 0.130511 0.273579
AHPBCC 0.522701 0.083257 0.354925 0.003449 0.177462 0.088731

4 BCC 1 �0.891686 0.164111 0 0.078684 17.339148
BCCCOR 0.305842 �0.125363 0.273453 0 0.133180 1.644196
AHPBCC 0.153262 �0.117574 0.054073 0 0.138648 0.069324

5 BCC 0.593779 �0.007016 0 0.011735 0.077175 1.036476
BCCCOR 0.567284 �0.011417 0.000556 0.011117 0.078824 0.973141
AHPBCC 0.184290 �0.077577 0.001067 0.002133 0.102828 0.051414

6 BCC 0.864865 �0.864865 0 0 0.900901 0.360360
BCCCOR 0.864865 �0.864865 0 0 0.900901 0.360360
AHPBCC 0.864865 �0.864865 0 0 0.900901 0.360360

7 BCC 1 0.623879 1.623879 0 0.551506 0.293492
BCCCOR 1 �0.010002 0.936829 0.010634 0.548647 0.343816
AHPBCC 0.899460 0.259200 1.104972 0.010738 0.552486 0.276243

8 BCC 0.782948 0.009105 0.536175 0.017059 0.269192 1.385842
BCCCOR 0.782948 0.009105 0.536175 0.017059 0.269192 1.385842
AHPBCC 0.560730 0.144355 0.615385 0.005980 0.307692 0.153846

9 BCC 0.383367 0.537031 0.786015 0.005578 0.139453 0.314376
BCCCOR 0.383367 0.537031 0.786015 0.005578 0.139453 0.314376
AHPBCC 0.282287 0.068791 0.293255 0.002850 0.146628 0.073314

10 BCC 1 0.146667 1.066667 0.013333 0.333333 4.000000
BCCCOR 1 0.146667 1.066667 0.013333 0.333333 4.000000
AHPBCC 0.679364 0.193465 0.824742 0.008014 0.412371 0.206186

11 BCC 0.676624 �0.116184 0.422403 0.006009 0.311345 0.206652
BCCCOR 0.676624 �0.116184 0.422403 0.006009 0.311345 0.206652
AHPBCC 0.611468 0.149889 0.638978 0.006209 0.319489 0.159744

12 BCC 0.141873 �0.106229 0 0.002621 0.138551 0.043996
BCCCOR 0.141851 �0.106187 0.000131 0.002621 0.138547 0.044028
AHPBCC 0.141647 �0.105813 0.001310 0.002620 0.138505 0.044316

13 BCC 1 1.446231 2.038526 0 0.303385 0.583376
BCCCOR 1 1.190678 1.728312 0.011670 0.302589 0.634291
AHPBCC 0.658976 0.145474 0.620155 0.006026 0.310078 0.155039

14 BCC 1 0.936358 1.370484 0.009726 0.243148 0.548141
BCCCOR 1 0.936358 1.370484 0.009726 0.243148 0.548141
AHPBCC 0.624570 0.116560 0.496894 0.004829 0.248447 0.124224

15 BCC 0.623696 0.700744 1.012416 0.006639 0.175910 0.352653
BCCCOR 0.621425 0.681236 0.988839 0.006677 0.173124 0.362904
AHPBCC 0.584758 0.112237 0.478469 0.004649 0.239234 0.119617

16 BCC 0.603854 �0.004120 0.002396 0.007467 0.049507 0.659393
BCCCOR 0.602393 �0.003603 0.014561 0.007303 0.052014 0.642145
AHPBCC 0.418108 0.063571 0.271003 0.002633 0.135501 0.067751

17 BCC 1 1.003266 1.001633 0 0.057898 0.268409
BCCCOR 0.680500 0.375807 0.504541 0.003148 0.078708 0.185166
AHPBCC 0.424708 0.052128 0.222222 0.002159 0.111111 0.055556

18 BCC 0.366836 �0.041068 0.271517 0.005425 0.115316 1.367544
BCCCOR 0.366836 �0.041068 0.271517 0.005425 0.115316 1.367544
AHPBCC 0.269562 0.073305 0.312500 0.003037 0.156250 0.078125

19 BCC 1 �0.802102 0 0.019790 1.046160 0.332201
BCCCOR 1 �0.801805 0.000989 0.019790 1.046146 0.332449
AHPBCC 1 �0.799131 0.009895 0.019790 1.046027 0.334684

20 BCC 1 �1.000000 0 0 6.250000 0
BCCCOR 1 �0.383747 0.770316 0 0.630173 0.449586
AHPBCC 1 �0.731034 0.336207 0 0,862069 0.431034

21 BCC 1 0.781336 1.047845 0 0.355872 0
BCCCOR 0.973426 0.561943 0.815681 0.005508 0.142808 0.299355
AHPBCC 0.906979 0.123137 0.524934 0.005101 0.262467 0.131234

22 BCC 0.913151 �0.665012 0.248139 0 0.062035 15.285359
BCCCOR 0.677921 0.253326 0.931247 0 0.226383 2.794858
AHPBCC 0.407843 0.115033 0.522876 0 0.261438 0.130719
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Table 7 (continued)

DMUs Models Efficiency u0 u1 u2 v1 v2

23 BCC 0.923416 �0.460861 0.925110 0 0.756806 0.539930
BCCCOR 0.923416 �0.460861 0.925110 0 0.756806 0.539930
AHPBCC 0.802308 �0.652308 0.300000 0 0.769231 0.384615

24 BCC 0.846536 �0.422491 0.848089 0 0.693797 0.494978
BCCCOR 0.846536 �0.422491 0.848089 0 0.693797 0.494978
AHPBCC 0.734507 �0.597183 0.274648 0 0.704225 0.352113

25 BCC 0.556195 0.007259 0.427457 0.013600 0.214609 1.104841
BCCCOR 0.556195 0.007259 0.427457 0.013600 0.214609 1.104841
AHPBCC 0.462519 0.125778 0.536193 0.005210 0.268097 0.134048

26 BCC 0.770664 1.120841 1.131918 0.006809 0.106124 0.344523
BCCCOR 0.744057 0.523944 0.736925 0.004955 0.123873 0.270452
AHPBCC 0.571405 0.079048 0.336984 0.003275 0.168492 0.084246

27 BCC 1 �0.032924 0 0.004717 0.250000 0
BCCCOR 1 �0.037211 0.000235 0.004696 0.248825 0.002315
AHPBCC 1 �0.034072 0.002352 0.004703 0.249204 0.001568

Table 9
Spearman’s test results.

CCR BCC CCRCOR BCCCOR MCDEA AHPCCR AHPBCC

Spearman rho CCR Correlation Coefficient 1.000 0.826** 0.827** 0.720** 0.543** 0.623** 0.518**

Sig.(2 tailed) , 0.000 0.000 0.000 0.003 0.001 0.006
N 27 27 27 27 27 27 27

BCC Correlation Coefficient 0.826** 1.000 0.687** 0.800** 0.381 0.578** 0.592**

Sig.(2-tailed) 0.000 , 0.000 0000 0.050 0.002 0.001
N 27 27 27 27 27 27 27

CCRCOR Correlation Coefficient 0.827** 0.687** 1.000 0.890** 0.720** 0.838** 0.751**

Sig.(2 tailed) 0.000 0.000 , 0.000 0.000 0.000 0.000
N 27 27 27 27 27 27 27

BCCCOR Correlation Coefficient 0.720** 0.800** 0.890** 1.000 0.656** 0.802** 0.842**

Sig.(2 tailed) 0.000 0.000 0.000 , 0.000 0.000 0.000
N 27 27 27 27 27 27 27

MCDEA Correlation Coefficient 0.543** 0.381 0.720** 0.656** 1.000 0.797** 0.714**

Sig.(2 tailed) 0.003 0.050 0.000 0.000 , 0.000 0.000
N 27 27 27 27 27 27 27

AHPCCR Correlation Coefficient 0.623** 0.578** 0.838** 0.802** 0.797** 1.000 0.920**

Sig.(2 tailed) 0.001 0.002 0.000 0.000 0.000 , 0.000
N 27 27 27 27 27 27 27

AHPBCC Correlation Coefficient 0.518** 0.592** 0.751** 0.842** 0.714** 0.920** 1.000
Sig.(2 tailed) 0.006 0.001 0.000 0.000 0.000 0.000 ,
N 27 27 27 27 27 27 27

** Correlation is significant at the 0,01 level (2-tailed).

Table 8
The comparison of BCC, BCCCOR and AHPBCC models.

The general situation Models The number of efficient DMUs The number of zero weights

u0 u1 u2 v1 v2

BCC 11 – 6 11 1 3
BCCCOR 8 – 1 7 – –
AHPBCC 3 – 1 6 – –
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When the CCR model and BCC models were examined separately in accordance with Spearman’s test results in Table 9,
the maximum relationship which was among the models derived from CCR model, was seen between CCRCOR and AHPCCR
models with 83.8%. The maximum relationship among of models derived from BCC models was found between BCCCOR and
AHPBCC with 84.2%. The highest relationship in terms of ranking with the classical CCR model was seen in CCRCOR model
with correlation coefficient of 82.7%. The classical BCC model was similar to the BCCCOR model which had got the highest
relationship in the terms of ranking with correlation coefficient of 80%. As shown the CCRCOR and BCCCOR models have led
to greatly reduced the number of zero weights by assigning weights to the input and output variables according to the cor-
relations between variables. Thus, when the CCRCOR and BCCCOR models were determined efficiency scores in the level of
the relationship between input and output variables, the models also yielded very good results about the balanced weight
distribution.
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8. Conclusion

The classical DEA models which assign weights as the free, often give not well-balanced weight distribution and unreal-
istic results. Therefore, the weight restrictions are needed. A lot of work related to weight restrictions has been done in the
literature. In some of these studies, without taking into account the relations between the variables (input/output), the in-
puts or outputs are multiplied by a vector and this approach is called as cone ratio weight restriction. Furthermore, if only
the inputs or outputs are restricted among themselves, these weight restrictions are called as ARI approach. Moreover, if the
inputs and outputs are taken as a ratio in conjunction with each other, the weight restrictions are called as ARII approach. In
general, the restrictions of this approaches are made by expert opinions or a variety of ways with weighting. We recommend
ARIII (COR) that also makes the task of ARI and ARII, taking into account the relationships between variables through the
correlation matrix at the same time. The restricted DEA methods with correlation coefficients were called as CCRCOR, BCC-
COR by us. In these methods (CCRCOR and BCCCOR), while the relationships between input and output variables were taken
into account, the weight restrictions were considered according to the correlation coefficients. Weight restrictions were real-
ized in earlier studies only by using expert opinion or by the idea to provide not zero of weights of the input/output variables.
So, the relationships in previous studies are not taken into account. We recommend this approach which is not previously
available in the literature and does not require the preferences of experts. The results do not change according to analysts,
because the methods are objective. The new approach prevents actual inefficient DMUs from being found as efficient. In our
proposed approach, the relationships between variables were especially considered, therefore more realistic results can be
obtained. Thus, according to the correlations between input and output variables, a more balanced distribution of the
weights is provided.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/
j.apm.2012.07.010.
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[25] H. Bal, H.H. Örkçü, S. Çelebioğlu, A new method based on the dispersion of weights in Data Envelopment Analysis, Computers&Industrial Engineering

54 (2008) 502–512.
[26] Y.M. Wang, Ç. Parkan, Y. Luo, A linear programming method for generating the most favorable weights from a pairwise comparison matrix, Comput.

Oper. Res. 35 (2008) 3918–3930.
[27] H. Bal, H.H. Örkcü, A Goal Programming approach to weight dispersion in Data Envelopment Analysis, G.U J. Sci. 20 (2007) 117–125.
[28] E. Bernroider, V. Stix, A method using weight restrictions in data envelopment analysis for ranking and validity issues in decision making, Comput.

Oper. Res. 34 (2007) 2637–2647.
[29] J. Wu, L. Liang, F. Yang, Achievement and benchmarking of countries at the Summer Olympics using cross efficiency evaluation method, Eur. J. Oper.

Res. 197 (2009) 722–730.

http://dx.doi.org/10.1016/j.apm.2012.07.010
http://dx.doi.org/10.1016/j.apm.2012.07.010


E.D. Mecit, I. Alp / Applied Mathematical Modelling 37 (2013) 3407–3425 3425
[30] J.C.C.B. Soares De Mello, L. Angulo-Meza, B. Branco Da Silva, A ranking for the Olympic Games with unitary input DEA models, IMA J. Manage. Math. 20
(2009) 201–211.

[31] M.P. Estellita Lins, A.C. Moreira da Silva, C.A.K. Lovell, Avoiding infeasibility in DEA models with weight restrictions, Eur. J. Oper. Res. 181 (2007) 956–
966.

[32] R. Allen, A. Athanassopoulos, R.G. Dyson, E. Thanassoulis, Weights restrictions and value judgements in Data Envelopment Analysis: evolution,
development and future directions, Ann. Oper. Res. 73 (1997) 13–34.

[33] B. Golany, A note on including ordinal relations among multiplier in data envelopment analysis, Manage. Sci. 34 (1988) 1029–1033.
[34] R.D., Banker, A. Charnes, W.W. Cooper, J. Swarts, D.A. Thomas, An introduction to Data Envelopment Analysis with some of its models and their uses,

Res. Gov. Nonprofit Account. 5 (1989) 125–163.
[35] R.G. Thompson, P.S. Dharmapala, L.J. Rothenberg, R.M. Thrall, DEA/AR efficiency and profitability of 14 major oil companies in U.S. exploration and

production, Computers, Oper. Res. 23 (1996) 357–373.
[36] J. Zhu, DEA/AR analysis of the 1988–1989 performance of the Nanjing textiles corporation, Ann. Oper. Res. 66 (1996) 311–335.
[37] Y. Roll, W.D. Cook, B. Golany, Controlling factor weights in data envelopment analysis, IIE Trans. 23 (1991) 2–9.
[38] J. Kornbluth, Analysing policy effectiveness using cone restricted Data Envelopment Analysis, J. Oper. Res. Soc. 42 (1991) 1097–1104.
[39] W.D. Cook, M. Kress, L.M. Seiford, Prioritization models for frontier decision making units in DEA, Eur. J. Oper. Res. 59 (1992) 319–323.
[40] F. Pedraja-Chaparro, J. Salinas-Jimenez, P. Smith, On the role of weight restrictions in data envelopment analysis, J. Prod. Anal. 8 (1997) 215–230.
[41] T.L. Saaty, Analytic Hierarchy Process, McGraw-Hil, New York, 1980.
[42] C.C. Liu, Simulating weights restrictions in data envelopment analysis by the subjective and objective integrated approach, Web J. Chin. Manage. Rev. 6

(2003) 68–78.
[43] A. Azadeh, S.F. Ghaderi, H. Izadbakhsh, Integration of DEA and AHP with computer simulation for railway system improvement and optimization, Appl.

Math. Comput. 195 (2008) 775–785.
[44] S. Dimitrov, W. Sutton, Promoting symmetric weight selection in data envelopment analysis: a penalty function approach, Eur. J. Oper. Res. 200 (2010)

281–288.
[45] S. Sun, W.-M. Lu, A cross-efficiency profiling for increasing discrimination in data envelopment analysis, INFOR 43 (2005) 51–60.


	A new proposed model of restricted data envelopment analysis by correlation coefficients
	1 Introduction
	2 Literature study
	3 Weight restriction in DEA
	3.1 Direct restrictions on the weights
	3.1.1 Assurance regions of type I (ARI)
	3.1.2 Assurance regions of type II (ARII)
	3.1.3 Absolute weight restrictions

	3.2 To adjust the observed input-output levels for take into account of value judgments
	3.2.1 The cone ratio model
	3.2.2 The Golany method

	3.3 The restriction of weighted inputs and outputs

	4 The classical DEA methods
	4.1 The CCR model
	4.1.1 Input oriented CCR model (CCRi)
	4.1.2 Output oriented CCR model (CCRo)

	4.2 The BCC model
	4.2.1 Input oriented BCC model (BCCi)
	4.2.2 Output oriented BCC model (BCCo)


	5 The weight restriction models
	5.1 A new AR approach (ARIII)
	5.1.1 A new AR model of restricted Data Envelopment Analysis by correlation coefficients (ARIII(COR))
	5.1.2 An AR approach (ARIII (AHP)) of restricted with Analytical Hierarchy Process (AHP)

	5.2 Multiple criteria data envelopment analysis (MCDEA)

	6 Comparison of models based on similarities and differences
	7 Application
	8 Conclusion
	Appendix A Supplementary data
	References


