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a b s t r a c t

In random effect models, error variance (stage 1 variance) and scalar random effect vari-
ance components (stage 2 variances) are a priori modeled independently. Considering the
intrinsic link between the stages 1 and 2 variance components and their interactive effect
on the parameter draws in Gibbs sampling, we propose modeling the variances of the two
stages a priori jointly in amultivariate fashion.We use random effects linear growthmodel
for illustration and consider multivariate distributions to model the variance components
jointly including the recently developed generalized multivariate log gamma (G-MVLG)
distribution. We discuss these variance priors as well as the independent variance priors
exercised in the literature in different aspects including noninformativeness and propriety
of the associated posterior density. We show through an extensive simulation experiment
that modeling the variance components of different stages multivariately results in bet-
ter estimation properties for the response and random effect model parameters compared
to independent modeling. We scrutinize the sensitivity of response model coefficient esti-
mates to the parameters of considered noninformative variance priors and find that their
full conditional expectations are insensitive to noninformative G-MVLG prior parameters.
We apply independent and joint models for analysis of a real dataset and find that mul-
tivariate priors for variance components lead to better fitted hierarchical model than the
univariate variance priors.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Hierarchical models are extensively used tomodel response data obtained from repeatedmeasures designs, longitudinal
studies, and multi-level randomized experiments designed in latin square, split plot, balanced/imbalanced block with ran-
dom effects. Random effects models are currently very popular in a wide variety of fields such as medicine, pharmacology,
psychology, regional sciences, agriculture, sports, modeling of traffic accidents, and energy economy [23,14,16,24,17,5,1,8,
18,9].

In a hierarchical model, regression coefficients or treatment effects are viewed as random variables. The top stage
(stage 1) of a hierarchical model consists of the response model whereas the next stage (stage 2) consists of models for the
random coefficients (random effects). For responses obtained from a repeated measures design or a longitudinal study, the
randomcoefficients of a linear hierarchicalmodel account for the heterogeneity among the subjects aswell as the correlation
among the observations collected from the same subject at different time points. For data obtained from a randomized
experiment in which the groups are viewed as a random selection from a population of groups, random effects encapture
group specific effects as well as between group variation. For Bayesian analysis of hierarchical models, the hierarchical
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structure is enlarged to include yet another stage at which the variances of the random coefficients (random effects) are
given prior distributions. This stage is the focus of the current article.

As there is usually and unsurprisingly no sufficient prior knowledge regarding what could be the variance of the random
coefficient, the user prefers noninformative hyperpriors and let the likelihood dominate the inference on the stage 2 vari-
ances. Therefore of interest are the diffuse priors and researchers in the area have been in quest for what could be regarded
as default hyperprior for the stage 2 variance parameters or a one to one transformation of them. Of all the diffuse priors
considered in the literature, gamma distribution with small shape and scale parameters (denoted thereof by Ga(ϵ, ϵ)) has
been the most commonly used default prior for the inverse of stage 2 variance parameter (an equivalent representation
being Inv− Ga(ϵ, ϵ) for stage 2 variance) owing its common use to its conjugacy to Normality and resulting computational
benefits in softwares such as BUGS that perform Gibbs sampling for posterior inference. A dangerous but often overlooked
characterization of diffuse hyperprior distributions based on gamma distribution is that it may result in near or complete
improper posteriors. For instance, Natarajan and McCulloch [21] discuss diffuse inverted gamma priors in probit-Normal
hierarchical models resulting in improper posterior distributions and inaccurate posterior estimates. Motivated for devel-
oping proper hyperprior, Natarajan and Kass [20] proposed for generalized linear mixed models an approximate uniform
shrinkage and Jeffreys priors for the unstructured second stage variance matrix and showed that their priors lead to proper
posteriors and have better frequentist properties relative to inverse-gamma and Wishart hyperpriors.

More recently Lambert et al. [15] compare effects of 13 different prior settings induced on stage 2 scale parameters of
a random effects hierarchical model via a simulation study using WinBUGS. They consider various gamma, Pareto and lo-
gistic distributions as prior for stage 2 precision, various uniform distributions as prior for stage 2 variance, its square root
and natural logarithm, and various half-normal distributions as prior for square root of stage 2 variance. Not a particular
prior setting is identified as best in all scenarios and they note that uniform prior is not a good alternative if a vague prior is
intended for stage 2 variance.

Browne and Draper [4] for Bayesian analysis of mixed linear and random effects logistic regression models consider
Inv − Ga(ϵ, ϵ) and uniform prior on (0, 1/ϵ) for the stage 2 variance. Their simulation study demonstrates that Bayesian
interval inference with these priors face undercoverage problems in mixed linear models when the number of level 2 units
of the experimental design is small. Gelman [11] considers traditional Inv−Ga(ϵ, ϵ) and Uniform(0,A) hyperpriors and con-
structs a folded-noncentral-t family of priors as hyperpriors for variance parameters in hierarchical models. Unlike Lambert
et al. [15], Gelman [11] suggests the use of uniform prior for a noninformative prior setting. He recommends half-Cauchy
(denoted thereof by HC(0, 1)) distribution, which is included in folded-noncentral-t family, as weakly informative prior for
stage 2 standard deviation and advises not to use the inverse-gamma setting. Of these prior distributions, as indicated in
the article limA→∞ Uniform(0,A) yields proper posterior whereas limϵ→0 Ga(ϵ, ϵ) does not and the posterior inference is
sensitive to the choice of ϵ.

Polson and Scott [22] propose to induce half-Cauchy distribution on stage 2 standard deviation and obtained inverted-
beta priors for stage 2 variance which ultimately led to the class of hypergeometric inverted-beta distributions resulting in
a generalization of the half-Cauchy prior. They qualify the half-Cauchy prior as a sensible default prior for scale parameters
in hierarchical models.

One should note, however, that there are two main aspects with these priors that need attention. First, with these pri-
ors, variance components of different stages are a priori modeled independently although they are linked as they are the
components of the total variation in a response. Second, as presented in Section 3.2, the drawback of these prior structures
is that the posterior inference on the response model coefficients in a hierarchical model is highly sensitive to the choice
of the parameters of these prior distributions. In this article we a priori model the variance components of different stages
jointly by specifying a multivariate prior distribution. Desirable properties of such a joint variance prior density are 1. non-
informative, 2. leads to proper posteriors, and 3. change in the parameters of the variance priors do not effect the posterior
inference on response model coefficients.

For joint prior modeling, we stack stage 1 and stage 2 variances and induce a multivariate hyperprior distribution. We
consider multivariate normal, multivariate skew normal, and generalized multivariate log-gamma distribution as the mul-
tivariate hyperprior distribution on natural logarithms of the variance components and investigate their properties based
on our prototype hierarchical model.

The rest of the article is organized as follows. In Section 2, we discuss certain modeling aspects concerning the variance
components including the informativeness issue, present the proposed joint variance prior setting, and discuss its propriety.
Section 3 presents an extensive simulation study inwhichwe investigate and compare sensitivity of the posterior estimators
of the proposed joint prior to those in the literature where variances of different stages are a priori modeled independently.
In this section, the notion of noninformativeness for a multivariate prior density is furnished and subspace of variance hy-
perparameters to which the posterior inference is rather insensitive is sought through the directional derivative concept.
A data application is presented in Section 4. Finally a discussion on the evaluation of the results and generalization of the
proposed approach for further modeling extensions is given in Section 5.

2. Modeling the variance components

We will consider the basic random coefficient model given in (1). Such basic models are also considered in Bayesian
literature to study variance components in normal hierarchical models [11,22]. The model is
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Yij = αi + βi(xj − x̄)+ eij, (1)
αi ∼ N(αc, τα),

βi ∼ N(βc, τβ),

and eij’s are iid N(0, τc) for i = 1, . . . , n, j = 1, . . . , J . Additional set of assumptions is Cov(eij, αk) = 0, Cov(eij, βk) = 0,
and Cov(αi, βi) = 0 for all i, j, and k. This model is basically a random effects linear growth model, an important class of
hierarchical models. Here, the variance components τc and (τα, τβ)T constitute stage 1 and stage 2 variances, respectively.
Although this is a simple response model, it is not a problem as our focus is on the variance priors. This response model is
only used to illustrate our approach for variance priormodeling. The proposed approach is independent of how the response
is modeled and therefore can easily be adopted for more complex response model extensions.

In this section, we present the traditional univariate and proposedmultivariate priors for the variance components using
the prototype model described in Section 1. The Bayesian hierarchical configuration of model (1) is as follows:

Yij|α,β, x, τ
ind
∼ N(αi + βi(xj − x̄), τc),

αi ∼ N(αc, τα), βi ∼ N(βc, τβ),

αc ∼ N(µα,ϖ 2
α ), βc ∼ N(µβ ,ϖ 2

β ),

τc ∼ Fc(·),
τα ∼ Fα(·), τβ ∼ Fβ(·),

(2)

where τ = (τα, τβ , τc)
T , Fc(·), Fα(·) and Fβ(·) are used to denote the prior distributions of variance components. The last

two lines of this model are the focus of this article. Below Θ symbolizes the vector of all the parameters in the resulting
Bayesian hierarchical models. Also if e.g. θ is a symbol for a parameter in Θ , then Θ−θ refers to all the parameters in Θ
excluding the θ itself.

2.1. Traditional variance priors

Inverse-gammamodel: Themost practical approach formodeling the variance parameters has been to induce inverse-gamma
(IG) priors on τα, τβ and τc as in the following:

τc ∼ IG(ξc, ηc),
τα ∼ IG(ξα, ηα), τβ ∼ IG(ξβ , ηβ).

(3)

We call this prior setting IG model throughout the article. Under the IG model, the full conditional posterior distributions of
the parameters are as follows:

τc |Θ−τc , y ∼ IG(ξc + 0.5nJ, ηc + 0.5S4),
τα|Θ−τα , y ∼ IG(ξα + 0.5n, ηα + 0.5Sα),
τβ |Θ−τβ , y ∼ IG(ξβ + 0.5n, ηβ + 0.5Sβ),

αc |Θ−αc , y ∼ N

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+
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(4)

where S4 =


i,j[yij − (αi + βi(xj − x̄))]2, Sα =


i(αi − αc)
2, Sβ =


i(βi − βc)

2, S1 =


i,j yij, S2 = βi


j(xj − x̄), S∗

1 =
i,j yij(xj − x̄), S∗

2 = αi


j(xj − x̄) and S∗

3 =


j(xj − x̄)2. Noting that variance of a random variable distributed

as IG is η2

(ξ−1)2(ξ−2)
, shape (ξ) and scale (η) parameters should be set close to 2 and at a large value respectively for a

noninformative IG prior with positive variance. The application of diffuse IG model in the literature has been different:
IG model is applied such that Ga(ϵ, ϵ), where ϵ is a small value e.g. 0.001, is assumed as prior density for 1/τ.. For instance,
1/τ· ∼ Ga(0.001, 0.001) which in turn is equivalent to τ· ∼ IG(0.001, 1000). This use has two problems worthy of
consideration: 1. limiting Ga(ϵ, ϵ) is improper as ϵ → 0 and improper prior in this case leads to improper posterior, 2.
variance of the resulting IG parameter is negative! The former one is about the prior density becoming improper in the limit
of noninformativeness. The later situation seems to escape from computational problems while Gibbs sampling, however
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it is contradicting with the basic property of variance. Direct use of noninformative IG on the variance component itself as
described above removes these problems.
Uniform model: The second prior of concern is inducing uniform priors on τα and τβ , and an inverse-gamma prior on τc as
follows

τc ∼ IG(ξc, ηc),
τα ∼ U(0, a), τβ ∼ U(0, b),

where a > 0 and b > 0. The model with these variance priors is referred as UNF model throughout the article. For UNF
model, full conditional posterior distributions of τc, αc, βc, αi and βi are the same as in (4) along with the full conditional
posterior distributions of τα and τβ given as

τα|Θ−τα , y ∼ IG(0.5n − 1, 0.5Sα)I(τα < a),
τβ |Θ−τβ , y ∼ IG(0.5n − 1, 0.5Sβ)I(τβ < b).

Noninformative priors for τα and τβ are obtained by setting a and b at large values.
Half-Cauchymodel: Thirdwe consider half-Cauchy (HC) priors on both τα and τβ , and an inverse-gammaprior on τc as follows

τc ∼ IG(ξc, ηc),
τα ∼ HC(0, 1), τβ ∼ HC(0, 1).

This model is called HCmodel throughout the article. For the HCmodel, full conditional posterior distributions of τc, αc, βc,
αi and βi are the same as in IG model while those for τα and τβ are obtained as the following:

p(τα|Θ−τα , y) ∝ τ−n/2
α (1 + τ 2α )

−1 exp{−0.5Sα/τα}, τα > 0, (5)
and

p(τβ |Θ−τβ , y) ∝ τ
−n/2
β (1 + τ 2β )

−1 exp{−0.5Sβ/τβ}, τβ > 0. (6)

2.2. Joint variance priors

Following factsmotivatemodeling τc, τα , and τβ jointly. First, τα, τβ , and τc are intrinsically linked as they are the compo-
nents of the total variation in an observed response, e.g. formodel (1) total variation in a response yij is equal to τα+x2j τβ+τc .
Second, the conditional probability of τβ given all the other model parameters involves τα and τc . Similar situation holds for
τα . These facts altogether motivate joint modeling of (τc, τα, τβ)T . Fully noninformative approach in multivariate modeling
of variance priors has two dimensions in need of consideration; diffuseness of the prior distribution and the correlation
structure among the parameters. Noninformativeness in the case of a multivariate prior distribution is associated with large
variances and low correlations. Variances should be set high to reflect low degree of belief in prior information. One should
have strong knowledge in order to be able to assign large correlations between the parameters and thus low correlations
should be induced for a noninformative setting. We consider the following multivariate hyperprior models for the variance
components.
Generalizedmultivariate log-gammamodel:We first consider generalizedmultivariate log-gamma (G-MVLG) distribution de-
veloped by Demirhan and Hamurkaroglu [7]. Accordingly, ifW ∼ G−MVLG(δ, ν,λT , ηT ), then the joint probability density
function (pdf) ofW = (W1, . . . ,Wk) is as follows

p(w|g) ∝ δν
∞

m=0

(1 − δ)m
k

j=1
ηjλ

−ν−m
j
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1
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
,

wherew ∈ Rk, ν > 0, λj > 0, ηj > 0, η = (ηj),λ = (λj), for j = 1, . . . , k, δ = det(�)
1

k−1 ,

� =


1


abs(ρ12) · · ·


abs(ρ1k)

abs(ρ12) 1 · · ·


abs(ρ2k)

...
...

. . .
...

abs(ρ1k)

abs(ρ2k) · · · 1

 , (7)

det(·) and abs(·) respectively denote the determinant and absolute value of the inner expression, ρij stands for the cor-
relation between ith and jth random components, and g = (δ, ν,λT , ηT ) is the vector of parameters characterizing the
distribution.

Marginal expectations and variances are given as follows

E(Wj) =
1
ηj


ln(λj/δ)+ ψ(ν)


and Var(Wj) = ψ [1](ν)/(ηj)

2, (8)



H. Demirhan, Z. Kalaylioglu / Journal of Multivariate Analysis 135 (2015) 163–174 167

whereψ(·) andψ [1](·) are digamma and trigamma functions, respectively. As seen in Eq. (8), ηj and λj are influential on the
marginal variances and expected values, respectively. Impact of correlations between variables is reflected by δ. Effects of
ηj, λj, δ and ν over the marginal expectations and variances are discussed in detail by Demirhan and Hamurkaroglu [7].

Let log transformed variance parameters be θ1 = log(τα), θ2 = log(τβ) and θ3 = log(τc). Then prior distribution of the
variance components in our joint hierarchical model, which is referred as MVLG model hereafter, is as follows:

θ = (θ1, θ2, θ3) ∼ G − MVLG(δ, ν,λT , ηT ). (9)

Full conditional posterior distributions of αc and βc under MVLG model are the same as in (4), and those for the rest of the
parameters and the hyperparameters are obtained as follows:

p(θ|Θ−θ, y) ∝ exp
 2

j=1


−(0.5n − 1)+ νηj


θj +


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

× exp

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λ−1
j eηjθj


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
, θ ∈ R3
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, βi ∈ R,

(10)

where S5 = (1 − δ) exp{−2.207728}
3

j=1 λj. Derivation of p(θ1, θ2, θ3|y) is given in Appendix A.
For a noninformative MVLGmodel, one should assign small values to the correlations between parameters (ρij) and near

zero values to ηj. It can be seen straightforwardly that p(w|g) does not become improper as ηj → 0.
Multivariate normalmodel: Second,we considermultivariate normal (MVN) distribution to jointlymodel the log transformed
variance parameters, namely θ = (θ1, θ2, θ3) ∼ MVN(µθ ,6θ ). Full conditional posterior distributions of αc and βc under
MVNmodel are the same as in (4), those of αi and βi are the same as given in (10) and full conditional posterior distribution
of θ is straightforwardly obtained as

p(θ|Θ−θ, y) ∝ exp

−(0.5n − 1)(θ1 + θ2)− (0.5nJ − 1)θ3 − 0.5Sαe−θ1 − 0.5Sβe−θ2

− 0.5S4e−θ3 − 0.5(θ − µθ )6
−1
θ (θ − µθ )

T

, θ ∈ R3. (11)

In order to get a noninformative setting for MVN model, first large values should be chosen for the diagonal elements of
6θ , then values for off-diagonal elements of 6θ (i.e. the covariances) should be selected so that the correlations between
the parameters are low while at the same time ensuring the positive definiteness of 6θ .
Multivariate skew normal model: We also consider multivariate skew normal (MVSN) distribution for the joint prior distri-
bution of the log transformed variance parameters, θ = (θ1, θ2, θ3) ∼ MVSN(λ,9). Reader should refer to Azzalini and
Valle [3] and Azzalini [2] for MVSN distribution. 9 is the dependence matrix and the vector λ = (ξi(1 − ξ 2i )

−0.5) where
ξi ∈ (−1, 1) and determines skewness. Full conditional posterior distributions of αc and βc under MVSN model are the
same as in (4), those of αi and βi are the same as given in (10) and full conditional posterior distribution of θ is easily ob-
tained as the following:

p(θ|Θ−θ, y) ∝ exp

−(0.5n − 1)(θ1 + θ2)− (0.5nJ − 1)θ3 − 0.5Sαe−θ1 − 0.5Sβe−θ2

− 0.5S4e−θ3


φ(θ,�)Φ(γT θ), θ ∈ R3, (12)

where φ(θ,�) is the pdf of MVN(0,�),Φ(γT θ) is the cdf of N(0, 1),� = 1(9 + λλT )1, for i = 1, 2, 3,1 = diag((1 −

ξ 2i )
0.5), and γ = (λT9−11−1)(1 + λT9−1λ)−0.5.
For a noninformative MVSN model, 9 and vector ξ are assigned small values in order to make the distribution slightly

skewed in a noninformative setting.

3. Influence of variance priors on posterior inference

In this section, we evaluate and compare influence of different modeling strategies for hierarchical variance components
on posterior inferences of main model parameters such as the response model coefficients. An extensive simulation study
is conducted to assess and compare accuracy of the posterior estimates obtained from the marginal and the joint prior
modeling strategies. An approach utilizing directional derivatives is developed for thorough analytic evaluation of sensitivity
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Table 1
Simulation scenarios.

Scenario J τc τα τβ Scenario J τc τα τβ

1 2 0.5 10 10 13 5 0.5 10 10
2 2 0.5 10 100 14 5 0.5 10 100
3 2 0.5 100 10 15 5 0.5 100 10
4 2 0.5 100 100 16 5 0.5 100 100
5 2 10 10 10 17 5 10 10 10
6 2 10 10 100 18 5 10 10 100
7 2 10 100 10 19 5 10 100 10
8 2 10 100 100 20 5 10 100 100
9 2 100 10 10 21 5 100 10 10

10 2 100 10 100 22 5 100 10 100
11 2 100 100 10 23 5 100 100 10
12 2 100 100 100 24 5 100 100 100

of posterior outcome to the variance hyperparameters under marginal and joint modeling strategies. These endeavors
together shed light on (i) effect of different prior constructions for hierarchical variance components on the performance
of estimators in normal hierarchical models, (ii) whether the sensitivity of posterior outcome to variance hyperparameters
vary over the hyperparameter space.

3.1. Simulation study

The aim of this simulation study is to compare posterior performances of noninformative marginal and joint models.
We consider the models given in Section 2 for the hierarchical model given in (1). The simulation study consists of 100
replications. At each iteration of the simulation experiment, the data are generated as follows. For i = 1, . . . , 30, αi andβi are
generated fromN(0, τα) andN(0, τβ) respectively. For i = 1, . . . , 30 and j = 1, . . . , J, yij are generated fromN(αi+βixj, τc).
In order to evaluate the accuracy of posterior estimates under different scenarios, we consider values of various different
magnitudes for the variance components τc, τα , and τβ as well as number of groups J in designing the simulations. These
scenarios are given in Table 1.

The vector x in (1) is taken as (8, 15)T when J = 2 and (8, 15, 22, 29, 36)T when J = 5. In all models and simulations, we
set µα = µβ = 10−3 andϖ 2

α = ϖ 2
β = 106. We set ξα = ξβ = ξc = 2.1 and ηα = ηβ = ηc = 100 for a noninformative IG

model and a = b = 100 for a noninformative UNF model. We consider two settings for the MVLG model that are denoted
by MVLG1 and MVLG2 in which the parameter ν is reasonably set at 1.42 based on the fact that its value has no effect on
the inferences. The vector η is taken as η = (0.01, 0.01, 0.01)T for noninformative MVLG models. Since λ has no effect on
the noninformativeness of MVLG model, any positive value can be chosen. Following correlation matrices for (θ1, θ2, θ3)T
are considered for the MVLG1 and MVLG2 models respectively and the parameter δ is determined accordingly as described
in Section 2.2 based on these correlation matrices.

�1 =

 1 0 0.1
0 1 0.1
0.1 0.1 1


and �2 =

1 0 0
0 1 0
0 0 1


. (13)

For the MVN model, we consider two settings denoted by MVN1 and MVN2 and use µθ = (0, 0, 0)T in both settings. The
following covariance matrices are used for MVN1 and MVN2 models, respectively

61 =

100 0 10
0 100 10
10 10 100


, and 62 =

100 0 0
0 100 0
0 0 100


, (14)

which give the same correlations between θ1, θ2 and θ3 as in the models MVLG1 andMVLG2, respectively. We consider two
different settings for the MVSN model where ξ = (−0.1,−0.1,−0.1)T for the first one (MVSN1) and ξ = (0.1, 0.1, 0.1)T
for the second one (MVSN2). In both settings 9 is set equal to �1 of Eq. (13).

For posterior calculations of the IG, UNF and HC models, full conditional posterior distributions of parameters and hy-
perparameters are analytically derived and used within the Gibbs sampler. For the posterior calculations of MVLG, MNV,
andMVSNmodels, a Metropolis–Hastings step is employed for natural logarithms of stage 2 variance parameters under the
Gibbs sampling in which proposals for θ1, θ2 and θ3 are generated from a MVN distribution. For normal proposal densities,
one expects to get acceptance rates of about 45%–50% for a univariate case and 25%–30% for a multivariate case to conclude
appropriateness of a proposal distribution [6]. In our simulations, proposal distributions are tuned up to make overall ac-
ceptance rates about 0.30 for MVLG model and 0.5 for MVN and MVSN models both. Potential scale reduction factor (R̂)
given by Gelman [10] is used to evaluate the convergence of Gibbs sequences. Suitable burn-in period and thinning for each
parameter are determined over pilot runs of chains.

Mean square errors (MSEs) of the estimators in scenarios 15 and 23 are respectively given in Tables 2 and 3. Array of
tables corresponding to the rest of the scenarios are found in Appendix B. In the tables, MSE values under α and β columns
are averages of the MSEs of αi and βi, i = 1, . . . , 30, respectively. Accordingly, in terms of estimation of the main model



H. Demirhan, Z. Kalaylioglu / Journal of Multivariate Analysis 135 (2015) 163–174 169

Table 2
MSE values for the scenario: (J = 5; τc = 0.5; τα = 100; τβ = 10).

Model α β τα τβ τc αc βc

MVLG1 0.000 8.420 4.760 6.188 4.034 0.03 3.331
MVLG2 0.000 8.418 4.286 8.432 4.361 0.03 3.301
MVSN1 0.224 10.100 >1000 >1000 >1000 0.129 13.60
MVSN2 0.201 8.510 >1000 >1000 >1000 0.104 13.50
MVN1 0.111 7.658 >1000 >1000 >1000 0.02 2.210
MVN2 0.15 7.035 >1000 >1000 >1000 0.024 2.261
IG 0.220 8.744 53.900 >1000 >1000 0.003 0.485
UNF 0.223 8.749 54.000 76.90 >1000 0.007 3.629
HC >1000 >1000 >1000 >1000 610.0 0.059 1.253

Table 3
MSE values for the scenario: (J = 5; τc = 100; τα = 100; τβ = 10).

Model α β τα τβ τc αc βc

MVLG1 1.003 41.563 7.900 6.182 9.608 0.355 0.336
MVLG2 1.261 41.348 6.689 7.293 5.164 0.356 0.336
MVSN1 33.00 >1000 >1000 >1000 >1000 260.0 >1000
MVSN2 100.0 230.0 >1000 >1000 >1000 240.0 >1000
MVN1 150.0 >1000 >1000 >1000 >1000 140.0 >1000
MVN2 5.072 66.733 >1000 >1000 >1000 0.571 2.409
IG 15.80 110.0 >1000 >1000 200.0 0.884 3.630
UNF 35.63 110.0 150.0 >1000 210.0 0.883 4.680
HC 880.0 94.21 >1000 >1000 >1000 0.894 3.329

parameters, α and β: MVLG1 and MVLG2 models are superior to the other models based on their MSEs; the models MVN1,
MVN2, MVSN1, and MVSN2 have relatively small MSEs when stage 1 variance is small but their MSE increase with the
stage 1 variance. In terms of estimation of the variance components τα, τβ , and τc : MVLG1 and MVLG2 models produce
the smallest MSEs among all the models considered; when the true stage 1 variance is small, modeling a priori the variance
components univariately result in unsatisfactory estimation propertieswhich is in parallelwith the findings in the literature;
performances ofMVN1,MVN2,MVSN1 andMVSN2models deterioratewith larger stage 1 variance. In terms of estimation of
the population parameters αc and βc : IG, UNF, HC, MVLG1, andMVLG2models yield small MSEs; MSEs of themodels MVN1,
MVN2, MVSN1, and MVSN2 lower with increasing stage 1 variance. Overall, the multivariate models MVLG1 and MVLG2
perform the best among all the univariate and multivariate models considered. The rationale behind MVLG1 and MVLG2
performing better than the other multivariate models of the concern is explained as follows. In the models MVLG1 and
MVLG2, uncorrelation induced for noninformativeness does not in turn lead to independence of the variance components,
that is the essential dependence among the variance components is conveyed with the G-MVLG distribution. On the other
hand, the models MVN and MVSN forfeit the intrinsic dependence among the variance components when they are made
noninformative. In general, in all simulation combinations, magnitude of the true τα and τβ values have no considerable
effect on the MSEs. Univariate modeling approach is negatively affected by small group size while this is not the case for
joint modeling approach. Joint modeling with MVSN distribution yields larger MSEs when true stage 1 variance is large.

3.2. Evaluation of posterior sensitivity by directional derivatives

A method based on directional derivatives is tailored to analytically elaborate the effect of a unit change in the variance
hyperparameters on the posterior means of response model coefficients, namely {αi, i = 1, . . . , n} and {βi, i = 1, . . . , n},
undermarginal and jointmodeling strategies. Our strategy is described below forβi and the same forαi. Let (β

(1)
i , . . . , β

(B)
i )T

be the Markov chain of size B for βi after the burn-in period. Also, let 1
B

B
b=1 β

(b)
i , Eβi|Θ−βi ,Y

(βi), and Eβi|Y (βi) respectively

denote the sample average of theβ(b)i s, expectation ofβi under the full conditional density, and posteriormean ofβi. To study
the aforementioned effect, first Eβi|Y (βi) is approximated by Eβi|Θ−βi ,Y

(βi) based on the facts that (i) 1
B

B
b=1 β

(b)
i converges

almost surely to Eβi|Y (βi) as B → ∞ by Ergodic Theorem, and (ii) 1
B

B
b=1 β

(b)
i converges in probability to Eβi|Θ−βi ,Y

(βi) as
B → ∞ by the weak law of large numbers for dependent random sequences. The second result is ensured by the fact that,
assumingwithout loss of generality that true variance of β(b)i under the full conditional density is unity and letting ρs denote
the correlation between β(b)i and β(b+s)

i , Var( 1B
B

b=1 β
(b)
i ) =

1
B {1 + 2

B−1
s=1 (1 − sB−1)ρs} → 0 as B → ∞ for a convergent

Markov chain. Then the effect of the hyperparameters of the variance priors on the main estimator of interest, namely on
Eβi|Y (βi), is studied through the effect of those on Eβi|Θ−βi ,Y

(βi). In this quest, in a way, Eβi|Θ−βi ,Y
(βi) acts as a surrogate for

Eβi|Y (βi).
Second, Eβi|Θ−βi ,Y

is reexpressed as a composite function of the hierarchical variance components. This is accomplished
by evaluating Eβi|Θ−βi ,Y

(βi) at τβ = Eτβ |Θ−τβ
,Y (τβ) and τc = Eτc |Θ−τc ,Y (τc) for the hyperpriors in the IG, UNF and HC mod-
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els and at θ2 = Eθ2|Θ−θ2 ,Y
(θ2) and θ3 = Eθ3|Θ−θ3 ,Y

(θ3) for the hyperpriors in the MVLG, MVN and MVSN models. Lastly,
directional derivatives are used to investigate the change in Eβi|Θ−βi

(βi) with respect to the changes in hyperparameters
of the variance components. Let f stand for Eβi|Θ−βi ,Y

(βi) and D be a domain in RK where f is continuously differentiable.
In our context, D is the parameter space consisting of the hyperparameters of the variance components and the other pa-
rameters in the model. Let SK = {

→

u= (u1, . . . , uK ) :


u2
k = 1} be a unit sphere in RK . Then consider the function

F : D × SK → R, F(P,
→

u ) = Duf (P), where Duf (P) is the directional derivative of the function f at P ∈ D in direction
→

u . We study the behavior of F on a sample set E = {(Pg ,
→

u g) ∈ D × SK , g = 1, . . . ,G}. Cleverly chosen E makes investi-
gation of the sensitivity of Eβi|Θ−βi ,Y

(βi) to the hyperparameters of variance components practicable despite many model
parameters with differing ranges. A wide grid of values are considered for the hyperparameters of the variance components.
Other parameters involved in Eβi|Θ−βi ,Y

(βi) are fixed at realistic values. For all the models, direction vector
→

u g is generated
randomly for each Pg . Graphical representations of directional derivatives are given in Figs. 1–3where the vertical axis is the
directional derivative. In these graphs, the direction vectors

→

u g(g = 1, . . . ,G) are fixed at the same direction vector which
we denote by

→

u 0. Graphs constructed based on different randomly generated
→

u g ’s for each Pg are provided in Appendix C.
The figures in Appendix C are pebbly unlike the smooth figures below because different direction vectors are plotted on the
same figure. Nevertheless the essence is exactly the same. In each panel below, various diverse values are considered for
the parameters given at the bottom of the figure. Same functional shape is observed for all of them. Therefore to save space,
we present only the ones seen in the panel. Each figure is a graph of rate of change in Eβi|Θ−βi ,Y

(βi) in a randomly selected

direction
→

u 0 with respect to the hyperparameters specified on the axes. Each graph should be observed for the following
two situations i. whether the function f follows a flat pattern, ii. whether the flatness occurs at 0 on the vertical axis. The
Bayesian implication of this is as follows. The full conditional expectation of the parameter is equally sensitive to the hyper-
parameters over the region on which f lies on a flat surface. Otherwise the degree to which the full conditional expectation
is sensitive to a small perturbation on the hyperparameters depends on the specific values of the hyperparameters. If f lies
flat on the surface at which the vertical axis is 0, there is no change in Eβi|Θ−βi ,Y

(βi)with changes in the hyperparameters.
Fig. 1 shows the changes in the full conditional expectation of βi with respect to the changes in the parameters of the

Inverse-Gamma priors induced on the variance components. According to Fig. 1(a), f is equally sensitive over the subregion
(ϵβ , ηβ) ∈ (c,∞)× R where c seems to be somewhere around 50. In addition, f is less sensitive to the hyperparameters on
the subregion (ϵβ , ηβ) ∈ (c,∞)×Rwhich corresponds to an informative Inverse-Gammaprior for τβ than on the subregion
(ϵβ , ηβ) ∈ (0, c) × R which corresponds to a noninformative Inverse-Gamma. Other panels of this figure suggest similar
conclusion. This finding implies that the users of noninformative variance priors should be cautious in that the posterior
output is more sensitive to the choice of the parameters of the noninformative Inverse-Gamma prior for τβ .

The figures for changes in the full conditional expectation of βi with respect to the parameters of Uniform prior induced
for τβ and those of Inverse-Gamma induced for τc are presented in Fig. 2. Fig. 2(a) indicates that the full conditional
expectation of interest is less sensitive to smaller values of b in which the Uniform prior for τβ is rather informative, when
b is considered along with ϵc . However, as seen in Fig. 2(b), the result is reversed when b is considered along with ηc . This
is due to the interactive role τβ and τc priors play on the full conditional distribution of βi. This conflicting feature should
prevent utilizing Uniform distribution as reference prior for variance components in a multilevel model.

Fig. 3 presents the changes in the full conditional expectation ofβi with respect to the changes in the parameters of the G-
MVLG prior induced on the variance components. On account of panels (a), (b), and (c) of Fig. 3, full conditional expectation
of βi has the same degree of sensitivity across the space except when δ and η. are somehow large which is related with
an informative setting. Unlike the preceding priors, it can firmly be concluded that degree of sensitivity of the posterior
inference is constant over the noninformative hyperparameter space.

In summary, while the changes in the full conditional expectation of βi with respect to the changes in the parameters
of the G-MVLG prior are constant in the region that gives noninformative setting, those with respect to the parameters of
univariate models IG and UNF constantly change in the regions giving noninformative setting.

4. Application

In order to illustrate our modeling approaches over a real data set, we revisit a data set used by Moesteller and Tukey
[19, p. 503] which is republished by Hand et al. [12, p. 403]. Specific heats of water were measured by six experimenters
(n = 6) at temperatures 5, 10, 15, 20, 25, and 30 resulting in J = 6. Our interest is to fit the model given in (2) using the
prior settings discussed in Section 2. For this model, x1 = 5, x2 = 10, x3 = 15, x4 = 20, x5 = 25, x6 = 30. Means, standard
deviations, lower and upper bounds of 95% highest probability density (HPD) intervals of the posterior distributions of the
parameters, and R̂ values for the considered models are given in Appendix D. Deviance information criteria (DICs) are given
in Table 4. The most striking result is the difference in the posterior inference on the variance components between the two
sets of models (MVLG1,MVLG2,MVN1,MVN2,MVNS1,MVNS2) and (HC,UNF,IG). While the point estimates of the variance
components vary near 1 for the first set of models, all of them inflate tremendously when IG model is used and for HC
and UNF models stage 1 variance inflates. Point estimates of the random effects βis obtained from these models are quite



H. Demirhan, Z. Kalaylioglu / Journal of Multivariate Analysis 135 (2015) 163–174 171

100

80

60

40

20

ξβ

ηβ

ηβξβ

10

100
50

0 0

20 30 40 50 60 70 80 90 100

0

-0.01

-0.02

20 40 60 80 100

100

80

60

40

20

ξβ

ξc

10 20 30 40 50 60 70 80 90 100

ξβ

100
50

0 0 20 40 60 80 100

0

-0.01

-0.02

ξc

(a) ξc = 2.1; ηc = 1.1. (b) ηβ = 1.1; ηc = 1.1.

100

80

60

40

20

ξβ

ηβ

100
50

10 20 30 40 50 60 70 80 90 100

ξc

ξc

0 20 40 60 80 100

0

-0.005

-0.01

100

80

60

40

20

ξβ

ηc

ηc

10 20 30 40 50 60 70 80 90 100

ξβ

100
50

0 0 20 40 60 80 100

1

0

-1

× 10-3

(c) ξβ = 2.1; ηc = 1.1. (d) ηβ = 1.1; ηc = 2.1.

100

80

60

40

20

ηβ

10 20 30 40 50 60 70 80 90 100

ηc

ηβ
ηc

0

-2

-4
0 20 40 60

0
50

80 100

(e) ξβ = 2.1; ξc = 2.1.

Fig. 1. Changes in the full conditional expectation of βi for the IG model.

similar. However the posterior standard deviations and the HPD intervals that are used to make inferences about βis differ
depending on the choice of joint or univariate modeling of variance components. For instance, the lengths of HPD intervals
forβis vary between 0.27 and 0.29 underMVLG1modelwhile it is between 0.29 and 0.52 underHCmodel. TheMVLG2model
produces the best result according to the DIC. It is followed by MVLG1, MVN2, MVN1, MVSN2, and MVSN1. The DICs under
the univariate models are at least double those under multivariate models for variance components. This example clearly
illustrates that accounting for the intrinsic link among the stage 1 and stage 2 variance components in Bayesian analysis of
random effect models yields a better fit.
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Fig. 2. Changes in the full conditional expectation of βi for the UNF model.
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Fig. 3. Changes in the full conditional expectation of βi for the MVLG model.

Table 4
DIC values for the fitted models.

Model DIC

HC 196.279
Unif 199.374
IG 213.229
MVLG 94.392
MVN 95.008
MVSN 97.537
MVLG2 94.131
MVN2 94.972
MVSN2 97.488

5. Discussion

We have shown in a hierarchical model that modeling variance components of different stages jointly a priori resulted in
better estimation of the parameters.We have also attempted to evaluate the sensitivity of posterior estimates of the random
coefficients to the hyperparameters of the variance priors by assessing the sensitivity of their full conditional expectations
to those. Our results indicate that generalized multivariate log gamma distribution as the joint prior distribution of the
variance components lead to a rather insensitive posterior outcome.
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We focused on a random coefficient normalmodel where the random coefficients have a diagonal covariancematrix. The
considerations here can be extended tomodelswith correlated randomeffects. Kass andNatarajan [13] suggested an inverse
Wishart prior for the random effect covariance matrix which reduces to inverse gammawhen the dimension of the random
effects is equal to 1. However considerations involving inverse Wishart may not be attractive in the multivariate modeling
of variance components across the stages of a hierarchical model due to its relation with inverse gamma prior which is now
known to be avoided in the analysis of hierarchical models. Alternative considerations may involve stacking all the variance
and covariance components of the random effect model along with stage 1 variance into a vector and consider G-MVLG
prior restricted by the positive definiteness of the random effect covariance matrix. In this article, we worked on a model
representing a balanced study design where j = 1, . . . , J . Whether the considerations and results attained in this article can
be adopted for unbalanced designs requires further investigation.

Appendix A. Derivations for the MVLG model

Joint posterior distribution of all parameters and hyperparameters in MVLG model is as the following:

p(α,β, αc, βc, τα, τβ , τc |y) ∝

n
i=1

J
j=1

τ−0.5
c exp


−0.5τ−1

c [yij − (αi + βi(xj − x̄))]2


×

n
i=1

τ−0.5
α τ−0.5

β exp{−0.5[τ−1
α (αi − αc)

2
+ τ−1

β (βi − βc)
2
]}p(αc)p(βc)p(τα, τβ , τc),

α,β, αc, βc ∈ R; τα, τβ , τc ∈ [0,∞).

When the log transformation is applied it is obtained that θ1 = log(τα), θ2 = log(τβ) and θ3 = log(τc), and the Jacobian
determinant is |J| = exp{θ1 + θ2 + θ3}. Then full conditional posterior distribution of θ1, θ2, θ3 is obtained as follows:

p(α,β, αc, βc, θ1, θ2, θ3|y) ∝

n
i=1

J
j=1

exp

−0.5θ3 − 0.5e−θ3 [yij − (αi + βi(xj − x̄))]2


×

n
i=1

exp{−0.5(θ1 + θ2)− 0.5[e−θ1(αi − αc)
2
+ e−θ2(βi − βc)

2
]}

× δν
∞
k=0

(1 − δ)k
3

j=1
ηjλ

−ν−k
j

[Γ (ν + k)]2Γ (ν)k!
exp


(ν + k)

3
j=1

ηjθj −

3
j=1

1
λj

exp{ηjθj}


∝ exp

−(0.5nJ − 1)θ3 − 0.5e−θ3S4


exp{−(0.5n − 1)(θ1 + θ2)− 0.5[e−θ1Sα + e−θ2Sβ ]}

× exp

ν

3
j=1

ηjθj −

3
j=1

1
λj

exp{ηjθj}
 ∞

k=0

(1 − δ)k
3

j=1
λ−k
j

[Γ (ν + k)]2k!
exp


k

3
j=1

ηjθj


.

In order to obtain a familiar Taylor expansion we use the approximation Γ (ν + n) ≈ exp(−7.24663 + 2.07728n +

1.9922νi) proposed by Demirhan and Hamurkaroglu [7]. Accuracy of this approximation is demonstrated, and comparison
of its performance with existing approximations is given by Demirhan and Hamurkaroglu [7]. When the approximation is
applied the following is obtained:

p(α,β, αc, βc, θ1, θ2, θ3|y) ∝ exp

−(0.5nJ − 1)θ3 − 0.5e−θ3S4


× exp{−(0.5n − 1)(θ1 + θ2)− 0.5[e−θ1Sα + e−θ2Sβ ]} exp


ν

3
j=1

ηjθj −

3
j=1

1
λj

exp{ηjθj}


× exp

(1 − δ)

3
j=1

λ−1
j exp


−2 · 2.07728 +

3
j=1

ηjθj


∝ exp


−(0.5n − 1)+ νη1

θ1 +


−(0.5n − 1)+ νη2


θ2 +


−(0.5nJ − 1)+ νη3


θ3


× exp


S5 exp


η1θ1 + η2θ2 + η3θ3


− λ−1

1 eη1θ1 − λ−1
2 eη2θ2 − λ−1

3 eη3θ3


× exp

−0.5Sαe−θα − 0.5Sβe−θβ − 0.5S4e−θc


.
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Appendix B. Simulation results

Tables of MSEs for all simulation scenarios are presented in the Supplementary Material that can be found online at
http://dx.doi.org/10.1016/j.jmva.2014.12.013.

Appendix C. Change graphs for random directions

Graphs of changes in the full conditional expectation of βi for the randomly selected directions and MVLG models are
presented in the Supplementary Material that can be found online at http://dx.doi.org/10.1016/j.jmva.2014.12.013.

Appendix D. Posterior estimates under considered models in data application

Posterior estimates of parameters of the considered models are presented in the Supplementary Material that can be
found online at http://dx.doi.org/10.1016/j.jmva.2014.12.013.

Appendix E. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2014.12.013.
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