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Abstract

In this paper, the exponentiated Kumaraswamy-power function dis-
tribution is introduced. Some structural properties of the proposed
distribution including the shapes of the density, hazard and quantile
functions are explored. Besides, skewness and kurtosis measures are
investigated. The method of maximum likelihood is used for estimat-
ing model parameters. For different parameter settings and sample
sizes, a simulation study is performed and the performance of the new
distribution is compared with some well-known distributions. Then, an
application is presented with a real data set to illustrate the usefulness
of the proposed distribution.
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1. Introduction

Numerous probability models are used to model lifetime distribution, but these
models mathematically more complicated to manage. However, the power function
(PF) distribution is very helpful in this regard. The PF distribution is a flexible
lifetime distribution model that may offer a good fit to some sets of failure data [1].
Theoretically, the PF distribution is a special case of the beta distribution. It was
derived from the Pareto distribution using the inverse transformation. Besides, it
is a special case of Pearson type I distribution [2]. Meniconi and Barry [3] proved
that the PF distribution is the best distribution to check the reliability of any
electrical component. They showed from survival and hazard functions that PF
distribution is the better than exponential, log-normal and Weibull distributions.
The PF distribution can be used to fit the distribution of likelihood ratios in
statistical tests.

The random variable X has the PF distribution if its cumulative distribution
function (cdf) for 0 < x < α is given by

(1.1) G(x) =
xβ

αβ
, α > 0, β > 0,
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where β is the shape parameter and α is the scale parameter. The probability
density function (pdf) corresponding to (1.1) is given by

(1.2) g(x) =
βxβ−1

αβ
, α > 0, β > 0, .

Characterizations of the PF distribution using order statistics and record values
has been studied by Ahsanullah and Kabir [4]. Detailed discussion on parameter
estimation of the PF distribution is studied by [5], [6] and [7] using various estima-
tion procedures like method of moments, maximum likelihood, percentiles, method
of least square, and Bayesian estimation with various loss functions. Bayesian
analysis of the PF distribution was discussed using three single and as well as
three double priors and the accuracy of these priors was assessed using simulation
studies [8]. An initial test estimator for a scale parameter of the PF distribution
was proposed by [9]. Abdulsathar and Renjini [10] estimated the Gini-index and
Lorenz curve of the PF distribution and the shape parameter using Bayesian ap-
proach. The estimators were developed using weighted squared error and squared
error loss functions. Cordeiro and dos Santos Brito [11] studied beta-PF distri-
bution. Oguntunde et al. [12] derived the Kumaraswamy-PF distribution and
Tahir et al. [13] introduced Weibull-PF distribution. Recently, Haq et al. [2] has
been studied transmuted PF distribution and Shakeel [14] compared the two new
robust parameter estimation methods for the PF distribution. To increase the
flexibility for modeling purposes it will be useful to consider further alternatives
to PF distribution. Our purpose is to provide a generalization that may be useful
to still more complex situations. Once the proposed distribution is quite flexible
in terms of pdf and hazard rate function, it may provide an interesting alterna-
tive to describe income distributions and can also be applied in actuarial science,
finance, bioscience, and telecommunications. Therefore, the aim of this study is
to introduce a new distribution using the PF distribution. For this reason, we
propose exponentiated Kumaraswamy-PF distribution.

Exponentiated Kumaraswamy-PF (ExpKw-PF) distribution is a generalization
to the Kumaraswamy-PF (Kw-PF) distribution through adding a new shape pa-
rameter. The construction of the exponentiated distribution is rather simple. It
is based on the observation that by raising an arbitrary cdf G(x) to an arbitrary
power θ > 0, a new cdf F (x) = G(x)θ emerges with one additional parameter. The
parameter θ characterizes the skewness, kurtosis and tails of the F distribution. In
this construction, G(x) is the baseline distribution and F (x) may be referred to as
the exponentiated G distribution. The relation between the corresponding density
function is f(x) = θG(x)θ−1g(x). In this study, in the same way, we generalize
the Kw-PF distribution to the ExpKw-PF distribution.

The rest of paper is organized as follows. In Section 2, we define the pdf and
cdf of the new distribution. Some of its properties are also presented including
survival, hazard and quantile functions, skewness, kurtosis, and order statistics.
The estimation of the model parameters using the method of maximum likelihood
is discussed in Section 3. A simulation study is conducted in Section 4. Finally,
an application on a real data set is reported in Section 5 and some conclusions are
addressed in Section 6.
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2. The exponentiated Kumaraswamy-power function distribution

Let G(x) be the cdf of the PF distribution with parameters α and β, then
F (x) = G(x)θ yields the ExpKw-PF cumulative distribution (for 0 < x < α )

(2.1) F (x) =

[
1−

[
1−

(x
α

)αβ]b]θ
,

where a, b, β, andθ > 0 are shape parameters and α > 0 is a scale parameter. The
corresponding pdf of the ExpKw-PF distribution is obtained as

(2.2) f(x) =
θabβxaβ−1

αaβ

[
1−

[
1−

(x
α

)aβ]b]θ−1 [
1−

(x
α

)aβ]b−1

.

A sample contains censored observations if the only information about some
of the observations is that they are below or above a specified value. Because of
its tractable distribution function (2.2), the ExpKw-PF distribution can be used
quite effectively even if the data are censored.

2.1. Shape of the exponentiated Kumaraswamy-power function distri-
bution. The shape of the ExpKw-PF distribution is revealed by means of plots.
The plots of the pdf at various choices of parameters are given in Figures 1 to 5.
These figures show that the ExpKw-PF distribution is much more flexible than
the PF distribution and can allow for greater flexibility of tails. The ExpKw-PF
distribution is mostly negatively skewed. Furthermore, as a increases and b de-
creases, we obtain more skewed shapes. On the other hand, as α increases, and β
and θ decrease, the curve becomes more spread out. Because of its tractable dis-
tribution function (2.2), the ExpKw-PF distribution can be used quite effectively
even if the data are censored.

Figure 1. Plots of the pdf of ExpKw-PF for some parameter values
(b = 6, α = 31, β = 2, θ = 2).
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Figure 2. Plots of the pdf of ExpKw-PF for some parameter values
(a = 3, α = 31, β = 2, θ = 2).

Figure 3. Plots of the pdf of ExpKw-PF for some parameter values
(a = 2, b = 8, β = 2, θ = 2).

Figure 4. Plots of the pdf of ExpKw-PF for some parameter values
(a = 2, b = 6, α = 31, θ = 2).



5

Figure 5. Plots of the pdf of ExpKw-PF for some parameter values
(a = 2, b = 6, α = 31, β = 2).

2.2. Survival and hazard function. Central role is played in the reliability
theory by the quotient of the pdf and survival function. The survival function for
the ExpKw-PF distribution is given by

(2.3) S(x) = 1−

[
1−

[
1−

(x
α

)aβ]b]θ
.

In reliability studies, the hazard rate function (hrf) is an important characteris-
tic and fundamental to the design of safe systems in a wide variety of applications.
Therefore, we discuss these properties of the ExpKw-PF distribution. The hrf is
thus given by

(2.4) h(x) =

θabβxaβ−1

αaβ

[
1−

[
1−

(
x
α

)aβ]b]θ−1[
1−

(
x
α

)aβ]b−1

1−
[
1−

[
1−

(
x
α

)aβ]b]θ .

Choosing different values for the parameters a, b, α, β, θ, the plots for the hrf of
the ExpKw-PF distribution are presented in Figures 6 to 10. As seen from these
figures, ExpKw-PF has increasing and bath-tub hrf.
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Figure 6. Plots of the hrf of ExpKw-PF for some parameter values
(b = 6, α = 31, β = 2, θ = 2).

Figure 7. Plots of the hrf of ExpKw-PF for some parameter values
(a = 3, α = 31, β = 2, θ = 2).

Figure 8. Plots of the hrf of ExpKw-PF for some parameter values
(a = 2, b = 8, β = 2, θ = 2).
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Figure 9. Plots of the hrf of ExpKw-PF for some parameter values
(a = 2, b = 6, α = 31, θ = 2).

Figure 10. Plots of the hrf of ExpKw-PF for some parameter values
(a = 2, b = 6, α = 31, β = 2).

2.3. Quantile function and quantile measures. The pth quantile of the ExpKw-
PF distribution is given by

(2.5) Q (p) = F−1(p) = x = α

1−
(

1− p
1/θ

)1/b


1/aβ

,

where F−1(p) is the inverse distribution function. Thus, the new distribution is
easily simulated as X = Q(U), where U has the uniform U(0, 1) distribution. In
particular, the median of the ExpKw-PF distribution is given by

(2.6) median(X) = Q

(
1

2

)
= α

1−

1− 1

2

1/θ


1/b


1/aβ

.
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To illustrate the effect of the shape parameters a, b and θ on skewness and
kurtosis of the new distribution, we consider measures based on quantiles. The
shortcomings of the classical kurtosis measure are well known. There are many
heavy-tailed distributions for which this measure is infinite. So, it becomes uninfor-
mative precisely when it needs to be. Indeed, our motivation to use quantile-based
measures stemmed from the non-existence of classical kurtosis for many generalized
distributions. The Bowley’s skewness and Moor’s kurtosis are based on quartiles.
The Bowley’s skewness and Moor’s kurtosis for the ExpKw-PF distribution are
given, respectively, as

(2.7)

S = Q(3/4)−2Q(1/2)+Q(1/4)
Q(3/4)−Q(1/4)

=

1−
(
1−(3/4)

1
/θ
)1

/b


1
/aβ

−2

1−
(
1−(1/2)

1
/θ
)1

/b


1
/aβ

1−
(
1−(3/4)

1
/θ
)1

/b


1
/aβ

−

1−
(
1−(1/4)

1
/θ
)1

/b


1
/aβ

+

1−
(
1−(1/4)

1
/θ
)1

/b


1
/aβ

1−
(
1−(3/4)

1
/θ
)1

/b


1
/aβ

−

1−
(
1−(1/4)

1
/θ
)1

/b


1
/aβ

,

(2.8)

K = Q(7/8)−Q(5/8)−Q(3/8)+Q(1/8)
Q(6/8)−Q(2/8)

=

1−
(
1−(7/8)

1
/θ
)1

/b


1
/aβ

−

1−
(
1−(5/8)

1
/θ
)1

/b


1
/aβ

1−
(
1−(6/8)

1
/θ
)1

/b


1
/aβ

−

1−
(
1−(2/8)

1
/θ
)1

/b


1
/aβ

−

1−

1−( 3
8 )

1
/θ


1
/b


1
/aβ

−

1−
(
1−(1/8)

1
/θ
)1

/b


1
/aβ

1−
(
1−(6/8)

1
/θ
)1

/b


1
/aβ

−

1−
(
1−(2/8)

1
/θ
)1

/b


1
/aβ

.
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When the distribution is symmetric, S=0 and when the distribution is right
(or left) skewed. S < 0 (or S > 0). As K increases, the tail of the distribution
becomes heavier. These measures are less sensitive to outliers and they exist even
for distributions without moments. From (2.7) and (2.8), skewness and kurtosis
of the ExpKw-PF distribution are obtained and presented in Table 1.

Table 1. Skewness and kurtosis of ExpKw-PF distribution for some
values of a, b, α, β and θ.

α=2 and β=2 α=2 and β=4 α=6 and β=3
a b Skewness Kurtosis Skewness Kurtosis Skewness Kurtosis

θ=0.5 0.5
0.5 0.0795 0.1250 -0.1373 -0.2830 -0.0640 -0.1300
2 0.3337 0.7541 0.0694 0.1692 0.1618 0.3744
4 0.3745 0.9050 0.1039 0.2623 0.1993 0.4839

θ=2 2
0.5 -0.4557 -1.1796 -0.4624 -1.2155 -0.4601 -1.2035
2 -0.1152 -0.3019 -0.1389 -0.3680 -0.1310 -0.3458
4 -0.0604 -0.1598 -0.0885 -0.2367 -0.0791 -0.2109

θ=4 3
0.5 -0.5075 -1.3983 -0.5085 -1.4050 -0.5082 -1.4028
2 -0.1270 -0.3385 -0.1342 -0.3589 -0.1318 -0.3520
4 -0.0687 -0.1855 -0.0782 -0.2113 -0.0751 -0.2027

As seen from Table 1, the ExpKw-PF distribution should be positively and
negatively skewed depending on the values of parameters. Similary, we obtain
both leptokurtic and platykurtic shapes depending on the values of parameters.
This result show that the ExpKw-PF distribution is quite flexible.

2.4. Order statistics. Order statistics make their appearance in many areas of
statistical theory and practice. They enter in the problems of estimation and
hypothesis tests in a variety of ways. Order statistics are also among the most
fundamental tools in non-parametric statistics. Therefore, we now discuss some
properties of the order statistic.

Let Xi:n denote the ith order statistic. Then, let fi:n(x) be the pdf of the ith or-
der statistic for a random sample X1, X2, ..., Xn from the ExpKw-PF distribution.
We derive the pdf of the ith order statistics of the ExpKw-PF distribution:

(2.9)

fi:n = n!
(i−1)!(n−i)!f(xi)[F (xi)]

i−1
[1− F (xi)]

n−i

=
n!θabβxaβ−1

i

(i−1)!(n−i)!αaβ

[
1−

[
1−

(
xi
α

)aβ]b]θi−1
[

1−
[
1−

[
1−

(
xi
α

)aβ]b]θ]n−i
[
1−

(
xi
α

)aβ]b−1

.
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From (2.9), the pdf of the minimum order statistics of the ExpKw-PF distribu-
tion is given by

(2.10)

f1:n = nf(x1)[1− F (x1)]
n−1

=
nθabβxaβ−1

1

αaβ

[
1−

[
1−

[
1−

(
x1

α

)aβ]b]θ]n−1[
1−

[
1−

(
x1

α

)aβ]b]θ−1

[
1−

(
x1

α

)aβ]b−1

,

and the pdf of the maximum order statistics of the ExpKw-PF distribution is given
by

(2.11)

fn:n = nf(xn)[F (xn)]
n−1

=
nθabβxaβ−1

n

αaβ

[
1−

[
1−

(
xn
α

)aβ]b]θn−1[
1−

(
xn
α

)aβ]b−1

.

3. Maximum Likelihood Estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the
parameters (a, b, α, β, θ) of the ExpKw-PF distribution. Suppose X1, X2, ..., Xn is
a random sample of size n from the ExpKw-PF distribution. Then, the likelihood
function is given by

(3.1)
L = θnanbnβnα−naβ

n∏
i=1

xi
aβ−1

n∏
i=1

[
1−

[
1−

(
xi
α

)aβ]b]θ−1

n∏
i=1

[
1−

(
xi
α

)aβ]b−1

,

and the log-likelihood function is given by

(3.2)

ln (L) = l = n ln (θ) + n ln (a) + n ln (b) + n ln (β)− naβ ln (α)

+ (aβ − 1)
n∑
i=1

ln (xi) + (θ − 1)
n∑
i=1

ln

(
1−

[
1−

(
xi
α

)aβ]b)
+ (b− 1)

n∑
i=1

ln
(

1−
(
xi
α

)aβ)
.

The estimates of the parameters maximize the likelihood function. Taking the
partial derivatives of the log-likelihood function with respect to (a, b, α, β, θ) and
equalizing the obtained expressions to zero yields to likelihood equations can be
written as

(3.3)

∂l
∂a = n

a − nβ ln (α) + β
n∑
i=1

ln (xi) + (θ − 1)
n∑
i=1

bβxaβi

[
1−( xiα )

aβ
]b−1

ln( xiα )

αaβ
(
1−
[
1−( xiα )

aβ
]b)

− (b− 1)
n∑
i=1

βxaβi ln( xiα )
αaβ

(
1−( xiα )

aβ
) ,
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(3.4)

∂l
∂b = n

b − (θ − 1)
n∑
i=1

ln
(
1−( xiα )

aβ
)(

1−( xiα )
aβ
)

1−
[
1−( xiα )

aβ
]b

+
n∑
i=1

ln

(
1−

[
1−

(
xi
α

)aβ]b)
,

(3.5)

∂l
∂α = −naβ

α − (θ − 1)
n∑
i=1

abβxaβi

[
1−( xiα )

aβ
]b−1

αaβ+1

(
1−
[
1−( xiα )

aβ
]b)

+ (b− 1)
n∑
i=1

aβxaβi

αaβ+1
(
1−( xiα )

aβ
) ,

(3.6)

∂l
∂β = n

β − na ln (α) + a
n∑
i=1

ln (xi) + (θ − 1)
n∑
i=1

abβxaβi

[
1−( xiα )

aβ
]b−1

ln( xiα )

αaβ
(
1−
[
1−( xiα )

aβ
]b)

− (b− 1)
n∑
i=1

axaβi ln( xiα )
αaβ

(
1−( xiα )

aβ
) ,

(3.7)
∂l

∂θ
=
n

θ
+

n∑
i=1

ln

(
1−

[
1−

(xi
α

)aβ]b)
.

The maximum likelihood estimates â, b̂, α̂, β̂, θ̂ of the parameters (a, b, α, β, θ)
can be obtained numerically by solving simultaneously the non-linear equations
∂l
∂a = 0, ∂l∂b = 0, ∂l∂α = 0, ∂l∂β = 0, ∂l∂θ = 0.

Note that the MLE has second derivatives with respect to the parameters, so
that Fisher information matrix (FIM), Iij (ξ) can be expressed as

(3.8) Iij (ξ) = E

(
∂2l (ξ;X1, ..., Xn)

∂ξi∂ξj

)
, i, j = 1, ..., 5

The elements of the information matrix is given in Appendix. The total FIM
In (ξ) can be approximated by

(3.9) Jn

(
ξ̂
)

=

(
∂2l (ξ;X1, ..., Xn)

∂ξi∂ξj

∣∣∣ξ=ξ̂) , i, j = 1, ..., 5

For real data, the matrix given in (3.9) is obtained after the convergence of the

Newton-Raphson procedure in R software. Let ξ̂ =
(
â, b̂, α̂, β̂, θ̂

)
be the maximum

likelihood estimate of ξ = (a, b, α, β, θ). Under the usual regularity conditions and
that the parameters are in the interior of the parameter space, but not on the

boundary, we have:
√
n
(
ξ̂ − ξ

)
d−→ N5

(
0, I−1 (ξ)

)
, where I (ξ) is the expected

FIM. The asymtotic behavior is still valid if I (ξ) is replaced by the observed in-

formation matrix evaluated at θ̂, that is J
(
ξ̂
)

.

The multivariate normal distribution with mean vector 0 = (0, 0, 0, 0, 0)
T

and
covariance matrix I−1 (ξ) can be used to construct confidence intervals for the
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model parameters. That is, the approximate 100 (1− η) percent two-sided confi-
dence intervals for ξ = (a, b, α, β, θ) are given by

(3.10) â± Z η
2

√
I−1
aa

(
ξ̂
)
, b̂± Z η

2

√
I−1
bb

(
ξ̂
)
, α̂± Z η

2

√
I−1
αα

(
ξ̂
)
, β̂ ± Z η

2

√
I−1
ββ

(
ξ̂
)
θ̂ ± Z η

2

√
I−1
θθ

(
ξ̂
)

respectively, where

(3.11) I−1
aa

(
ξ̂
)

, I−1
bb

(
ξ̂
)

, I−1
αα

(
ξ̂
)

, I−1
ββ

(
ξ̂
)

, I−1
θθ

(
ξ̂
)
,

are diagonal elements of I−1
n (ξ) =

(
nIn

(
ξ̂
))−1

and Zn
2

is the upper nth

2 percentile

of a standard normal distribution. ”numDeriv” package of R language can be used
to compute the Hessian matrix and its inverse, standard errors and asymptotic
confidence intervals.

Note that parameter estimation become complicated when censoring is present
in the sample. Some time it is not possible to give a mathematical expression of
estimated values of parameters in maximum likelihood method.

4. Simulation Study

In this section, we evaluate the performance of the MLEs of the parameters of
the ExpKw-PF model by means of a simulation study. We generated samples of
sizes n =10, 25, 50, 100, 200 from the ExpKw-PF model for different parameter
combinations. We computed mean and mean square error (MSE) of parameter

estimations, and this procedure is repeated 1000 times. Let ξ̂ = (â, b̂, α̂, β̂, θ̂)
be the MLEs of the parameters of the ExpKw-PF. The estimated MSEs can be
estimated by using following equation:

(4.1) MSEε (n) =

N∑
i=1

(ε̂i − ε)

N

R software is used for simulation study and real data modeling. The simulation
results are presented in Table 2.

The values in Table 2 indicate that the estimates are quite stable and, more
importantly, are close to the true parameter values for these sample sizes. From
Table 2, it is observed that in general MSE decreases as n increases. The simulation
study also shows that the maximum likelihood method is appropriate for estimat-
ing the ExpKw-PF parameters. In fact, the MSEs of the parameters tend to be
closer to zero when n increases. This fact supports that the asymptotic normal
distribution provides an adequate approximation to the finite sample distribution
of the MLEs.
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Table 2. Maximum likelihood estimation of the ExpKw-PF parame-
ters for θ = 2 and α = 1.

Mean MSE

a b β n a b α β θ a b α β θ

0.5 0.5 1

10 0.514 0.669 1.843 0.669 2.571 0.013 0.543 0.269 1.050 0.176

25 0.498 0.647 1.647 0.647 2.354 0.006 0.125 0.146 1.507 0.299

50 0.501 0.553 1.328 0.553 2.146 0.003 0.0521 0.034 0.084 0.105

100 0.500 0.512 1.195 0.512 2.009 0.001 0.014 0.018 0.032 0.053

200 0.500 0.511 1.003 0.511 2.024 0.0005 0.005 0.009 0.01 0.016

0.5 2 1.5

10 0.493 2.764 1.640 2.764 3.011 0.008 1.255 0.564 2.417 0.432

25 0.498 2.421 1.528 2.421 2.445 0.005 0.953 0.118 2.180 0.218

50 0.497 2.282 1.303 2.282 2.042 0.0009 0.125 0.046 1.073 0.065

100 0.499 2.133 1.141 2.133 2.013 0.0002 0.025 0.022 0.568 0.032

200 0.499 2.054 1.002 2.054 2.003 0.0001 0.109 0.012 0.246 0.019

3 2 2

10 3.154 2.309 1.326 2.309 2.321 0.495 0.944 0.037 1.372 0.385

25 3.022 2.298 1.232 2.298 2.298 0.136 0.751 0.019 0.909 0.249

50 3.018 2.223 1.113 2.223 2.109 0.059 0.492 0.004 0.763 0.152

100 2.999 2.105 1.000 2.105 2.001 0.024 0.337 0.001 0.239 0.056

200 3.002 2.054 1.000 2.054 2.000 0.011 0.271 0.0005 0.002 0.002

5. Application

In this section, we study on a real data set to illustrate the usefulness of the
ExpKw-PF distribution. We make comparison of the results with PF, Kw-PF and
ExpKw-PF distributions. We used data set consists of annual maximum daily
precipitation (unit:mm) at Busan, Korea for the 1904-2011 period. This data set
has recently used Mansoor et al. [15].

The data are: 24.8, 140.9, 54.1, 153.5, 47.9, 165.5, 68.5, 153.1, 254.7, 175.3,
87.6, 150.6, 147.9, 354.7, 128.5, 150.4, 119.2, 69.7, 185.1, 153.4, 121.7, 99.3, 126.9,
150.1, 149.1, 143, 125.2, 97.2, 79.3, 125.8, 101, 89.8, 54.6, 283.9, 94.3, 165.4, 48.3,
69.2, 147.1, 114.2, 159.4, 114.9, 58.5, 76.6, 20.7, 107.1, 244.5, 126, 122.2, 219.9,
153.2, 145.3, 101.9, 135.3, 103.1, 74.7, 174, 126, 144.9, 226.3, 96.2, 149.3, 122.3,
164.8, 188.6, 273.2, 61.2, 84.3, 130.5, 96.2, 155.8, 194.6, 92, 131, 137, 106.8, 131.6,
268.2, 124.5, 147.8, 294.6, 101.6, 103.1, 274.51, 40.2, 153.3, 91.8, 79.4, 149.2, 168.6,
127.7, 332.8, 261.6, 122.9, 273.4, 178, 177, 108.5, 115. 241, 76, 127.5, 190, 259.5,
301.5.

Table 3. Descriptive statistics for the precipitation data.

n Minimum Median Mean Maximum Variance Skewness Kurtosis

104 20.7 130.75 142.973 354.7 4495.71 0.97 0.936



14

In application, we maximized the log-likelihood function using ”nlm” function
in R statistical package. For each maximization, the ”nlm” function is executed
for a wide range of initial values.

The maximum likelihood estimates, the corresponding values of log-likelihood
and the Akaike Information Criterion (AIC), and Bayesian Information Criterion
(BIC) values for fitted distributions reported in Table 4.

Table 4. Maximum likelihood estimates, AIC, BIC statistics under
considered distributions based on precipitation data

Model
Maximum Likelihood Estimates

LogL AIC BIC K-S statistic p-value
a b α β θ

PF - - 0.954 369.995 - 614.806 1233.730 1238.901 0.317 0.000
Kw-PF 6.985 2.759 360.047 0.087 - 581.208 1172.416 1185.638 0.127 0.070

ExpKw-PF 0.328 2.804 416.801 0.543 78.897 577.620 1165.241 1178.463 0.097 0.284

The results in Table 4 show that the ExpKw-PF distribution provides a signif-
icantly better fit than the other models.

Figure 11. Fitting performance of distributions.

6. Conclusion

In this study, a five-parameter distribution, called exponentiated Kumaraswamy-
power function distribution (denoted by ExpKw-PF distribution), is introduced.
A detailed study on the statistical properties of the new distribution is presented.
We obtain the survival, hazard and quantile functions, order statistics, skewness
and kurtosis. The results show that the distribution is mostly negatively-skewed.
Then, parameters of the ExpKw-PF distribution are estimated by maximum like-
lihood and a simulation study is conducted. An application of the ExpKw-PF to
real data shows that the new distribution can be used quite effectively to provide
better fits than PF, Kw-PF distributions. We hope that the proposed model may
attract wider applications in statistics and other areas.
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Appendix

Elements of the information matrix:
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