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a b s t r a c t

Association models include score parameters to multiplicatively represent the hierarchy
between the levels of the considered ordinal factor. If order restrictions are placed on the
scores, an estimation problem becomes a non-linear and restricted estimation, which is
somewhat problematic with respect to the classical approaches. In this article, we consider
the Bayesian estimation of the scores and other parameters of an association model both
with and without order restrictions. We propose the use of a previously introduced multi-
variate prior in the unrestricted case and an order statistics approach in the order-restricted
case. The advantages of using these prior structures are thatwe are able to consider the cor-
relation patterns arising from the hierarchy between the levels of ordinal factors, there is no
violation of the exchangeability assumption, the approaches are general for any size of con-
tingency table, and the posterior inferences are easily derived. The proposed approaches
are applied to both a previously analyzed popular two-way contingency table and a three-
way contingency table. Smaller standard deviations than those of previous analyses are
obtained, and a new best-fitting model is identified for the two-way table.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Log-linear models are used to figure out the interaction structures of contingency tables and are widely applied in social
and biomedical investigations. Thesemodels are characterized by the types of variable that constitute the contingency table
of interest. A contingency table can be composed of nominal variables, ordinal variables, or both. A contingency table in
which some of the variables are nominal and others are ordinal is called a mixed contingency table [19]. In addition to its
association structure, a mixed contingency table contains information about the hierarchy between the levels of ordinal
variables. Score values corresponding to the levels of each ordinal variable represent the hierarchy between the adjacent
levels of a variable. Because results and inferences are directly affected by score values, the appropriate determination or
estimation of the score values is the most vital part of an analysis. The hierarchy is handled in two ways. In the first, the
structure of the hierarchy is taken as fixed and is assigned by the researcher. Thus, score values are taken as constants
and are determined by the researcher before the analysis is performed. In the second, the score values are perceived as
parameters and are estimated from the sample by using various statistical approaches. The complexity of analysis is higher
in the latter approach, but this approach provides more reliable results than the former.

Various approaches have been used for the determination of score values in the classical setting. Goodman [17] uses the
rank number of the relevant level as the corresponding score value. Graubard and Korn [18] use standardized rank numbers
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as the score values if the levels of the ordinal variable of interest are equally spaced. Agresti [2] states that half of the rank
numbers of observations on the level of interest can be assigned as the corresponding score value. All approaches of this
type are subjective.

In some models, scores are considered to be unknown parameters, with or without the order restrictions concerning
their ordinality. The scores are estimated simultaneously with the parameters of the considered log-linear model. Log-
linear models constructed for the analysis of mixed contingency tables are association, Goodman’s RC, or RC(m) models.
The RC and RC(m) models multiplicatively include scores and parameters. In this case, the model is no longer log-linear
but rather log-multiplicative, and it is possible to have a convex likelihood function. Hence, a local maximum cannot be
obtained. When the scores are treated as parameters, the model becomes less parsimonious, and the number of degrees of
freedom increases; as a result, less powerful tests might be obtained [2]. Beh and Farver [6] review some of the problems
associatedwith iterative estimation procedures and compare the performance of non-iterative approaches in the estimation
of the linear-by-linear association parameter of ordinal log-linear models. The presence of order restrictions increases the
complexity of the estimation problem. Agresti et al. [3] and Ritov and Gilula [27] give approaches for the R or C and RC
models under order restrictions, respectively. Galindo-Garre andVermunt [15] propose and compare alternative approaches
for the RC models under order restrictions. Bartolucci and Forcina [5] introduce an extended RC model under order
restrictions. These approaches are based on large-sample approximations. Therefore, these approaches are problematic for
small samples or sparse tables [15]. Sin andWong [31] give some estimation approaches for associationmodels constructed
over multidimensional contingency tables without order restrictions. However, in the estimation process, the convergence
problems increase as the dimensionality of the considered table increases.

Bayesian approaches provide a solution to this issue. In this approach, it is possible to treat scores as random variables,
assigning the scores a prior distribution. Then, posterior estimates of scores are used to draw inferences regarding the
structures of both hierarchy and association. If researchers lack prior knowledge of score values, they are estimated using the
information provided by the sample using a non-informative Bayesian analysis. In the Bayesian framework, inferences are
based on the direct interpretation of posterior probabilities. The exact posterior distributions of the parameters producing
posterior probabilities are estimated using Markov chain Monte Carlo (MCMC) methods. Additionally, convexity is not a
problem in the Bayesian setting.

The pioneers of Bayesian estimation for the RC associationmodel are Chuang [9] and Evans et al. [13]. Chuang [9] proposes
an empirical Bayesian approach for two-way tables. Evans et al. [13] give an importance sampling approach for the Bayesian
estimation of the RC model. Kateri et al. [23] propose a more general Bayesian approach to estimate scores simultaneously
with the parameters of anRC(K)model. The approachproposed byKateri et al. [23] requires complex transformations,which
increase the complexity of the prior distributions. Therefore, Kateri et al. [23] do not derive the full conditional posterior
distributions. Instead, they use complex MCMC algorithms that do not require full conditional distributions. Iliopoulos
et al. [20] propose a new parameterization for order-restricted and unrestricted RC models, stating that their approach
simplifies the approach of Kateri et al. [23]. Iliopoulos et al. [20] develop various constraints for employing the MCMC
methods because their model is log-multiplicative when scores are treated as random variables. Their parameterization
makes it possible to run Metropolis-within-Gibbs sampling. Iliopoulos et al. [21] propose an alternative parameterization
and give an approach for the model selection of the order-restricted RC association model.

The exchangeability of the levels of variables and the correlations between scores should be considered in the analysis of
a mixed table. Let us begin with an ordinal variable Education (EDU), with levels High School (HS), Undergraduate (UG), and
Graduate (G). The place of each level among the levels of EDU is meaningful due to the hierarchy between the levels of EDU.
This issue is related to the exchangeability assumption and should be regarded when determining the prior distribution of
the scores of EDU. This issue is discussed in detail in Section 3.1. An ordinal variable incorporates the true hierarchy between
its levels. Suppose that the true values of scores corresponding to HS, UG, and G are 1, 2, and 3, respectively. If the value of
the score of UG is increased to 3, then, due to the interrelation between scores, the values of the scores for HS and G should
increase to 2 and 4, respectively, to ensure the accurate representation of the true hierarchy. This interrelation causes the
existence of a correlation structure between scores. If it is ignored and the values of the scores of both UG and G become
3, the location of UG in the hierarchy overlaps that of G. In this case, the structure of the hierarchy cannot be represented
accurately.

In consideration of these issues, it is necessary to develop a prior structure that addresses the exchangeability assumption
and the correlation patterns between scores in the Bayesian estimation of an unrestricted associationmodel. In the presence
of order restrictions, we should be concerned with the accurate reflection of the order restrictions within the analysis.
Based on these motivations, we propose the use of previously introduced prior structures for the Bayesian estimation of
scores and the remaining model parameters in both the presence and absence of order restrictions. The prior structure
used for the unrestricted case is based on the multivariate distribution introduced by Demirhan and Hamurkaroglu [12].
For the restricted analysis, we derive our prior structure from the joint distribution of order statistics. In addition to the
general advantages of Bayesian approaches, as mentioned above, for both types of analysis, the approaches based on prior
structures are general for any size of contingency table. Further, the posterior inferences are easily drawn by using theMCMC
methods; the possible correlations between the model parameters and scores are taken into consideration; the elicitation
of the hyper-parameters of prior distribution is easier; the assumption of exchangeability is taken into account; we are able
to define simultaneously a non-informative prior for the locations of scores and a slightly (or more) informative prior for the
correlations between scores; it is possible to consider the scores of some ordinal variables as order restricted and the rest
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as unrestricted; and our approach is suitable for an informative Bayesian analysis, if subjective prior knowledge is available.
Additionally, our prior structure is both useful and beneficial for model selection, if prior variances and correlations are
important.

Notation and the likelihood function are given in Section 2. Our prior elicitation strategies are given in Section 3. Posterior
inferences are mentioned in Section 4. Model comparison is outlined in Section 5. An illustrative application is taken into
account in Section 6, and a discussion is given in Section 7. In addition, another application of our approach to a three-way
contingency table is given in the electronic Appendix.

2. Notation and likelihood function

A contingency table or a log-linear model is called a nominal, ordinal, or mixed contingency table or log-linear model if
all of the variables are either nominal, ordinal, or a mixture of nominal and ordinal, respectively. Although notation is given
for two-way tables in this section, the approaches are general for any size of contingency table.

In our notation, each element of a log-linear model is denoted as follows: an expected count corresponding to the t and s
levels of variables of anN-way contingency table is denoted by nts; the number of variables in a contingency table is denoted
by N; the general effect term is denoted by u; a main effect of level t of variable i is denoted by ui(t); a two-way interaction
between t and s levels of i and j nominal variables, respectively, is denoted by uij(ts), which can easily be generalized for
higher-way interactions; a row or column effect of level t of nominal variable i is denoted by τi(t); a score corresponding
to the level t of ordinal variable i is denoted by xi(t); and an association parameter corresponding to the variables i and
j is denoted by βij, where i, j = 1, . . . ,N . This notation is somewhat restrictive, but it is suitable for our purpose. More
general notation for the definition of nominal log-linear models is given by King and Brooks [24]. For instance, the saturated
log-linear model for a three-way nominal contingency table is written as follows:

log ntsr = u + u1(t) + u2(s) + u3(r) + u12(ts) + u13(tr) + u23(sr) + u123(tsr). (1)

For a two-way contingency table, a multiplicative row and column effects (RC) model, in which both the row scores and the
column scores are parameters, is written as follows:

log nts = u + u1(t) + u2(s) + β12x1(t)x2(s). (2)

A row effects (R) model, which has parameter row scores and fixed column scores, is written as follows:

log nts = u + u1(t) + u2(s) + τ1(t)x2(s). (3)

A column effects (C) model, which has parameter column scores and fixed row scores, is written as follows:

log nts = u + u1(t) + u2(s) + τ2(s)x1(t). (4)

In these models, t = 1, . . . , I , s = 1, . . . , J , and r = 1, . . . , K . If both the column and the row scores are fixed, the model
given in (2) becomes a linear-by-linear association (LL) model. For identifiability purposes, the following general sum-to-
zero constraints are imposed, if the related parameters are present in the model:

t

ui(t) = 0, ∀i;

s

uij(st) =


t

uij(st) = 0, ∀(i, j);

t

τi(t) = 0, ∀i. (5)

Inclusion of the parameter β12 in model (2) requires the following additional constraints:
t

wi(t)xi(t) = 0,

t

wi(t)x2i(t) = 1, ∀i, (6)

where all wi(j) weights can be taken as 1 or the relevant marginal sum [20]. In order to simplify the analysis, β12 of model
(2) can be set to 1. In this case, β12 is estimated by using the estimates of x1(t) and x2(s) as follows [20]:

β12 =


I

t=1

x21(t)

0.5 J
s=1

x22(s)

0.5

, (7)

and x1(t) and x2(s) are rescaled as follows:

x̃1(t) = x1(t)


I

t=1

x21(t)

−0.5

and x̃2(s) = x2(s)


J

s=1

x22(s)

−0.5

. (8)

Under themultinomial sampling plan, the natural logarithmof the likelihood function for a three-waymixed contingency
table is as follows:

ℓ(x, u, τ,β|y) =


tsr

ytsr log ntsr , (9)

where x, u, τ, and β are vectors of scores, main effect and interaction parameters, row or column effect parameters, and
association parameters, respectively.
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3. Elicitation of prior distributions

3.1. Exchangeability assumption and determination of hyper-priors

Let X1, . . . , Xr be random variables. If the subscripts contain no information, then X1, . . . , Xr are exchangeable. In the
categorical data analysis, the assumption of exchangeability is valid, if all of the variables are nominal [1]. The subscripts
of the levels of an ordinal variable contain information because of the ordering between the levels. Generally, two hyper-
parameters of interest are used to indicate the mean vector and covariance matrix. The mean vector reflects the subjective
prior information, and the covariance matrix reflects the prior information on the correlations between the parameters of
interest and the degree of prior belief in them. A researcher can take into account the information contained in the subscripts
while determining the elements of a mean vector. However, this process is not easily done when determining the elements
of a covariance matrix. If a common precision parameter is multiplied by the identity matrix to obtain a prior covariance
matrix and then used for all of the scores, the information contained in the subscripts of the scores is ignored; hence, the
exchangeability assumption is violated. One may use a precision parameter for each score. However, if there are more than
three scores, the determination of a precision parameter for each score is not a convenient procedure. One cannot guarantee
the positive definiteness of the relevant covariance matrix, which is required for posterior inferences. Therefore, in the
Bayesian approaches to association models, the representation of the degree of belief in the induced prior information of
the scores is related to the exchangeability concept. It is appropriate to decompose the covariance matrix and represent
the degree of prior belief using the decomposed elements. Daniels and Pourahmadi [10] and Chen and Dunson [7] give
various approaches for this decomposition. Daniels and Pourahmadi [10] use Cholesky decomposition to derive conditionally
conjugate priors for covariance matrices. Chen and Dunson [7] give a reparameterization that is based on the Cholesky
decomposition of the covariance matrix of parameters corresponding to the random part of a linear model. Demirhan and
Hamurkaroglu [11] propose an approach for the representation of the degree of belief in prior knowledge concerning the
log odds ratios using the decomposed elements.

We use the approach given by Chen and Dunson [7] to decompose the covariance matrix, and reflect the degree of belief
in prior knowledge using the decomposed elements by the approach of Demirhan and Hamurkaroglu [11]. The approach of
Demirhan and Hamurkaroglu [11] is outlined for log odds ratios. We reformulate the latter approach for scores and model
parameters. Using our approach, it is possible to make individual representations of the degree of prior belief in each score.
Therefore, the exchangeability assumption holds.

Let6i be the covariance matrix of the scores corresponding to the variable i of the considered contingency table, and let
I be the number of levels of the variable i. Note that we assume themutual independency of the scores corresponding to the
different variables.

The Cholesky decomposition of 6i is 8i0i0
T
i 8

T
i , where 8i = diag(ϕi(t)), diag(·) denotes a diagonal matrix, and 0i =

(γi(ts)), where γi(tt) = 1 and γi(ts) = 0 for t = 1, . . . , I and s = t + 1, . . . , I . Let σi(ts) denote the (t, s)th element of6i. Then,
σi(tt) and σi(ts) are obtained as follows [10,7,11]:

σi(tt) = ϕ2
i(t)


1 +

t−1
s=1

γ 2
i(ts)


and σi(st) = ϕi(t)ϕi(s)


γi(st) +

t−1
r=1

γi(tr)γi(sr)


.

In this decomposition, the parameter γi(ts) reflects the dependency between scores, corresponding to levels t and s of or-
dinal variable i. We use the Pearson correlation coefficient to represent the prior knowledge regarding the degree of depen-
dency between xi(t) and xi(s). The Pearson correlation coefficient, ρi(ts), corresponds to the following transformation of γi(ts):

ρi(st) =


γi(st) +

t−1
r=1

γi(tr)γi(sr)


1 +

t−1
r=1

γ 2
i(tr)


1 +

s−1
r=1

γ 2
i(sr)

−1/2

, (10)

where we assume that the γi(rq) values are given for r = 1, . . . , t − 1, q = 1, . . . , s − 1, and r ≠ q. In simpler notation,
Eq. (10) is rewritten as ρi(ts) = (γi(ts) + Ai(ts))/Bi(ts), where A and B are constants. Note that ρi(ts) includes neither ϕi(t) nor
ϕi(s). Therefore, we treat ϕi(t) parameters as given constants. Setting the values of all ϕi(t) parameters to arbitrary numbers
has no effect on the results. Demirhan and Hamurkaroglu [11] induce the following uniform prior on each ρi(ts):

p(ρi(ts)) = (gi(ts))
−1, (1 − d)gi(ts) < ρi(ts) < dgi(ts), (11)

where d is equal to 0when gi(ts) < 0, and 1when gi(ts) > 0; then the prior distribution of γi(ts) given γi(rq) for r = 1, . . . , t−1,
q = 1, . . . , s − 1, and r ≠ q is obtained by the inverse transformation as follows:

p(γi(ts)|γi(rq)) = Bg−1
i(ts), B(1 − d)gi(ts) − A < γi(ts) < Bdgi(ts) − A. (12)

In this way, the prior information on the degree of correlation between two scores is transformed into information on
the relevant γi(ts) and, hence, on the covariance between scores. We consider each level of an ordinal variable individually.
Thus, exchangeability assumption is not violated. Here, gi(ts) is a user-specified constant where the user directly expresses
the prior knowledge of a correlation by determining a value for it [11]. One can determine a value for gi(ts) by equating the
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quantified prior knowledge to gi(ts)/2, which is the expected value of ρi(ts) obtained over (11). For example, let us have such
a prior knowledge that there is a negative and moderate correlation between the two scores of the first variable. Then, the
value is quantified as −0.5. To reflect this information in the prior covariance matrix of the scores, we make the assignment
that g1(ts)/2 = −0.5; hence, we obtain g1(ts) = −1. The prior distribution of ρ1(ts) is obtained as Uniform (−1, 0), and that
of γ1(ts) given the rest of the parameters is obtained from Eq. (12) as follows:

p(γ1(ts)|γ1(rq)) = B, −B − A < γ1(ts) < −A.

Here, we should discuss the elicitation of the prior information of the correlations from experts, if available. Demirhan
and Hamurkaroglu [11] give an approach for the elicitation. For an ordinal variable, the direction of the relevant correlation
between levels is determined by the direction of the hierarchy, and the degree of association is determined by the expert
according to the importance of passing from one level to the next one or the similarity between the levels considered.
Considering the presence of correlations between adjacent levels of an ordinal variable and the absence of correlations
between non-adjacent levels is reasonable. Therefore, we elicit prior information concerning the correlations between
adjacent levels. For example, let the ordinal variable ‘‘Education’’ be categorized as ‘‘Middle School’’, ‘‘High School’’,
‘‘Undergraduate’’, and ‘‘Graduate’’. Here, we induce a priori positive correlations between the adjacent levels because an
increasing hierarchy exists between the levels of education. The degree of correlation between the levels ‘‘Middle School’’
and ‘‘High School’’ would be elicited as moderate due to the similarity between these levels. Because the similarity between
‘‘High School’’ and ‘‘Undergraduate’’ is less than that of ‘‘Middle School’’ and ‘‘High School’’, we induce a low correlation
between ‘‘High School’’ and ‘‘Undergraduate’’. Additionally, due to the higher similarity between ‘‘Undergraduate’’ and
‘‘Graduate’’, we induce a moderate correlation between these categories.

In summary, we decompose the covariance matrix of scores using the Cholesky decomposition, write the Pearson
correlation coefficient in terms of the decomposed elements, and induce a uniform prior for each correlation coefficient.
Accordingly, we are not only able to specify the prior covariances irrespective of the information contained in the subscripts
of the levels of ordinal variables but also we can include the information derived from the hierarchy between the levels of
an ordinal variable.

3.2. The generalized multivariate log-gamma distribution

Weuse the generalizedmultivariate log-gamma (G-MVLG) distribution introduced by Demirhan and Hamurkaroglu [12]
as the prior distribution of scores and model parameters. If Y ∼ G-MVLG(δ, ν,λ,µ), the joint probability density function
(pdf) of Y = (Y1, . . . , Yk) is given as follows [12]:

p(y|g) ∝ δν
∞
n=0

(1 − δ)n
k

j=1
µjλ

−ν−n
j

[Γ (ν + n)]k−10(ν)n!
exp


(ν + n)

k
j=1

µjyj −
k

j=1

1
λj

exp{µjyj}


,

where y ∈ Rk, ν > 0, λj > 0, µj > 0,µ = (µj),λ = (λj), for j = 1, . . . , k, δ = det(�)
1

k−1 ,

� =


1


abs(ρ12) · · ·


abs(ρ1k)

abs(ρ12) 1 · · ·


abs(ρ2k)

...
...

. . .
...

abs(ρ1k)

abs(ρ2k) · · · 1

 , (13)

where det(·) and abs (·) denote the determinant and absolute value of the inner expression, respectively, and g =

(δ, ν,λT ,µT ) includes parameters of the distribution. In fact, ρij represents Corr(exp(Yi), exp(Yj)). Demirhan and
Hamurkaroglu [12] theoretically derive the exact expression of Corr(Yi, Yj), but this is a rather complex approach. Instead,
they conduct a simulation study and demonstrate that ρij = Corr(exp(Yi), exp(Yj)) ≈ Corr(Yi, Yj). Therefore, it is appropri-
ate to use ρij to represent Corr(Yi, Yj)when the G-MVLG distribution is used as the prior.

The marginal expected value and variance for elements of Y are given as follows:

E(Yj) =
1
µj


ln(λj/δ)+ ψ(ν)


and V (Yj) = ψ [1](ν)/(µj)

2, (14)

where ψ(·) and ψ [1](·) are digamma and trigamma functions, respectively. Effects of µj, λj, δ, and ν over the marginal
expectation and variance are discussed in detail by Demirhan and Hamurkaroglu [12].

One can simply use multivariate normal (MVN), multivariate t (MVt), or multivariate skew normal (MVSN) (see
Azzalini [4] for the details of MVSN distribution) distributions as the multivariate prior distribution along with the
multinomial likelihood, instead of G-MVLG. However, Demirhan and Hamurkaroglu [12] theoretically show that there are
some problems in the coherency between the MVN, MVt, and MVSN prior distributions and the multinomial likelihood
under the informative and non-informative settings, and these problems are not observed for the G-MVLG distribution.
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3.3. Prior distributions for unrestricted and order-restricted cases

When there is no restriction on scores, we consider the dependence structures between the scores corresponding to each
variable. Then, we assume the mutual independency of the scores corresponding to the separate variables, while assuming
that the rest of the parameters of the log-linear model are mutually independent. Therefore, we present our approach only
for the variable i.

We follow a two-stage approach for the determination of the prior distribution of the scores. In the first stage, we assign
values of gi(ts), and we generate correlations from the uniform distribution in Eq. (12). Then, we determine the covariance
matrix that does not violate the exchangeability assumption with the approach given in Section 3.1. The correlation matrix
is obtained as Ri = D−1/2

i 6iD
−1/2
i , where Di is a diagonal matrix including the covariances. Then, we calculate �i by using

(13), and obtain a proposed δi from �i. We accept this move according to the full conditional distribution of δ, which is
presented in the next section. This approach is an independence sampler. At the second stage, a G-MVLG prior is induced on
the scores for a givenmodelm. For the variable i, we define xi = (xi(j)), γ i = (γi(ts)), λi = (λi(j)),µi = (µi(j)) for j = 1, . . . , I ,
t = 1, . . . , I , s = t + 1, . . . , I , and hi =


ϕ, γ i,λi,µi, νi, δi


. Then the joint prior distribution of the scores is as follows:

xi|hi ∼ G-MVLG(δi, νi,λi,µi). (15)

We set the value of νi to a suitable value that makes the values of both ψ(νi) and ψ [1](νi) appropriate. For example, when
νi is set to 1, we obtain ψ(1) = −0.577 and ψ [1](1) = 1.645. We use elements of µi to reflect the degree of belief in
prior knowledge on each score. The hyper-parameter δi includes the prior information on the correlations between scores.
A value of δi is obtained at the first stage. After determining the values of νi, δi and the elements of µi, the prior knowledge
regarding the scores is reflected by using the expected value in Eq. (14). Assume that our prior knowledge on xi(j) is quantified
as Bi = (Bi(j)). Then, the corresponding value of λi(j) is obtained from (14) as λi(j) = δi exp{Bi(j)µi(j) − ψ(νi(j))}. As seen
here, values of µi(j) that are close to zero minimize the effect of Bi(j), reflecting the weak prior belief in the subjective prior
information for each score. In contrast, we should choose finite and sufficiently large values forµi(j) to make the prior belief
as strong as desired. Assigning a large value to µi(j) seems to make the marginal prior mean zero. However, we place our
quantified prior knowledge on Bi(j) and derive λi(j) from (14) for a given value of µi(j). Accordingly, the value of λi(j) changes
correspondingly with the value of µi(j); hence, the value of µi(j) is effectual only on the prior variance.

The use of a G-MVLG prior distribution for either the main effect, association, row or column effect parameters increases
the complexity of the joint posterior distributions and, consequently, the amount of effort required for the posterior
computations. Instead, assuming the independence of the parameters other than the scores, a Log-Gamma (θ, η)distribution
is induced on each parameter, which is denoted by β for a general representation, as follows:

β ∼ Log-Gamma(θ, η). (16)

To determine the values of the hyper-parameters of the prior distributions given in (16), we consider E(β) = log(η) +

ψ(θ) and V (β) = ψ [1](θ). The degree of belief in the prior information is reflected by the variance of the log-gamma
distribution for themodel parameters. The trigamma function,ψ [1](θ), decreases for θ > 0. Thus, the values ofV (β) are large
for values of θ that are close to zero; hence, small values of θ reflect a weak prior belief in the subjective prior information. In
contrast, for larger values of θ , values for V (β) are obtained close to zero; hence, we should choose sufficiently large values
for θ to make the prior belief as strong as desired. Let the quantified prior knowledge for β be B. The knowledge is assigned
to the expected value, and the value of η is derived such that η = exp(B − ψ(θ)).

When an order restriction is placed on scores, the restriction is inherently a strong dependence structure. Therefore,
we assume the independence of scores while imposing order restrictions on scores, following the work of Iliopoulos et al.
[20,21]. We use order statistics to represent order restrictions.

Suppose that the levels of the ordinal variable, upon which we impose order restrictions, are ordered according to the
restrictions of interest. The ordered scores for the levels of variable i are represented with order statistics as xi[1] < xi[2] <
· · · < xi[I]. We assume the independence of the ordered scores and induce a Log-Gamma (θi[t], ηi[t]) distribution on each
score as follows:

xi[t]|θi[t], ηi[t] ∼ Log-Gamma(θi[t], ηi[t]). (17)

The joint prior pdf of ordered scores is obtained from the general form of joint pdf of order statistics and (17) as follows:

p(xi[1], . . . , xi[I]|θi, ηi) = I!
I

t=1

(ηi[t])
θi[t]/0(θi[t]) exp


I

t=1


θi[t]xi[t] − (1/ηi[t]) exp(xi[t])


,

xi[1] < xi[2] < · · · < xi[I], (18)

where θi = (θi[t]), ηi = (ηi[t]) and t = 1, . . . , I .
The prior distributions for other parameter sets are taken as described in Section 3.3. The degree of belief in the prior

knowledge is reflected by θi[t]. Following the discussion in Section 3.3, small values of θi[t] reflect a weak prior belief in the
prior knowledge. Larger values of θi[t] make the prior belief as strong as desired. The quantified prior knowledge on xi[t],
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say Bi[t], is assigned to the expected value, and ηi[t] is solved as ηi[t] = exp(Bi[t] − ψ(θi[t])). The discussion regarding the
determination of the hyper-parameters, as given in Section 3.3, also applies to the rest of the model parameters.

The order-restricted version of the log-gammadistribution is preferable to the uniformprior used by Iliopoulos et al. [21],
because we are able to define simultaneously an informative prior for some of the scores and a non-informative prior for
the others in the ordered log-gamma prior setting. Additionally, the posterior computations in the ordered log-gamma prior
setting are as easy to perform as those in the ordered uniform prior setting.

Note that, although the notation is given for two-way tables, the approaches given here are applicable to any size of
contingency table.

4. Posterior inferences

We develop posterior inferences over an RCmodel constructed for a two-way contingency table; hence,N = 2. Posterior
inferences for other models, in which N > 2, are straightforward following the context given here. The model of interest is
as follows:

log nts = u + u1(t) + u2(s) + x1(t)x2(s), t = 1, . . . , I; s = 1, . . . , J. (19)

We obtain the posterior estimates of the following parameters: u1 = (u1(2), . . . , u1(I)), u2 = (u2(2), . . . , u2(J)), γ1, γ2,
x1 = (x1(2), . . . , x2(I)), and x2 = (x2(3), . . . , x2(J)). The rest of the parameters are redundant and are obtained as a function
of the given set of parameters. We set x2(2) to 1 for identifiability purposes, as done by Iliopoulos et al. [20]. The constant
term u is obtained as follows:

u = − log


I

t=1

J
s=1

exp{u1(t) + u2(s) + x1(t)x2(s)}


. (20)

If the prior distributions of scores and the main effect parameters are taken as given in (15) and (16), respectively, then
the joint posterior distribution of the scores and model parameters is obtained as

p

x1, x2, u1, u2, γ1, γ2|h1, h2, y


∝ p


x1, x2, u1, u2, γ1, γ2|h1, h2


ℓ(x1, x2, u1, u2|y), (21)

where

ℓ(x1, x2, u1, u2|y) =

I
t=1

J
s=1

yts(u + u1(t) + u2(s) + x1(t)x2(s)). (22)

The joint posterior distribution obtained by (21) is a proper density. Because our G-MVLG and log-gamma distributions
are proper, and we use a likelihood function based on a probability model, the propriety of the posterior follows from Bayes’
theorem [12].

For the full conditional posterior distribution of δi, we use the relationship between δi and γ i, as explained in Section 3.1.
Because δi is a transformation of γi(ts) such that δi = f (γ i), we are able to obtain a candidate value for δi over the randomly
generated values of γi(ts) via f (γ i). After several straightforward algebraic manipulations, the full conditional posterior
distribution of δi given g = (xi, h1, y) is obtained as follows:

p(δi|g) ∝ δ
νi
i

∞
n=0

(1 − δi)
n exp


n

K
r=1
µi(r)xi(r)


K

r=1
λ−n
i(r)

[0(νi + n)]K−1n!
, (23)

where i = 1, 2, K = I for i = 1 and K = J for i = 2. To simplify (23), we use the approach proposed by Demirhan
and Hamurkaroglu [12] for 0(νi + n) such that 0(νi + n) ≈ exp(−7.24663 + 2.07728n + 1.9922νi). The accuracy of this
approach is evaluated via simulation in Demirhan and Hamurkaroglu [12]. As a result, when n is an integer, the accuracy
of the approach is found to be better than that of the current approach given for the gamma function by Schmelzer and
Trefethen [30]. When the approximation is applied to (23), the Taylor expansion of the exponential function at zero is
obtained, and Eq. (23) is simplified as

p(δi|g) ∝ δ
νi
i exp


−δi exp


n

K
r=1

µi(r)xi(r)


K

r=1

λ−n
i(r)


, δi > 0. (24)

The full conditional distribution in (24) is written in terms of γi(ts) such that

p(f (γi(ts))|g) ∝ f (γi(ts))νi exp


−f (γi(ts)) exp


n

K
r=1

µi(r)xi(r)


K

r=1

λ−n
i(r)


,

Bi(ts)(1 − di(ts))gi(ts) − Ai(ts) < γi(ts) < Bi(ts)di(ts)gi(ts) − Ai(ts),

(25)

where Ai(ts), Bi(ts), and di(ts) are defined in Section 3.1.
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The full conditional posterior distribution of score j of variable i given g = (x−i(j), h1, h2, u1, u2, y), where x−i(j) includes
scores of both variables except xi(j), is obtained after some straightforward algebraic manipulations as follows:

p(xi(t)|g) ∝
exp


nu + (νiµi(t) + Si(t))xi(t) − eµi(t)xi(t)/λi(t)


0(νi)

×

∞
n=0

(1 − δi)
n exp


n

K
r=1,r≠t

µi(r)xi(r)


K

r=1
λ−n
i(r)

[0(νi + n)]K−1n!
exp{nµi(t)xi(t)}, (26)

where i = 1, 2, K = I for i = 1 and K = J for i = 2. When we use the approach for the 0(νi + n) function, the following is
obtained:

p(xi(t)|g) ∝ exp

nu + (νiµi(t) + Si(t))xi(t) − eµi(t)xi(t)/λi(t)



× exp

 (1 − δi) exp


µi(t)xi(t) +

K
r=1,r≠t

µi(r)xi(r)


K

r=1
λ−1
i(r)

(exp(2.07728))K−1



∝ exp

nu + (νiµi(t) + Si(t))xi(t) − ci(t)eµi(t)xi(t)


, xi(t) ∈ R, (27)

where u is defined in (20), S1(t) =
J

s=1(yts − y1s)x2(s), S2(s) =
I

t=1(yts − yt1)x1(t), and

ci(t) = (λi(t))
−1

− (1 − δi) exp


2.07728(1 − K)+

K
r=1,r≠t

µi(r)xi(r)


K

r=1

λ−1
i(r).

Assuming that all of the main effect parameters are mutually independent, and that the prior mentioned in (16) is
induced on each main effect parameter, the full conditional posterior distribution of parameter ui(j), given g = (u−i(j), x1,
x2, h1, h2, y), where u−i(j) includes the main effect parameters of both variables except ui(j), is straightforwardly obtained
as follows:

p(ui(t)|g) ∝ exp

nu + (θi(t) + Ti(t))ui(t) − (1/ηi(t))eui(t)


, ui(t) ∈ R, (28)

where u is defined in (20), T1(t) = (yt+ − y1+), and T2(s) = (y+s − y+1). Here, the subscript over which a sum is calculated
is replaced by a ‘‘+’’.

For the order-restricted case, the model of interest is the same as that of the unrestricted case. We obtain posterior
estimates of u1 = (u1(2), . . . , u1(I)), u2 = (u2(2), . . . , u2(J)), x[1] = (x1[2], . . . , x2[I]), and x[2] = (x2[3], . . . , x2[J]). The rest of
the parameters are redundant and are obtained as a function of the given set of parameters.We set x2(2) to 1 for identifiability
purposes. The constant term u is obtained as in Eq. (20) using the ordered scores.

If the joint prior distribution of the scores is taken as given in (18), and theprior distributions of themain effect parameters
are taken as given in (16), then the joint posterior distribution of scores and model parameters is obtained as follows:

p

x[1], x[2], u1, u2|θ1, θ2, η1, η2, y


∝ p


x[1], x[2], u1, u2|θ1, θ2, η1, η2


ℓ(x[1], x[2], u1, u2|y), (29)

where ℓ(x[1], x[2], u1, u2|y) is as given in Eq. (22) with the ordered scores in place of unordered ones. Propriety of the joint
posterior distribution in (29) follows from the Bayes theorem.

The full conditional posterior distribution of score j of variable i given g = (x−i[t], θ1, θ2, η1, η2, y), where x−i[t] includes
the scores of both variables except xi[t], is obtained from Eq. (18) and the corresponding likelihood function as follows:

p(xi[t]|g) ∝ exp

nu + (θi[t] + Si[t])xi[t] − (1/ηi[t]) exp(xi[t])


, xi[t−1] < xi[t] < xi[t+1], (30)

where u is as defined in (20), S1[t] =
J

s=1(yts − y1s)x2[s], and S2[s] =
I

t=1(yts − yt1)x1[t].
In the order-restricted case, the full conditional posterior distributions of the main effect parameters are the same as in

the unrestricted case, but the unordered scores are replaced by ordered scores.
In our approach, due to the independency between score groups corresponding to ordinal variables, it is possible to

impose order restrictions on the scores of some ordinal variables, leaving the scores of others unrestricted. In this case, we
call the corresponding model a mixed association model. For a mixed model, the full conditional posterior distributions of
themain effect parameters and unrestricted scores are the same as in the unrestricted case, and those of the order-restricted
scores are taken as in (30).
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Because we cannot directly sample from the full conditional distributions derived above, we employ a random-walk-
Metropolis step for this purpose. As a result, we construct a Metropolis-within-Gibbs sampling algorithm by using the full
conditional posterior distributions given in (27) and (28) for the unrestricted case, and those given in (28) and (30) for the
restricted case. Posterior computations are implemented over the algorithm given in Appendix A.

5. Model comparison

Chib and Jeliazkov [8] introduce a practical approach for the calculation of marginal likelihood that can be used to obtain
the Bayes factors for the model comparison. In their approach, the output of the Metropolis–Hastings algorithm is used
directly, and the required Bayes factors are easily obtained at the end of each run of the algorithm. Additionally, Mira and
Nicholls [26] show that the multi-block estimators of Chib and Jeliazkov [8] are bridge sampling estimators. Let β include
all main effect parameters, δi, hyper-parameters, and scores; then the acceptance probability of a move to the point β′ in
our Metropolis-within-Gibbs sampling algorithm is defined as follows:

α(β,β′) = min


1,

p(y|β′)p(β′)q(β′,β|y)
p(y|β)p(β)q(β,β′

|y)


, (31)

where q(β,β′
|y) is the proposal density of the move from β to β′, p(β) is the prior distribution, and p(y|β) is the likelihood.

In our case, the parameters are grouped in B = (I − 1)+ (J − 1)+ 2 + (I − 1)+ (J − 2) = 2I + 2J − 3 blocks. According
to the approach of Chib and Jeliazkov [8], the reduced posterior ordinate obtained for the main effect parameter u∗

i(t) for
t = 2, . . . , I for i = 1 and t = 2, . . . , J for i = 2 is given as follows:

p̂(u∗

i(t)|y, u
∗

i(1), . . . , u
∗

i(j−1)) =

M
M

g=1
α(u(g)i(t), u

∗

i(t)|y,ψ
∗

t−1,ψ
t+1,(g))q(u(g)i(t), u

∗

i(t)|y,ψ
∗

t−1,ψ
t+1,(g))

R
R

r=1
α(u∗

i(t), u
(r)
i(t)|y,ψ

∗

t−1,ψ
t+1,(r))

, (32)

whereψt−1 = (ui(1), . . . , ui(t−1)),ψ
t+1

= (ui(t+1), . . . , ui(K)), K = I for i = 1 and K = J for i = 2, y is the observed sample,
{u(g)i(t)} are M draws sampled from the posterior distribution, and {u(r)i(t)} are R draws sampled from the proposal distribution
given u∗

i . The algorithm given in Appendix A is used for additional M and R draws. The reduced posterior ordinate for δi
hyper-parameter, p̂(δ∗

i |y, x
∗

i ) for i = 1, 2, is obtained by replacing ui(t) by δi in Eq. (32). The reduced posterior ordinate for
the score x∗

i(t), p̂(x
∗

i(t)|y, x
∗

i(1), . . . , x
∗

i(t−1)), for t = 2, . . . , I for i = 1 and t = 3, . . . , J for i = 2, is obtained by replacing ui(t)
by xi(t) in Eq. (32).

Once the reduced posterior ordinates are obtained from (32), the logarithm of the marginal likelihood, log(m̂(y)), for a
modelMl is obtained as

log(m̂(y)|Ml,β
∗) = log(p(y|β∗))+ log(p(β∗))−

B
i=1

log(p̂(β∗

i |y,β
∗

1, . . . ,β
∗

i−1)). (33)

Implementation details of the approach, determination of β∗, and various examples are given by Chib and Jeliazkov [8].
The logarithm of the required Bayes factors for model comparison is obtained as log(B10) = log(m̂(y)|M1,β

∗) −

log(m̂(y)|M0,β
∗). Interpretations of the Bayes factor are summarized by Kass and Raftery [22].

6. An illustrative example

We illustrate our approach by revisiting the dreams data set introduced by Maxwell [25], as well as the breathing test
results data set presented by Forthofer and Lehnen [14, p. 21]. The breathing test results data set, which includes a three-
way contingency table, is analyzed to show that our approaches can be implemented in tables of higher dimensionality. The
analysis is presented in Appendix B. We present a non-informative analysis for the dreams data set to make our approaches
comparable to those of Iliopoulos et al. [20,21] and the other authors, and conduct a slightly informative analysis for the
breathing test results data set to illustrate the use of our approach in an informative setting.

The dreams data set was analyzed by Agresti et al. [3] and Ritov and Gilula [28] from the classical perspective, and by
Iliopoulos et al. [20] using the Bayesian approach. The data set consists of a 5×4 contingency table. The variables of interest
are age (with categories 5–7, 8–9, 10–11, 12–13, 14–15) and the severity of the dream disturbances (with categories 1–4
from low to high). Agresti et al. [3] fit an order-restricted C model, and Ritov and Gilula [28] fit a correlation model to this
data set. Iliopoulos et al. [20] fit an order-restricted RC model with various equality restrictions on the scores of the age and
the disturbance. All of the authors detect a negative association between age and the severity of disturbance. We apply our
approach to this data set to illustrate the use of our approaches and compare our results with the previous results obtained
using the Bayesian and classical perspectives.

In all posterior computations of this section, the algorithm given in Appendix A, which is called Algorithm 1 throughout
the rest of themanuscript, is run over five independent chains for 10000 iterations. The first 1000 iterations are taken as the
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Table 1
Values of log(ML), their standard errors, and posterior
model probabilities for the fitted models.

Model log(ML) SE PMP

RC −76.99 2.42 2.29E−35
RC1 −79.30 1.29 2.27E−36
RC4 −80.04 3.86 1.08E−36
RC5 −81.12 0.28 3.67E−37
R −81.43 3.15 2.71E−37
RCord −81.78 0.42 1.91E−37
RC2 −82.97 0.40 5.82E−38
R2 −83.11 1.38 5.03E−38
C1 −83.86 0.49 2.38E−38
C −84.20 2.09 1.69E−38
RC3 −88.76 0.20 1.77E−40
R3 −92.28 0.07 5.25E−42
R1 −92.75 0.14 3.28E−42
Rord −94.39 0.10 6.32E−43
Cord −94.93 0.90 3.7E−43
IDP −96.10 0.12 1.14E−43
LL −101.81 0.25 3.81E−46

SE: standard error; PMP: posterior model probability.

burn-in period, and the Gibbs sequence is thinned by recording every tenth point after the burn-in to reduce autocorrelation.
The potential scale reduction factor (R̂) given by Gelman [16] is used to evaluate the convergence for each parameter. All R̂
values are close to 1 and less than 1.1, implying that convergence has been achieved. At steps 3, 10, and 20 of Algorithm 1,
the following are taken: σ 2

ui(t)
= 100, σ 2

xi(t)
= 100, β1 = (2, 7, 5, 2, 0.3) and β2 = (2, 2, 5, 0.45), respectively. These values

are chosen to obtain the overall acceptance rate for each parameter and δ parameters of approximately 0.35.
The hyper-parameters of the prior distributions of themain effect parameters are determined to obtain the prior expected

value and variance of each parameter equal to 0 and 100, respectively. For the unrestricted analyses, we should determine
the hyper-parameters of theMVLG distribution in (15).We have no direct knowledge regarding the correlation between the
adjacent scores of the age and the disturbance. However, there are naturally increasing sequences of the levels of both age
and the severity of disturbance; thus, it is appropriate to induce positive correlations on the corresponding adjacent scores.
Because the correlation concept is a measure of similarity, we can evaluate the similarity between adjacent levels to assign
the prior correlations. Because there is low similarity between the age levels, we assign 0.1 to the prior correlations of the
adjacent scores of age. We set to 0.001 all g1(ts) for t, s = 2, . . . , 5 and t ≠ s but g1(21) = g1(32) = g1(43) = g1(54) = 0.2.
The similarity between the levels of disturbance is also low, although slightly greater. Therefore, we use 0.15 as the prior
correlations of the adjacent scores of disturbance, and we set g2(34) = 0.3. We set to 1.42 both ν1 and ν2. Because prior
information on the values of the scores is unavailable, all elements of B1 and B2 are set to 0, and those ofµ1 andµ2 are set to
0.3. In this case, the prior variance of each score is obtained from Eq. (14) as ψ [1](1.42)/(0.3)2 = 11.1, which is a relatively
large value for prior variances. For the order-restricted analyses, all elements of B[1] and B[2] are set to 0, and all elements of
θ1 and θ2 are set to 0.3. Thus, the prior variance of each ordered score is 12.3.

To identify the best-fitting model, we fit a set of candidate models that consists of unrestricted and order-restricted
models, and the models with order and equality restrictions by using the approach of Chib and Jeliazkov [8]. These models
also have been fitted by Iliopoulos et al. [20]. The parameter vectors u∗

1, u
∗

2 , x
∗

1 and x∗

2 , which are used for all unrestricted
models, are taken asu∗

1 = (−0.7146, 0.1436, 0.1779, 0.3411, 0.0521), u∗

2 = (0.6762,−0.2035,−0.2183,−0.2544), x∗

1 =

(−0.6325,−0.3162, 0, 0.3162, 0.6325), x∗

2 = (−0.6708, 1, 0.2236, 0.6708), δ1 = 0.6718, and δ2 = 0.4912. Those
used for all of the order-restricted models are taken as u∗

1 = (−0.6375, 0.1826, 0.1913, 0.3171,−0.0534), u∗

2 =

(0.5568,−0.1672,−0.1779,−0.2118), x∗

1 = (−0.2349, 0.0097, 0.0334, 0.0654, 0.1265) and x∗

2 = (−3.3819, 1, 1.1056,
1.2763). These values are obtained by using the script prepared by Iliopoulos et al. [20] [follow the link given in page 4651].
As the other authors analyzed this data set, we also identified that the models with positive association (φ = 1) give worse
fits than all of the models with negative association. The log-marginal likelihood values, their standard errors, and model
probabilities are presented in Table 1. Let B10 be the Bayes factor for a modelM1 against a modelM0. Using the Bayes factors
corresponding to the independence, LL, and saturatedmodels and themodelswith negative association, 2 log(B10) values are
calculated and listed in Table 2. In Tables 1 and 2, IDP is the independencemodel; Rord, Cord, and RCord are the order-restricted
R, C, and RC models, respectively; and R1 : x1[1] = x1[2], R2 : x1[3] = x1[4], R3 : x1[1] = x1[2] = x1[3] = x1[4], C1 : x2[2] = x2[3],
RC1 : x1[1] = x1[2], RC2 : x2[2] = x2[3], RC3 : x1[1] = x1[2]; x2[2] = x2[3], RC4 : x1[1] = x1[2]; x1[3] = x1[4]; x2[2] = x2[3], and
RC5 : x1[1] = x1[2]; x1[3] = x1[4]; x2[2] = x2[3] = x2[4] are equality-restricted models with the given restrictions.

According to Table 2, all restricted or unrestricted models give better fits than either of the LL or IDP models. The
unrestricted RC model gives the best fit among the unrestricted models, and the unrestricted R model is better than the
unrestricted C model. The restricted RC model gives the best fit among the restricted models without equality restrictions.
Among the order-restricted models with equality restrictions, the RC1 and RC4 models give satisfactory fits. However, the
standard errors of the log(ML) estimates for these models are higher than those of the other models. Therefore, the RC5
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Table 2
Values of 2 log(B10) for the fitted models.

Model in M1 M0

RC RC1 RC4 RC5 R RCord RC2 R2 C1 C RC3 R3 R1 Rord Cord IDP

RC
RC1 −4.6
RC4 −6.1 −1.5
RC5 −8.3 −3.6 −2.2
R −8.9 −4.2 −2.8 −0.6
RCord −9.6 −5.0 −3.5 −1.3 −0.7
RC2 −11.9 −7.3 −5.8 −3.7 −3.1 −2.4
R2 −12.2 −7.6 −6.1 −4.0 −3.4 −2.7 −0.3
C1 −13.7 −9.1 −7.6 −5.5 −4.9 −4.2 −1.8 −1.5
C −14.4 −9.8 −8.3 −6.2 −5.6 −4.8 −2.5 −2.2 −0.7
RC3 −23.5 −18.9 −17.4 −15.3 −14.7 −14.0 −11.6 −11.3 −9.8 −9.1
R3 −30.6 −26.0 −24.5 −22.3 −21.7 −21.0 −18.6 −18.3 −16.8 −16.2 −7.0
R1 −31.5 −26.9 −25.4 −23.3 −22.6 −21.9 −19.6 −19.3 −17.8 −17.1 −8.0 −0.9
Rord −34.8 −30.2 −28.7 −26.5 −25.9 −25.2 −22.9 −22.6 −21.1 −20.4 −11.3 −4.2 −3.3
Cord −35.9 −31.3 −29.8 −27.6 −27.0 −26.3 −23.9 −23.6 −22.1 −21.5 −12.3 −5.3 −4.4 −1.1
IDP −38.2 −33.6 −32.1 −30.0 −29.4 −28.7 −26.3 −26.0 −24.5 −23.8 −14.7 −7.7 −6.7 −3.4 −2.3
LL −49.6 −45.0 −43.5 −41.4 −40.8 −40.1 −37.7 −37.4 −35.9 −35.2 −26.1 −19.1 −18.1 −14.8 −13.8 −11.4

model, the corresponding standard error of which is small, would be considered as giving a satisfactory fit. According to
the RC1 model, the 5–7 and 8–9 age categories are located at the first level of the hierarchy between age groups. It can be
inferred from the RC4model that the 5–7 and 8–9 age categories are at the first level of hierarchy,while the 10–11 and 12–13
age categories are at the second level of hierarchy between the age groups. The 2 and 3 disturbance categories are at the
second levels of hierarchybetween thedisturbance levels. Additionally, the last level of the disturbance is homogeneouswith
respect to the second and third levels in the RC5 model. These inferences are in accordance with those given by Iliopoulos
et al. [20,21] and maximum likelihood estimates (MLEs) given by the other authors mentioned. However, we identify the
unrestricted RCmodel as the best one among all of themodels, whereas Iliopoulos et al. [20] identified the RC4model as the
best based on a criterion-based comparison. Instead of a criterion-based comparison, Iliopoulos et al. [21] present a model
comparison by using the reversible jumpMarkov chain Monte Carlo (RJMCMC) method. They identify the RC5 model as the
best and confirm their inferences about the RC4 model. A reason for this situation would be that the amount of included
information in our analysis is more than that in the analyses of other authors, because we include possible correlations
between scores corresponding to the adjacent levels of ordinal variables. Additionally, for model comparison, Iliopoulos
et al. [20] use information criteria that take the number of effective parameters as a penalization factor. Because of the
equality restrictions, the number of effective parameters in models including equality restrictions is less than that in the
restricted or unrestricted models. This makes not only the RC4 model but also the models with equality restrictions more
favorable than their restricted or unrestricted counterparts in a criterion-based comparison. The RC5 model is the simplest
among the comparedmodels. Equality restrictions simplify the model by incorporating a certain amount information. Thus,
the underlying model becomes more parsimonious and less uncertain. This affects the model selection or comparison
algorithms.Wewould like to know the implementation details of the RJMCMC algorithm of Iliopoulos et al. [21] to comment
on whether their RJMCMC algorithm tends to move simpler models or not. Nonetheless, placing equality restrictions on
scores is inappropriate unless one has a very strong prior belief about the imposed equality restriction. We directly use the
Bayes factors, which do not penalize models with the number of effective parameters. Therefore, the results obtained by the
use of Bayes factors for the comparison of models, as in our situation, seem more appropriate and reliable.

A natural ordering exists between the levels of disturbance. Therefore, even if we find the unrestricted RC model to
be the best, an analysis with unrestricted scores for disturbance seems to be unrealistic, or at least we expect to obtain
ordered posterior estimates for the scores of the disturbance. If this is not the case, we should consider fitting mixed RC
models, in which the scores of some factors are unrestricted while those of the others are restricted. In addition to the
models considered in Table 2, we fit two mixed RC models. In the first (RCM model), the disturbance and age scores are
taken as order restricted and unrestricted, respectively. Because the RC2model gives a satisfactory fit, we added an equality
restriction to the disturbance scores of levels 2 and 3 to the RCM model in the second analysis (RCM2). For the comparison
of RCM, RCM2, and satisfactory models that are obtained over Table 2, 2 log(B10) values are given in Table 3. In addition,
posterior model probabilities of RCM2 and RCM models are 4.45E−33 and 5.67E−34, respectively. The standard errors of
log(ML) for those models are 0.42 and 1.36, respectively.
We have positive evidence in favor of using the RCM model instead of the RC model, as well as strong evidence in favor of
using the RCM model over the RCord, RC1, and RC4 models. Additionally, we have positive evidence supporting the RCM2
model over the RCM model, in addition to strong evidence in favor of the RCM2 model instead of the RC, RCord, RC1, RC4,
and RC5 models. As expected, mixed RCM models, for which the estimated standard errors of log(ML) are relatively small,
give better fits than the rest of the models considered. In this case, we identify the RCM2 model as the best model for the
dream disturbance data set.
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Table 3
Values of 2 log(B10) for satisfactory models.

log(ML) Model in M1 M0

RCM2 RCM RC RC1 RC4 RC5

−72.69 RCM2
−74.76 RCM −4.1
−76.99 RC −8.6 −4.5
−79.30 RC1 −13.2 −9.1 −4.6
−80.04 RC4 −14.7 −10.6 −6.1 −1.5
−81.12 RC5 −16.9 −12.7 −8.3 −3.6 −2.2
−81.78 RCord −18.2 −14.0 −9.6 −5.0 −3.5 −1.3

Table 4
Posterior estimates of scores and association parameters.

Model Prms Actual Rescaled
Posterior 95% HPD int Rescaleda Posterior
Mean StDev LB UB Mean

RC

x1(1) 0.226 0.188 0.069 0.283 −0.273 −0.249
x1(2) 0.507 0.159 0.496 0.588 −0.612 −0.579
x1(3) −0.032 0.140 −0.101 0.084 0.039 0.042
x1(4) −0.094 0.120 −0.152 −0.070 0.114 0.109
x1(5) −0.607 0.196 −0.685 −0.341 0.732 0.676
x2(1) −1.530 0.357 −1.689 −1.226 −0.813 −0.773
x2(2) 1.000 0.000 1.000 1.000 0.531 0.537
x2(3) 0.088 0.275 −0.065 0.316 0.047 0.017
x2(4) 0.441 0.236 0.292 0.572 0.235 0.219
φ −1.000 0.000 – – −1.559 −0.945

RCord

x1[1] −0.205 0.082 −0.226 −0.177 −0.851 −0.841
x1[2] 0.006 0.010 0.003 0.009 0.037 0.036
x1[3] 0.030 0.022 0.019 0.054 0.126 0.121
x1[4] 0.057 0.031 0.046 0.060 0.237 0.231
x1[5] 0.109 0.042 0.103 0.111 0.450 0.454
x2[1] −4.122 1.739 −5.954 −3.293 −0.829 −0.770
x2[2] 1.000 0.000 1.000 1.000 0.201 0.220
x2[3] 0.594 1.428 0.507 1.988 0.119 0.067
x2[4] 2.528 1.065 1.967 2.786 0.508 0.483
φ −1.000 0.000 – – −1.198 −1.172

RC4

x1[1] −0.074 0.001 −0.076 −0.070 −0.408 −0.408
x1[2] −0.074 0.001 −0.076 −0.070 −0.408 −0.408
x1[3] 0.000 0.000 0.000 0.000 0.000 0.000
x1[4] 0.000 0.000 0.000 0.000 0.000 0.000
x1[5] 0.148 0.004 0.141 0.152 0.816 0.817
x2[1] −3.673 0.241 −4.314 −3.564 −0.859 −0.858
x2[2] 1.000 0.000 1.000 1.000 0.234 0.238
x2[3] 1.000 0.000 1.000 1.000 0.234 0.238
x2[4] 1.673 0.241 1.314 1.956 0.391 0.382
φ −1.000 0.000 – – −0.776 −0.774

RCM2

x1(1) 0.194 0.084 0.186 0.217 0.224 0.184
x1(2) 0.584 0.064 0.480 0.634 0.674 0.668
x1(3) −0.188 0.070 −0.237 −0.131 −0.217 −0.201
x1(4) −0.009 0.040 −0.082 0.005 −0.011 0.003
x1(5) −0.581 0.091 −0.619 −0.473 −0.670 −0.654
x2[1] −3.491 0.010 −3.497 −3.481 −0.862 −0.861
x2[2] 1.000 0.000 1.000 1.000 0.247 0.248
x2[3] 1.000 0.000 1.000 1.000 0.247 0.248
x2[4] 1.491 0.010 1.490 1.497 0.368 0.366
φ −1.000 0.000 – – −3.513 −3.513

Int: interval; LB: lower bound; UB: upper bound; Prms: parameters; StDev: standard deviation.
a Actual parameters are rescaled.

The posteriormeans of the actual and rescaled scores, the standard deviations, and 95% highest probability density (HPD)
intervals of the actual scores and association parameters of the RC, RCord, RC4, and RCM2 models for negative association
are given in Table 4. The rescaled scores and association parameters are obtained by using Eqs. (8) and (7), respectively. The
error bars for the rescaled posterior estimates of the row and column scores of the RC and RCord models are given in Fig. 1,
and those of the RC4 and RCM2 models are given in Fig. 2.

Our analyses are intended to be non-informative in both the unrestricted and order-restricted cases. When the MLEs of
the parameters (scores and associationparameter) of theRCmodel,which are providedby Iliopoulos et al. [20], are compared
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Fig. 1. Error bars for rescaled posterior estimates of row and column scores of RC and RCord models.

with our posterior estimates, our posterior estimates are observed to be close to the corresponding MLEs. This implies that
we are able to conduct a nearly non-informative analysis with our MVLG prior, as intended. Our analysis is ‘‘nearly’’ non-
informative becausewe induce some information on the correlations between the adjacent levels of the ordinal factors. That
is why we obtain some deviation from the MLEs in our posterior estimates.

It can be seen from Figs. 1 and 2 and their corresponding counterparts given by Iliopoulos et al. [20] that, while our
rescaled posterior estimates for the scores of age over the RC, RCord, and RC4 models are similar to those of Iliopoulos
et al. [20], our estimates have less variability. This implies that our prior structures are beneficial when used in a non-
informative setting. The same situation also can be observed for most of the rescaled estimates of the column scores. For
the RCord model, our posterior estimates of the age scores are similar to those of Iliopoulos et al. [20], while those of the
disturbance are significantly different. The estimates of the posterior standard deviations of the disturbance scores are very
high (8.06, 2.75, 5.71 for x2[1], x2[3] and x2[4], respectively) in the results given by Iliopoulos et al. [20]. We obtain smaller
estimates, highlighted as 1.739, 1.428, and 1.065 for x2[1], x2[3], and x2[4], respectively. Our posterior estimates for the scores
of disturbance are more stable and reliable than those of Iliopoulos et al. [20]. Note that this situation affects the results
of model selection and would cause the difference between our model selection results and that of Iliopoulos. For the RC4
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Fig. 2. Error bars for rescaled posterior estimates of row and column scores of RC4 and RCM2 models.

model, the same situation can be observed. The estimates of the posterior standard deviations of the disturbance scores
provided by Iliopoulos et al. [20] are significantly higher (18.09 for both x2[1] and x2[4]) in this case. Our corresponding
estimates are 0.241 for both x2[1] and x2[4]. Again, our posterior estimates of the scores of the disturbance are more reliable.
The rest of our actual and rescaled estimates are in accordance with those of Iliopoulos et al. [20]. We obtain the smallest
posterior standard deviations for the RCM2model, in which the scores of age are unrestrictedwhile those of disturbance are
order restricted. Themost stable rescaled posterior estimates can also be observed for the RMC2model (Fig. 2). According to
the RCM2model, age level 8–9 is at the top, while level 14–15 is at the bottom of the hierarchy between age levels. The same
inference is also valid for the RCmodel. Bearing in mind that the RC and RCM2models are the best among the fitted models,
it can be inferred that imposing order restrictions on the levels of age is inappropriate; 8–9 is the most important group
with respect to the severity of dream disturbance. Because the RCM2 gives a better fit than the RC model, we infer that the
order restriction on the levels of severity of disturbance is compatible with the hierarchy between the levels of disturbance.

To conduct a sensitivity analysis for our G-MVLG and ordered log-gamma prior structures, we use the measure proposed
by Ruggeri and Sivaganesan [29]. We fit the RC and RCord models to evaluate the sensitivity of the G-MVLG and ordered



H. Demirhan / Journal of Multivariate Analysis 121 (2013) 109–126 123

Table 5
Ranges of values of relative sensitivity measure over four prior settings.

RC RCord

Score r(RSM1) r(RSM2) Score r(RSM[1])

x1(1) 0.756 0.714 x1[1] 0.356
x1(2) 0.399 2.053 x1[2] 0.313
x1(3) 0.519 2.272 x1[3] 0.252
x1(4) 0.675 0.904 x1[4] 0.301
x1(5) 0.645 1.081 x1[5] 0.302
x2(1) 0.689 1.797 x2[1] 0.433
x2(3) 0.532 2.366 x2[3] 0.177
x2(4) 0.721 1.472 x2[4] 0.669
φ 0.507 0.777 φ 0.264

log-gamma prior structures. The relative sensitivity measure (RSM) of Ruggeri and Sivaganesan [29] is defined as follows:

RSM =
(Eπ − E0)2

Vπ
, (34)

where Vπ is the posterior variance of the parameter consideredwith respect to the prior π , while E0 and Eπ are the posterior
expectations of each parameter obtained for a prior π0 and another plausible prior π , respectively. The prior π is a member
of the class C of many plausible priors, including π0. The RSM has a common interpretation irrespective of the problem
context that a small (large) ‘‘range of

√
RSM’’ (r(RSM)) values over C implies low (high) sensitivity. For the sensitivity of the

G-MVLG prior, π0 is taken as the G-MVLG prior with the hyper-parameters defined at the beginning of this section. We use
four different π . We change only the elements of µ1 and µ2, while the values of the rest of the hyper-parameters remain
the same for all π . Algorithm 1 is run over the RC model. We set all elements of µ1 and µ2 equal to 0.2, 0.25, 0.5, and 0.75
for π1, π3, π3, and π4, respectively. These values make the prior variance of each score 25, 16, 4, and 1.8, respectively. In
this case, the ranges of the

√
RSM values obtained for the scores of the RC model over the four prior setups are shown in

the r(RSM1) column of Table 5. Then, we fix the values of µ1 and µ2 to 0.3 and change the value of g1(ts) = g2(ts) within
the set A = {0.1, 0.5, 0.9, 1.3, 1.7} to evaluate the effect of including the possible correlations between adjacent scores.
For this case, the ranges of the

√
RSM values obtained for the scores of the RC model over the four prior setups are shown

in the r(RSM2) column of Table 5. If inclusion of the correlations is effectual on the parameter estimates, we should obtain
larger values for r(RSM2). We follow the same procedure as that of the order-restricted case for the sensitivity analysis of
log-gamma prior. We run Algorithm 1 over the RCord model by setting all elements of θ1 and θ2 equal to 0.2, 0.25, 0.5, and
0.75 for π[1], π[2], π[3], and π[4], respectively. This setting makes the prior variance of each score 26.3, 17.2, 4.9, and 2.5,
respectively. For this case, the ranges of the

√
RSM values obtained for the scores of the RCord model over the four prior

setups are shown in the r(RSM[1]) column of Table 5. Scores x2(3) and x2[3] are not included in Table 5 because their values
are fixed to 1 in the computations for identifiability purposes.

Considering the fact that our posterior variances are small, the r(RSM1) and r(RSM[1]) values obtained for all scores are
satisfactorily narrow, such that we may conclude the insensitivity of both of our G-MVLG and log-gamma prior structures
with respect to the prior variance over the RC and RCord models. It can be seen from this sensitivity analysis that even
a value of prior variance near 2 produces a non-informative setting for both of the G-MVLG and log-gamma priors. One
should use values smaller than 2 for the prior variances to obtain an informative analysis for this data set. As expected, the
r(RSM2) values obtained by changing the prior information on the correlations of the adjacent scores are larger than the
r(RSM1) values. Thus, our G-MVLG prior structure is sensitive to changes in the prior information on the correlations, and
the incorporation of the correlations is effectual on the parameter estimates.

We compare the sensitivity of our approach with that of the approaches of Iliopoulos et al. [20] by using r(RSM). The
results of this sensitivity analysis are presented in Appendix C. Thus, we figure out that the sensitivity of our approach in the
unrestricted case is significantly less than that of the corresponding approach of Iliopoulos et al. [20]. The lower insensitivity
is another beneficial feature of our G-MVLG approach in the non-informative setting. In the order-restricted case, both our
approach and that of Iliopoulos et al. [20] are satisfactorily insensitive according to the r(RSM).

In conclusion, we can identify the negative association between the age and severity of dream disturbance, consistent
with the results of other authors who have analyzed this data set. Unlike the other authors, we identify an order restriction
on the scores of disturbance and no restriction over the scores of age. The second and third levels of disturbance are
indistinguishable within the hierarchy of the levels of disturbance. Accordingly, we obtain that the second level of age is
at the top of the hierarchy between the age levels; hence, the ages of 8 and 9 are the most important ages with respect
to the severity of dream disturbance. The differences between our inferences and previous ones are due to the amount of
information considered in the analysis. Because we include information regarding the possible correlations between the
adjacent levels of ordinal variables, we are working with more information relevant to the subject of interest.
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7. Discussion

In this article, we propose new prior structures for the Bayesian estimation of associationmodels with andwithout order
restrictions on scores. We consider the exchangeability assumption for prior distributions. This assumption should be taken
into account for prior distributions relatedwith ordinal categorical variables because the hierarchy between the levels of the
factors composing the table of interest violates the exchangeability assumption. We propose a prior determination strategy
for this issue.

When there is no order restriction on the scores, we induce a generalized multivariate log-gamma (G-MVLG) prior on
scores and independent log-gamma priors on the main effect parameters of an association model. The G-MVLG prior is able
to represent the possible correlation structures between the adjacent scores and score groups. Prior knowledge regarding
the scores and model parameters and the degree of belief in this knowledge are easily represented using the G-MVLG prior.
One should be careful when placing prior information on the correlations because that it should not conflict with the data.
One can obtain such prior information by evaluating the direction of hierarchy and the characteristics of the variable of in-
terest. Because it is possible to obtain a simple and tractable full conditional posterior distributionwhen the G-MVLG prior is
used, the derivations of posterior inferences for scores and model parameters are very simple when using Metropolis steps
within Gibbs sampling.

In the presence of order restrictions on scores, we utilize the joint probability density function (pdf) of order statistics
and assume the independence of the scores. Independence is a reasonable assumption because an order restriction also
represents strong knowledge regarding the dependency between the scores assigned to the levels of a factor. We place a
log-gamma prior on each score and arrange the scores according to the relevant order restriction, handling them as order
statistics. The joint pdf of the order statistics from a log-gamma-distributed population gives us the joint prior distribu-
tion of the scores under order restrictions. We derive the required full conditional posterior distributions to run the Gibbs
sampling in a tractable form for posterior inferences in the order-restricted case. Therefore, our approaches are computa-
tionally efficient. We provide a detailed algorithm for the posterior computations in both the unrestricted and restricted
cases.

We give a brief outline on the adaptation of the approach of Chib and Jeliazkov [8] to our approaches for the calculation
of the Bayes factors for model comparison.

To illustrate our approaches and examine the impacts of order restrictions, we analyze a cross classification of age and the
severity of dream disturbance, which includes a two-way contingency table composed of ordinal variables and a three-way
breathing tests results classification. In accordance with the theory, our approach successfully imposes order restrictions in
the application. When we compare the results of our restricted analysis with the unrestricted analysis, we see that order
restrictions have significant impacts on inferences. Therefore, researchers should be careful when placing order restrictions
on the scores. Researchers should, at least, verify the direction of hierarchy between the levels of the factor of interest by
conducting anunrestricted andnon-informative Bayesian analysis of themodel intended for use under the order restrictions.
For the dream disturbance data, our inferences are somewhat different from the inferences derived by other authors due to
the inclusion of information regarding the correlations between adjacent scores. Our estimates of the posterior distributions
are smaller, and we identify a best-fitting model that includes both the order-restricted and unrestricted scores.

As future work, we intend to present the reversible jump Markov chain Monte Carlo algorithms for selection and
evaluation of order-restricted and unrestricted association models over our prior structures.
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Appendix A. Algorithm for posterior inferences

0. Initialize u(0)i , x
(0)
i , γ (0)i , calculate δ(0)i by using γ (0)i for i = 1, 2.

1.1. If unrestricted analysis is being undertaken, read parameters of prior distributions of
main effects, gi(ts) for t ≠ s, t, s = 2, . . . , I when i = 1, and t, s = 3, . . . , J when i = 2, νi,µi and Bi, and calculate
λi as described in Section 3.3 for i = 1, 2.
1.2. If order-restricted analysis is being undertaken, read parameters of prior distributions
of main effects, θi and Bi, and calculate ηi as described in Section 3.3 for i = 1, 2.
2. Set r = 1, i = 1 and u(r)i = u(r−1)

i .
3. Draw u(r)i(t) from N


u(r−1)
i(t) , σ 2

ui(t)


for t = 2, . . . , K .

4. Calculate u(r)i(1) by using ur
i(t), u

(r−1)
−i(t) , x

(r−1) over the relevant constraint given in (5).

5. Calculate u by using u(r)i(t), u
(r−1)
−i(t) , x

(r−1) over (20).
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6. Accept the proposed move with the following acceptance probability:

α

u(r−1)
i(t) , u(r)i(t)


= min


1,

p

u(r)i(t)|g


p

u(r−1)
i(t) |g

.
7. Set i = i + 1 and go to step 2 while i ≤ 2 (all main effects are updated).
8. Set i = 0, and if unrestricted case is precessing go to step 9 else if order-restricted case
is processing go to step 19.
9. Set i = i + 1 and x(r)i = x(r−1)

i .
10. Draw x(r)i(t) from N


x(r−1)
i(t) , σ 2

xi(t)


for t = 2, . . . , I if i = 1 and t = 3, . . . , J if i = 2.

11. Calculate x(r)i(1) by using xri(t), x
(r−1)
−i(t) over the relevant constraint given in (6).

12. Calculate u by using x(r)i(t), x
(r−1)
−i(t) , u

(r) over (20).
13. Draw all elements of γ i from the distribution mentioned in (12) by using the predetermined
gi(ts) values.
14. Calculate ρi(ts) values by using the generated values of γi(ts) at step 13 over Eq. (10).
15. Construct the matrix � as given in (13), and calculate the value of δ(r)i as mentioned in
Section 3.2.
16. Accept the proposed move for δi with the following acceptance probability:

α

δ
(r−1)
i , δ

(r)
i


= min


1,

p

δ
(r)
i |g


p

δ
(r−1)
i |g

.
17. Accept the proposed move for each score with the following acceptance probability:

α

x(r−1)
i(t) , x(r)i(t)


= min


1,

p

x(r)i(t)|g


p

x(r−1)
i(t) |g

.
18. If i ≤ 2, go to step 8, else go to step 24.
19. Set i = i + 1 and x(r)i = x(r−1)

i .
20. Draw x(r)i[t] from Truncated–Gamma


1, βi[t]


which is bounded below and above with xi[t−1] and xi[t+1],

respectively.
21. Calculate x(r)i[1] by using xri[t], x

(r−1)
−i[t] over the relevant constraint given in (6).

22. Calculate u by using x(r)i[t], x
(r−1)
−i[t] , u

(r) over (20).
23. Accept the proposed move for each score with the following acceptance probability:

α

x(r−1)
i[t] , x(r)i[t]


= min


1,

p

x(r)i[t]|g


p

x(r−1)
i[t] |g

.
24. If i ≤ 2, go to step 18, else go to step 24.
25. Set r = r + 1 and go to step 2 until the total number of iterations is accomplished.

Appendix B. Analysis of the breathing test results data set

Analysis of the breathing test results data set is presented in supplementary material that can be found online at
http://dx.doi.org/10.1016/j.jmva.2013.06.008.

Appendix C. Comparison of sensitivities of prior distributions

Results of sensitivity analysis of the approaches of Iliopoulos et al. [20] are presented in the supplementary material that
can be found online at http://dx.doi.org/10.1016/j.jmva.2013.06.008.
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