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A New Estimator based on Auxiliary 
Information through Quantitative 
Randomized Response Techniques 

Nilgün Özgül 
Hacettepe University 

Ankara, Turkey 

Hülya Çıngı 
Hacettepe University 

Ankara, Turkey 

 

 
An exponential-type estimator is developed for the population mean of the sensitive study 
variable based on various Randomized Response Techniques (RRT) using a non-sensitive 
auxiliary variable. The mean squared error (MSE) of the proposed estimator is derived 
for generalized RRT models. The proposed estimator is compared with competitors in a 
simulation study and an application. The proposed estimator is found to be more efficient 
using a non-sensitive auxiliary variable. 
 

Keywords: Randomized response techniques, sensitive question, auxiliary variable, 
exponential estimator, efficiency 

 

Introduction 

In surveys on sensitive topics, estimation of the population mean with a direct 

questioning technique may cause respondents to refuse answering or to give 

untruthful answers on purpose. Respondents may encounter questions about drug 

use, illegal income, political views, abortion, homosexual activities, and AIDS in 

some social, medical, and epidemiological questionnaires. On these surveys, 

respondents do not feel comfortable and they may choose not to answer or may 

intentionally provide false answers. This can bring about significant bias in the 

estimation of population parameters. 

Random response techniques (RRT) are used to reduce nonrespondent’s 

rates and biased responses to sensitive questions. Warner (1965) introduced the 

randomization technique for the proportion of a population characterized by a 

sensitive variable, which was followed by studies where the response to a 

sensitive question results in a quantitative variable. Quantitative RRT are used to 
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estimate the mean value of some behavior in a population. For example, the 

sensitive study variable may be the total number of abortions a woman has had or 

the average weekly alcohol consumption or annual earnings of people. These 

RRT are sub-classified as either additive or multiplicative techniques. 

In additive RRT, respondents are asked to scramble their responses using a 

randomization device such as a deck of cards. Each of the cards in the deck has a 

number. The numbers in the deck follow a known probability distribution, such as 

Normal, Chi-square, Uniform, Poisson, Binomial, Weibull, etc. The respondent is 

asked to add the real response to the number listed on card picked, and then report 

only the sum to the interviewer. Multiplicative RRT are similar to additive RRT. 

Again, a deck of cards with known probability distribution is used, but now when 

the respondents scramble their responses, they are asked to report the product of 

the real response and the number listed on the selected card. The interviewer 

cannot see the card, but records the reported number. RRT can also be categorized 

by how the respondents are instructed to randomize. If all respondents are asked 

to randomize their response, the model is characterized as a full randomization 

RRT model. If some of the respondents are instructed to randomize their response, 

the model is characterized as a “partial RRT model” (Özgül, 2013). 

Thornton and Gupta (2004) extended Warner’s (1971) approach by using 

partial additive models for estimating the mean of sensitive quantitative variables 

in RRT. The multiplicative model was later investigated in depth by Eichhorn and 

Hayre (1983), who referred to it as the scrambled responses method. Similarly, 

Bar-Lev, Bobovitch, and Boukai (2004) proposed a method which uses a partial 

model that generalizes Eichhorn and Hayre’s results and yields an estimate which, 

under mild conditions, has a uniformly smaller variance. Further developments 

focused on the use of auxiliary variables to improve the precision. Diana and Perri 

(2011), Sousa, Shabbir, Real, and Gupta (2010), and Gupta, Shabbir, Sousa, and 

Real (2012) suggested mean estimators using the auxiliary variable for estimating 

of the quantitative sensitive variable in RRT. Bahl and Tuteja (1991), Shabbir and 

Gupta (2011), Grover and Kaur (2014), and Özgül and Cingi (2014) studied 

exponential-type estimators to obtain more efficient estimates for various 

sampling methods. In the current study, an exponential-type estimator of the mean 

of a sensitive variable is proposed using a non-sensitive auxiliary variable for 

generalized partial quantitative RRT. 
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Various Estimators Based on Auxiliary Information through 
Quantitative RRT 

Diana and Perri (2011) introduced a general mechanism to scramble responses 

and proposed a class of regression estimators for the mean of a sensitive variable 

using a non-sensitive auxiliary variable. To estimate μy, a sample of individuals is 

selected from the population and each respondent is asked to perform a Bernoulli 

trial with a probability of success P. If this is successful, the respondent then gives 

the true values of both Y and X. In the case of failure, the respondent gives their 

answers by using the values given in S and R, which are the various randomized 

designs for the variables Y and X, respectively. The interviewer does not know the 

outcome of the Bernoulli experiment. Then, the distribution of the responses is 

given in (1) as 

 

  
 

   

, with probability
,

, with probability 1

Y X P
Z U

S R P


 


  (1) 

 

where Y is the sensitive variable of interest with unknown mean μy and unknown 

variance 
2

yS , X is the non-sensitive variable with known mean μx and known 

variance 2

xS , Z is the reported response for the sensitive variable Y, and U is the 

reported response for the first non-sensitive variable X. In S and R, the 

respondents answer the questions using the additive or multiplicative technique. 

For the additive technique, each respondent is requested to draw a value from the 

distribution of the scrambling variable, add it to the real response, and report back 

to the interviewer. For the multiplicative model, the respondent responds with the 

product of the drawn value and their true response. The scrambling variables are 

defined as W and T which have pre-assigned distributions such as Normal, Chi-

square, Uniform, Poisson, Binomial, Weibull, etc. W is the scrambling variable 

with known true mean μw and known variance 2

wS  in S and T is the scrambling 

variable with known true mean μt and variance 2

tS  in R (Özgül, 2013). 

Under the generic scheme given in (1), the following class of estimators 

based on a SRSWR sample {(z1, u1), (z2, u2),…, (zn, un)} of n responses is 
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where b is a suitably selected real constant and 
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are the sample means of the reported responses for the sensitive variable and the 

non-sensitive auxiliary variable, respectively. Here, c and h depend exclusively on 

the scrambling design. 

The variance of 
DP̂  is 
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are the population variances of z and u, respectively, 
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is the population covariance between z and u, 2

zu uB S S  is the population 

regression coefficient between z and u, and 

 

 
1 1

1 1
,

N N

z i u i

i i

z u
N N

 
 

     

 

are the population means of z and u, respectively. The minimum variance of DP̂  

is 
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where  zu zu z uS S S   is the population correlation coefficient between z and u. 

Sousa et al. (2010) proposed a ratio estimator for the mean of a sensitive 

variable using a non-sensitive auxiliary variable. The respondent is asked to 

provide true responses for X. The Sousa et al. estimator is 

 

 
SR

ˆ xz
x




 
  

 
  (5) 

 

where z̄ is the sample mean of the reported responses for the sensitive variable 

(Z = Y + W), 

 

 
1

1 N

x i

i
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is the known population mean of non-sensitive auxiliary variable, and 

 

 
1

1 n

i

i

x x
n 

    

 

is the sample mean of non-sensitive auxiliary variable. The Bias and MSE of SR̂ , 

under first order of the approximation, is 

 

    2ˆBias SR z x zxC C     (6) 

 

   2 2 2ˆMSE 2SR z z x xz x zC C C C         (7) 

 

where 

 

 
1 1

n N
     

 

and Cz = Sz/μz and Cx = Sx/μx are the coefficients of variation of Z and X, 

respectively. 

Gupta et al. (2012) proposed regression-cum-ratio estimator using a non-

sensitive auxiliary variable. 
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ˆ x

xb z b x
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  (8) 

 

where z̄, μx, and x̄ are defined as above for (5), and b1 and b2 are constants. The 

Bias and minimum MSE of GRR̂ , under first order of the approximation, is 
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  (10) 

Suggested Exponential-Type Estimator Based on Auxiliary 
Information through Quantitative RRT 

Applying the general formulation of Diana and Perri (2011) and following Grover 

and Kaur (2014), an exponential-type estimator for the mean of a sensitive 

variable is proposed using a non-sensitive auxiliary variable in RRT. Consider the 

following improved exponential estimator based on a SRSWOR sample {(z1, u1), 

(z2, u2),…, (zn, un)} of n responses: 
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        (11) 

 

where b1 and b2 are suitably selected real constant and α and β are already 

assumed to be either any known constants or functions of any known population 

parameters of the auxiliary variable, such as standard deviation (σx), coefficient of 

variation (Cx), coefficient of skewness {β1(x)}, coefficient of kurtosis {β2(x)}, 

coefficient of correlation (ρyx) (Cingi & Kadilar, 2009). Here, c and h depend 

exclusively on the scrambling design. 

To obtain the MSE equation for the proposed estimator, we define following 

relative error terms 
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such that 

 

          2 2 2 2

0 1 0 1 0 1E E 0; E , E , Ez u zu z ue e e C e C e e C C         

 

where 

 

 
   

2
2

2

2 2

2 21 1

, , , ,

,
1 1

zu u u z
zu u u z

z u u u z

N N

i z i zi i
z u

S S S S
C C C

S S

z u
S S

N N


  

 
 

   

 
 

 

 
  

 

Expressing (11) in terms of the e’s: 
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where 
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u
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Assuming |e1| < 1, expanding the right hand side of (10), and retaining terms up to 

the second degree of the e’s we have 
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  (13) 

 

Taking the expectation both sides of (13), the Bias Equation of  NH exp
̂  is 

obtained to the first degree of approximation as 
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   (14) 

 

Squaring both sides of (13), retaining terms of the e’s up to the second degree and 

taking the expectation, we get the MSE Equation of  NH exp
̂  to the first degree of 

approximation as 
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  (15) 

 

where 2 2 24 4z u zu z uA C C C C    , 22 u zu z uD C C C   , and Cu is the 

coefficient of variation of u. 

To minimize 
  NH exp

ˆMSE  , consider the following normal equations: 
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On solving these two normal equations simultaneously, the optimum values of b1 

and b2 are, respectively, 
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  (16) 

 

On substituting the optimum values of b1 and b2 from (15) into (14), the minimum 

MSE of the proposed estimator  NH exp
̂ , up to first order of approximation, is 

given by 
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  (17) 

 

The expressions of c, h, and the MSE and mean equations change depending on 

the specified models. Two additive models and two multiplicative models are 

specified. In the first model, M1, the additive technique is applied for the sensitive 

variable while the direct technique is utilized for the non-sensitive auxiliary 

variable: {Z = PY + (1 – P)(Y + W), U = X}. In the second model, M2, the 

multiplicative model is applied for the sensitive variable while the direct 

technique is utilized for the non-sensitive auxiliary variable: {Z = PY + (1 –

 P)(YW), U = X}. In the third model, M3, the additive model is applied for both 

the sensitive variable and the non-sensitive auxiliary variable: {Z = PY + (1 –

 P)(Y + W), U = PX + (1 – P)(X + T)}. In the fourth model, M4, the multiplicative 

model is applied for both the sensitive variable and the non-sensitive auxiliary 

variable: {Z = PY + (1 – P)(YW), U = PX + (1 – P)(XT)}. In some surveys dealing 

with sensitive topics, the auxiliary variable that researchers determine to be non-

sensitive may be sensitive for respondents. Therefore, in the third model M3 and 

fourth model M4, randomized devices are also used for the auxiliary variable. 

Mean, variance, and correlation equations, which will be used in MSE equation in 

(17), are presented in Appendix A according to these four models (Özgül, 2013). 

Efficiency Comparisons 

A comparison of the proposed estimator with the Diana and Perri (2011) estimator 

DP̂ , the Sousa et al. (2010) estimator SR̂ , and the Gupta et al. (2012) estimator 

GRR̂  is now considered. To compare the efficiencies of the various existing 

estimators with the proposed estimator, we compare their MSE under the model 1 

M1, in which the respondent is asked to provide true responses for X. The MSEs 

of estimators under that model with SRSWOR are given below: 
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From (18) and (21), 
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and so     DP NH expmin
ˆ ˆVar MinMSE 0    always. 

From (19) and (21), 
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From (20) and (21), 
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and so     GRR NH expmin
ˆ ˆMSE MinMSE 0    provided that   2 2 21 1x z zxC C     . 
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Simulation Study 

A simulation study is presented to show the performance of the proposed 

estimator in comparison to other estimators using the auxiliary variable for RRT 

models. The proposed estimator  NH exp
̂  is compared with the Diana and Perri 

(2011) estimator 
DP̂ , the Sousa et al. (2010) estimator 

SR̂ , and the Gupta et al. 

(2012) estimator GRR̂ . Three finite populations of size 1000 are generated from a 

multivariate normal distribution. The three populations each have theoretical 

mean μ = [5, 5] of [Y, X] and have different covariance matrices. The populations 

are generated based on correlation levels between the variables. The correlation 

levels are classified as low, medium and high. The covariance matrices and the 

correlations are presented below. The scrambling variable W is considered to be a 

normal random variable with mean equal to zero and standard deviation equal to 

0.30. The scrambling variable T is considered to be a normal random variable 

with mean equal to zero and standard deviation equal to 0.20. We use the 

simulation studies of Gupta et al. to determine the parameters that are easier to 

compare. 

The covariance matrices and the correlation coefficients for each population 

are given below: 

 

Population I (Low Correlation): 

 

 1

9.0 5.4
, 0.30

5.4 4.0
yx

 
  
 

Σ   

 

Population II (Medium Correlation): 

 

 2

9.0 3.6
, 0.60

3.6 4.0
yx

 
  
 

Σ   

 

Population III (High Correlation): 

 

 3

9.0 5.4
, 0.90

5.4 4.0
yx

 
  
 

Σ   
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Table 1. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 1 (M1) 
 

   

Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 0.1684 0.1894 0.1672 0.1601 

ρyx = 0.30 
 

Empirical 0.1728 0.1916 0.1754 0.1705 

 
100 Theoretical 0.0838 0.0942 0.0828 0.0782 

  
Empirical 0.0840 0.0945 0.0840 0.0808 

 
200 Theoretical 0.0415 0.0466 0.0414 0.0398 

  
Empirical 0.0408 0.0465 0.0411 0.0388 

 
300 Theoretical 0.0274 0.0308 0.0273 0.0268 

  
Empirical 0.0272 0.0308 0.0272 0.0262 

       
II 50 Theoretical 0.1197 0.1203 0.1191 0.0972 

ρyx = 0.60 
 

Empirical 0.1187 0.1191 0.1187 0.0982 

 
100 Theoretical 0.0595 0.0599 0.0594 0.0494 

  
Empirical 0.0608 0.0613 0.0610 0.0498 

 
200 Theoretical 0.0295 0.0296 0.0291 0.0239 

  
Empirical 0.0300 0.0302 0.0297 0.0244 

 
300 Theoretical 0.0194 0.0196 0.0194 0.0162 

  
Empirical 0.0193 0.0193 0.0193 0.0158 

       
III 50 Theoretical 0.0358 0.0472 0.0358 0.0058 

ρyx = 0.90 
 

Empirical 0.0372 0.0480 0.0374 0.0060 

 
100 Theoretical 0.0178 0.0235 0.0178 0.0098 

  
Empirical 0.0186 0.0239 0.0186 0.0100 

 
200 Theoretical 0.0088 0.0116 0.0088 0.0033 

  
Empirical 0.0091 0.0120 0.0091 0.0014 

 
300 Theoretical 0.0058 0.0077 0.0058 0.0010 

  
Empirical 0.0060 0.0079 0.0060 0.0010 

 
 
Table 2. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 2 (M2) 
 

   
Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 3.5609 3.5628 3.1889 3.1872 

ρyx = 0.30 
 

Empirical 2.6095 2.5585 2.2517 2.2515 

 
100 Theoretical 1.6867 1.6877 1.5985 1.5980 

  
Empirical 1.5985 1.6009 1.3017 1.3015 

 
200 Theoretical 0.7497 0.7501 0.7317 0.7316 

  
Empirical 1.0440 1.0409 0.8691 0.8622 

 
300 Theoretical 0.4373 0.4376 0.4311 0.4310 

  
Empirical 0.8338 0.8312 0.7260 0.7259 
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Table 2, continued. 

 

   

Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

II 50 Theoretical 3.1069 3.1073 2.8349 2.8334 

ρyx = 0.60 
 

Empirical 2.1729 2.1638 1.9602 1.9517 

 
100 Theoretical 1.4717 1.4719 1.4078 1.4073 

  
Empirical 1.3937 1.3960 1.1353 1.1316 

 
200 Theoretical 0.6541 0.6542 0.6412 0.6410 

  
Empirical 0.9189 0.9192 0.7682 0.7624 

 
300 Theoretical 0.3816 0.3816 0.3772 0.3770 

  
Empirical 0.7939 0.7964 0.6994 0.6898 

       
III 50 Theoretical 2.8921 2.9277 2.6571 2.6557 

ρyx = 0.90 
 

Empirical 2.0042 2.0091 1.8101 1.7838 

 
100 Theoretical 1.3699 1.3868 1.3150 1.3145 

  
Empirical 1.3401 1.3760 1.0960 1.0958 

 
200 Theoretical 0.6089 0.6164 0.5978 0.5976 

  
Empirical 0.9457 0.9552 0.8018 0.7990 

 
300 Theoretical 0.3552 0.3596 0.3514 0.3512 

    Empirical 0.8639 0.8687 0.7715 0.7684 

 
 
Table 3. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 3 (M3) 
 

   
Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 0.1670 0.1883 0.1659 0.1603 

ρyx = 0.30 
 

Empirical 0.1722 0.1905 0.1740 0.1698 

 
100 Theoretical 0.0831 0.0937 0.0835 0.0780 

  
Empirical 0.0835 0.0938 0.0847 0.0798 

 
200 Theoretical 0.0411 0.0464 0.0411 0.0394 

  
Empirical 0.0405 0.0462 0.0408 0.0382 

 
300 Theoretical 0.0271 0.0306 0.0271 0.0257 

  
Empirical 0.0270 0.0307 0.0271 0.0257 

       
II 50 Theoretical 0.1183 0.1191 0.1178 0.0964 

ρyx = 0.60 
 

Empirical 0.1188 0.1180 0.1173 0.0978 

 
100 Theoretical 0.0589 0.0593 0.0588 0.0484 

  
Empirical 0.0606 0.0605 0.0600 0.0488 

 
200 Theoretical 0.0291 0.0293 0.0294 0.0238 

  
Empirical 0.0297 0.0298 0.0300 0.0242 

 
300 Theoretical 0.0192 0.0194 0.0197 0.0157 

    Empirical 0.0191 0.0191 0.0193 0.0157 
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Table 3, continued. 

 

   

Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

III 50 Theoretical 0.0357 0.0459 0.0357 0.0056 

ρyx = 0.90 
 

Empirical 0.0375 0.0466 0.0370 0.0061 

 
100 Theoretical 0.0178 0.0229 0.0178 0.0096 

  
Empirical 0.0188 0.0233 0.0186 0.0100 

 
200 Theoretical 0.0088 0.0113 0.0088 0.0031 

  
Empirical 0.0090 0.0116 0.0090 0.0017 

 
300 Theoretical 0.0058 0.0075 0.0058 0.0028 

  
Empirical 0.0059 0.0077 0.0060 0.0028 

 
 
Table 4. Theoretical and empirical MSEs of estimators according to degree of the 

correlation between the sensitive and non-sensitive variable for model 4 (M4) 
 

   
Estimators 

Population n MSE 
ˆ

DP
μ  ˆ

SR
μ  ˆ

GRR
μ   

ˆ
NH exp
μ  

I 50 Theoretical 2.0340 2.8564 1.8945 1.8568 

ρyx = 0.30 
 

Empirical 2.6028 3.3407 2.2134 1.9528 

 
100 Theoretical 0.9635 1.3530 0.9327 0.9223 

  
Empirical 1.4757 1.6144 1.2717 1.1878 

 
200 Theoretical 0.4282 0.6013 0.4222 0.4199 

  
Empirical 0.8659 0.8751 0.7673 0.7651 

 
300 Theoretical 0.2498 0.3508 0.2478 0.2469 

  
Empirical 0.6889 0.6764 0.6284 0.6265 

       
II 50 Theoretical 1.6396 2.4315 1.5521 1.5146 

ρyx = 0.60 
 

Empirical 2.2175 2.9569 1.8395 1.6508 

 
100 Theoretical 0.7767 1.1518 0.7577 0.7479 

  
Empirical 1.3376 1.6164 1.1199 1.0010 

 
200 Theoretical 0.3452 0.5119 0.3415 0.3394 

  
Empirical 0.8464 0.9276 0.7488 0.7016 

 
300 Theoretical 0.2014 0.2990 0.2001 0.1993 

  
Empirical 0.7073 0.7303 0.6484 0.6456 

       
III 50 Theoretical 1.3325 2.2892 1.2748 1.2421 

ρyx = 0.90 
 

Empirical 1.7606 2.1009 1.4869 1.4323 

 
100 Theoretical 0.6312 1.0843 0.6187 0.6104 

  
Empirical 1.1714 1.2880 1.0017 0.9817 

 
200 Theoretical 0.2806 0.4820 0.2781 0.2763 

  
Empirical 0.7664 0.7792 0.6878 0.6821 

 
300 Theoretical 0.1637 0.2811 0.1628 0.1622 

    Empirical 0.6670 0.6459 0.6185 0.6139 
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The process was repeated 5000 times and for different sample sizes: n = 50, 

100, 200, and 300. The value of the design parameter P changes from 0.10 to 0.90 

with an increment of 0.1. We observe small differences in efficiency with almost 

each value of the design parameter when an auxiliary variable is utilized in RRT 

models. Thus, simulation results are only presented for P = 0.20. That means 20 

percent of the respondents gave direct answers; the rest of the respondents use the 

randomized devices. The performances of the estimators are measured by the 

simulated MSE: 

 

    
5000

2

1

1
ˆ ˆMSE

5000
i y

i

  


    

 

where ˆ
i  is the estimate of μy on the ith sample. Simulation results are 

summarized in Tables 1-4. 

In Tables 1-4, theoretical and empirical MSE values of the estimators, 

according to degree of the correlation between the sensitive and non-sensitive 

variables, are given for the four specified models. In all circumstances, regardless 

of both degree of correlation and sample size, the proposed estimator is always 

more efficient than the Diana and Perri (2011) estimator DP̂ , the Sousa et al. 

(2010) estimator SR̂ , and the Gupta et al. (2012) estimator GRR̂ . The MSE 

values of the estimators are smaller when the sample size increases, and that is an 

expected result. However, additive models performed better than multiplicative 

models. When additive models are applied in RRT, more efficient estimates are 

obtained. 

Application 

To test the models and show the performance of the proposed estimator in 

comparison to other estimators, a survey was performed at the Hacettepe 

University Department of Statistics to estimate the grade point average (GPA) of 

students who graduated in 2016. One hundred and two students who graduated in 

2016 are considered as our population. In this application, the study variable Y is 

the GPA of students, the auxiliary variable X is study hours per week. Four 

models for P = 0.20 were applied to the population. Twenty students were 

requested to report their true GPA, and 82 students used the randomized devices. 

To apply the randomized devices, random numbers were generated for scrambling 

variables W and T. For scrambling variable W, 82 random numbers were 
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generated from the normal distribution with mean equal to zero and standard 

deviation equal to 0.60. For scrambling variable T, 82 random numbers were 

generated from the normal distribution with mean equal to zero and standard 

deviation equal to 0.20. 

The following are some characteristics of the population: 

 

 
2 22.51, 7.16, 0.1166, 38.53, 0.71y x yxY X S S        

 
 
Table 5. Theoretical Bias and MSE values of the estimators by using non-sensitive 

auxiliary variable according to Models 
 

  
n = 50

 

 
n = 100

 

 
n = 200

 

Model Estimators Bias MSE   Bias MSE   Bias MSE 

M1 ˆ
DP
μ  -- 0.0155 

 
-- 0.0091 

 
-- 0.0039 

 
ˆ

SR
μ  0.0563 0.1205 

 
0.0329 0.0705 

 
0.0143 0.0305 

 
ˆ

GRR
μ  0.0061 0.0155 

 
0.0035 0.0091 

 
0.0015 0.0039 

  
ˆ

NH exp
μ  0.0041 0.0151 

 
0.0024 0.0089 

 
0.0011 0.0038 

          
M2 ˆ

DP
μ  -- 2.3298 

 
-- 1.3638 

 
-- 0.5909 

 
ˆ

SR
μ  0.1290 2.3519 

 
0.0151 1.3767 

 
0.0054 0.5966 

 
ˆ

GRR
μ  0.5661 1.9313 

 
0.3571 1.2184 

 
0.0337 0.5622 

  
ˆ

NH exp
μ  0.5548 1.9212 

 
0.3504 1.2134 

 
0.0330 0.5609 

          

M3 ˆ
DP
μ  -- 0.0143 

 
-- 0.0084 

 
-- 0.0091 

 
ˆ

SR
μ  0.0604 0.1270 

 
0.0354 0.0743 

 
0.0153 0.0322 

 
ˆ

GRR
μ  0.0056 0.0143 

 
0.0033 0.0084 

 
0.0014 0.0036 

  
ˆ

NH exp
μ  0.0039 0.0139 

 
0.0023 0.0082 

 
0.0010 0.0035 

          
M4 ˆ

DP
μ  -- 2.0248 

 
-- 1.1852 

 
-- 0.5136 

 
ˆ

SR
μ  0.0474 2.0475 

 
0.0277 1.1985 

 
0.0121 0.5194 

 
ˆ

GRR
μ  0.4974 1.6970 

 
0.3135 1.0696 

 
0.1440 0.4914 

   
ˆ

NH exp
μ  0.9625 0.3203   0.2991 0.5629   0.0276 0.3902 

 

Note: Blank cells indicate unbiased estimators. 
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To compute the Bias and MSE values of the Diana and Perri (2011) estimator 

DP̂ , the Sousa et al. (2010) estimator 
SR̂ , the Gupta et al. (2012) estimator 

GRR̂ , and the proposed estimator  NH exp
̂  for the four models based on different 

sample sizes: n = 20, 30, and 50, arbitrarily take α = 1 and β = −1, that is 

 

 
 2 1

x

x








  

 

for simplicity. The results are summarized in Table 5. 

In the application study, the most efficient estimator was the proposed 

exponential-type estimator. It was always more efficient than the existing 

estimators in all RRT models for different sample sizes. From Table 5, it can be 

concluded that the additive models were more efficient than the multiplicative 

models and that the proposed estimator gave better results. 

Conclusion 

An exponential-type estimator was proposed, based on a non-sensitive auxiliary 

variable, for the population mean of a sensitive variable for Generalized 

Quantitative RRT models. The MSE equation is derived for all Quantitative RRT 

models. The proposed estimator was more efficient than other existing estimators 

in all circumstances, regardless of which model was applied. It was shown that 

the efficiency of the proposed estimator can be quite substantial if the correlation 

between the study and the auxiliary variables is high. Additionally, the additive 

models were more efficient than the multiplicative models. These results were 

supported by simulation and application studies. In a future work, an estimator 

will be developed for the population mean of the sensitive study variable by 

combining additive and multiplicative techniques based on Quantitative RTT 

using multi-sensitive auxiliary variables. 

References 

Bahl, S., & Tuteja, R. K. (1991). Ratio and product type exponential 

estimators. Journal of Information and Optimization Sciences, 12(1), 159-164. 

doi: 10.1080/02522667.1991.10699058 

https://dx.doi.org/10.1080/02522667.1991.10699058


ÖZGÜL & ÇINGI 

383 

Bar-Lev, S. K., Bobovitch, E., & Boukai, B. (2004). A note on randomized 

response models for quantitative data. Metrika, 60(3), 255-260. doi: 

10.1007/s001840300308 

Cingi, H., & Kadilar, C. (2009). Advances in sampling theory – Ratio 

method of estimation. Bentham Science Publishers. doi: 

10.2174/97816080501231090101 

Diana, G. & Perri, P. F. (2011). A class of estimators for quantitative 

sensitive data. Statistical Papers, 52(3), 633-650. doi: 10.1007/s00362-009-0273-

1 

Eichhorn, B. H., & Hayre, L. S. (1983). Scrambled randomized response 

methods for obtaining sensitive quantitative data. Journal of Statistical Planning 

and Inference, 7(4), 307-316. doi: 10.1016/0378-3758(83)90002-2 

Grover, L. K., & Kaur, P. (2014). A generalized class of ratio type 

exponential estimators of population mean under linear transformation of 

auxiliary variable. Communications in Statistics – Simulation and Computation, 

43(7), 1552-1574. doi: 10.1080/03610918.2012.736579 

Gupta, S., Shabbir, J., Sousa, R., & Real, P. C. (2012). Estimation of the 

mean of a sensitive variable in the presence of auxiliary information. 

Communications in Statistics – Theory and Methods, 41(13-14), 1-12. doi: 

10.1080/03610926.2011.641654 

Özgül, N. (2013). Proportion and mean estimators in randomized response 

models (Unpublished doctoral thesis). Hacettepe University, Ankara, Turkey. 

Özgül, N. & Cingi, H. (2014). A new class of exponential regression cum 

ratio estimator in two phase sampling. Hacettepe Journal of Mathematics and 

Statistics, 43(1), 131-140. Available from 

http://dergipark.ulakbim.gov.tr/hujms/article/view/5000017145 

Shabbir, J., & Gupta, S. (2011). On estimating finite population mean in 

simple and stratified random sampling. Communications in Statistics – Theory 

and Techniques, 40(2), 199-212. doi: 10.1080/03610920903411259 

Sousa, R., Shabbir, J., Real, P. C., & Gupta, S. (2010). Ratio estimation of 

the mean of a sensitive variable in the presence of auxiliary information. Journal 

of Statistical Theory and Practice, 4(3), 495-507. 

10.1080/15598608.2010.10411999 

Thornton, B., & Gupta, S. N. (2004). Comparative validation of a partial 

(versus full) randomized response technique: Attempting to control for social 

https://dx.doi.org/10.1007/s001840300308
https://dx.doi.org/10.2174/97816080501231090101
https://dx.doi.org/10.1007/s00362-009-0273-1
https://dx.doi.org/10.1007/s00362-009-0273-1
https://dx.doi.org/10.1016/0378-3758(83)90002-2
https://dx.doi.org/10.1080/03610918.2012.736579
https://dx.doi.org/10.1080/03610926.2011.641654
http://dergipark.ulakbim.gov.tr/hujms/article/view/5000017145
https://dx.doi.org/10.1080/03610920903411259
https://dx.doi.org/10.1080/15598608.2010.10411999


A NEW ESTIMATOR FOR QUANTITATIVE RRT 

384 

desirability response bias to sensitive questions. Individual Differences Research, 

2(3), 214-224. 

Warner, S. L. (1965). Randomized response: A survey technique for 

eliminating evasive answer bias. Journal of the American Statistical Association, 

60(309), 63-69. doi: 10.2307/2283137 

Warner, S. L. (1971). The linear randomized response model. Journal of the 

American Statistical Association, 66(336) 884-888. doi: 10.2307/2284247 

https://dx.doi.org/10.2307/2283137
https://dx.doi.org/10.2307/2284247


ÖZGÜL & ÇINGI 

385 

Appendix A: Special Models for Generalized RTT 

First Model (M1): S = Y + W, R = X, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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Second Model (M2): S = YW, R = X, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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Third Model (M3): S = Y + W, R = X + T, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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Fourth Model (M4): S = YW, R = XT, Mean given by 
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Variance and correlation equations to be used in (17) are given by 
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