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Abstract. From the processing point of view, friction is a major problem in the severe plastic 

deformation (SPD) using equal channel angular pressing (ECAP) process. Incremental ECAP 

can be used in order to optimize frictional effects during SPD. A new incremental ECAP has 

been proposed recently. This new process called as equal channel angular swaging (ECAS) 

combines the conventional ECAP and the incremental bulk metal forming method rotary 

swaging. ECAS tool system consists of two dies with an angled channel that contains two shear 

zones. During ECAS process, two forming tool halves, which are concentrically arranged around 

the workpiece, perform high frequency radial movements with short strokes, while samples are 

pushed through these. The oscillation direction nearly coincides with the shearing direction in 

the workpiece. The most important advantages in comparison to conventional ECAP are a 

significant reduction in the forces in material feeding direction plus the potential to be extended 

to continuous processing. In the current study, the mechanics of the ECAS process is investigated 

using slip line field approach. An analytical model is developed to predict process loads. The 

proposed model is validated using experiments and FE simulations.  

1.  Introduction 

Ultrafine grained (UFG) materials produced by severe plastic deformation processes (SPD) are known 

for their unusual properties such as a combination of high strength and ductility or improved fatigue 

behavior [1, 2]. Among the SPD processes, Equal Channel Angular Pressing (ECAP) is the most 

investigated and developed one due to its ease of use and scalability [3]. However, ECAP involves 

several drawbacks in its basis form which are mostly related to the high frictional losses in the 

production system. Firstly, friction generates an additional resistance against the punch movement in 

ECAP tool systems and hence increases the axial loads. Increased loads enlarge the buckling risk of 

punch and limit the ECAP workpiece lengths. Therefore, conventional ECAP is seen as a discontinuous 

process. Moreover, high friction forces results in a poor surface appearance.  

In order to overcome these disadvantages, an incremental ECAP (I-ECAP) process has been 

proposed [4-6]. I-ECAP tool system is split into three major parts; a stationary body and a moveable 

wall as well as a feeding unit. During I-ECAP, he moveable die wall is opened before forming so the 

material can be fed freely. After clamping the sample in the forming position, the moveable wall pushes 

the material into the groove of the stationary die body. Hence, the workpiece is formed gradually. Since 

the relative movement between I-ECAP tool walls and the specimen is relatively small for every stroke, 

the friction is minimized by this process. 

A similar incremental SPD process, called as Equal Channel Angular Swaging (ECAS) has been 

proposed by the author [7-9]. ECAS combines the conventional ECAP and the incremental bulk metal 

http://creativecommons.org/licenses/by/3.0
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forming process of rotary swaging. Since this process optimizes friction forces during forming, it has a 

great potential for a continuous production. However, in its first variant, ECAS tool system had channels 

with a high angle. Therefore, plastic deformation was limited. In order to improve the efficiency of 

ECAS, channel angle should be reduced. In the current study, the mechanics of ECAS process has been 

investigated using slip line field theory. An analytical model has been developed to predict process 

forces during SPD with ECAS. Afterwards, a tool system has been designed with the aid of the proposed 

analytical model and it is validated with experiments and FE simulations. 

2.  Principles of ECAS 

The ECAS process bases upon the combination of conventional ECAP and the incremental bulk metal 

forming method of rotary swaging. During the proposed ECAS process, two forming tool halves, which 

are concentrically arranged around the workpiece, perform high frequency radial movements with short 

strokes, while samples are pushed through these. Due to this oscillation motion, the contact time and the 

relative movement between the tool and the workpiece are very small within a stroke cycle. This feature 

enables the feeding of the material while the tools are open. Moreover, the discontinuous contact enables 

the permanent lubrication of the tools and the workpiece. Furthermore, ECAS tool systems contain 

multiple forming sections to ensure that the material exits the process in the same direction as the entry. 

In the current study, a tool with two forming sections is investigated. Another important aspect of ECAS 

is that the samples are not pushed against stationary tool walls. Since the oscillation direction nearly 

coincides with the pushing direction, the workpiece is pulled by the tools during forming. ECAS tool 

system is shown in ‘figure 1’ schematically.  

 

Figure 1. Schematic illustration of ECAS tool (a) cross-section (b) front-view. 

 

In the first studies about ECAS process, a tool system with high channel angles (150°) was used. 

Although it was possible to refine grain structure of metals with that tool configuration, it required 

multiple passes [7, 8]. The efficiency of ECAS can be increased by decreasing the channel angle and 

thus increasing the strain induced in every pass. However, a decrease in the channel angle will cause a 

significant increase in the forming forces. In such a case, it should be assured that the required force in 

feeding direction doesn’t cause a yielding in the material outside the tool in axial direction. In order to 

prevent such a failure, first of all, process loads are investigated analytically in the current study.  

3.  Mechanics of ECAS 

Process loads of conventional ECAP has been investigated analytically in many studies [10, 11]. The 

only force source in conventional ECAP is the punch, which loads workpieces in axial direction. 

Analytical formulas developed for conventional ECAP process predict the punch force. On the other 

hand, workpieces are loaded in oscillation direction of the tools during ECAS process. These radial 

forces in oscillation direction cause the deformation in the material. Forces in feeding direction (axial 

forces) only compensate the redundant force components in the feeding direction. Therefore, analytical 

formulas developed for conventional ECAP can’t be used for ECAS process.  
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The forces acting during ECAS process are shown in ‘figure 2’ schematically. ECAS tool system 

involves two forming sections. Angles in every channel intersection is the same. Therefore, the 

workpiece leaves the process in the same direction as it enters. Hence, forming follows the Route A. 

Radial forces are applied to the workpiece by the tool in oscillation direction. Axial forces are applied 

in feed direction.  

 

Figure 2. (a) Forces during ECAS process and (b) detail of force distribution. 

 

Unlike conventional ECAP, due to the kinematics of the tools, friction is acting on the sample’s 

feeding direction in ECAS, not on the opposite direction. Thus, as shown in ‘figure 2’ it eases the feeding 

and reduces the axial forces. This aspect is seen as the most significant advantage of ECAS process over 

ECAP concerning the force requirement. 

For the analytical calculation of the process forces, it is assumed that the deformation takes place 

along single lines. As a results, force required to form the material along the first yielding line can be 

expressed as follows: 

 𝐹𝑦𝑖𝑒𝑙𝑑𝑖𝑛𝑔,𝐼 =
𝑘𝐼

sin𝜙
∙ 𝐴 (1) 

where, kI is the shear strength of the material in the first deformation zone, Φ is the half channel 

angle and A is the area of the workpiece. In order to be able form the material, the component of the 

resulting force in the yielding direction should be equal to the yielding force. The resulting force can be 

represented as follows: 

 𝐹𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔,𝐼 =
𝑘𝐼

sin𝜙∙sin(𝜙+𝜆)
∙ 𝐴 (2) 

where λ is the friction angle. Moreover, this resulting force is a consequence of the radial force. After 

making the trigonometrical calculations, the radial force required to form the material in the first and 

second deformation zone can be calculated using the following equation: 

 𝐹𝑟𝑎𝑑𝑖𝑎𝑙,𝐼+𝐼𝐼 =
(𝑘𝐼+𝑘𝐼𝐼)

sin𝜙∙sin(𝜙+𝜆)∙(−cos(2𝜙+𝜆))
∙ 𝐴 (3) 

where, kII is the shear strength of the material in the second deformation zone. Additionally, the 

component of the resulting force in the feeding direction should be compensated by the axial force. 

However, part of that force is compensated by the friction acting on the tool walls. By doing the 

trigonometrical calculations, the following formula can be derived to predict axial force in the 

investigated ECAS process, which contains two forming sections: 

 𝐹𝑎𝑥𝑖𝑎𝑙,𝐼+𝐼𝐼 = [
(𝑘𝐼+𝑘𝐼𝐼)∙sin(𝜙+𝜆)

sin𝜙∙sin(𝜙+𝜆)
−

(𝑘𝐼+𝑘𝐼𝐼)∙(−cos(2𝜙+𝜆))

sin𝜙∙sin(𝜙+𝜆)∙
∙ 𝜇] ∙ 𝐴 (4) 
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where, µ is the friction coefficient. A common method to demonstrate forces on such a system is to 

use the dimensionless P/2k value. Assuming that the shear strength of the material is the same in both 

deformation zones, the change in P/2k value in axial and radial directions dependent on friction 

coefficient and half channel angle is shown in ‘figure 3’. 

 

Figure 3. Unitless pressure values of ECAS in (a) axial and (b) radial direction. 

 

The pressures in both axial and radial directions decrease while the friction coefficient increases in 

ECAS process. Besides the fact that the radial pressures are extremely higher than the axial ones and 

the ECAS process is inefficient in terms of overall pressure requirement compared to ECAP, the axial 

pressure in the feeding direction is considerably lower. Since a major prerequisite for a continuous 

forming operation is a low force requirement in the feeding direction, ECAS process has a high potential 

for the continuous and thus cost efficient production of UFG materials. An important aspect is that the 

pressures in the axial direction for a channel angle (2Φ) of 120° is lower than the yield strength of the 

material by friction coefficients higher than 0.07. Thus, in order to prove the validity of the derived 

formulas, an ECAS tool system with a channel angle of 120° will be used in this study. 

4.  Experimental Results 

4.1.  Process parameters 

For the experimental investigations of ECAS process and validation of the derived analytical formulas, 

a tool system as shown in ‘figure 4’ with two forming sections at an channel angle 2Φ=120° and a 

channel diameter of 20 mm was used. Other geometrical parameters of the tools are demonstrated in 

‘figure 4’. The oscillation frequency and amplitude of the tools was 30 Hz and 0.7 mm, respectively. 

The feed speed was 1 mm/s. Commercially pure copper (Cu 99.9%) round bar samples with a diameter 

of 20 mm were used in the experiments. Commercial FE code of MSC.Marc has been used for the 

numerical investigation of the ECAS process. 

 

Figure 4. (a) Geometrical parameters and (b) picture of ECAS tool system. 
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4.2.  Strain distribution 

In order to verify the feasibility of the developed ECAS tool system, model experiments are conducted 

with marked copper samples. Therefore, 320 mm long round copper bars are split in the middle surface 

and then marked with a square grid of 2 mm. Afterwards, these two parts are put together and processed 

by ECAS. The results of the experiments together with the numerically simulated mesh are demonstrated 

in ‘figure 5’. The entry channel is not fully shown in this figure for a better visualization. The regularly 

distributed markings in the middle channel indicate a homogeneous shearing of the material along the 

first yielding line. However, as the sample reaches the second yielding line, the lower section of the 

workpiece tend to be bent rather than simply sheared. Although in an insignificant manner, a similar 

effect is also observed on the upper section of the material. Nevertheless, the regular mesh in the middle 

section of the sample in the exit channel indicates that the deformation is mostly recovered along the 

second yielding line. The square shape of the grid is preserved after the forming with a little deviation. 

The deformation in the experiments resembles the one from FE simulations 

 

Figure 5. Deformation patterns obtained from (a) experiment and (b) FE simulation. 

4.3.  Force requirement 

In ‘figure 6’, measured forces are shown with light gray lines, FE results are demonstrated with black 

lines, analytically predicted ones are displayed with broken lines and their values are written on these. 

A strain gage based force measurement system was used to measure axial and radial loads during ECAS 

process. The forming starts with a sudden increase in axial forces and stabilizes shortly after. A similar 

distribution is observed also when the sample reaches the second forming section. Stabilized forces after 

the first and second forming sections are 45 kN and 77 kN, respectively. Forces in radial direction after 

first and second forming section are 74 kN and 143 kN, respectively. It is clear that FE simulations can 

predict process loads more accurately than the developed analytical formula. It can be explained by 

investigating the material flow demonstrated in ‘figure 5’. By the derivation of the analytical model, it 

was assumed that the tool geometry is completely filled and the deformation is simple shear along a 

single line. However, especially along the second deformation section, the samples are rather bent than 

sheared. Accordingly, an unfilled corner section is present at the second deformation zone. 

 

Figure 6. Measured, FE simulated and analytically calculated (a) axial and (b) radial forces. 
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4.4.  Microstructural evolution 

In order to investigate the ability of ECAS process to refine grain size, the microstructure of the 

processed copper samples was analyzed with EBSD in a high resolution SEM after four times ECAS 

processing using route E. The grain distribution is shown in ‘figure 7’ as an Image Quality Picture. The 

dark lines between the grains represent the grain boundaries in this figure. Here, the fine grains dominate 

the microstructure. The average grain size is slightly less than 0.7 μm. If all grain boundaries are taken 

into account including the ones in the grains, the proportion of HAGBs is approximately 20 %. On the 

other hand the proportion of the HAGBs, which separates the grains from each other, is over 80 %. 

 

Figure 7. Microstructure of the copper sample after four 

ECAS steps. 

 

5.  Conclusion and Outlook 

A new SPD process called as equal channel angular swaging (ECAS) has been proposed recently which 

combines the conventional ECAP and the incremental bulk metal forming method of rotary swaging. 

The most important advantages of ECAS process in comparison to conventional ECAP are a significant 

reduction in the forces in material feeding direction plus the potential to be extended to continuous 

processing. In the current study, the mechanics of the ECAS process is investigated using slip line field 

approach. An analytical model is developed to predict process loads. The proposed model is used to 

design a new set of ECAS die with low channel angles. Model experiments and FE simulations validated 

that ECAS process with a low channel angle is feasible. In future, other materials should be tested. 
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