A Characterization of Prime Submodules

Y ücel Tıraş and A bdullah H armancı

Department of Mathematics, Hacettepe University, Ankara, Turkey
E-mail: ytiras@ eti.cc.hun.edu.tr
and P. F. Smith
Department of Mathematics, University of Glasgow G12 8QW, Scotland,
United Kingdom Communicated by Kent R. Fuller

R eceived J anuary 5, 1998

INTRODUCTION

Let R be a commutative domain and let M be an R-module. It is proved that to every prime submodule of M there corresponds a prime ideal of R and a set of linear equations of a certain type, and conversely. In particular, in case M is a finitely generated R-module generated by n elements, for some positive integer n, then the prime submodules of M are given by prime ideals of R and certain finite systems of equations containing at most n equations.

PRELIMINARIES AND RESULTS

Throughout this article all rings are commutative with identity and all modules are unital. Let R be a ring and let M be an R-module. For any submodule N of M let ($N: M$) $=\{r \in R: r M \subseteq N\}$. Clearly ($N: M$) is an ideal of R. A submodule N of M is called prime if $N \neq M$ and given, $r \in R, m \in M$, then $r m \in N$ implies $m \in N$ or $r \in(N: M)$. (For more information about prime submodules, see [1-4]). The following lemma is well known (see, for example, [4]).

Lemma 1. Let M be an R-module. Then a submodule N of M is prime if and only if $P=(N: M)$ is a prime ideal of R and the (R / P)-module M / N is torsionfree.

Let M be an R-module which is generated by elements $m_{i}(i \in I)$, where the index set I need not be finite. Then every element of M can be written in the form $\sum_{i \in I} r_{i} m_{i}$ where $r_{i} \in R(i \in I)$ and $r_{i} \neq 0$ for at most a finite number of elements $i \in I$. It will be convenient to write the elements of M in this form.

Let I be a nonempty index set. By an $I \times I$ column-finite matrix $\left(a_{i j}\right)$ over a ring R we mean a collection of elements $a_{i j} \in R(i, j \in I)$ such that for each $j \in I$ the set $\left\{i \in I: a_{i j} \neq 0\right\}$ is empty or finite.

Lemma 2. Let R be a domain with field of fractions K and let M be a free R-module with basis $\left\{m_{i}: i \in I\right\}$. Let N be a proper submodule of M such that M / N is a torsionfree R-module. Then there exists a nonzero $I \times I$ column-finite matrix ($a_{i j}$) over K such that

$$
N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R,(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j}=0,(i \in I)\right\} .
$$

Proof. Without loss of generality we can consider M as an R-module of the K-vector space V with basis $\left\{m_{i}: i \in I\right\}$. Now $K N$ is a subspace of V and $N=K N \cap M$ because M / N is torsionfree. Thus $K N$ is a proper subspace of V and hence $V=K N \oplus W$ for some nonzero K-submodule W of V.

Let $\pi: V \rightarrow W$ denote the canonical projection with kernel $K N$. For each $j \in I, \pi\left(m_{j}\right)=\sum_{i \in I} a_{i j} m_{i}$ for some $a_{i j} \in K(i \in I)$ such that $\{i \in I$: $a_{i j} \neq 0$ \} is empty or finite. Clearly $\left(a_{i j}\right)$ is an $I \times I$ column-finite matrix over K and is nonzero because W, and hence π, is nonzero.

Let $m \in M$. Then $m=\sum_{j \in I} s_{j} m_{j}$ for some $s_{j} \in R$ where $s_{j} \neq 0$ for at most finite number of elements $j \in I$. It follows that

$$
\pi(m)=\sum_{j \in I} s_{j} \pi\left(m_{j}\right)=\sum_{j \in I} s_{j}\left(\sum_{i \in I} a_{i j} m_{i}\right)=\sum_{i \in I}\left(\sum_{j \in I} a_{i j} s_{j}\right) m_{i} .
$$

Now

$$
\begin{aligned}
N & =M \cap K N=\{m \in M: \pi(m)=0\} \\
& =\left\{\sum_{j \in L} s_{j} m_{j} \in M: \sum_{j \in I} a_{i j} s_{j}=0(i \in I)\right\} .
\end{aligned}
$$

Corollary 3. Let R be a domain and let M be a free R-module with basis $\left\{m_{1}, \ldots, m_{n}\right\}$, for some positive integer n. Let N be a proper submodule of M such that M / N is a torsionfree R - module. Then there exist elements $b_{i j} \in R$ for $1 \leq i, j \leq n$, not all zero, such that

$$
\begin{array}{r}
N=\left\{r_{1} m_{1}+\cdots+r_{n} m_{n}: r_{i} \in R,(1 \leq i \leq n)\right. \text { and } \\
\left.\sum_{j=1}^{n} b_{i j} r_{j}=0,(1 \leq i \leq n)\right\} .
\end{array}
$$

Proof. In Lemma 2, $I=\{1, \ldots, n\}$. For each $1 \leq i, j \leq n$, there exist $b_{i j} \in R, 0 \neq c_{i j} \in R$ such that $a_{i j}=b_{i j} / c_{i j}$. Without loss of generality, there exists $0 \neq c \in R$ such that $c_{i j}=c(1 \leq i, j \leq n)$. The result now follows by Lemma 2.

N ote that, in general, in Lemma 2 we cannot assume that $a_{i j} \in R$ for all $i, j \in I$, as the following example shows.

Example 4. Let \mathbb{Z} denote the ring of integers and let $M=\mathbb{Z} \oplus \mathbb{Z} \oplus$ $\mathbb{Z} \oplus \mathbb{Z} \oplus \cdots$ denote the free \mathbb{Z}-module of countably infinite rank. Let

$$
N=\left\{\left(r_{1}, r_{2}, r_{3}, \ldots\right) \in M: \frac{1}{2} r_{1}+\frac{1}{4} r_{2}+\frac{1}{8} r_{3}+\cdots=0\right\} .
$$

Then N is a proper submodule of M and M / N is a torsionfree \mathbb{Z}-module. However there do not exist elements $a_{i} \in \mathbb{Z}(i \geq 1)$, not all zero, such that

$$
N \subseteq\left\{\left(r_{1}, r_{2}, r_{3}, \ldots\right): \sum_{i \geq 1} a_{i} r_{i}=0\right\} .
$$

Proof. It is easy to check that N is a proper submodule of M and that M / N is a torsionfree \mathbb{Z} module. Suppose that there exist elements $a_{i} \in \mathbb{Z}$ ($i \geq 1$), not all zero, such that $N \subseteq\left\{\left(r_{1}, r_{2}, r_{3}, \ldots\right)\right.$: $\left.\sum_{i \geq 1} a_{i} r_{i}=0\right\}$. There exists a positive integer k such that $a_{k} \neq 0$. Let t be any positive integer with $t>k$. Then $x=\left(0,0, \ldots, 0,-1,0,0, \ldots, 0,2^{t-k}, 0,0, \ldots\right)$ belongs to N, where -1 is the k th component and 2^{t-k} is the t component. Then $a_{k}(-1)+a_{t} 2^{t-k}=0$, i.e., $a_{k}=2^{t-k} a_{t}$. Thus $a_{k} \in \bigcap_{n=1}^{\infty} \mathbb{Z} 2^{n}=0$, a contradiction.

Let R be a domain with field of fractions K. Let M be an R-module with ordered generating set $G=\left\{m_{i}: i \in I\right\}$, i.e., $M=\sum_{i \in I} R m_{i}$, where I is some ordered index set. Let $A=\left(a_{i j}\right)$ be an $I \times I$ column-finite matrix over K. Then we say that A is G-compatible if whenever $r_{i} \in R(i \in I)$ with $r_{i} \neq 0$ for at most a finite number of elements $i \in I$ and $\sum_{i \in I} r_{i} m_{i}=0$ then $\sum_{j \in I} a_{i j} r_{j}=0 \quad(i \in I)$. We illustrate this concept in the following proposition.

Proposition 5. Let A be a G-compatible $\mathbb{N} \times \mathbb{N}$ column-finite matrix over \mathbb{Q} for the \mathbb{Z}-module \mathbb{Q} with ordered generating set $G=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$ where \mathbb{N}, \mathbb{Z}, and \mathbb{Q} denote the natural numbers, integers and rational numbers, respectively. Then

$$
A=\left[\begin{array}{cccc}
q_{1} & \frac{q_{1}}{2} & \frac{q_{1}}{3} & \cdots \\
\vdots & \vdots & \vdots & \\
q_{n} & \frac{q_{n}}{2} & \frac{q_{n}}{3} & \ldots \\
\vdots & \vdots & \vdots &
\end{array}\right],
$$

for some positive integer n and nonzero $q_{i} \in \mathbb{Q}(1 \leq i \leq n)$.
Proof. Suppose that $A=\left(a_{i j}\right)$ where $i, j \in \mathbb{N}$. Let $m \in \mathbb{N} \backslash\{1\}$. Then $1-m(1 / m)=0$ so that

$$
a_{i 1} 1+a_{i m}(-m)=0, \quad(i \in I)
$$

Thus $a_{i m}=a_{i 1} / m$ for all $i, m \in \mathbb{N}$. The result follows.
Lemma 6. Let R be a domain with field of fraction K and let M be an R-module with ordered generating set $G=\left\{m_{i}: i \in I\right\}$. Then N is a proper submodule of M such that M / N is a torsionfree R module if and only if there exists a nonzero G-compatible $I \times I$ column-finite matrix $\left(a_{i j}\right)$ over K such that

$$
N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R,(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j}=0,(i \in I)\right\} .
$$

Proof. Suppose that ($a_{i j}$) is a nonzero G-compatible $I \times I$ column-finite matrix over K and $N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R(i \in I)\right.$ and $\sum_{j \in I} a_{i j} r_{j}=0$ $(i \in I)\}$. Note that if $m \in M$ such that $m=\sum_{i \in I} r_{i} m_{i}$ and $m=\sum_{i \in I} s_{i} m_{i}$ where $r_{i}, s_{i} \in R(i \in I)$ and neither of the set $\left\{i \in I: r_{i} \neq 0\right\}$ and $\{i \in I$: $\left.s_{i} \neq 0\right\}$ is infinite then $\sum_{i \in I}\left(r_{i}-s_{i}\right) m_{i}=0$ so that $\sum_{j \in J} a_{i j}\left(r_{j}-s_{j}\right)=0$ $(i \in I)$, i.e., $\sum_{j \in J} a_{i j} r_{j}=0(i \in I) \Leftrightarrow \sum_{j \in J} a_{i j} s_{j}=0(i \in I)$. Thus N is well defined and it is easy to check that N is a submodule of M. There exist $i^{\prime}, j^{\prime} \in I$ such that $a_{i^{\prime} j^{\prime}} \neq 0$. Then $m_{j^{\prime}} \notin N$. Thus N is a proper submodule of M. It is clear that the module M / N is torsionfree.

Conversely, suppose that N is a proper submodule of M and M / N is a torsionfree R-module. There exist a free R-module F with basis $\left\{f_{i}: i \in I\right\}$ and an epimorphism $\varphi: F \rightarrow M$ such that $\varphi\left(f_{i}\right)=m_{i}(i \in I)$. Let $H=$ $\varphi^{-1}(N)$. It can easily be checked that H is a proper submodule of F and F / H is a torsionfree R-module. By Lemma 2, there exists a nonzero
$I \times I$ column-finite matrix ($a_{i j}$) over K such that

$$
H=\left\{\sum_{i \in I} r_{i} f_{i} \in F: r_{i} \in R,(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j}=0,(i \in I)\right\} .
$$

Let $s_{i} \in R(i \in I)$ such that $s_{i} \neq 0$ for at most a finite number of elements $i \in I$ and $\sum_{i \in I} s_{i} m_{i}=0$. Then $\sum_{i \in I} s_{i} f_{i} \in \operatorname{Ker} \varphi \leq H$ so that $\sum_{j \in J} a_{i j} s_{j}=$ $0,(i \in I)$. Thus the matrix $\left(a_{i j}\right)$ is G-compatible. Finally,

$$
N=\varphi(H)=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R,(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j}=0,(i \in I)\right\} .
$$

To illustrate Lemma 6, consider the \mathbb{Z}-module \mathbb{Q} with ordered generating set $G=\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots\right\}$. By Proposition 5 and Lemma $6, N$ is a proper submodule of \mathbb{Q} and \mathbb{Q} / N is torsionfree if and only if

$$
N=\left\{\sum_{n \in \mathbb{N}} \frac{r_{n}}{n}: \sum_{n \in \mathbb{N}} \frac{r_{n}}{n}=0\right\} \text {, i.e., } N=0 .
$$

There is an analogue of Lemma 6 in case I is finite, say $I=\{1, \ldots, n\}$, for some $n \in \mathbb{N}$. In this case the elements $a_{i j}$ can be replaced by elements $b_{i j} \in R,(1 \leq i, j \leq n)$ (compare Corollary 3).

Let \mathbb{R} be a domain with field of fractions K and let P be a prime ideal of R. Let R_{P} denote the localization of R at P. Then R_{P} is the subring of K consisting of all elements r / c where $r \in R, c \in R \backslash P$. Let M be an R-module with ordered generating set $G=\left\{m_{i}: i \in I\right\}$. Let $A=\left(a_{i j}\right)$ be an $I \times I$ column-finite matrix over K. Then we say that A is (G, P)-compatible if whenever $r_{i} \in R$, $(i \in I)$ with $r_{i} \neq 0$ for at most a finite number of elements $i \in I$ and $\sum_{i \in I} r_{i} m_{i} \in P M$ then $\sum_{j \in I} a_{i j} r_{j} \in R_{P} P,(i \in I)$. Note that A is ($G, 0$)-compatible if and only if A is G-compatible.

Example 7. Let M denote the \mathbb{Z}-module $(\mathbb{Z} / \mathbb{Z} 2 \oplus \mathbb{Z} / \mathbb{Z} 3)$ with ordered generating set $G=\{(1+\mathbb{Z} 2,0+\mathbb{Z} 3),(0+\mathbb{Z} 2,1+\mathbb{Z} 3)\}$.
(i) The zero 2×2 matrix is the only ($G, 0$)-compatible matrix.
(ii) For any prime $p \neq 2,3$, a 2×2 matrix A is (G, P)-compatible if and only if each entry of A belongs to $\mathbb{Z}_{p} P$ when $P=\mathbb{Z}_{p}$.
(iii) $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is a $(G, \mathbb{Z} 2)$-compatible matrix.
(iv) $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ is a $(G, \mathbb{Z} 3)$-compatible matrix.

Proof. (i) Let $m_{1}=(1+\mathbb{Z} 2,0+\mathbb{Z} 3), \quad m_{2}=(0+\mathbb{Z} 2,1+\mathbb{Z} 3)$. Let $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a $(G, 0)$-compatible matrix. Then $2 m_{1}=0$ gives

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

so that $a=0, c=0$, and $3 m_{2}=0$ gives

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
0 \\
3
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right],
$$

so that $b=0, d=0$.
(ii) Now let p be a prime integer, $p \neq 2,3$ and set $P=\mathbb{Z} p$. Then $P M=M$. Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ where a, b, c, and $d \in \mathbb{Q}$. Clearly if $a, b, c, d \in$ $\mathbb{Z}_{p} P$ then A is (G, P)-compatible. Conversely, suppose that A is (G, P) compatible. Then $m_{1} \in M=P M$ gives $a 1+b 0 \in \mathbb{Z}_{p} P, c 1+d 0 \in \mathbb{Z}_{p} P$, i.e., $a, c \in \mathbb{Z}_{p} P$. Similarly $m_{2} \in M=P M$ gives $b, d \in \mathbb{Z}_{p} P$.
(iii) Note that $2 M=(0 \oplus \mathbb{Z} / \mathbb{Z} 3)$. Let $r, s \in \mathbb{Z}$ such that $r m_{1}+s m_{2}$ $\in 2 M$. Then $r m_{1}=0$ so that r is even. Then

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
r \\
0
\end{array}\right]=\left[\begin{array}{l}
r \\
0
\end{array}\right],
$$

where $r \in \mathbb{Z} 2 \subseteq \mathbb{Z}_{2} 2$. Thus $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is a ($G, \mathbb{Z} 2$)-compatible matrix.
(iv) Similar to (iii).

Theorem 8. Let R be a domain and let M be an R-module with ordered generating set $G=\left\{m_{i}: i \in I\right)$. Then N is a prime submodule of M if and only if there exist a prime ideal P of R and $a(G, P)$-compatible $I \times I$ column-finite matrix $\left(a_{i j}\right)$ over the local ring R_{P} such that $a_{i j} \notin R_{P} P$ for some $i, j \in I$ and

$$
N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R,(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j} \in R_{P} P,(i \in I)\right\} .
$$

In this case $P=(N: M)$.
Proof. Suppose first that there exists a prime ideal P of R and a (G, P)-compatible $I \times I$ column-finite matrix $\left(a_{i j}\right)$ over R_{P} such that N has the stated form. By hypothesis, $P M \subseteq N$ and N is a submodule of M. There exist $i^{\prime}, j^{\prime} \in I$ such that $a_{i^{\prime} j^{\prime}} \notin R_{P} P$ and then $m_{j^{\prime}} \notin N$. Thus N is a proper submodule of M. Let $m \in M, c \in R \backslash P$ such that $c m \in N$. There exist elements $r_{i} \in R(i \in I)$ such that $r_{i} \neq 0$ for at most a finite number of elements $i \in I$ and $m=\sum_{i \in I} r_{i} m_{i}$. Then $c m \in N$ implies that
$\sum_{j \in I} a_{i j}\left(c r_{j}\right) \in R_{P} P(i \in I)$ and hence $c\left(\sum_{j \in I} a_{i j} r_{j}\right) \in R_{P} P(i \in I)$ and $\left(\sum_{j \in I} a_{i j} r_{j}\right) \in R_{P} P(i \in I)$. Thus $m \in N$. It follows that the (R / P)-module M / N is torsionfree. By Lemma 1, N is a prime submodule of M. Clearly $P=(N: M)$.

Conversely, suppose that N is a prime submodule of the R-module M. By Lemma 1, $P=(N: M)$ is a prime ideal of R and M / N is a torsionfree (R / P)-module. Now $\bar{M}=M / P M$ has ordered generating set $\bar{G}=\left\{\bar{m}_{i}: i \in I\right\}$ where $\bar{m}_{i}=m_{i}+P M$. Let K denote the field of fractions of the domain R / P. By Lemma 6 , there exists a nonzero \bar{G}-compatible $I \times I$ column-finite matrix ($b_{i j}$) over K such that

$$
\begin{array}{r}
\frac{N}{P M}=\left\{\sum_{i \in I}\left(r_{i}+P\right) \bar{m}_{i} \in \bar{M}: r_{i} \in R(i \in I)\right. \text { and } \\
\left.\sum_{j \in I} b_{i j}\left(r_{i}+P\right)=0,(i \in I)\right\} .
\end{array}
$$

Let $x \in N$. Then $x+P M=\sum_{i \in I}\left(r_{i}+P\right) \bar{m}_{i}$ where $r_{i} \in R(i \in I)$, there are at most a finite number of elements $i \in I$ such that $r_{i} \notin P$ and $\sum_{j \in I} b_{i j}\left(r_{j}+P\right)=0(i \in I)$. Let $J=\left\{i \in I: r_{i} \notin P\right\}$. Then $x+P M=$ $\sum_{i \in J}\left(r_{i}+P\right) \bar{m}_{i}=\left(\sum_{i \in J} r_{i} m_{i}\right)+P M$ so that there exist a finite subset J^{\prime} of I and elements $p_{i} \in P\left(i \in J^{\prime}\right)$ such that

$$
x=\sum_{i \in J} r_{i} m_{i}+\sum_{i \in J^{\prime}} p_{i} m_{i} .
$$

Let $N^{\prime}=\left\{\sum_{i \in I} s_{i} m_{i} \in M: \quad s_{i} \in R \quad(i \in I)\right.$ and $\sum_{j \in I} b_{i j}\left(s_{j}+P\right)=0$ ($i \in I$) \}. We have shown that $x \in N^{\prime}$ and hence $N \subseteq N^{\prime}$. But it is clear that $N^{\prime} / P M \subseteq N / P M$ and hence $N^{\prime} \subseteq N$. Thus $N^{\prime}=N$.

For each $i, j \in I, b_{i j}=\left(c_{i j}+P\right)^{-1}\left(f_{i j}+P\right)$ for some $f_{i j} \in R, c_{i j} \in$ $R \backslash P$. For each $i, j \in I$ such that $f_{i j} \in P$ we set $a_{i j}=0$. Note that $f_{i j} \notin P$ for some $i, j \in I$. Let i be any element of I such that $f_{i j^{\prime}} \notin P$ for some $j^{\prime} \in I$. Consider the equation $\sum_{j \in I} b_{i j}\left(r_{j}+P\right)=0$ (in K) where $r_{j} \in R(j \in I)$ and $r_{j} \neq 0$ for at most a finite number of elements $j \in I$. Let $J^{\prime \prime}=\left\{j \in J: r_{j} \neq 0\right\}$. Then $J^{\prime \prime}$ is finite. Let $c=\Pi_{j \in J^{\prime \prime}} c_{i j} \in R \backslash P$. Then $\sum_{j \in J} b_{i j}\left(r_{j}+P\right)=0$ gives $\sum_{j \in J}\left(c_{i j}+P\right)^{-1}\left(f_{i j}+P\right)\left(r_{j}+P\right)=0$ and hence, multiplying through by $c+P$, we have

$$
\sum_{j \in J}\left(\prod_{k \in J \backslash\{j\}}\left(c_{i k}+P\right)\right)\left(f_{i j}+P\right)\left(r_{j}+P\right)=0,
$$

so that

$$
\sum_{j \in J}\left(\prod_{k \in J \backslash\{j\}} c_{i k}\right) f_{i j} r_{j} \in P .
$$

Now multiplying through by c^{-1} we have

$$
\sum_{j \in J} c_{i j}^{-1} f_{i j} r_{j} \in R_{P} P,
$$

and hence

$$
\sum_{j \in I} c_{i j}^{-1} f_{i j} r_{j} \in R_{P} P .
$$

Let $a_{i j}=c_{i j}^{-1} f_{i j} \in R_{P}$ for all $j \in I$ such that $f_{i j} \notin P$. Clearly $\left(a_{i j}\right)$ is an $I \times I$ column-finite matrix over the ring R_{P}.

Now suppose that $t_{i} \in R(i \in I)$ such that $t_{i} \neq 0$ for at most a finite number of elements $i \in I$ and $\sum_{i \in I} t_{i} m_{i} \in P M$. Then $\sum_{i \in I}\left(t_{i}+P\right) \bar{m}_{i}=0$. Thus $\sum_{i \in I} b_{i j}\left(t_{i}+P\right)=0$. By the preceding argument, $\sum_{i \in I} a_{i j} t_{i} \in R_{P} P$. Thus the matrix $\left(a_{i j}\right)$ is (G, P)-compatible. It is now clear that

$$
N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j} \in R_{P} P(i \in I)\right\},
$$

as required.
Let R be any ring. By a maximal prime submodule of an R - module M we mean a prime submodule N such that N is maximal in $\{L: L$ is a prime submodule of M and $(L: M)=(N: M)$. Theorem 8 has the following corollary.

Corollary 9. Let R be a domain and let M be an R-module with generating set $G=\left\{m_{i}: i \in I\right\}$. Then N is a maximal prime submodule of M if and only if there exists a prime ideal P of R and elements $a_{i} \in R_{P},(i \in I)$, not all in $R_{P} P$, such that
(i) whenever $r_{i} \in R(i \in I)$ such that $r_{i} \neq 0$ for at most a finite number of elements $i \in I$ and $\sum_{i \in I} r_{i} m_{i} \in P M$ then $\sum_{i \in I} a_{i} r_{i} \in R_{P} P$ and
(ii) $N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R(i \in I)\right.$ and $\left.\sum_{i \in I} a_{i} r_{i} \in R_{P} P\right\}$.

Proof. Suppose that N is a maximal prime submodule of M and $P=(N: M)$. By Theorem 8 there exists a (G, P)-compatible $I \times I$ col-umn-finite matrix ($a_{i j}$) over R_{P} such that $a_{i j} \notin R_{P} P$ for some $i, j \in I$ and

$$
N=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R(i \in I) \text { and } \sum_{j \in I} a_{i j} r_{j} \in R_{P} P(i \in I)\right\} .
$$

Suppose that $i^{\prime}, j^{\prime} \in I$ such that $a_{i^{\prime} j^{\prime}} \notin R_{P} P$ and let

$$
L=\left\{\sum_{i \in I} r_{i} m_{i} \in M: r_{i} \in R(i \in I) \text { and } \sum_{j \in I} a_{i^{\prime} j} r_{j} \in R_{P} P\right\} .
$$

By Theorem 8, L is a prime submodule of M and $(L: M)=P$. Clearly $N \subseteq L$. Therefore $N=L$ and N satisfies (i) and (ii).

Conversely, suppose that N satisfies (i) and (ii). Define a mapping,

$$
\theta: \frac{M}{P M} \rightarrow \frac{R_{P}}{R_{P} P} \text { by } \theta\left(\sum_{i \in I} \overline{r_{i} m_{i}}\right)=\sum_{i \in I} a_{i} r_{i}+R_{P} P .
$$

By (i), θ is well defined. Clearly, θ is an R-homomorphism and by (ii) $N=\operatorname{ker} \theta$. Let $\bar{\theta}: M / N \rightarrow R_{P} / R_{P} P$ be the induced monomorphism and let $\varphi: R_{P} \otimes(M / N) \rightarrow R_{P} / R_{P} P$ be the induced R_{P}-homomorphism. Because $R_{P} / R_{P} P$ is a simple R_{P}-module and $\varphi \neq 0$ it follows that $R_{P} \otimes$ (M / N) is a simple R_{P}-module. It follows easily that N is a maximal prime submodule of M with ($N: M$) $=P$.

The situation for finitely generated modules is a good deal more straightforward. We have the following analogue of Theorem 8.
Theorem 10. Let R be a ring and let $M=\sum_{i=1}^{n} R m_{i}$ be a finitely generated R-module. Then N is a prime submodule of M if and only if there exist a prime ideal P of R and elements $a_{i j} \in R(1 \leq i, j \leq n)$, not all in P, such that
(i) given elements $r_{i} \in R(1 \leq i \leq n), \sum_{i=1}^{n} r_{i} m_{i} \in P M$ implies that $\sum_{j=1}^{n} a_{i j} r_{j} \in P$ for all $1 \leq i \leq n$, and
(ii) $N=\left\{\sum_{i=1}^{n} s_{i} m_{i} \in M: \quad s_{i} \in R \quad(1 \leq i \leq n) \quad\right.$ and $\quad \sum_{j=1}^{n} a_{i j} s_{j} \in P$, $(1 \leq i \leq n)\}$. In this case, $P=(N: M)$.

Proof. Suppose first that N satisfies (i) and (ii). Then the proof of Theorem 8 shows that N is a prime submodule of M with $P=(N: M)$. Conversely, suppose that N is a prime submodule of M. Let $P=(N: M)$. Let $\bar{R}=R / P, \bar{M}=M / P M, \bar{N}=N / P M, \bar{r}=r+P$ for all r in R and $\bar{m}=m+P M$ for all m in M. Then \bar{M} / \bar{N} is a torsionfree \bar{R}-module. By Lemma 6 there exist elements $a_{i j} \in R(1 \leq i, j \leq n)$, not all in P and $c \in R \backslash P$ such that
(i)' whenever $r_{i} \in R \quad(1 \leq i \leq n)$ with $\sum_{i=1}^{n} \bar{r}_{i} \bar{m}_{i}=\overline{0}$ then $\sum_{j=1}^{n}\left(\bar{a}_{i j} \bar{c}^{-1}\right) \bar{r}_{j}=\overline{0}$ for all $1 \leq i \leq n$ and
(ii) $\bar{N}=\left\{\sum_{i=1}^{n} \bar{s}_{i} \bar{m}_{i}: s_{i} \in R(i \in I)\right.$ and $\sum_{j=1}^{n}\left(\bar{a}_{i j} \bar{c}^{-1}\right) \bar{s}_{j}=\overline{0},(1 \leq i \leq$ $n)\}$.

It is now clear that the elements $\left\{a_{i j}: 1 \leq i, j \leq n\right\}$ satisfy (i) and (ii).

There is an analogue of Corollary 9 for finitely generated modules.
Corollary 11. Let R be a ring and let $M=\sum_{i=1}^{n} R m_{i}$ be a finitely generated R - module. Then N is a maximal prime submodule of M if and only if there exist a prime ideal P of R and elements $a_{i} \in R(1 \leq i \leq n)$, not all in P, such that
(i) given elements $r_{i} \in R,(1 \leq i \leq n), \sum_{i=1}^{n} r_{i} m_{i} \in P M$ implies that $\sum_{i=1}^{n} a_{i} r_{i} \in P$, and
(ii) $N=\left\{\sum_{i=1}^{n} s_{i} m_{i}: s_{i} \in R(1 \leq i \leq n)\right.$ and $\left.\sum_{i=1}^{n} a_{i} s_{i} \in P\right\}$.

Proof. By the proof of Corollary 9.

REFERENCES

1. S. M. George, R . Y. M cCasland, and P. F. Smith, A principal ideal theorem analogue for modules over commutative rings, Comm. Algebra 22 (1994), 2083-2099.
2. J. Jenkins and P. F. Smith, On the prime radical of a module over a commutative ring, Comm. Algebra 20 (1992), 3593-3602.
3. R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), 1803-1817.
4. R. L. McCasland and P. F. Smith, Prime submodules of Noetherian modules, Rocky Mountain J. Math. 23 (1993), 1041-1062.
