
Solving Large Scale Systems Of Linear Equations
with A Stabilized Lanczos-Type Algorithms Running

On A Cloud Computing Platform

Maharani, M.∗ and Abdellah Salhi† and Wali Khan Mashwani‡ § and Ozgur
Yeniay¶ and Niken Larasati ‖ and Triyani ∗∗

Abstract

Lanczos-type algorithms for Systems of Linear Equations (SLEs) are ef-
ficient but fragile. A number of ways to resolve this issue have been
suggested. But, the problem is still not fully sorted, in our view. Here,
we suggest a way that takes advantage of the sequence of approximate
solutions that have been computed prior to breakdown by embedding
interpolation/extrapolation to avoid it. The approach, referred to as Em-
bedded Interpolation-Extrapolation Model in Lanczos-type Algorithm
(EIEMLA), generates new iterates which are at least as good as the best
in the current sequence. This process is repeated after appending the
new iterates to the sequence of approximate solutions until some con-
vergence tolerance is achieved. To improve EIEMLA’s convergence and
stability, a restart version of REIEMLA is also considered. These algo-
rithms are more robust than other Lanczos-type algorithms, including
those with restarting and switching strategies. Both algorithms have
been implemented to run in parallel on a Cloud computing platform.
Our tests involve SLEs with up to 106 variables and equations. The
results show that breakdown is mitigated and efficiency gains can be
achieved through parallelization.

Keywords: Lanczos-type algorithm, Breakdown, EIEMLA method, Parallel pro-
cessing, Cloud computing.

2000 AMS Classification: AMS

∗Department of Mathematics, University of Jenderal Soedirman, Purwokerto, Indonesia, Email:
maharani@unsoed.ac.id
†Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, U.K., Email:

as@essex.ac.uk
‡Department of Mathematics, Kohat University of Science and Technology, Pakistan, Email:

mashwanigr8@gmail.com
§Corresponding Author.
¶Department of Statistics, Hacettepe University Ankara, Turkey, Email:

yeniay@hacettepe.edu.tr
‖Department of Mathematics, University of Jenderal Soedirman, Purwokerto, Indonesia, Email:

nklarasati@yahoo.com
∗∗Department of Mathematics, University of Jenderal Soedirman, Purwokerto, Indonesia, Email:

trianisr@yahoo.com.au



2

1. INTRODUCTION

Large scale Systems of Linear Equations (SLEs) occur routinely in a variety of
applications ranging from engineering to finance and economics. It is therefore,
important to investigate methods which handle such problems. Lanczos method
is one of effective iterative methods which deals with high dimension of SLEs,
[22, 23]. The original derivation, however, still used classical algebra. The mod-
ern version of Lanczos method, well-known as Lanczos-type algorithms, were
derived through theory of formal orthogonal polynomials and realized via re-
currence relationships between them, [3, 5]. Although Lanczos-types algorithms
are effective to solve non-symmetric and high scale of SLEs, however, they are
easily to breakdown which makes the algorithms stop before reaching a good so-
lution. It is therefore, a strategy to get over the breakdown so that Lanczos-types
algorithms maintain their stability to convergent, is importantly needed.

Some approaches to cure breakdown in Lanczos-types algorithms have been
developed. For instance, Brezinski and his team have established a method called
Method of Recursive Zoom (MRZ), which allows to jump over the non-existing
orthogonal polynomial [6]. This method is also known as a look ahead strategy.
Some variants of MRZ such as SMRZ, BMRZ, GMRZ, and BSMRZ have also been
developed in [7] and [8]. Other techniques which also deal with this concern,
are the called look around strategies, [19] and in [1]. The recent works, [15, 16],
discussed the strategies of restarting and switching between Lanczos-type algo-
rithms. Restarting which based on qualitative points, including a point from the
last iterate, a point with the lowest residual norm, and a point with median value,
was investigated in [25]. Here, we introduce a new approach to improve the re-
silience and stability of Lanczos-types algorithms for solving SLEs, by capturing
some existing patterns in the sequences of solutions generated by Lanczos-type
algorithms. This new approach is hence called the embedded interpolation and
extrapolation model in Lanczos-type algorithm (EIEMLA).

On the other hand, the solution of large scale SLEs is time consuming, particu-
larly on single processor machines. Therefore, we also will try to exploit multiple
processors and powerful vector-oriented hardware to tackle this issue. In gen-
eral, parallel algorithms can be created by reformulating standard algorithms or
by discovering new ones, [20]. The implementation of parallel iterative methods
for solving SLE’s in high dimensions and other applications is well developed,
[11, 10, 27, 28, 32, 30]. Here, we rely on a parallel environment provided in Mat-
lab to implement our algorithms and run them. Moreover, we will execute the
parallel program of EIEMLA on the cloud computing.

This study is organized as follow. Section 1 discusses the back ground review
of Lanczos-type algorithms, Section 2 introduces the derivation of EIEMLA. Sec-
tions 3 and 4 explain how to implement and run EIEMLA in a parallel environ-
ment and on a Cloud computing platform, respectively. Section 5 discusses some
numerical results, concludes this work and suggests interesting and related av-
enues for further research.



3

2. Lanczos-type Algorithms : Review

Lanczos-type are effective iterative method for solving non symmetric and
high dimension of systems of linear equations (SLEs). However, they are frag-
ile when involving high number of iterations. Here, we review the derivation of
Lanczos-type methods through Krylov subspace method, [29].

Consider the systems of linear equations

(2.1) Ax = b,

where A ∈ Rn×n and x,b ∈ Rn. Krylov subspace method finds the approximate
solutions by defining (1) xk − x0 ∈ Kk(A,r0) which the residual vector, (2) rk =
b−Axk, is orthogonal to Krylov subspace Kk(AT ,y), where y is an arbitrary non-
zero vector. As a result of (1) and (2), we have :

(2.2) xk−x0 =−α1r0−α1Ar0−·· ·−αkAk−1r0.

and

(2.3) rk = r0 +α1Ar0 +α2A2r0 + · · ·+αkAkr0

If Pk(A) = 1+α1A+ · · ·+αkAk, of degree k at most, then rk can be expressed as :

(2.4) rk = Pk(A)r0.

The Pk is hence called Orthogonal polynomial which is normalized by Pk(0) = 1.
To simplify the computation of coefficients of Pk, we define a linear function c,
which satisfy two conditions, [4],

(2.5) ci = c(t i), i = 0,1, . . .,

and

(2.6) c(t iPk(t)) = 0, i = 0,1, . . . ,k−1.

By this definition, we can set ci = 〈y,Air0〉 and thus the coefficients of Pk(A) can
be computed recursively. Thus, the approximate solutions are determined by
formula xk = b−Ark, where rk = Pk(A)r0, without inverting the matrix A. Some
Lanczos-type algorithms are then implemented based on some formula derived
by those approaches.

Those derivations allow us to explore more and more formula which Lanczos-
type algorithms based. Some of them have been discussed in [2],[3], and [9],
which are expressed in a table containing formulas Ai and B j. The new Lanczos-
types implementation discovered by Farooq, [14], which involve the polynomials
with the difference in degrees between left and right sides is at most two or three.

3. Embedding Interpolation and Extrapolation in Lanczos-type Algo-
rithms (EIEMLA)

Embedding an interpolation model within a Lanczos-type algorithm is a novel
strategy which produces sequences of solutions which are better than those gen-
erated by the original Lanczos algorithm.

Suppose we run a Lanczos-type algorithm , [2, 3], and stop after k iterations
and before breakdown occurs. Let k ≤ n, where n is the dimension of the SLE



4

in hand. Let S = {x1,x2, . . . ,xk} be the set of iterates generated so far. Let xm,
be the iterate with the lowest residual norm, ‖rm‖, where m ≤ k. Assume that
some good iterates, namely those with small residual norms, are concentrated in
interval [m− j,k], for some integer j. Set

(3.1) V1 =
{

xm− j,xm− j+1, . . . ,xk
}
,

which is a subset of S. Write the components of each iterate in S as

v1 =
{

xm− j
(1),xm− j+1

(1), . . . ,xk
(1)
}

v2 =
{

xm− j
(2),xm− j+1

(2), . . . ,xk
(2)
}

(3.2)

...

vn =
{

xm− j
(n),xm− j+1

(n1), . . . ,xk
(n)
}

namely, each vi contains all of the ith entries of iterates xl , for l = m− j,m− j +
1, · · · ,k, and for i = 1,2, · · · ,n. It is now possible to find a function which interpo-
lates each set of vi’s using the PCHIP interpolant package, [18, 17]. We assume
that each sequence of xm− j

(i),xm− j+1
(i), . . . ,xk

(i) is monotonic and convergent for
some j and i = 1,2, . . . ,n, to its limit, [31], i.e.

(3.3) lim
k→∞

xk
(i) = x∗(i).

Let t be elements in R. Set

w1 =
{(

tm− j,xm− j
(1)
)
,
(

tm− j+1,xm− j+1
(1)
)
, . . . ,

(
tk,xk

(1)
)}

w2 =
{(

tm− j,xm− j
(2)
)
,
(

tm− j+1,xm− j+1
(2)
)
, . . . ,

(
tk,xk

(2)
)}

(3.4)

...

wn =
{(

tm− j,xm− j
(n)
)
,
(

tm− j+1,xm− j+1
(n)
)
, . . . ,

(
tk,xk

(n)
)}

.

Using PCHIP, [18, 17] to interpolate each wi, for i = 1,2, . . . ,n, yields functions
fi. As it is a regular interpolation process in R, then for some t = m− j,m− j +
1, . . . ,k, fi satisfies

(3.5) fi(t)≈ x(i)t for i = 1,2, . . . ,n.

For instance,

fi(m− j)≈ x(i)m− j

fi(m− j+1)≈ x(i)m− j+1(3.6)

...

fi(k)≈ x(i)k for i = 1,2, . . . ,n.

Since we use an appropriate interpolant to interpolate the data, i.e. the one
that preserves the monotonicity of the data, then the extrapolation based on this
interpolation process enables us to get the next point outside of the range. It



5

means that if we calculate fi(t∗) with t∗ ∈ [k+ 1,s] ⊂ R, where s ≥ k+ 1 , then we
obtain

(3.7) fi(t∗)≈ x(i)r for i = 1,2, . . . ,n,

where each x(i)r has a similar property as x(i)t in (3.5). In other words, if the se-
quence of x(i)t is monotonically increasing/decreasing, so is x(i)r . Thus arranging
vector xr, with xr

(i) being the ith entries of the vector, yields an approximate solu-
tion of the system.

Since PCHIP captures the persistent pattern of the data, this process also en-
ables us to generate a new sequence of solutions beyond the last one produced by
the Lanczos algorithm. Of course, we know that extrapolation will not produce
many good points. Consequently, we choose the integer s such that the residual
norms of the iterates generated by this process, xk+1,xk+2, . . . ,xs are small enough.
It is assumed that these iterates replace the "missing" iterates not generated by the
Lanczos-type algorithm due to breakdown. This is basically what EIEMLA does.
However, s may be very close to k, in which case the Xs may not have a resid-
ual norm small enough to achieve convergence. This, therefore, calls for a more
robust approach which is that of restarting.

3.1. Restarting EIEMLA. Restarting from a point generated by EIEMLA has been
proposed for the first time in [26]. This is an implementation of the restarting
strategy from some specific points advocated in [25]. The idea, checked in [25], is
that re-starting algorithms of the Lanczos-type with better points results in better
approximate solutions. Since EIEMLA generates approximate solutions which
are always better than the iterates generated by the Lanczos-type algorithm it-
self up to then, these points are, therefore, good restarting points. This idea is
illustrated in Figure 1, while the restarting approach is described as Algorithm 1,
[26].

Figure 1. The process of REIEMLA on SLE’s



6

Algorithm 1 REIEMLA

1: Initialization. Choose x0 and y. Set r0 = b−Ax0, y0 = y, and z0 = r0.
2: Fix the number of iterations to, say k, and the tolerance, ε, to 1E−13.
3: Run EIEMLA for k iterations. Obtain a sequence of iterates {xk+1,xk+2, . . . ,xs},

where s≥> k+1, and calculate the residual norms of these iterates.
4: Compute the minimum of the residual norms, call it ‖rmodel‖.
5: if ‖rmodel‖ ≤ ε then
6: The solution is obtained, and it is the iterate which is associated with this

residual norm, call it xmodel .
7: Stop.
8: else
9: Initialize the algorithm with

x0 = xmodel

y = b−Ax0

10: Go to 3.
11: end if
12: Take xmodel as the approximate solution.
13: Stop.

4. Running EIEMLA and REIEMLA in Parallel Matlab

We are concerned with the stability of the new approach when solving large
scale problems (up to 1000000 variables). To run EIEMLA using the cloud com-
puting service, the code should first be parallelized. Often parallelisation is done
by hand by the user as in [30]. Here, the pain of parallelisation is taken away by
the parallel environment. In Matlab, it is achieved using the parfor-loop function.
This is illustrated in Fig. 2.

Figure 2. The embedded process in Lanczos algorithms



7

First, the system Ax = b is processed by Lanczos algorithm to generate a se-
quence {x1,x2, · · · ,xk}, of approximate solutions. The sequence is then used as
an input to the embedded process. In the client box, the re-arranged sequence is
sent to the workers where the interpolation and extrapolation of the sequence by
using PCHIP, [18], is carried out. There are a number of data sets that need to be
interpolated in this stage. As said earlier, the order of computations is not preset.
The amount of processing carried out on a given worker depends on the speed of
the processor and the load balancing implemented by the master processor. After
the whole embedded process is finished, the new approximate solution and the
corresponding residual norm are produced and then sent back to the client as the
final output.

4.1. Numerical Results. This section is an account of the computational exper-
iments carried out and the numerical results obtained with the implementation
of EIEMLA in a parallel environment. The comparison of the computation times
needed when using for-loop and parfor-loop is presented. We also present results
obtained by restarting EIEMLA (REIEMLA) in a parallel environment. We partic-
ularly focus on comparing the performance of REIEMLA, in terms of CPU time,
when run on a parallel machine and on a sequential one. The test problems are
solved under MATLAB 2012b on Unix0 system provided by the University of Es-
sex which includes hardware that consists of 4 x AMD Opteron(tm) processors
with 2.20 GHz speed and 48 cores, 128 GB RAM, and a 1000 Mbps ethernet in-
terface. The Matlab PCT license is available in this system with a maximum of 8
local workers. For running the sequential algorithm, we used Matlab 2013a on a
machine with 12 GB RAM.

Table 1 presents the computation time of EIEMLA in both parallel and serial
environments. Several problems of dimensions ranging from 10000 to 1000000
were solved. As we can see here, the table consists of 5 columns each of which
presents respectively the dimensions of the problems, the residual norms, the
computation time of EIEM Orthodir with for-loops and parfor-loops, and the speed
up achieved. The speed up is calculated by taking the ratio of EIEM Orthodir with
for-loops CPU times and those of parfor-loops.

In general, the use of parfor-loops is able to reduce the execution time signif-
icantly. To solve SLE’s with dimensions 10000, for instance, EIEMLA with par-
for-loops runs four times faster than with for-loops. In addition, for dimensions
20000 and 30000, the speed up is 5 fold. For dimensions 40000 to 1000000, the
parallel program is 5 times, sometimes 6 times, faster than the sequential one.
These comparisons are clearly seen in Fig. 3.

4.2. Running REIEMLA on Parallel Platforms. To run REIEMLA in parallel, the
parfor-loop is used as a means to parallelize our codes. Comparisons are on com-
putation times of the algorithms with parfor-loop and without it, i.e. by just stick-
ing with for-loops of the sequential code. Here again, problems are ranging from
100000 to 1000000 dimensions.

It can be seen in Table 2, that in general, REIEMLA runs in parallel signif-
icantly faster than sequentially. For instance, speed up is 4.04 for dimensions
100000, meaning REIEMLA solved the problems in a parallel environment 4 times



8

Table 1. Comparison of EIEMLA in parallel and sequential environments.

Dim Res.Norm Processing Time (sec.) Speed Up

n ‖rmodel‖ Sequential Parallel x(times)
10000 4.0804 5.2229 1.2959 4.03
20000 2.0776 10.5466 2.2446 4.69
30000 14.4011 15.8540 3.2166 4.92
40000 6.7584 20.8902 3.9129 5.34
50000 3.3782 26.2809 4.9604 5.29
60000 12.3680 31.5569 5.8258 5.42
70000 5.1140 36.7257 6.8410 5.37
80000 1.3536 41.9938 7.8136 5.37
90000 5.8349 47.4259 8.8534 5.36

100000 1.0606 52.5293 9.7401 5.39
200000 5.0090 105.7368 19.2961 5.48
300000 30.4925 157.4330 28.4763 5.53
400000 30.8407 210.8508 38.6017 5.46
500000 44.7364 262.4477 49.2533 5.33
600000 71.9335 316.1252 56.3174 5.61
700000 62.2338 368.3247 65.9906 5.58
800000 16.7394 422.8909 74.7826 5.65
900000 34.0717 476.6024 83.9225 5.67

1000000 18.1782 549.0482 101.2656 5.42

Figure 3. Comparison of for-loop and parfor-loop execution speeds

faster than restarting in a sequential environment. Also, when solving 400000
and 500000 variables, REIEMLA with parfor-loops was about 7 times and 6 times
faster respectively than the sequential code.

5. Running EIEMLA and REIEMLA on a Cloud Computing Platform

Cloud computing is a new way of providing computing power on demand. It
is potentially the future of computing since the current ownership of computers



9

Table 2. Comparison of REIEMLA in parallel and in sequential environments

Dim Res.Norms Processing Time (sec.) Speed up

n ‖rmodel‖ Sequential Parallel x (times)
100000 6.7572E−14 3.9749E +02 98.3595 4.04
200000 7.3917E−14 9.0306E +02 2.3294E +02 3.88
300000 5.7715E−14 1.0328E +03 3.6675E +02 2.82
400000 6.2753E−14 3.3668E +04 4.9720E +02 6.77
500000 7.5120E−14 3.5596E +03 5.5249E +02 6.44
600000 6.9701E−14 2.8829E +03 7.2046E +02 4.00
700000 9.6797E−14 4.0071E +03 8.8016E +02 4.55
800000 9.0274E−14 4.5529E +03 9.8848E +02 4.61
900000 7.8603E−14 5.5275E +03 1.1893E +03 4.65

1000000 7.8631E−14 6.1636E +03 1.2373E +03 4.98

means that a lot of the computing power is really wasted while we pay a lot to
acquire it and to maintain it, [24].

There are several cloud providers, such as Amazon EC2, Google Cloud, and
Microsoft Azure, which generally provide three services, including infrastructure
as a service (IIaS), the platform as a service (PaS), and software as a service (SaS),
[10, 21]. Furthermore, there are different types of cloud platforms that we can
subscribe to: (1) public cloud, (2) private cloud, (3) community cloud, and (4)
hybrid cloud, [21, 24].

5.1. An Exemplar Cloud Computing Provider: The Domino Data Lab. Domino
Data Lab, founded by Nick Elprin in 2014, is a cloud service that allows us to run
R, Python, and Matlab codes, [?]. Its service is a platform-as-a-service (PaaS)
for data analysis, to provide equipments for a larger group of users which has
typically been inaccessible to people without engineering abilities. Domino runs
R code (or Python, Julia, Matlab, and more) on the cloud without any set-up
or configuration. It also handles Amazon Machine Images (AMI) and package
management, job distribution and secure data transfer. For other advantages of
Domino can be read in [13].

5.2. EIEMLA on Domino Cloud Platform. Domino has several options of hard-
ware, from 1 GB RAM and 1 core only, to the XX large which contains 60 GB RAM
and 32 cores. If the users need more RAM than those available the Domino team
will set up a special hardware, the so-called "Custome hardware". In this study,
we used the X-large and the XX-large hardware which respectively contain 16
and 32 cores with 30 and 60 GB RAM. We compared with Unix2 available at the
university of Essex super computer with 48 cores and 256 GB shared RAM.

5.2.1. EIEMLA on Domino Cloud : Numerical Results. The results are recorded in
Tables 3 and 4. Note, Speed up 1* is the ratio of the Domino Cloud with 16 cores
CPU time and the CPU time of the local parallel machine; Speed 2* is the ratio of
Domino Cloud with 32 cores CPU time and that of this same local parallel ma-
chine. This platform is the Unix2 machine of the University of Essex which sup-
ports Matlab. The way we access it is similar to the way we access the Domino
cloud platform or any cloud providers for that matter. Here we present experi-
mental results comparing performance of EIEM Orthodir on this local machine
and on the Domino cloud computing.



10

Table 3. Performance of EIEMLA on the Cloud when solving SLEs with δ = 0.2

Dim Computational Time (seconds)

n Domino Cloud (16 cores) Domino Cloud (32 cores)
100000 61.234 64.613
200000 1.2294E +02 1.3160E +02
300000 1.8518E +02 1.9988E +02
400000 1.9288E +02 2.0844E +02
500000 3.0886E +02 3.1468E +02
600000 3.6125E +02 4.1542E +02
700000 4.4078E +02 4.4470E +02
800000 4.9064E +02 4.9886E +02
900000 5.4645E +02 4.8818E +02
1000000 5.9574E +02 5.6232E +02

Table 4. CPU times of EIEMLA on the local platform and on the Domino Cloud

Dim Local Platform (8 workers) Speed up 1* Speed up 2*

n Computational Time (seconds) x(times) x(times)
100000 9.7401 6.29 6.63
200000 19.2961 6.37 6.82
300000 28.4763 6.5 7.02
400000 38.6017 4.9 5.39
500000 49.2533 6.27 6.39
600000 56.3174 6.41 7.38
700000 65.9906 6.68 6.74
800000 74.7826 6.56 6.67
900000 83.9225 6.51 5.82
1000000 101.2656 5.88 5.55

As can be seen in Table 3, in most cases, the processing time of 32 cores on
Domino cloud is slower than 16 cores. This appears, for instance, on dimensions
ranging from 100000, to 800000. For problems of dimensions 900000 and 1000000,
however, the 32 cores is slightly faster than the 16 cores. This means that more
processors do not necessarily translate into performance because of many factors
including communication costs.

Interestingly, the local platform is more efficient than the Domino Cloud, with
both 16 cores and 32 cores, as can be seen in Table 4. The processing time in the
local machine is consistently less than that of the Domino Cloud. For instance,
when solving 100000 dimensional problems, the execution time of the EIEM Or-
thodir on the university machine is 6.29x faster than the processing time on the
Domino cloud with 16 cores. This factor is even bigger when we used 32 cores
on Domino cloud; it is 6.6x faster. Speed up 1 and speed up 2, however, fell to
4.9 and 5.39 respectively, when solving 400000 problems. The rest of the results
show the same trend.

5.3. REIEMLA on the Domino Cloud: Numerical Results. Looking at Table 5,
overall, the trend is similar to that of the previous section; the execution time
on the University Cloud is consistently less than that on Domino Cloud. One
thing to highlight is that, the 32 cores on Domino Cloud seems to be slower than
the 16 cores in some cases, while in some others it is faster. For instance, for
dimensions ranging from 50000 to 80000, 100000, 300000, and 400000, the 32 cores



11

Table 5. Performance of Parallel REIEMLA on SLEs with δ = 0.2

Dim Computational Time (sec.) Speed1* Speed2*

n Unix 0(8 nodes) Cloud(16 cores) Cloud(32 cores) x(times) x(times)
50000 49.9953 2.48E +02 2.79E +02 4.96 5.58
60000 66.3108 2.99E +02 3.37E +02 4.51 5.08
70000 75.5876 3.17E +02 3.56E +02 4.19 4.71
80000 79.946 4.02E +02 4.46E +02 5.03 5.58
90000 100.6326 4.75E +02 4.65E +02 4.72 4.62

100000 98.3595 4.67E +02 5.11E +02 4.75 5.19
200000 2.3294E +02 1.052E +03 9.97E +02 4.52 4.28
300000 3.6675E +02 1.544E +03 1.650E +03 4.21 4.49
400000 4.9720E +02 2.325E +03 2.409E +03 4.68 4.85
500000 5.5249E +02 2.866E +03 2.650E +03 5.19 4.79

is slower than the 16 cores. However, for dimensions 90000, 200000, and 500000,
the 32 cores is faster than the 16 cores. So far, we do not have enough evidence to
explain why this is the case, although communications overheads, and sharing of
the platform with other users may be the reason. We also suspect that our code
is accessing some shared resource (e.g., a global matrix). So, it is possible that the
underlying operating system is doing some locking to prevent multiple threads
from accessing that resource at the same time. If that is really happening, then
more threads could slow things down, [12].

6. Conclusion

We have introduced a novel approach to addressing the inherent fragility of
Lanczos-type algorithms by way of interpolating and extrapolating sequences
of iterates generated by the Lanczos-type algorithm used prior to it breaking
down. This approach, namely EIEMLA, although robust, does not achieve the
expected convergence. A restarting strategy is thus implemented into it leading
to REIEMLA which is very robust and efficient. Because of the ubiquitous and
common nature of SLEs, we set out to solve problems of large scale to test our ap-
proach. Moreover, given now the advent of cloud computing, we decided to im-
plement and run both EIEMLA and REIEMLA on a standard parallel processing
platform as provided by the University of Essex where this work has been carried
out and also on a commercial cloud computing platform, namely Domino Data
Lab. Very good computational results have been obtained showing that the ap-
proach does indeed address the issue of breakdown in Lanczos-type algorithms
and does it in an efficient way. Moreover, it can be run in parallel on the most
up-to-date platforms quite straightforwardly.

There is a slight problem, however. At the moment we have to choose k, the
length of the sequence of iterates generated by the algorithm used in an arbitrary
fashion. This is because we really do not know when the Lanczos-type algorithm
is going to break down. If we wait until the algorithm breaks down then we will
have to pick up the pieces, so to speak, reset everything and try again which can
be costly. If we stop the process too early, then we would have wasted potentially
a number of useful iterations. It is therefore worthwhile to investigate preemp-
tive restarting which can deliver the appropriate values of k. We are currently
working on this. Our finding will be included in forthcoming paper.



12

Acknowledgments

This project is supported by BATCH I Research Grant University of Jenderal
Soedirman, Indonesia, 2017. Thanks to University of Essex for providing us a
massive computing systems.

References
[1] E. Ayachour Avoiding Look-Ahead in Lanczos Method and Pade Approximation, Applicationes Math-

ematica, 1999.
[2] Baheux, C. New implementations of Lanczos method, Journal of Computational and Applied Math-

ematics 57 (1-2), 3-15, 1995.
[3] Brezinski, Claude and Sadok, Hassane Lanczos-type algorithms for solving systems of linear equations,

Applied Numerical Mathematics 11 (6), 443-473, 1993.
[4] Brezinski, C. and Zaglia, R. A New Presentation of Orthogonal Polynomials with Applications to Their

Computation, Numerical Algorithms 1 (2), 207-221, 1991.
[5] Brezinski, C. and Zaglia, R. Breakdowns in the Computation of Orthogonal Polynomials, Springer,

Dordrech 296, 49-59, 1994.
[6] Brezinski, C. and Zaglia, R. and Sadok,H.Avoiding Breakdown and Near-Breakdown in Lanczos-type

Algorithms, Numerical Algorithms 1 (2), 261-284, 1991.
[7] Brezinski, C. and Zaglia, R. and Sadok, H.A Breakdown-Free Lanczos-type Algorithm for Solving

Linear Systems, Numerical Mathematics 63 (1), 29-38, 1992.
[8] Brezinski, C. and Zaglia, R. and Sadok, H.New Look - Ahead Lanczos - type Algorithms for Linear

Systems, Numerical Mathematics 83, 53-85, 2000.
[9] Brezinski, C. and Zaglia, R. and Sadok, H.The Matrix and Polynomial Approaches to Lanczos-type

Algorithms, Journal Of Computational and Applied Mathematics 123 (1-2), 241-260, 2000.
[10] Buyya, Rajkumar and Broberg, James and Goscinski, Andrej Cloud Computing Principles and

Paradigms, John Wiley and Sons John Wiley and Sons, New Jersey (1-2), 241-260, 2011.
[11] Duff, L.S. and Van der Vorst, H.A. Developments and Trends in the Parallel Solution of Linear Systems,

Parallel Computing 25, 1931-1970, 1999.
[12] Elprin, Nick Private Discussion, 11 August 2014.
[13] Elprin, Nick Domino: A Platform-as-a-Service for Industrialized Data Analysi,

http:/www.help.dominodatalab.com/keyConcepts, 2014.
[14] Farooq, M. and Salhi, A. TNew Recurrence Relationships between Orthogonal Polynomials which Lead

to New Lanczos-type Algorithms, Journal of Prime Research in Mathematics 8, 61-75, 20012.
[15] Farooq, M. and Salhi, A. A Preemptive Restarting Approach to Beating Inherent Instability, Iranian

Journal of Science and Technology Transaction a Science 37, (Special Issue) 349-358, 2013.
[16] Farooq, M. and Salhi, A. A Switching Approach to Avoid Breakdown in Lanczos-type Algorithms,

Applied Mathematics and Information Sciences 8, (5) 2161-2169, 2014.
[17] Fritsch, F. N. and Butland, J. A Method for Constructing Local Monotone Piecewise Cubic Interpolants,

SIAM J. Sci. Stat. Comput. 5, (2) 300-304, 1984.
[18] Fritsch, F. N. and Carlson, R.E. Monotone Piecewise Cubic Interpolation, SIAM Journal Numerical

Analysis 17, (2) 239-248, 1980.
[19] Grave-Morris, P. A Look-Around Lanczos Algorithm for Solving a System of Linear Equations, Numer-

ical Algorithm 15, 247-274, 1997.
[20] Heller, Don A Survey of Parallel Algorithms in Numerical Linear Algebra, Techni-

cal report, Department of Computer Science, Carnegie Mellon University 1-1-1976,
http://repository.cmu.edu/compsci, 1976.

[21] Huth, Alexa and Cebula The Basics of Cloud Computing, Technical re-
port, Produced for US-CERT, Carnegie Mellon University www.us-
cert.gov/sites/default/files/.../CloudComputingHuthCebula.pdf, 2011.

[22] Lanczos, C. An Iteration Method for The Solution of the Eigenvalue Problem of Linear Differential and
Integral Operator, J.Res.Natl.Bur.Stand 45, (4), 255-282, 1958.

[23] Lanczos, C. Solution of Systems of Linear Equations by Minimized Iterations, J.Res.Natl.Bur.Stand 49,
(1), 33-53, 1952.

[24] Landis, C. and Blacharski, D. Cloud Computing Made Easy, Virtual Global Inc., 2013.



13

[25] Maharani, M. and Salhi, A. Restarting from Specific Points to Cure Breakdown in Lanczos-type Algo-
rithms, Journal of Mathematical and Fundamental Sciences 2, (47), 167-184, 2015.

[26] Maharani, M. and Salhi, A. and Khan,Wali Enhanced the Stability of Lanczos-type Algorithms by
Restarting The Point Generated by EIEMLA for the Solution of Systems of Linear Equations, Science
Journal Lahore 28, (4), 3325-3335, 2016.

[27] Rajalakshami, K. Parallel Algorithm for Solving Large Systems of Simultaneous Linear Equations, IJC-
SNS 9, (7), 276-279, 2009.

[28] Rashid, M., Crowcroft, J. Parallel Iterative Solution Method for Large Sparse Linear Equation Sys-
temss, Tech. Rep. 650, Technical report, University of Cambridge, Computer Laboratory, Octo-
ber 2005.

[29] Saad, Y. Iterative Methods for Sparse Linear Systems, Philadelphia: Society for Industrial and Ap-
plied Mathematics, 2003.

[30] Salhi, A., Proll, L. G., Rios Insua, D. Parallelising an Optimisation-based Framework for Sensitivity
Analysis in MultiCriteria Decision Making, Tech. Rep. 98-15, Mathematics Department, University
of Essex, UK, 1998.

[31] Sidi, A., William Ford, F., David Smith, A. Acceleration of Convergence of Vector Sequences, SIAM
Journal on Numerical Analysis 23, (1), 178–196, 1986.

[32] Torp, Audun Sparse Linear Algebra on a GPU with Applications to Flow in Porous Media, Ph.D. thesis,
Department of Physics and Mathematics, Norwegian University of Science and Technology,
2009.


