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INTRODUCTION

Let R be a commutative domain and let M be an R-module. It is
proved that to every prime submodule of M there corresponds a prime
ideal of R and a set of linear equations of a certain type, and conversely.
In particular, in case M is a finitely generated R-module generated by n
elements, for some positive integer n, then the prime submodules of M
are given by prime ideals of R and certain finite systems of equations
containing at most n equations.

PRELIMINARIES AND RESULTS

Throughout this article all rings are commutative with identity and all
modules are unital. Let R be a ring and let M be an R-module. For any

Ž . � 4 Ž .submodule N of M let N: M s r g R: rM : N . Clearly N: M is an
ideal of R. A submodule N of M is called prime if N / M and given,

Ž . Žr g R, m g M, then rm g N implies m g N or r g N: M . For more
w x.information about prime submodules, see 1]4 . The following lemma is

Ž w x.well known see, for example, 4 .
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LEMMA 1. Let M be an R-module. Then a submodule N of M is prime if
Ž . Ž .and only if P s N: M is a prime ideal of R and the RrP -module MrN is

torsionfree.

Ž .Let M be an R-module which is generated by elements m i g I ,i
where the index set I need not be finite. Then every element of M can be

Ž .written in the form Ý r m where r g R i g I and r / 0 for at most aig I i i i i
finite number of elements i g I. It will be convenient to write the elements
of M in this form.

Ž .Let I be a nonempty index set. By an I = I column-finite matrix ai j
Ž .over a ring R we mean a collection of elements a g R i, j g I suchi j

� 4that for each j g I the set i g I: a / 0 is empty or finite.i j

LEMMA 2. Let R be a domain with field of fractions K and let M be a free
� 4R-module with basis m : i g I . Let N be a proper submodule of M such thati

MrN is a torsionfree R-module. Then there exists a nonzero I = I column-finite
Ž .matrix a o¨er K such thati j

N s r m g M : r g R , i g I and a r s 0, i g I .Ž . Ž .Ý Ýi i i i j j½ 5
igI jgI

Proof. Without loss of generality we can consider M as an R-module of
� 4the K-vector space V with basis m : i g I . Now KN is a subspace of Vi

and N s KN l M because MrN is torsionfree. Thus KN is a proper
subspace of V and hence V s KN [ W for some nonzero K-submodule W
of V.

Let p : V ª W denote the canonical projection with kernel KN. For
Ž . Ž . �each j g I, p m s Ý a m for some a g K i g I such that i g I:j ig I i j i i j

4 Ž .a / 0 is empty or finite. Clearly a is an I = I column-finite matrixi j i j
over K and is nonzero because W, and hence p , is nonzero.

Let m g M. Then m s Ý s m for some s g R where s / 0 for atjg I j j j j
most finite number of elements j g I. It follows that

p m s s p m s s a m s a s m .Ž . Ž .Ý Ý Ý Ý Ýj j j i j i i j j iž / ž /
jgI jgI igI igI jgI

Now

N s M l KN s m g M : p m s 0� 4Ž .

s s m g M : a s s 0 i g I .Ž .Ý Ýj j i j j½ 5
jgL jgI
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COROLLARY 3. Let R be a domain and let M be a free R-module with
� 4basis m , . . . , m , for some positï e integer n. Let N be a proper submodule1 n

of M such that MrN is a torsionfree R y module. Then there exist elements
b g R for 1 F i, j F n, not all zero, such thati j

N s r m q ??? qr m : r g R , 1 F i F n andŽ .1 1 n n i½
n

b r s 0, 1 F i F n .Ž .Ý i j j 5
js1

� 4Proof. In Lemma 2, I s 1, . . . , n . For each 1 F i, j F n, there exist
b g R, 0 / c g R such that a s b rc . Without loss of generality,i j i j i j i j i j

Ž .there exists 0 / c g R such that c s c 1 F i, j F n . The result nowi j
follows by Lemma 2.

Note that, in general, in Lemma 2 we cannot assume that a g R for alli j
i, j g I, as the following example shows.

EXAMPLE 4. Let Z denote the ring of integers and let M s Z [ Z [
Z [ Z [ ??? denote the free Z-module of countably infinite rank. Let

1 1 1N s r , r , r , . . . g M : r q r q r q ??? s 0 .Ž .� 41 2 3 1 2 32 4 8

Then N is a proper submodule of M and MrN is a torsionfree Z-module.
Ž .However there do not exist elements a g Z i G 1 , not all zero, such thati

N : r , r , r , . . . : a r s 0 .Ž . Ý1 2 3 i i½ 5
iG1

Proof. It is easy to check that N is a proper submodule of M and that
MrN is a torsionfree Z module. Suppose that there exist elements a g Zi
Ž . �Ž . 4i G 1 , not all zero, such that N : r , r , r , . . . : Ý a r s 0 . There1 2 3 iG1 i i
exists a positive integer k such that a / 0. Let t be any positive integerk

Ž tyk .with t ) k. Then x s 0, 0, . . . , 0, y1, 0, 0, . . . , 0, 2 , 0, 0, . . . belongs to
N, where y1 is the k th component and 2 tyk is the th component. Then
Ž . tyk tyk ` na y1 q a 2 s 0, i.e., a s 2 a . Thus a g F Z2 s 0, a con-k t k t k ns1

tradiction.

Let R be a domain with field of fractions K. Let M be an R-module
� 4with ordered generating set G s m : i g I , i.e., M s Ý Rm , where Ii ig I i

Ž .is some ordered index set. Let A s a be an I = I column-finite matrixi j
Ž .over K. Then we say that A is G-compatible if whenever r g R i g Ii

with r / 0 for at most a finite number of elements i g I and Ý r m s 0i ig I i i
Ž .then Ý a r s 0 i g I . We illustrate this concept in the followingjg I i j j

proposition.



TIRAŞ, HARMANCI, AND SMITH746

PROPOSITION 5. Let A be a G-compatible N = N column-finite matrix
1 1 1� 4o¨er Q for the Z-module Q with ordered generating set G s 1, , , , . . .2 3 4

where N, Z, and Q denote the natural numbers, integers and rational
numbers, respectï ely. Then

q q1 1
q ???1 2 3
. . .. . .. . .A s ,q qn n

q ???n 2 3
. . .. . .. . .

Ž .for some positï e integer n and nonzero q g Q 1 F i F n .i

Ž . � 4Proof. Suppose that A s a where i, j g N. Let m g N R 1 . Theni j
Ž .1 y m 1rm s 0 so that

a 1 q a ym s 0, i g I .Ž . Ž .i1 im

Thus a s a rm for all i, m g N. The result follows.im i1

LEMMA 6. Let R be a domain with field of fraction K and let M be an
� 4R-module with ordered generating set G s m : i g I . Then N is a properi

submodule of M such that MrN is a torsionfree R module if and only if there
Ž .exists a nonzero G-compatible I = I column-finite matrix a o¨er K suchi j

that

N s r m g M : r g R , i g I and a r s 0, i g I .Ž . Ž .Ý Ýi i i i j j½ 5
igI jgI

Ž .Proof. Suppose that a is a nonzero G-compatible I = I column-finitei j
� Ž .matrix over K and N s Ý r m g M: r g R i g I and Ý a r s 0ig I i i i jg I i j j

Ž .4i g I . Note that if m g M such that m s Ý r m and m s Ý s mig I i i ig I i i
Ž . � 4 �where r , s g R i g I and neither of the set i g I: r / 0 and i g I:i i i

4 Ž . Ž .s / 0 is infinite then Ý r y s m s 0 so that Ý a r y s s 0i ig I i i i jg J i j j j
Ž . Ž . Ž .i g I , i.e., Ý a r s 0 i g I m Ý a s s 0 i g I . Thus N isjg J i j j jg J i j j
well defined and it is easy to check that N is a submodule of M. There
exist i9, j9 g I such that a / 0. Then m f N. Thus N is a properi9 j9 j9
submodule of M. It is clear that the module MrN is torsionfree.

Conversely, suppose that N is a proper submodule of M and MrN is a
� 4torsionfree R-module. There exist a free R-module F with basis f : i g Ii

Ž . Ž .and an epimorphism w : F ª M such that w f s m i g I . Let H si i
y1Ž .w N . It can easily be checked that H is a proper submodule of F and

FrH is a torsionfree R y module. By Lemma 2, there exists a nonzero
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Ž .I = I column-finite matrix a over K such thati j

H s r f g F : r g R , i g I and a r s 0, i g I .Ž . Ž .Ý Ýi i i i j j½ 5
igI jgI

Ž .Let s g R i g I such that s / 0 for at most a finite number of elementsi i
i g I and Ý s m s 0. Then Ý s f g Ker w F H so that Ý a s sig I i i ig I i i jg J i j j

Ž . Ž .0, i g I . Thus the matrix a is G-compatible. Finally,i j

N s w H s r m g M : r g R , i g I and a r s 0, i g I .Ž . Ž . Ž .Ý Ýi i i i j j½ 5
igI jgI

To illustrate Lemma 6, consider the Z-module Q with ordered generat-
1 1 1� 4ing set G s 1, , , , . . . . By Proposition 5 and Lemma 6, N is a proper2 3 4

submodule of Q and QrN is torsionfree if and only if

r rn n
N s : s 0 , i.e., N s 0.Ý Ý½ 5n nngN ngN

� 4There is an analogue of Lemma 6 in case I is finite, say I s 1, . . . , n ,
for some n g N. In this case the elements a can be replaced by elementsi j

Ž . Ž .b g R, 1 F i, j F n compare Corollary 3 .i j
Let R be a domain with field of fractions K and let P be a prime ideal

of R. Let R denote the localization of R at P. Then R is the subring ofP P
K consisting of all elements rrc where r g R, c g R R P. Let M be an

� 4 Ž .R-module with ordered generating set G s m : i g I . Let A s a bei i j
Ž .an I = I column-finite matrix over K. Then we say that A is G, P -com-

Ž .patible if whenever r g R, i g I with r / 0 for at most a finite numberi i
Ž .of elements i g I and Ý r m g PM then Ý a r g R P, i g I .ig I i i jg I i j j P

Ž .Note that A is G, 0 -compatible if and only if A is G-compatible.

Ž .EXAMPLE 7. Let M denote the Z-module ZrZ2 [ ZrZ3 with or-
�Ž . Ž .4dered generating set G s 1 q Z2, 0 q Z3 , 0 q Z2, 1 q Z3 .

Ž . Ž .i The zero 2 = 2 matrix is the only G, 0 -compatible matrix.
Ž . Ž .ii For any prime p / 2, 3, a 2 = 2 matrix A is G, P -compatible

if and only if each entry of A belongs to Z P when P s Z .p p

1 0Ž . w x Ž .iii is a G, Z2 -compatible matrix.
0 0

0 1Ž . w x Ž .iv is a G, Z3 -compatible matrix.
0 0
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Ž . Ž . Ž .Proof. i Let m s 1 q Z2, 0 q Z3 , m s 0 q Z2, 1 q Z3 . Let1 2
a bw x Ž .be a G, 0 -compatible matrix. Then 2m s 0 gives1c d

a b 2 0s ,
c d 0 0

so that a s 0, c s 0, and 3m s 0 gives2

a b 0 0s ,
c d 3 0

so that b s 0, d s 0.
Ž .ii Now let p be a prime integer, p / 2, 3 and set P s Z p. Then

a bw xPM s M. Let A s where a, b, c, and d g Q. Clearly if a, b, c, d g
c d

Ž . Ž .Z P then A is G, P -compatible. Conversely, suppose that A is G, P -p
compatible. Then m g M s PM gives a1 q b0 g Z P, c1 q d0 g Z P,1 p p
i.e., a, c g Z P. Similarly m g M s PM gives b, d g Z P.p 2 p

Ž . Ž .iii Note that 2 M s 0 [ ZrZ3 . Let r, s g Z such that rm q sm1 2
g 2 M. Then rm s 0 so that r is even. Then1

1 0 r rs ,
0 0 0 0

1 0w x Ž .where r g Z2 : Z 2. Thus is a G, Z2 -compatible matrix.2 0 0

Ž . Ž .iv Similar to iii .

THEOREM 8. Let R be a domain and let M be an R-module with ordered
� .generating set G s m : i g I . Then N is a prime submodule of M if and onlyi

Ž .if there exist a prime ideal P of R and a G, P -compatible I = I column-finite
Ž .matrix a o¨er the local ring R such that a f R P for some i, j g I andi j P i j P

N s r m g M : r g R , i g I and a r g R P , i g I .Ž . Ž .Ý Ýi i i i j j P½ 5
igI jgI

Ž .In this case P s N: M .

Proof. Suppose first that there exists a prime ideal P of R and a
Ž . Ž .G, P -compatible I = I column-finite matrix a over R such that Ni j P
has the stated form. By hypothesis, PM : N and N is a submodule of M.
There exist i9, j9 g I such that a f R P and then m f N. Thus N is ai9 j9 P j9
proper submodule of M. Let m g M, c g R R P such that cm g N. There

Ž .exist elements r g R i g I such that r / 0 for at most a finite numberi i
of elements i g I and m s Ý r m . Then cm g N implies thatig I i i
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Ž . Ž . Ž . Ž .Ý a cr g R P i g I and hence c Ý a r g R P i g I andjg I i j j P jg I i j j P
Ž . Ž . Ž .Ý a r g R P i g I . Thus m g N. It follows that the RrP -mod-jg I i j j P
ule MrN is torsionfree. By Lemma 1, N is a prime submodule of M.

Ž .Clearly P s N: M .
Conversely, suppose that N is a prime submodule of the R y module

Ž .M. By Lemma 1, P s N: M is a prime ideal of R and MrN is a
Ž .torsionfree RrP -module. Now M s MrPM has ordered generating set

� 4G s m : i g I where m s m q PM. Let K denote the field of fractionsi i i
of the domain RrP. By Lemma 6, there exists a nonzero G-compatible

Ž .I = I column-finite matrix b over K such thati j

N
s r q P m g M : r g R i g I andŽ . Ž .Ý i i i½PM igI

b r q P s 0, i g I .Ž . Ž .Ý i j i 5
jgI

Ž . Ž .Let x g N. Then x q PM s Ý r q P m where r g R i g I , thereig I i i i
are at most a finite number of elements i g I such that r f P andi

Ž . Ž . � 4Ý b r q P s 0 i g I . Let J s i g I: r f P . Then x q PM sjg I i j j i
Ž . Ž .Ý r q P m s Ý r m q PM so that there exist a finite subset J9ig J i i ig J i i

Ž .of I and elements p g P i g J9 such thati

x s r m q p m .Ý Ýi i i i
igJ igJ 9

� Ž . Ž .Let N9 s Ý s m g M: s g R i g I and Ý b s q P s 0ig I i i i jg I i j j
Ž .4i g I . We have shown that x g N9 and hence N : N9. But it is clear
that N9rPM : NrPM and hence N9 : N. Thus N9 s N.

Ž .y1Ž .For each i, j g I, b s c q P f q P for some f g R, c gi j i j i j i j i j
R R P. For each i, j g I such that f g P we set a s 0. Note thati j i j
f f P for some i, j g I. Let i be any element of I such that f f P fori j i j9

Ž . Ž .some j9 g I. Consider the equation Ý b r q P s 0 in K wherejg I i j j
Ž .r g R j g I and r / 0 for at most a finite number of elements j g I.j j

� 4Let J0 s j g J: r / 0 . Then J0 is finite. Let c s Ł c g R R P.j jg J 0 i j
Ž . Ž .y1Ž .Ž .Then Ý b r q P s 0 gives Ý c q P f q P r q P s 0 andjg J i j j jg J i j i j j

hence, multiplying through by c q P, we have

c q P f q P r q P s 0,Ž . Ž . Ž .Ý Ł i k i j jž /
� 4kgJR jjgJ

so that

c f r g P .Ý Ł i k i j jž /
� 4kgJR jjgJ
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Now multiplying through by cy1 we have

cy1 f r g R P ,Ý i j i j j P
jgJ

and hence

cy1 f r g R P .Ý i j i j j P
jgI

y1 Ž .Let a s c f g R for all j g I such that f f P. Clearly a is ani j i j i j P i j i j
I = I column-finite matrix over the ring R .P

Ž .Now suppose that t g R i g I such that t / 0 for at most a finitei i
Ž .number of elements i g I and Ý t m g PM. Then Ý t q P m s 0.ig I i i ig I i i

Ž .Thus Ý b t q P s 0. By the preceding argument, Ý a t g R P.ig I i j i ig I i j i P
Ž . Ž .Thus the matrix a is G, P -compatible. It is now clear thati j

N s r m g M : r g R i g I and a r g R P i g I ,Ž . Ž .Ý Ýi i i i j j P½ 5
igI jgI

as required.

Let R be any ring. By a maximal prime submodule of an R y module M
�we mean a prime submodule N such that N is maximal in L: L is a prime

Ž . Ž .4submodule of M and L: M s N: M . Theorem 8 has the following
corollary.

COROLLARY 9. Let R be a domain and let M be an R-module with
� 4generating set G s m : i g I . Then N is a maximal prime submodule of M ifi

Ž .and only if there exists a prime ideal P of R and elements a g R , i g I , noti P
all in R P, such thatP

Ž . Ž .i whene¨er r g R i g I such that r / 0 for at most a finitei i
number of elements i g I and Ý r m g PM then Ý a r g R P andig I i i ig I i i P

Ž . � Ž . 4ii N s Ý r m g M: r g R i g I and Ý a r g R P .ig I i i i ig I i i P

Proof. Suppose that N is a maximal prime submodule of M and
Ž . Ž .P s N: M . By Theorem 8 there exists a G, P -compatible I = I col-

Ž .umn-finite matrix a over R such that a f R P for some i, j g I andi j P i j P

N s r m g M : r g R i g I and a r g R P i g I .Ž . Ž .Ý Ýi i i i j j P½ 5
igI jgI
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Suppose that i9, j9 g I such that a f R P and leti9 j9 P

L s r m g M : r g R i g I and a r g R P .Ž .Ý Ýi i i i9 j j P½ 5
igI jgI

Ž .By Theorem 8, L is a prime submodule of M and L : M s P. Clearly
Ž . Ž .N : L. Therefore N s L and N satisfies i and ii .

Ž . Ž .Conversely, suppose that N satisfies i and ii . Define a mapping,

M RP
u : ª by u r m s a r q R P .Ý Ýi i i i Pž /PM R PP igI igI

Ž . Ž .By i , u is well defined. Clearly, u is an R-homomorphism and by ii
N s ker u . Let u : MrN ª R rR P be the induced monomorphism andP P

Ž .let w : R m MrN ª R rR P be the induced R -homomorphism. Be-P P P P
cause R rR P is a simple R -module and w / 0 it follows that R mP P P P
Ž .MrN is a simple R -module. It follows easily that N is a maximal primeP

Ž .submodule of M with N: M s P.

The situation for finitely generated modules is a good deal more
straightforward. We have the following analogue of Theorem 8.

THEOREM 10. Let R be a ring and let M s Ýn Rm be a finitelyis1 i
generated R-module. Then N is a prime submodule of M if and only if there

Ž .exist a prime ideal P of R and elements a g R 1 F i, j F n , not all in P,i j
such that

Ž . Ž . ni gï en elements r g R 1 F i F n , Ý r m g PM implies thati is1 i i
Ýn a r g P for all 1 F i F n, andjs1 i j j

Ž . � n Ž . nii N s Ý s m g M: s g R 1 F i F n and Ý a s g P,is1 i i i js1 i j j
Ž .4 Ž .1 F i F n . In this case, P s N: M .

Ž . Ž .Proof. Suppose first that N satisfies i and ii . Then the proof of
Ž .Theorem 8 shows that N is a prime submodule of M with P s N: M .
Ž .Conversely, suppose that N is a prime submodule of M. Let P s N: M .

Let R s RrP, M s MrPM, N s NrPM, r s r q P for all r in R and
m s m q PM for all m in M. Then MrN is a torsionfree R-module. By

Ž .Lemma 6 there exist elements a g R 1 F i, j F n , not all in P andi j
c g R R P such that

nŽ . Ž .i 9 whenever r g R 1 F i F n with Ý r m s 0 theni is1 i i
n y1Ž .Ý a c r s 0 for all 1 F i F n andjs1 i j j

n n y1Ž . � Ž . Ž . Žii 9 N s Ý s m : s g R i g I and Ý a c s s 0, 1 F i Fis1 i i i js1 i j j
.4n .

� 4 Ž . Ž .It is now clear that the elements a : 1 F i, j F n satisfy i and ii .i j
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There is an analogue of Corollary 9 for finitely generated modules.

COROLLARY 11. Let R be a ring and let M s Ýn Rm be a finitelyis1 i
generated R y module. Then N is a maximal prime submodule of M if and

Ž .only if there exist a prime ideal P of R and elements a g R 1 F i F n , noti
all in P, such that

Ž . Ž . ni gï en elements r g R, 1 F i F n , Ý r m g PM implies thati is1 i i
Ýn a r g P, andis1 i i

Ž . � n Ž . n 4ii N s Ý s m : s g R 1 F i F n and Ý a s g P .is1 i i i is1 i i

Proof. By the proof of Corollary 9.
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